Date of Award

6-2015

Document Type

Thesis

Degree Name

Master of Arts in Mathematics

Department

Mathematics

First Reader/Committee Chair

Griffing, Gary

Abstract

The ring of integers is a very interesting ring, it has the amazing property that each of its elements may be expressed uniquely, up to order, as a product of prime elements. Unfortunately, not every ring possesses this property for its elements. The work of mathematicians like Kummer and Dedekind lead to the study of a special type of ring, which we now call a Dedekind domain, where even though unique prime factorization of elements may fail, the ideals of a Dedekind domain still enjoy the property of unique prime factorization into a product of prime ideals, up to order of the factors. This thesis seeks to establish the unique prime ideal factorization of ideals in a special type of Dedekind domain: the ring of algebraic integers of an imaginary quadratic number field.

Share

COinS