Fakability of a bio-data questionnaire and general intelligence

Doren Lee Schott

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project

Part of the Industrial and Organizational Psychology Commons

Recommended Citation

This Thesis is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks. For more information, please contact scholarworks@csusb.edu.
FAKABILITY IN STRUCTURED INTERVIEWS: A COMPARISON OF SITUATIONAL AND PAST BEHAVIOR FORMATS

A Thesis
Presented to the
Faculty of
California State University,
San Bernardino

In Partial Fulfillment
of the Requirements for the Degree
Master of Science
in
Psychology: Industrial/Organizational

by
Ryan Pahl Pennock
June 1998
FAKABILITY IN STRUCTURED INTERVIEWS: A COMPARISON OF SITUATIONAL AND PAST BEHAVIOR FORMATS

A Thesis
Presented to the
Faculty of
California State University,
San Bernardino

by
Ryan Pahl Pennock
June 1998

Approved by:

Kenneth S. Shultz, Chair, Psychology

Matt L. Riggs, Psychology

Thung-Rung Nyn, Assistant Director of Personnel, Selection, Los Angeles Unified School District
ABSTRACT

Research on situational (SI) and patterned behavior description interviews (PBDI) reveals that both interview formats have demonstrated predictive validity. However, if the best qualified applicants fake during the interview, the predictive validity of the SI and PBDI as a selection device may be undermined for this portion of the applicant pool. Therefore, the present study assessed 1) the fakability of SI and PBDI questions, 2) the fakability of questions for common job factors, and 3) why applicants fake in the interview. In a repeated measures design, 37 actual job candidates for the mechanic position participated by completing social desirability and motivational test-taking scales following the interview (i.e., comprised of SI and PBDI questions). The results indicated that overall, candidates consistently scored higher on SI questions than on PBDI questions, especially on "weak" factors (i.e., interpersonal skills, autonomy, dependability) versus "strong" factors (i.e., technical expertise). Overall, correlations between the SI scores and the social desirability and motivational scales neither
supports the notion that candidates are faking on SI questions nor reveals the underlying motivations associated with faking. However, correlations between autonomy SI scores, autonomy PBDI scores, and the Impression Management subscale of the social desirability scale revealed that autonomy SI questions maybe more fakable than autonomy PBDI questions. In addition, the more candidates prepared for the interview, the less the difference between SI and PBDI question scores on the autonomy job factor. Limitations of the present study and recommendations for future research are discussed.
TABLE OF CONTENTS

ABSTRACT . iii
INTRODUCTION . 1
METHOD . 31
RESULTS . 40
DISCUSSION . 43

APPENDIX A: Tables

Table 1: Nomological Net. 53
Table 2: Break-Down of Interview Questions . . 54
Table 3: Means, T-Tests, Standard Deviations of Difference Scores, and Correlations between SI and PBDI Questions 55
Table 4: Minimum and Maximum Values, Means, Standard Deviations, and Coefficient Alphas for Scales in the Current Study . 56
Table 5: Nomological Net with Bivariate Correlations and 95% Confidence Intervals . 57

APPENDIX B: Figures

Figure 1: Estimated Marginal Means of the Difference Scores for the Four Interview Factors 58
Figure 2: Boxplots of the Difference Scores For the Four Interview Factors 60
INTRODUCTION

The employment interview is a selection procedure designed to predict future job performance on the basis of applicant's oral responses to oral inquiries (McDaniel, Whetzel, Schmidt, & Maurer, 1994). The interview is the most commonly used selection procedure and has been examined in literally thousands of studies (Cascio, 1991). This research has focused on topics such as the reliability and validity of the interview (Mayfield, 1964; McDaniel, Whetzel, Schmidt, & Maurer, 1994; Ulrich & Trumbo, 1965; Wiesner & Cronshaw, 1988; Wright, 1969), the information processing of interviewers (Schmitt, 1976), and the effects of demographic variables on interview outcomes (Lin, Dobbins, & Farh, 1992), to name just a few.

In the past, research has indicated that the traditional selection interview has been prone to high subjectivity and potential for bias (Mayfield, 1964; Ulrich & Trumbo, 1965, Wright, 1969). Despite the past evidence, most employers have chosen the interview over the best proven psychometric personnel selection instruments (e.g., biodata, cognitive ability measures). One reason is that it is traditional to administer an interview; the interview is like a security blanket, employers want to be assured that the candidates they
choose to hire will fit well within their organization. Another reason for the continued existence of the interview is that the interview provides an excellent opportunity for recruitment; where impersonal methods such as ability tests do not (Dipboye & Gaugler, 1993; Gatewood & Feild, 1993). Finally, Latham, Saari, Pursell, and Campion (1980) assert that "companies appear to believe that the probability of being investigated by a government agency for wrongdoing in the areas of selection, promotion, layoff, and termination is reduced if only the interview is used as the decision-making instrument" (p. 422). In other words, many companies may be naïve to the fact that the interview is considered as much a selection test by government agencies as is a standardized test of intelligence or any other decision-making process that affects an individual's employment status in an organization.

Traditional Reviews of Interview Validity

Seven major literature reviews of interview research have been published during the past 35 years (Arvey & Campion, 1982; Harris, 1989; Mayfield, 1964; Schmitt, 1976; Ulrich & Trumbo, 1965; Wagner, 1949; Wright, 1969). In the earliest of these reviews, only 25 of the 106 articles on the validity or the reliability of interviews
located by Wagner reported any quantitative data. Wagner’s major conclusions were that a) quantitative research on the interview is much needed; b) the validity and reliability of the interview may be highly specific to both the situation and the type of interview; c) the interview should be confined to evaluating factors that cannot be measured accurately by other methods; d) the interview is most accurate when a standardized approach is used; and e) the interviewer must be skilled in eliciting complete information from the applicant, observing significant behavior, and synthesizing developed information.

Fifteen years later, Mayfield (1964) made similar prescriptive statements that he considered justified by empirical findings. He concluded that unstructured interviews with no prior data on the interviewee tended to be less inconsistent in their coverage. He also found that interview validities tended to be low, even in studies with moderate reliabilities. He found that structured interviews generally showed higher interrater reliabilities than unstructured interviews. Mayfield indicated that individual interviewers, although consistent in their approach to interviewees, are inconsistent in their interpretation of data, perhaps
because interviewers' attitudes bias their judgments and because there is a tendency for interviewers to make decisions early in the unstructured interview. Concerning the assessment of cognitive ability, Mayfield concluded that intelligence is the human quality that may be best estimated from an interview but that interviewer assessments offer little, if any, incremental validity over test scores alone. When the test score was known, the interview contributed nothing to the predictive validity in a multiple-assessment procedure. Mayfield also concluded that the interrater reliability of the structured interview was satisfactory. However, interrater reliability estimates were not based on two independent interviews but, rather the interviewer either reinterviewed the same interviewee or listened to a tape of the original interview and re-scored that interview, after a period of time.

On the other hand, Ulrich and Trumbo (1965) concluded that personal relations and motivation to work were two areas that contributed to most decisions made by interviewers. Specifically, both personal relations and motivation to work contribute heavily to interview decisions and show greatest evidence of validity. In addition, the authors concluded that the use of the
interview should be limited to one or two content areas (which may be rather wide-band areas) as part of a sequential testing procedure. The authors reasoned that by limiting the content areas (i.e., scope) of the interview, which could otherwise be assessed by written tests, leaves the interviewer free to assess those areas where relatively high fidelity could be expected.

Wright (1969) summarized the research on the selection interview since 1964. He concluded that a) interview decisions are made on the basis of behavioral and verbal cues; b) rapport between interviewer and interviewee is an important situational variable that influences the validity and quality of the interview; and c) structured or patterned interviews are more reliable than unstructured interviews.

Schmitt (1976) reviewed the literature on interviews and found that nearly all of the recent studies on employment interviews (up to that point) focused on factors that influenced interview decisions rather than on the outcomes resulting from those decisions. Examples of factors include research on photographs and effects of appearance (Carlson, 1967); contrast effects (Carlson, 1970; Hakel, Ornesorge, & Dunnete, 1970; Wexley, Yukl, Kovacs, & Sanders, 1972); situational variables, including
quota position (Carlson, 1967); and race of the interviewer (Ledvinka, 1973). Schmitt concluded with some suggestions for the practicing personnel interviewer. First, use of a structured interview guide will improve interviewer reliability. Second, knowing the requirements of the job you are interviewing for should help to focus on relevant information. Third, interviewer training may avoid bias in ratings. Fourth, the interview may be employed effectively as a public relations vehicle. Fifth, interpersonal skills and motivation are perhaps best evaluated by the interview. Sixth, allowing the applicant time to talk will make rapid first impressions less likely and provide a larger behavior sample. Seventh, interviewer training with interviewee minorities may increase the ability for interviewers to relate to different minorities. Lastly, attention should be directed to an evaluation of the purpose of the interview (i.e., initial screening device, educational, etc.).

Arvey and Campion (1982) reviewed the literature from 1975 to 1981 and found that there was an increase in research investigating possible bias in the interview. Attention had been focused on the interaction of group membership variables and interviewers' decision making. They also found that researchers were investigating
several variables that influenced the interview, such as nonverbal behavior, interviewees' perceptions of interviewers, and interviewer training. Arvey and Campion considered most of these studies to be microanalytic in nature, studying only a narrow range of variables. They also concluded that researchers were becoming more sophisticated in their research methods and strategies but had neglected the person-perception literature, including attribution models and implicit personality theory.

Given that selection interviews usually are intended to predict the future job success of applicants, criterion-related validation is a crucial strategy for evaluating interviewer judgements and decisions. The reviews of this literature conducted between 1949 and 1982 tended to be pessimistic (Reilly & Chao, 1982; Schmitt, 1976; Ulrich & Trumbo, 1965; Wagner, 1949). For example, Reilly and Chao (1982) found that the average validity of the interview (r=.19) was much lower than the average validity of mental ability tests (r=.45), biographical data (r=.35), and peer evaluations (r=.37). However, these reviews were limited in at least two respects: they failed to comprehensively cover the unpublished as well as some of the published validation research, and by relying on observed correlations without correcting for
statistical artifacts, they likely overestimated the true variation in validities and underestimated the true mean validity of the interview.

Previous Quantitative Reviews of Interview Validity

Two recent meta-analyses provide a more comprehensive, quantitative review of interview validation research to overcome the limitations in previous qualitative reviews (McDaniel, Whetzel, Schmidt, Hunter, Maurer, & Russel, 1987; Wiesner & Cronshaw, 1988). Wiesner and Cronshaw (1988) examined validity data from North American as well as foreign sources (e.g., German, Israeli, and French). They analyzed a total of 150 effect sizes and found an average uncorrected validity coefficient of .26 across all studies; corrected for criterion unreliability and range restriction, the validity coefficient was .47. Moreover, the lower 90% confidence interval did not include zero. Wiesner and Cronshaw (1988) also found that the structure of the interview was an important moderator: unstructured interviews (i.e., without a predetermined set of questions and/or without specific rating scales) had an average corrected validity coefficient of .31, while structured interviews had an average corrected validity coefficient of .62. A second noteworthy finding was that most of the
variance between studies using an unstructured interview could be accounted for by statistical artifacts; thus, the validity of this type of interview appeared to be the same across all situations. Although substantial variance remained between studies using a structured interview even after statistical artifacts were taken into account, the type of job analysis appeared to be a moderator. In particular, Wiesner and Cronshaw found that studies using a formal job analysis produced higher validities than did studies using informal job analyses. Finally, board interviews (i.e., two or more interviewers) had somewhat higher validities than did individual interviews, but only for unstructured interviews.

McDaniel et al. (1987) utilized a set of validity coefficients from the U.S. Office of Personnel Management and obtained data from references found in earlier reviews of the employment interview. In all, McDaniel et al. located a total of 144 validity coefficients. Cumulating across all studies reporting a correlation with job performance (N=91), they found an average uncorrected correlation of .22 and an average corrected (for range restriction and unreliability) correlation of .41 with supervisory ratings. Like Wiesner and Cronshaw (1988), they found that the estimated true validity coefficients
of the interviews included in the overall sample, within a
90% confidence interval did not include zero. Again, the
nature of the interview was shown to be a moderator of
validity. Specifically, McDaniel et al. found that job-
related interviews (i.e., interviews conducted to examine
past job experience, training, and interests) had a mean
corrected validity coefficient of .43, compared with a
mean corrected validity coefficient of .31 for
psychological interviews (i.e., interviews designed to
evaluate personal characteristics or traits). McDaniel et
al. also found that structured interviews produced a
higher validity coefficient (.45) than did unstructured
interviews (.36). Finally, McDaniel et al. found no
relationship between job attribute ratings of social
interaction, handling of data, and handling of things, and
interview validity. Thus, validity did not seem to be
moderated by these job characteristics.

In sum, both meta-analyses found at least modest
validity across all types of interviews. That is,
regardless of the type of interview used, the employment
interview did appear to be predictive of job performance.
This led Harris (1989) to conclude that, contrary to
popular belief that interviews lack validity, recent
evidence suggests that the interview had at least moderate validity.

In addition, structured interviews appeared to be more valid than unstructured interviews. These findings regarding interview validity are particularly surprising given recent reviews of other selection devices. For example, Gaugler, Rosenthal, Thorton, and Bentson (1987) found an average corrected validity for assessment centers of .36, which is the same as the corrected validity of the unstructured interview reported by McDaniel et al. (1987). Additionally, other researchers suggest that the true (i.e., corrected) validity of cognitive ability tests may be much closer to .30 (Hartigan & Wigdor, 1989); rather than .53 reported by Hunter and Hunter (1984). Thus meta-analyses reported in Harris (1989) have indicated that the interview, relative to other selection devices, may have adequate or even equal validity.

Unstructured vs. Structured Interviews

Generally, employment interviews are being categorized as either unstructured or structured. The unstructured interviews gather applicant information in a less systematic manner than do structured interviews. Although the questions may be specified in advance, they usually are not, and there is seldom a formalized scoring
guide in an unstructured format. Also, interviewers in the unstructured interview do not typically ask the same questions to each applicant. Thus, the unstructured interview provides less meaningful variance to differentiate between applicants. This is where bias becomes a factor when the interviewers must process information to make judgements about the applicant to differentiate them. The result is the interviewer may base his/her decision on a clinical, global evaluation of the applicant. Therefore, it is not surprising that the unstructured interview yields low reliability and validity in comparison to a structured interview (McDaniel et al., 1994).

In an attempt to improve the reliability and validity of the employment interview, more structured interviews were developed. The structured interview consists of standardized questioning and evaluation procedures of the applicant. These pre-determined questions are based on the job analysis done for that particular job. This, along with information about job requirements known to the interviewer, a delayed evaluation, well-defined rating scales, and trained raters all yield high interrater reliability and validity in the structured interview (Dipboye & Gaugler, 1993; McDaniel et
al., 1994). The whole structured interview process substantially reduces or eliminates bias by searching only for the job-specific information (e.g., the KSAs assessing an attribute). Once this target information is obtained, the interview is over; decreasing the chance of irrelevant factors playing a role in the interviewer's evaluation of the applicant.

Structured Interview Question Formats

There are a variety of different structured interview question formats that have emerged throughout the literature. One structured format of interview question is the background question. Background questions focus on qualifications such as work experience and education (Carlson, Thayer, Mayfield, & Peterson, 1971; Lopez, 1966; Mayfield, Brown, & Hamstra, 1980; Roth & Campion, 1992). Surprisingly, early interviews often asked about family and personal background (Hovland & Wonderlic, 1939; McMurry, 1947); which is illegal and ill-advised today.

A second structured format interview question taps job knowledge. In addition to asking for documentation of job knowledge, these questions may ask candidates to actually demonstrate specific job knowledge. The highly specific nature of these questions enhances structure of the interview (Campion, Palmer, & Campion, 1997). The
validity of job knowledge questions in predicting job performance are supported by validity generalization evidence (Hunter & Hunter, 1984).

A third structured format is the job sample (or simulation). Job sample questions present actual job tasks, or "willingness" questions that query candidate understanding of adverse job requirements; such as travel and shift work. No research has focused uniquely on this type of questioning, yet they have been included in structured interviews in the past (Campion, Pursell, & Brown, 1988). Job sample and simulation questions may predict future job performance because they are real samples rather than signs of work behavior (Wernimont & Campbell, 1968), and willingness questions may predict based on evidence supporting realistic job previews (Wanous, 1980).

Many other question formats could be considered less structured because they tend to be vague. Examples include questions on opinions and attitudes, goals and aspirations, and self-descriptions and self-evaluations. They are ambiguous enough to allow candidates to present their credentials in an overly favorable manner or to subvert questions they cannot answer. These questions
also tend to focus on poorly defined traits with uncertain links to job performance (Campion et al., 1997).

Overall, the two most prominent and widely studied structured interview formats that have emerged throughout the employment interview literature are 1) the situational interview format (SI); and 2) the patterned behavior description interview format (PBDI) (Campion et al., 1997; Campion et al., 1988; Campion, Campion, & Hudson, 1994; Motowidlo, Carter, Dunnette, Tippins, Werner, Burnett, & Vaughan, 1992).

In a situational interview, the interviewers ask future-oriented questions. These interview questions utilize behavioral, job-related interview questions. The questions posed are of hypothetical situations that actually occurred on the job, and candidates are asked what they would do. An example question of this type would be "Suppose you had an idea for a change in work procedure to enhance quality, but there was a problem in that some members of your work team were against any type of change. What would you do?" The belief is that situational questions may predict future job performance because of the relation between goals or intentions and future behavior (Locke & Latham, 1984).
The PBDI format questions are similar to the situational interview format questions, in that, PBDI questions utilize behavioral, job-related interview format questions. PBDI questions differ, however, in their orientation from the SI. In the behavioral description interview, the interviewers ask past-oriented questions (not future-oriented). The questions posed ask candidates to describe what they did in past jobs as it relates to requirements of the job they are seeking (Janz, 1982). An example of this question type would be "What is the biggest difference of opinion you have ever had with a co-worker? How did it get resolved?" The belief is that the behavior description questions may be predictive of future performance because of the axiom that past behavior predicts future behavior.

Situational Interview vs. Patterned Behavioral Description Interview Formats: Which is Better?

Campion et al. (1997) note that the search for better question formats has been a popular topic in recent years. Several studies have compared the SI and the PBDI. For example, Campion et al. (1994) compared future versus past behavior questions in an actual structured interview (i.e., in a pulp mill). Both interview question formats had empirical validity data based on supervisor ratings,
but past-oriented questions had incremental validity beyond future-oriented questions, while future-oriented questions did not have incremental validity beyond past-oriented questions in predicting supervisor ratings. Similarly, Pulakos and Schmitt (1995) compared situational versus past behavior questions in a fairly structured interview in a research study of law enforcement employees. They found that only past behavior questions were valid in predicting supervisor ratings of job performance. Theoretically, this may mean that past behavior may be a better predictor of future work behavior than are future intentions. In addition, Janz (1989) has also asserted that behavior description interviews measures typical, rather than maximal performance. This suggests that PBDI formatted questions may be more valid because it is assessing the performance that will mostly be observed on-the-job. The reality is that most of the time employees are not going to perform at their maximal level.

Conversely, Latham and Saari (1984) compared situational versus past behavior question formats in a research study of clerical personnel and found that only situational questions were valid in predicting supervisory and peer rating criteria of job performance. Similarly,
Maurer and Fay (1988) compared situational versus past behavior questions in a laboratory study and found that situational questions had higher interrater agreement. It is important to note that both studies above operationalized past behavior questions in terms of fairly broad inquiries about past experiences and training, rather than specific questions that required candidates to give specific examples of past experiences. Latham and Skarlicki (1995) operationalized past behavior questions correctly (i.e., used specific questions that require candidates to give specific examples of past experiences) in a comparison with situational questions in a research study of college faculty, and they again found situational questions to be more valid against peer rating criteria in predicting job performance.

Additionally, McDaniel et al. (1994) compared 16 validity coefficients for situational interviews with 127 coefficients for other job-related interviews and found that situational interviews were slightly more valid. However, this does not address the issue well because the "job-related" interviews were very heterogeneous, including many other question formats in addition to past behavior. In addition, there were too few coefficients to analyze past behavior questions alone. In summary,
validity superiority between situational and past behavior questions cannot be determined from the current evidence (Campion et al., 1997).

Fakability in the Employment Interview

Aside from reliability and validity, other areas of the interview such as fakability have not been addressed. Specifically, are past behavior questions less fakable than situational questions? This research question has not yet been tested with regard to the employment interview (Campion et al., 1997).

The extent of deception in personnel selection.

Research on fakability is warranted given the preponderance of evidence suggesting that distortion, particularly on paper-and-pencil devices (e.g., application blanks and skills inventories), is relatively common and sometimes serious (Sloane, 1991). For example, Goldstein (1971) found that 15% of nursing applicants claimed previous employment that they did not appear to have. Another 25% provided reasons for leaving that were clearly discrepant with prior employers' accounts, and 42% overreported the length of previous employment by sixteen months (on average). Similarly, both Anderson, Warner, and Spencer (1984) and the New York Port Authority (cited in Sloane, 1991) found that more than a third of actual
applicants claimed to have nonexistent skills that were "planted" on application blanks to detect deception. Finally, both Gatewood and Feild (1993) and Sloane (1991) cite surveys showing that practitioners believe fraudulent representation to be on the increase. However, evidence concerning actual distortion in the employment interview is scarce. For example, almost nothing is known about how many applicants withhold or misrepresent important information in employment interviews (Rynes, 1993).

Fakability on personality measures. Research has revealed that subjects maybe capable of distorting their scores on personality inventories when instructed to give as good an impression as possible (Dicken, 1960; Hinrichsen, Gryll, Bradley, & Katahn, 1975; Hough, Eaton, Dunnette, Kamp, & McCloy, 1990). Since there is adequate evidence to show that faking can occur in personality assessment, there is concern that the information obtained from personality measures is invalid if faked (Mersman & Shultz, 1998). In personnel selection, distorted personality measures are viewed as false indicators of the traits that are supposed to be predictive of job performance. One way this issue has been addressed is by the detection of faked responses through social desirability scales. Socially desirable responding is a
form of response bias that refers to the tendency to respond in such a manner as to make one's self look good (Paulhus, 1991). Researchers have found that responding in order to give a good impression (e.g., faking good) is related to the social desirability of the test items (Dunnet, Koun, & Barber, 1981). In personality inventories, people who attempt to "fake good" may in fact be engaging in impression management tactics (Mersman & Shultz, 1998).

Mersman and Shultz (1998) examined the fakability construct as a possible individual difference variable in the ability to fake on personality measures. They hypothesized that faking good on a personality measure would be correlated with the self-presentation constructs of Self-Monitoring (SM), Social Desirability (SD), and Impression Management (IM). However, they did not find support for this hypothesis. Subjects in the study displayed the tendency to fake good or not fake good regardless of their orientations on SM, SD, and IM. These results imply that faking good as an individual difference variable maybe a unitary, separate construct, unrelated to constructs of self-presentation (Mersman & Shultz, 1998).

Impression management research on the employment interview. One concern of many researchers is the
possibility that applicants' behavior in an interview reflects more the ability of applicants to project positive impressions than the ability to perform on the job. These behaviors are being referred as impression management in the literature (Baron, 1989). It is believed that highly structured interviews (e.g., SI and PBDI) may discourage impression management to a greater degree than unstructured ones and thereby provide a more valid basis for prediction. In highly structured interviews, the opportunities for applicants to manipulate and shape the interviewer's impressions in a favorable direction are limited by the standardization of questioning; where discussion is focused on those topics deemed important from the job analysis, and digression is discouraged so that all the designated topics can be adequately covered during the time allowed.

However, some research has suggested that impression management tactics are still evident in highly structured interviews. According to Schlenker and Weigold (1992), impression management is assumed to become more intentional and focused when people believe that they will gain valued outcomes by fostering particular impressions in others. Because interviewers may influence applicants' access to desired job opportunities, the interview context
should elicit applicant Impression Management behaviors (Stevens & Kristof, 1995). Consistent with this reasoning, research has indicated that participants modify their self-presentations to match interviewer preferences during mock interviews (von Baeyer, Sherk, & Zanna, 1981).

Stevens and Kristof (1995) examined a) which Impression Management tactics applicants use during actual interviews and b) whether there is a relationship between applicants’ Impression Management and their interview outcomes. Stevens and Kristof found support for their hypothesis that applicants will use more self-promotion (i.e., that highlight their qualifications) than ingratiation tactics (i.e., designed to evoke interpersonal attraction or liking) during actual job interviews. Specifically, the self-promotion tactics that applicants utilized and their frequencies in the interviews were: a) personal stories—constructing attractive images through descriptions of past behavior and events (96%); b) entitlements—claims of responsibility for positive events (50%); c) enhancements—claims that the event for which one is responsible is more positive than it initially appears (42%); and d) overcoming obstacles—descriptions of how they overcame obstacles while pursuing goals (33%). Likewise, the ingratiation tactics utilized
and their frequencies were: a) fit with organization—possess attitudes or values consistent with those held inside the organization (63%); and b) opinion conformity—verbal endorsement of the attitudes or the values held by a target individual (54%).

Stevens and Kristof (1995) also noted that 28% of the interviewers used a PBDI format on applicant Impression Management, which required applicants to describe their past behavior and experiences, that is, to tell stories about themselves. Results indicated that the frequency of stories used in the PBDI format was not significantly different than the other formats used. However, applicants exposed to PBDIs used significantly fewer fit-with-organization and opinion-conformity tactics. Finally, Impression Management tactics significantly predicted interviewers' evaluations and whether applicants later obtained site visits.

Distinction between faking and impression management.

Is IM a form of faking? According to Rynes (1993), faking can be defined as a deliberate attempt to misrepresent important information. Impression Management (IM) refers to "conscious or unconscious attempts to control the images that are projected in social interactions" (Schlenker, 1980, p.6). Paulhus (1984) has shown that
social desirability consists of two components: self-deception and impression management. Self-deception is where the respondent honestly believes his/her positive response distortion. Conversely, a person engaging in Impression Management tactics is consciously distorting items in a positive direction. Therefore, an interviewee who is consciously attempting to distort items in a positive direction (i.e., engaging in IM) is indeed faking. On the other hand, an interviewee who is unconsciously distorting items in a positive direction would not be faking.

Situational vs. Patterned Behavioral Description Interview

Formatted Questions: Which is less Fakable?

Interviews are likely to contain samples of applicants' statements of what they intend to do in the future or have done in the past. For example, the Situational Interview (Latham, 1989) is based on the theory that intentions and goals are the best predictors of future job performance. Questions are intended to present crucial situations, and the statements made by applicants are taken at face value—the assumption is that what the applicant intends to do is indeed what the applicant will do. This is indeed a very big assumption. Researchers have displayed concern over this assumption by
stating that future questions may be inhibited by fakability in selection contexts (Campion et al., 1994; Janz, 1989; Campion et al., 1997). Specifically, applicants stated intentions could well depart from their ultimate job behavior; the applicant may state what they ought to do, but will he or she do it when the time comes (Janz, 1989)?

The Patterned Behavior Description Interview (Janz, 1982) samples past behavior on the theory that it is the best predictor of future behavior. Applicant statements of past behavior are taken at face value that they are honest and relatively free of social desirability biases. Campion et al. (1997) states that due to their potentially verifiable nature, past behavior questions may be less fakable than situational. In essence, applicants may be less apt to fake if they fear that their faking could be detected.

The Present Study

The present study assessed the fakability of both SI and PBDI questions in a real-life employment interview context. In addition, the fakability of common job factors was examined (i.e., autonomy, interpersonal skills, dependability). Finally, motivation components of
test-taking were used to explain why applicants fake in the employment interview.

Hypotheses. Gordon and Gross (1978) and Mersman and Shultz (1998) propose that one way to detect faking is mean differences in scores under honest and fake conditions. Consistent with this reasoning, there should be similar mean scores of participants on the SI questions and the PBDI questions because they are tapping into the same job factors (i.e., technical expertise, autonomy, dependability, interpersonal skills). Any discrepancy between the SI question mean scores and the PBDI question mean scores intended to measure the same job factors may indicate that the applicants are faking. For instance, if an applicant scores high on the SI questions tapping into autonomy, that same applicant should score high on PBDI questions tapping into autonomy because both types of questions are measuring the same job factor. Furthermore, some job factors should be more fakable than others. Hogan's (1992) theory of "strong" versus "weak" situations supports this line of reasoning. Specifically, "strong" situations represent situations which are less susceptible to fakability (e.g., job knowledge factors), whereas "weak" situations represent situations which are more prone to fakability (e.g., interpersonal skills, autonomy,
dependability). Therefore, I propose the following a priori pre-planned contrast:

Hypothesis 1: There will be a significant difference between the technical expertise job factor (i.e., job knowledge) and the combination of interpersonal skills, autonomy, and dependability job factors on the mean difference scores between the SI and PBDI questions.

To support the notion that 1) the differences between SI and PBDI questions indeed represent applicants faking and 2) the underlying motivations associated with applicants faking, a nomological net was developed (see Table 1). Specifically, the nomological net demonstrates the hypothesized network of expected relationships (i.e., correlations) between the SI and PBDI questions measuring the same job factors and a) the Impression Management and Self Deceptive Enhancement subscales of the Balanced Inventory of Desirable Responding (see Appendix D), and b) the future effects and preparation factors of the Test Attitude Survey (see Appendix D).

First, the unverifiable nature of the SI should make the SI more susceptible to faking than the PBDI. Therefore, I propose:
Hypothesis 2: SI scores on the job factors will correlate higher with the IM subscale than PBDI scores will correlate with the IM subscale.

Second, as mentioned previously, "weak" factors should be more fakable than "strong factors". In addition, the scores of applicants on the written test will be used as a control measure. Specifically, the applicants should not be able to fake on this "g" measure because it is also measuring job knowledge. Therefore, I propose:

Hypothesis 3: SI and PBDI scores on the interpersonal skills, autonomy, and dependability job factors will correlate higher with both the IM and SDE subscales than SI and PBDI scores on the technical expertise job factor or the written job knowledge test.

Third, candidates are "putting their best foot forward" in the interview. As a result, most of the candidates can be expected to score high on the SDE subscale regardless of their scores on the SI and PBDI questions. Therefore, I propose:

Hypothesis 4: SI and PBDI scores will be more highly correlated with the IM subscale than the SDE subscale.

Finally, given the opportunity, candidates may be more likely to fake. Moreover, candidates answering the SI
questions should have a greater opportunity to fake on these questions because of the unverifiable nature of SI questions. In addition to this opportunity, candidates should also be motivated to fake because of the effects the employment decision is likely to have on his/her life. Therefore, I propose:

Hypothesis 5: SI scores will correlate higher with the future effects motivational factor than PBDI scores.
METHOD

Participants

The sample consisted of 37 actual job applicants seeking employment for the automotive mechanic position at a large urban school district located in the West Coast. The minimum requirements for the automotive mechanic position are a High School diploma or its equivalent and completion of a formal apprenticeship in automotive mechanics or four years of experience in the repair of passenger automobiles, buses, or trucks. All of the participants were male. Of the 37 participants, 56.8% were Caucasian, 27% were Hispanic, 10.8% were Asian, 2.7% were African-American, and 2.7% were Filipino. In addition, participants ages ranged from 23 to 63, with a mean of 38.

Procedures

191 applicants for the automotive mechanic position completed a written exam. Of the 191 candidates, 45 passed the written exam and were invited to the interview. However, only 40 of the candidates were present on the interview date. Therefore, 40 candidates received an interview comprised of both Past Behavior Description Interview and Situational Interview formatted questions.
Development of the Interview. Thirteen structured interview questions were previously developed for the prior test administration, which assessed critical job factors such as technical expertise, interpersonal skills, autonomy, and dependability. For the purpose of this study, only seven of these questions could be salvaged. Questions not used in the present study consisted of opinion/attitude questions. The salvaged questions included four technical expertise SI questions, one interpersonal skills PBDI question, one autonomy PBDI question, and one dependability PBDI question. Therefore, additional SI and PBDI questions tapping into the job factors were needed (see Table 2). The new interview questions for the automotive mechanic position were constructed from a job analysis utilizing the critical incident technique (cf., Flanagan, 1954). Specifically, critical incidents were collected from SMEs describing specific situations that are typically faced by job incumbents measuring technical expertise, interpersonal skills, autonomy, and dependability job factors. Each incident was then converted into either a SI or PBDI question.

Specifically, a SI question was developed by providing the situation (i.e., the critical incident) and
asking what the applicant would do in that situation. In contrast, the PBDI questions provide an applicant one main question (i.e., with reference to the critical incident) with follow-up (i.e., probing) questions asking the applicant to describe what he did in past jobs as it relates to the critical incident. After the development of the SI and PBDI questions, benchmark responses for each question were provided by SMEs consisting of the effective and ineffective behaviors that are usually utilized to deal with the incident on the job. A 5-point Likert scale was used; (5) representing an excellent (i.e., effective) response, (3) reflecting an average response, and (1) representing a poor (i.e., ineffective) response. For the previously developed questions, benchmark answers have already been developed. Examples of SI and PBDI questions, along with their corresponding benchmark answers are provided in Appendix E.

In addition, two forms of the interview were developed using the exact same questions to counterbalance against possible order effects. Specifically, questions on form A consisted of SI questions placed before PBDI questions for each job factor. However, the questions were placed in an order so that the PBDI questions were not asked immediately after the SI question for the same
factor. For instance, providing a PBDI question directly following an SI question that measures the same job factor (e.g., autonomy) may influence how the candidate responds to the PBDI question. In contrast to form A, form B consisted of PBDI questions placed before SI questions for each job factor.

Total possible interview scores can range from 20-100. Total possible scores for the SI questions can range from 10-50. Likewise, total possible scores for the PBDI questions can range from 10-50.

Interviewer training. Fourteen supervisors for the automotive mechanic position received one hour of training before the interview began. The majority of the interviewers have interviewed for automotive mechanic positions in the past. The training consisted of a brief introduction of the automotive mechanic position, an explanation of the interview material, instructions on behavioral notetaking, instructions on how to probe for specific behaviors, and a question and answer period.

Administration of measures. Interviews were conducted at the personnel office of this urban school district. Interviews were administered by seven, two-panel boards. In addition, raters rotated into a different panel every two candidates to increase the generalizability of the
interview ratings. Initial ratings of each question were recorded directly after the candidate responded—separately for each rater. After each interview, the two-panel raters came to a consensus for each rating that differed more than two points apart. Directly after the interviews, the interviewees were solicited to participate in the proposed study. The researcher briefly explained the experiment and the participants were given an written informed consent form to sign (see Appendix C) describing the purpose of the experiment and ensuring participants that the researcher would be the only one who sees their data. After signing the informed consent form, the Balanced Inventory of Desirable Responding (BIDR) and the Test Attitude Survey (TAS) factors (described below) were administered to the participants. Finally, a debriefing statement was given to the participants (see Appendix C).

Measures

The Paulus (1984, 1988) Balanced Inventory of Desirable Responding Version 6-Form 40 (BIDR) scale was used to assess the fakability of the PBDI and SI formats (see Appendix D). The BIDR is comprised of two subscales, with a total of 40 items. The Self-Deceptive Enhancement subscale (20 items) measures the self-deceptive positivity construct; the tendency to give self-reports that are
honest but positively biased (i.e., unconscious exaggeration of positive cognitive attributes). The Impression Management subscale (20 items) measures the impression management construct; the deliberate, conscious, self-presentation to an audience (i.e., faking).

The 40 BIDR items are stated as propositions. Respondents rate their agreement with each statement on a seven-point Likert scale; responses to each item ranging from 1 (not true) to 7 (very true). The scoring key is balanced. After reversing the negatively keyed items, one point is added for each extreme response (6 or 7). Therefore, total scores on SDE and IM can range from 0 to 20. This scoring ensures that high scores are attained only by subjects who give exaggerated desirable responses.

Reliability and validity coefficients have been reported for both the SDE and IM subscales (Paulus, 1988; Quin, 1989; Mellor, Conroy, & Masteller, 1986). In these studies, reliability is reported with values of coefficient alpha ranging from .68 to .80 for the SDE scale and from .75 to .86 for the IM scale. In the present study, the coefficient alpha for the SDE scale was initially .60. However, item number 18 on the SDE scale was mistyped, confusing some participants. Therefore,
this item was deleted from analysis and increased the coefficient alpha for the SDE scale to .64. In addition, the coefficient alpha for the IM scale of the present study was .82. Furthermore, Paulus (1988) reported test-retest correlations over a 5-week period of .69 for the SDE and .65 for the IM scale.

With regard to validity, Paulus (1988) found that the SDE measure correlates positively with the following traditional measures of defense and coping: 1) repressive style as measured by Byrne's R-S scale (r=.51), 2) reversal, as measured by Ihilevich and Gleser's (1986) Defense Mechanisms Inventory (r=.34), and 3) positive reappraisal (r=.44), distancing (r=.33), and self-controlling (r=.39) as measured with the Ways of Coping scale (Folkman, Lazarus, Dunkel-Schetter, DeLongis, & Gruen, 1986). The IM scale correlates highly with a cluster of measures traditionally known as lie scales (e.g., Eysenck's Lie scale, MMPI Lie scale) and role-playing measures (e.g., Wiggins' Sd, Gough's Gi).

Arvey, Strickland, Drauden, and Martin (1990) developed the Test Attitude Survey (TAS). The TAS is comprised of 9 motivational and attitudinal scale factors, with a total of 45 items (see Appendix D). The scale factors are: 1) motivation (10 items), 2) lack of
concentration (4 items), 3) belief in tests (4 items), 4) comparative anxiety (10 items), 5) test ease (4 items), 6) external attribution (5 items), 7) general need achievement (3 items), 8) future effects (3 items), and 9) preparation (2 items). The 45 TAS items are stated as prepositions. Respondents rate their agreement with each statement on a seven-point Likert scale; responses to each item ranging from 1 (not true) to 7 (very true). Ten of the statements are negatively keyed.

In the present study, only two of the TAS factors were used. Specifically, the future effects and preparation factors were used to assess the motivations of participants consciously distorting their responses (i.e., faking). Other TAS factors are omitted from this study because one of the main foci of this study is to understand why applicants fake in the interview. Moreover, the preparation and future effects factors appear to be the most logical explanations for faking behavior. For instance, it is logical to expect that an applicant, who believe that his/her life is going to be affected by the interview outcome, would be more likely to fake. In addition, it is also logical to expect that applicants who prepare for the interview are more capable of faking in the interview.
Arvey et al. (1990) report the following coefficient alphas: .58 for the future effects factor and .74 for the preparation factor. The present study yielded the following coefficient alphas: .68 for the future effects factor and .91 for the preparation factor. In addition, Arvey et al. (1990) conducted several studies showing that the TAS factors were significantly sensitive to differences in test types and administration; permitting the inference that the TAS possessed construct validity.
RESULTS

The total sample size was 37. There were no missing data. No univariate outliers were detected among the sample, with p=.001. Eight multivariate outliers were detected using Mahalanobis distance, with p=.001. However, there was no particular pattern indicated. Therefore, no cases were deleted from the analysis. The assumptions of univariate and multivariate normality, linearity, and multicollinearity/singularity were sufficiently met.

A one-way Repeated Measures Analysis of Variance (ANOVA) was used to test the a priori contrast of hypothesis 1. The dependent variable was the mean difference score between the SI questions and the PBDI questions (M_{SI} - M_{PBDI}). The independent variable was the job factors comprising the interview. Specifically, the four levels of the independent variable were: 1) technical expertise, 2) interpersonal skills, 3) autonomy, and 4) dependability.

SPSS GLM REPEATED MEASURES was used to test the a priori contrast of hypothesis 1. The results for the ANOVA indicated a significant job factor effect, Wilk's $\lambda = 8.79$, $F (1,36)=8.79$, $p=.005$, multivariate $\eta^2 = .20$. These results suggest that there is less discrepancy between SI
and PBDI scores for the technical expertise job factor than the linear combination of the interpersonal skills, autonomy, and dependability job factors. The means and standard deviations of the difference scores for the four job factors are reported in Table 3. In addition, the estimated marginal means of the difference scores for the four interview factors are plotted in Figure 1. Furthermore, boxplots of the difference scores for the four interview factors are plotted in Figure 2.

To support the notion that 1) the differences between the SI and PBDI questions indeed represent applicants faking and 2) the underlying motivations associated with applicants faking, the nomological net in Table 1 was used. Specifically, to test the nomological net, along with hypotheses 2-5, bivariate correlations and 95% confidence intervals were obtained for SI and PBDI scores on the job factors and the BIDR, IM, SDE, future effects, and preparation scales. The minimum and maximum values, means, standard deviations, and coefficient alphas for each scale in the current study are reported in Table 4. The results of the nomological net are reported in Table 5.

Hypothesis 2, suggesting that SI scores on the job factors will correlate higher with the IM subscale than
PBDI scores, was not supported. Specifically, total scores for SI questions did not correlate higher with the IM subscale \((r = -0.007)\) than PBDI scores \((r = -0.011)\). Hypothesis 3, suggesting that SI and PBDI scores on the “weak” factors (e.g., interpersonal skills, autonomy, dependability) will correlate higher with the BIDR than SI and PBDI scores on the “strong” factor (e.g., technical expertise), was also not supported (see Table 5). In addition, hypothesis 4, that SI and PBDI scores will be more correlated with the IM subscale than the SDE subscale was not supported. In fact, both SI and PBDI scores tended to be more correlated with the SDE subscale (see Table 5). Furthermore, hypothesis 5, that SI scores will correlate higher with the future effects motivational factor than PBDI scores was only supported for the autonomy job factor (see Table 5). Finally, the remaining nomological net was not supported.
DISCUSSION

The results of the Repeated Measures ANOVA indicated that there is less discrepancy between SI and PBDI scores for the technical expertise job factor than the linear combination of the interpersonal skills, autonomy, and dependability job factors. The logic behind this hypothesis was that applicants would score higher on the SI questions than PBDI questions on the "weak" factors (i.e., interpersonal skills, autonomy, dependability) because "weak" factors should be more fakable. However, "strong" factors such as technical expertise should not be fakable because it is unlikely that one can fake job knowledge. Therefore, the difference scores between the SI and PBDI questions tapping into technical expertise should be minimal. Looking at t-test results with the means and difference means for both SI and PBDI scores on the job factors reveals that 1) technical expertise had the least discrepancy between SI and PBDI scores and 2) applicants consistently scored higher on the SI questions than the PBDI questions on all of the job factors (see Table 3).

Again, it was hypothesized that applicants would consistently score higher on the SI questions than the PBDI questions because they would be "faking" on the SI
questions. Therefore, if applicants were indeed faking, their scores on the SI questions should have been correlated with the IM subscale that measures conscious, deliberate attempts to inflate their scores (H2). In other words, people who score high on the IM subscale, should have also scored higher on the SI questions. However, by referring to Table 5, this was most often not the case. The exception lies with the autonomy job factor, where the autonomy difference score did correlate with the IM scale (r = .315). Specifically, the higher the applicants scored on the IM scale, the greater the difference between SI and PBDI scores (i.e., representing higher SI scores than PBDI scores) on the autonomy job factor. Moreover, Figure 1 illustrates the autonomy factor having the largest mean difference between SI and PBDI questions. Therefore, SI questions may be more fakable than PBDI questions on the autonomy factor.

Hypothesis 3, that SI and PBDI scores on the “weak” factors will correlate higher with the BIDR than the “strong” factor was not supported. Again, the exception was the autonomy difference job factor that correlated higher with the BIDR (r = .315) than the technical expertise job factor (r = -.044). Therefore, the higher the SI and PBDI scores on the autonomy factor, the higher
the applicants were likely to give social desirable responses on the BIDR.

Hypothesis 4, that SI and PBDI scores will correlate higher with the IM subscale than the SDE subscale was also not supported. In contrast, SI and PBDI scores correlated higher with the SDE subscale than the IM. One possible explanation for hypothesis 2-4 not being supported may be that applicants are not faking. The lack of correlations between the SI and IM and the result of both SI and PBDI scores correlating more with the SDE supports this. Specifically, applicants may be scoring higher on the SI questions because they are easier to answer than PBDI questions. Moreover, PBDI questions may be harder because applicants have to draw upon their past experiences to answer these questions. Therefore, memory recall may play a role in the ability to answer PBDI questions.

A second possible explanation for the results of hypothesis 2-4 may have to do with the raters processing information. Specifically, raters have to interpret and process the applicants responses to the interview questions in order to match applicant answers to the benchmark answers in the interviewer’s rating booklet. Due to: 1) the limited one-hour interviewer training and 2) that the interview panel did not have an HR
professional sitting on the panel, raters may have had trouble in interpreting some of the applicant responses and/or matching applicant answers to benchmark answers.

A final possible explanation for why hypotheses 2-4 were not supported may be that the BIDR is not a very good measure of faking. Specifically, Christiansen (1998) came to the conclusion that the use of social desirability scales, in general, are not very sensitive to faking. The results of Mersman and Shultz’s (1998) study on faking also supports Christiansen’s view. In particular, participants scores on personality measures in the faking condition correlated considerably low with the BIDR, IM, and SDE subscales (Mersman & Shultz, 1998). In addition, Mersman and Shultz’s (1998) study was a more controlled, experimental setting versus the present study’s field setting. Therefore, the lack of correlations in this study may be due to the BIDR’s poor sensitivity to faking.

Hypothesis 5, stating that SI scores will correlate higher with future effects motivation factor than PBDI scores was only supported for the autonomy factor. Specifically, autonomy SI scores correlated significantly with future effects (r = .334, p < .05), with autonomy PBDI scores correlating with future effects (r = .241). In addition, it is also interesting to note that autonomy...
PBDI scores correlated \((r = .262)\) with the preparation factor. Moreover, the more the applicants prepared, the higher the applicants scored on the autonomy PBDI questions. Furthermore, the more the applicants prepared for the interview, the less the discrepancy between SI and PBDI questions on the autonomy factor. One possible explanation for the unexpected finding for hypothesis 5 is that some of the participants may have been confused on the future effects and preparation factors on the questionnaire. For instance, during the interview, a few of the participants thought that the motivational questions referred to the actual questionnaire. More specifically, the applicants thought the future effects questions were asking how much they thought the questionnaire was going to affect their future, rather than how much they thought the interview was going to affect their future.

In addition, it is interesting to note the correlations between SI and PBDI questions on each job factor (see Table 3). The interview was comprised of SI and PBDI questions tapping into the same job factor. Therefore, the SI and PBDI questions on each job factor can be considered alternate/parallel forms because both question types (i.e., SI and PBDI) are tapping into the
same job factor. Therefore, with respect to true score theory (c.f., Crocker & Algina, 1985, p. 116), the correlations between the SI and PBDI questions on each job factor can be interpreted directly as the percent of observed score variance attributable to the true score variance. Hence, for technical expertise, 94% of the observed score variance is attributable to the true score variance. For both interpersonal skills and autonomy, 48% of the observed score variance is attributable to the true score variance. For dependability, only 5% of the observed score variance is attributable to the true score variance. The low percent of observed variance attributable to the true score variance on the dependability job factor may stem from the questions used. Specifically, one SI question asked applicants what they would do in a situation that may make them late. The corresponding PBDI question asked how many times they were late last year and what the reasons were. Additionally, the second SI question provided the applicants with a situation where the applicants may be absent. The corresponding PBDI question asked how many days the applicant was absent last year and what the reasons were. The scoring guide for the PBDI questions both had the following benchmark answers and corresponding ratings: (5)
0-2 times or days, gave legitimate reasons for missing work, (3) 3-8 times or days, gave somewhat legitimate reasons for missing work, (1) 9 or above times or days, failed to give legitimate reasons for missing work. Therefore, the lack of correlation may be due to the PBDI questions. Specifically, if a person said he missed 9 days last year because of some extenuating circumstances, that person would score a 1 for the PBDI question and possibly a 5 on the SI question. Therefore, it is possible for an individual to score high on dependability SI questions, yet low on dependability PBDI questions, or vice versa. The lack of relationship between SI and PBDI dependability questions supports this line of reasoning.

Limitations

The current study has two main limitations. The first limitation is the small sample size (N = 37). Therefore, correlations must be interpreted with caution given the small sample size. Moreover, the correlations in this sample may not be sufficiently stable, resulting in the unpredicted findings of the nomological net.

The second limitation is the lack of interview training. As mentioned previously, there were no HR professionals sitting on any of the panels. Therefore, all the interviewers (i.e., who were supervisors of the
position) had to be trained. The training consisted of only a one-hour briefing. During this time, interviewers were given a brief introduction of the automotive mechanic position, an explanation of the interview material, instructions on behavioral notetaking, instructions on how to probe for specific behaviors, and a question and answer period.

Conclusions

Research on fakability in the employment interview is warranted for many reasons. One reason is the popularity of the interview. Second, many employers only hire the top five to ten percent of their applicant pool. Therefore, if the top five to ten percent of the applicant pool is faking, the predictive validity of the employment interview as a selection device may be undermined. Third, by identifying which questions are more or less fakable, employers can avoid using interview questions that are susceptible to faking.

The present study underscores several recommendations for future research. The first recommendation is that interviewers have sufficient interviewer training including behavioral notetaking, probing for specific behaviors, legal issues surrounding the interview, awareness of biases (e.g., similar-to-me, contrast
effects, halo, and leniency), and mock interviews. Second, interview panels should include at least one HR professional (i.e., if extensive training is not available). Third, future research may go back and actually verify participants responses to PBDI questions with previous employers. Fourth, future research may include bogus questions to detect faking in applicants in the interview. Fifth, studies may detect faking in the interview by comparing job applicants versus job incumbents. Specifically, job applicants should fake the most, while job incumbents should fake the least.

In addition to guiding recommendations for future research, the results of the present study suggests that people do better on the SI questions than the PBDI questions. In addition, there is less discrepancy between SI and PBDI scores on the "strong" versus the linear combination of the "weak" factors. Overall, the present findings neither support the notion that applicants are faking on SI questions nor reveal the underlying motivations associated with faking. The exception lies with the autonomy job factor. Specifically, correlations between autonomy SI scores, autonomy PBDI scores, and the IM subscale revealed that autonomy SI questions maybe more fakable than autonomy PBDI questions. In addition, the
more candidates prepared for the interview, the less the difference between SI and PBDI question scores on the autonomy job factor.
APPENDIX A: Tables

Table 1

Nomological Net

<table>
<thead>
<tr>
<th></th>
<th>Technical Expertise</th>
<th>Interpersonal Skills</th>
<th>Autonomy</th>
<th>Dependability</th>
<th>Written Test (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SI</td>
<td>PBDI</td>
<td>SI</td>
<td>PBDI</td>
<td>SI</td>
</tr>
<tr>
<td>IM subscale</td>
<td>*</td>
<td>*</td>
<td>***</td>
<td>**</td>
<td>***</td>
</tr>
<tr>
<td>SDE subscale</td>
<td>*</td>
<td>*</td>
<td>**</td>
<td>*</td>
<td>**</td>
</tr>
<tr>
<td>Future Effects</td>
<td>*</td>
<td>*</td>
<td>**</td>
<td>*</td>
<td>**</td>
</tr>
<tr>
<td>Preparation</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>*</td>
<td>**</td>
</tr>
</tbody>
</table>

N/A - not applicable

* low bivariate correlation

** higher bivariate correlation

*** highest bivariate correlation
Table 2

Break-Down of Interview Questions

<table>
<thead>
<tr>
<th>JOB FACTORS</th>
<th>PBDI QUESTIONS</th>
<th>SI QUESTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Expertise</td>
<td>**** 4</td>
<td>4</td>
</tr>
<tr>
<td>Interpersonal Skills</td>
<td>*2</td>
<td>*2</td>
</tr>
<tr>
<td>Autonomy</td>
<td>*2</td>
<td>*2</td>
</tr>
<tr>
<td>Dependability</td>
<td>*2</td>
<td>*2</td>
</tr>
<tr>
<td>TOTAL NUMBER OF QUESTIONS</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL NUMBER OF QUESTIONS NEEDED</td>
<td>7</td>
<td>3</td>
</tr>
</tbody>
</table>
Table 3

Means, T-Tests, Standard Deviations of Difference Scores, and Correlations between SI and PBDI Questions

<table>
<thead>
<tr>
<th>Interview Factor</th>
<th>N</th>
<th>Mean SI</th>
<th>Mean PBDI</th>
<th>T-Test (M_{SI} vs. M_{PBDI})</th>
<th>Difference (M_{SI} - M_{PBDI})</th>
<th>Standard Deviation</th>
<th>r_{SI-PBDI}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Expertise</td>
<td>37</td>
<td>14.95</td>
<td>14.89</td>
<td>.316, ns</td>
<td>.06</td>
<td>1.08</td>
<td>.94</td>
</tr>
<tr>
<td>Interpersonal Skills</td>
<td>37</td>
<td>8.64</td>
<td>7.79</td>
<td>3.696**</td>
<td>.85</td>
<td>1.37</td>
<td>.48</td>
</tr>
<tr>
<td>Autonomy</td>
<td>37</td>
<td>8.62</td>
<td>7.40</td>
<td>5.480**</td>
<td>1.21</td>
<td>1.34</td>
<td>.48</td>
</tr>
<tr>
<td>Dependability</td>
<td>37</td>
<td>8.16</td>
<td>8.02</td>
<td>.344, ns</td>
<td>.13</td>
<td>2.45</td>
<td>-.05</td>
</tr>
</tbody>
</table>

**Significant, p < .001.
<table>
<thead>
<tr>
<th>Scale</th>
<th>N</th>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
<th>SD</th>
<th>Coefficient α</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIDR</td>
<td>37</td>
<td>3.00</td>
<td>29.00</td>
<td>14.67</td>
<td>6.16</td>
<td>.82</td>
</tr>
<tr>
<td>IM</td>
<td>37</td>
<td>1.00</td>
<td>17.00</td>
<td>8.00</td>
<td>3.86</td>
<td>.82</td>
</tr>
<tr>
<td>SDE</td>
<td>37</td>
<td>1.00</td>
<td>16.00</td>
<td>6.67</td>
<td>3.31</td>
<td>.64</td>
</tr>
<tr>
<td>Future Effects</td>
<td>37</td>
<td>3.00</td>
<td>21.00</td>
<td>11.70</td>
<td>6.10</td>
<td>.68</td>
</tr>
<tr>
<td>Preparation</td>
<td>37</td>
<td>2.00</td>
<td>14.00</td>
<td>7.48</td>
<td>3.71</td>
<td>.90</td>
</tr>
</tbody>
</table>
Table 5

Nomological Net with Bivariate Correlations and 95% Confidence Intervals

<table>
<thead>
<tr>
<th></th>
<th>Technical Expertise Difference</th>
<th>Interpersonal Skills Difference</th>
<th>Autonomy Difference</th>
<th>Dependability Difference</th>
<th>Technical Expertise</th>
<th>Interpersonal Skills</th>
<th>Autonomy</th>
<th>Dependability</th>
<th>Written Test (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIDR</td>
<td>-.044 (.-04,05)</td>
<td>-094 (.-01,28)</td>
<td>-.090 (.-01,28)</td>
<td>-.172 (.-01,16)</td>
<td>-.161 (.-01,17)</td>
<td>.100 (-.23,41)</td>
<td>.150 (-.18,45)</td>
<td>.076 (-.19,33)</td>
<td>-.232 (-.19,33)</td>
</tr>
<tr>
<td>IM Subscale</td>
<td>.046 (-.02,07)</td>
<td>-.091 (-.01,19)</td>
<td>-.104 (-.01,19)</td>
<td>.018 (-.01,14)</td>
<td>.003 (-.01,14)</td>
<td>.069 (-.27,30)</td>
<td>.121 (-.27,31)</td>
<td>-.003 (-.27,30)</td>
<td>-.248 (-.27,31)</td>
</tr>
<tr>
<td>SDE Subscale</td>
<td>-.136 (-.04,20)</td>
<td>-.069 (-.02,10)</td>
<td>.272 (.06,35)</td>
<td>-.046 (-.37,28)</td>
<td>-.340 (-.40,02)</td>
<td>-.303 (-.37,02)</td>
<td>.17 (-.32,43)</td>
<td>.138 (-.35,43)</td>
<td>.146 (-.45,19)</td>
</tr>
<tr>
<td>Future Effects</td>
<td>-.219 (-.31,11)</td>
<td>.086 (-.01,15)</td>
<td>.008 (.02,33)</td>
<td>-.096 (-.44,20)</td>
<td>-.133 (.04,20)</td>
<td>-.063 (-.34,27)</td>
<td>-.198 (-.18,49)</td>
<td>-.208 (.01,39)</td>
<td>.334 .151 (.18,49)</td>
</tr>
<tr>
<td>Preparation</td>
<td>-.132 (-.04,20)</td>
<td>.045 (-.36,28)</td>
<td>-.304 (-.01,15)</td>
<td>-.045 (-.36,28)</td>
<td>.010 (-.32,33)</td>
<td>.054 (-.24,37)</td>
<td>.072 (.24,40)</td>
<td>.088 (-.35,20)</td>
<td>.262 (-.07,54)</td>
</tr>
</tbody>
</table>

Note: Difference variables are the difference between SI and PBDI questions.

N = 37

N/A- not applicable.

* low correlation; ** higher correlation; ***highest correlation.

Correlation is significant at the .05 level (two-tailed).

() = 95% confidence interval = Zr = +/- (1.96*SE r*n)
APPENDIX B: Figures

Figure 1

Estimated Marginal Means of the Difference Scores for the Four Interview Factors.
Estimated Marginal Means of the Four Interview Factors

*Combination is the average of Interpersonal Skills, Autonomy, and Dependability difference means.
Figure 2

Boxplots of the Difference Scores for the Four Interview Factors.
Difference Scores (SI - PBDI)

N =

Technical Expertise
Interpersonal Skills
Autonomy
Dependability

Interview Factors
Appendix C: Human Subjects Forms

Written Informed Consent

Ryan Pennock is working in conjunction with the Los Angeles Unified School District and California State University, San Bernardino on a study of the interview. Mr. Pennock is under the supervision of Dr. Kenneth Shultz, Associate Professor of Psychology, California State University, San Bernardino. You will be given a 45-item questionnaire. It should take you approximately 15-20 minutes to complete the questionnaire. You will be identified in this research by an assigned number only, which will placed on both your interview and questionnaire forms. Specifically, both the interview data and questionnaire data will be coded with a number so that your name will not appear anywhere in the data. Therefore, you will have strict confidentiality/anonymity. Mr. Pennock will be the only one handling the questionnaire data. THE RESULTS OF THE QUESTIONNAIRE WILL NOT PLAY A ROLE IN WHETHER OR NOT YOU ARE HIRED FOR THE POSITION. The questionnaire information is being gathered for research purposes only. Your participation is voluntary. You have the right to withdraw your participation and your data at any time without penalty. This research has been approved both by the LAUSD Personnel Commission and the Human Participants Review Board, Department of Psychology, California State University, San Bernardino. If you have any questions about this study, you may contact Dr. Shultz at (909) 880-5484.

By placing a check mark in this space, I am consenting to participate in this study. I am at least 18 years of age.

Today’s date is ____________________
Debriefing Statement

Thank you for participating in this study. This study is part of Ryan Pennock’s Master’s thesis on the interview. Ryan is investigating which interview questions are more or less fakable in the interview. Again, the results of the questionnaire will not affect you nor your employment relationship in any way. In addition, you are ensured strict confidentiality. Specifically, your data will be matched by your assigned number only and will be reported at the group level only, to ensure anonymity. Finally, Ryan Pennock will be the only one handling the data. Copies of the study can be obtained from Dr. Shultz, at (909) 880-5484.
Appendix D: Measures

BIDR Version 6-Form 40

Using the scale below as a guide, write a number beside each statement to indicate how much you agree with it.

1-----------2-------------3-----------4-----------5-----------6-----------7

NOT TRUE SOMEWHAT TRUE VERY TRUE

1) My first impressions of people usually turn out to be right.
2) It would be hard for me to break any of my bad habits.
3) I don’t care to know what other people really think of me.
4) I have not always been honest with myself.
5) I always know why I like things.
6) When my emotions are aroused, it biases my thinking.
7) Once I’ve made up my mind, other people can seldom change my opinion.
8) I am not a safe driver when I exceed the speed limit.
9) I am fully in control of my own fate.
10) It’s hard for me to shut off a disturbing thought.
11) I never regret my decisions.
12) I sometimes lose out on things because I can’t make up my mind soon enough.
13) The reason I vote is because my vote can make a difference.
14) My parents were not always fair when they punished me.
15) I am a completely rational person.
16) I rarely appreciate criticism.

17) I am very confident of my judgements.

18) I have sometimes doubted my ability as a lover.

19) It's all right with me if some people happen to dislike me.

20) I don't always know the reasons why I do the things I do.

21) I sometimes tell lies if I have to.

22) I never cover up my mistakes.

23) There have been occasions when I have taken advantage of someone.

24) I never swear.

25) I sometimes try to get even rather than forgive and forget.

26) I always obey laws, even if I'm unlikely to get caught.

27) I have said something bad about a friend behind his or her back.

28) When I hear people talking privately, I avoid listening.

29) I have received too much change from a salesperson without telling him or her.

30) I always declare everything at customs.

31) When I was young I sometimes stole things.

32) I have never dropped litter on the street.

33) I sometimes drive faster than the speed limit.

34) I never read sexy books or magazines.

35) I have done things that I don’t tell other people about.

36) I never take things that don’t belong to me.
37) I have taken sick-leave from work or school even though I wasn’t really sick.

38) I have never damaged a library book or store merchandise without reporting it.

39) I have some pretty awful habits.

40) I don’t gossip about other people’s business.

Items 1-20 assess SDE; items 21-40 assess IM. Add one point for every “6” or “7” (minimum= 0; maximum=20)

*Items keyed in the “False” (negative) direction.
Test Attitude Survey

Using the scale below as a guide, write a number beside each statement to indicate how much you agree with it.

1--2--3--4--5--6--7

NOT TRUE **SOMETHAT TRUE** **VERY TRUE**

Motivation

1) Doing well on this interview is important to me.
2) I wanted to do well on this interview.
3) I tried my best on this interview.
4) I tried to do the very best I could to on this interview.
5) While taking this interview, I concentrated and tried to do well.
6) I want to be among the top scorers on this interview.
7) I pushed myself to work hard on this interview.
8) I was extremely motivated to do well on this interview.
9) I just didn’t care how I did on this interview.
10) I didn’t put much effort into this interview.

Lack of Concentration

11) It was hard to keep my mind on this interview.
12) I found myself losing interest and not paying attention to the interview.
13) During the interview, I was bored.
14) I get distracted when taking interviews of this type.

Belief in Tests

15) This interview was a good reflection of what a person could do in the job.
16) Interviews are a good way of selecting people into jobs.

17) This kind of interview should be eliminated.

18) I don’t believe that interviews are valid.

Comparative Anxiety

19) I probably didn’t do as well as most of the other people who took this interview.

20) I am not good at interviews.

21) During the interview, I often thought about how poorly I was doing.

22) I usually get very anxious about taking interviews.

23) I usually do pretty well on interviews.

24) I expect to be among the people who score really well on this interview.

25) My interview scores don’t usually reflect my true abilities.

26) I very much dislike taking interviews of this type.

27) During the interview, I found myself thinking of the consequences of failing.

28) During the interview, I got so nervous I couldn’t do as well as I should have.

Test Ease

29) This interview was too easy for me.

30) I found this interview too simple.

31) I found this interview interesting and challenging.

32) I felt frustrated because many of the interview questions were too difficult.
33) I became fatigued and tired during the interview.

34) The questions on this interview were ambiguous and unclear.

35) I have not been feeling well lately and this affected my performance on the interview.

36) While taking the interview, I was preoccupied with how much time I had left.

37) I felt a lot of time pressure when taking this interview.

38) Once I undertake a task, I usually push myself to the limits.

39) I try to do well in everything I undertake.

40) In general, I like to work just hard enough to get by.

41) My performance on this interview will not affect my chances for obtaining a job.

42) Scores from this interview will probably affect my future.

43) This interview score will be used in future decisions made about me.

44) I spent a good deal of time preparing for this interview.

45) I prepared a lot for this interview.

*Items keyed in the “False” (negative) direction.
Appendix E: Interview Questions

Examples of Situational and Past Behavior Description Interview Questions

INTERPERSONAL SKILLS

Situational Interview Question

You are in the middle of one of your assigned jobs. Another Automotive Mechanic asks you to help him/her out with a spring job. What would you do?

(5) I'd help them.

(3) I'd tell them to wait until I finished, then help them out.

(1) I'd tell them that I am busy and to ask someone else.

Past Behavior Description Interview Question

Describe a time when you were busy and one of your co-workers asked you to help him/her out with a job.

• When did this happen?
• What was the job?
• How did you handle the situation?

(5) Described in detail when the incident took place, what the job was, and indicated that s/he helped the co-worker out.

(3) Described in detail when the incident took place, what the job was, and indicated that s/he waited until they were finished, and then helped the co-worker out.

(1) Failed to describe in detail when the incident took place, what the job was, or indicated that s/he did not help the co-worker out.
REFERENCES

