Date of Award
6-2014
Document Type
Thesis
Degree Name
Master of Arts in Mathematics
Department
Mathematics
First Reader/Committee Chair
Dr. Joseph Chavez
Abstract
The cutwidth of different graphs is a topic that has been extensively studied. The basis of this paper is the cutwidth of complete n-partite graphs. While looking at the cutwidth of complete n-partite graphs, we strictly consider the linear embedding and cyclic embedding. The relationship between the linear cutwidth and the cyclic cutwidth is discussed and used throughout multiple proofs of different cases for the cyclic cutwidth. All the known cases for the linear and cyclic cutwidth of complete bipartite, complete tripartite, and complete n-partite graphs are highlighted.
The main focus of this paper is to expand on the cyclic cutwidth of complete tripartite graphs. Using the relationship of the linear cutwidth and cyclic cutwidth of any graph, we find a lower bound and an upper bound for the cyclic cutwidth of complete tripartite graph K_(r,r,pr) where r is odd and p is a natural number. Throughout this proof there are two cases that develop, p even and p odd. Within each case we have to consider the cuts of multiple regions to find the maximum cut of the cyclic embedding. Once all regions within each case are considered, we discover that the upper and lower bounds are equivalent. This discovery of the cyclic cutwidth of complete tripartite graph K_(r,r,pr) where r is odd and p is a natural number results in getting one step closer to finding the cyclic cutwidth of any complete tripartite graph K_(r,s,t).
Recommended Citation
Creswell, Stephanie A., "The Linear Cutwidth and Cyclic Cutwidth of Complete n-Partite Graphs" (2014). Electronic Theses, Projects, and Dissertations. 34.
https://scholarworks.lib.csusb.edu/etd/34