Date of Award
2000
Document Type
Thesis
Degree Name
Master of Arts in Mathematics
Department
Mathematics
Abstract
Solutions to differential equations describing the behavior of physical quantities (e.g., displacement, temperature, electric field strength) often only have finite range of validity over a subdomain. Interest beyond the subdomain often arises. As a result, the problem of making the solution compatible across the connecting subdomain interfaces must be dealt with. Four different compatibility methods are examined here for hyperbolic (time varying) second-order differential equations. These methods are used to match two different solutions, one in each subdomain along the connecting interface. The entire domain that is examined here is a unit square in the Cartesian plane. The four compatibility methods examined are: point collocation; optimal least square fit; penalty function; Ritz-Galerkin weak form. Discretized L2 convergence is used to examine and compare the effectiveness of each method.
Recommended Citation
Silva, Paul Jerome, "Investigation of the effectiveness of interface constraints in the solution of hyperbolic second-order differential equations" (2000). Theses Digitization Project. 1953.
https://scholarworks.lib.csusb.edu/etd-project/1953