Date of Award

6-2018

Document Type

Thesis

Degree Name

Master of Arts in Mathematics

Department

Mathematics

First Reader/Committee Chair

Hasan, Zahid

Abstract

The purpose of this thesis is to develop original symmetric presentations of finite non-abelian simple groups, particularly the sporadic simple groups. We have found original symmetric presentations for the Janko group J1, the Mathieu group M12, the Symplectic groups S(3,4) and S(4,5), a Lie type group Suz(8), and the automorphism group of the Unitary group U(3,5) as homomorphic images of the progenitors 2*60 : (2 x A5), 2*60 : A5, 2*56 : (23 : 7), and 2*28 : (PGL(2,7):2), respectively. We have also discovered the groups 24 : A5, 34 : S5, PSL(2,31), PSL(2,11), PSL(2,19), PSL(2,41), A8, 34 : S5, A52, 2 A52, 2 : A62, PSL(2,49), 28 : A5, PGL(2,19), PSL(2,71), 24 : A5, 24 : A6, PSL(2,7), 3 x PSL(3,4), 2 PSL(3,4), PSL(3,4), 2 (M12 : 2), 37:S7, 35 : S5, S6, 25 : S6, 35 : S6, 25 : S5, 24 : S6, and M12 as homomorphic images of the permutation progenitors 2*60 : (2 x A5), 2*60 : A5, 2*21 : (7: 3), 2*60 : (2 x A5), 2*120 : S5, and 2*144 : (32 : 24). We have given original proof of the 2*n Symmetric Presentation Theorem. In addition, we have also provided original proof for the Extension of the Factoring Lemma (involutory and non-involutory progenitors). We have constructed S5, PSL(2,7), and U(3,5):2 using the technique of double coset enumeration and by way of linear fractional mappings. Furthermore, we have given proofs of isomorphism types for 7 x 22, U(3,5):2, 2(M12 : 2), and (4 x 2) : 22.

Included in

Algebra Commons

Share

COinS