Date of Award

2005

Document Type

Thesis

Degree Name

Master of Arts in Mathematics

Department

Mathematics

Abstract

A topological approach to nonlinear analysis allows for strikingly beautiful proofs and simplified calculations. This topological approach employs many of the ideas of continuous topology, including convergence, compactness, metrization, complete metric spaces, uniform spaces and function spaces. This thesis illustrates using the topological approach in proving the Cauchy-Peano Existence theorem. The topological proof utilizes the ideas of complete metric spaces, Ascoli-Arzela theorem, topological properties in Euclidean n-space and normed linear spaces, and the extension of Brouwer's fixed point theorem to Schauder's fixed point theorem, and Picard's theorem.

Included in

Mathematics Commons

Share

COinS