Simple Groups and Related Topics

Manal Abdulkarim Marouf Ms.
California State University - San Bernardino, nnn_nonaa@hotmail.com

Follow this and additional works at: http://scholarworks.lib.csusb.edu/etd

Recommended Citation
SIMPLE GROUPS AND RELATED TOPICS

A Thesis

Presented to the

Faculty of

California State University,

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree

Master of Arts

in

Mathematics

by

Manal Abdulkarim Marouf

September 2015
Simple Groups and Related Topics

A Thesis

Presented to the

Faculty of

California State University,

San Bernardino

by

Manal Abdulkarim Marouf

September 2015

Approved by:

Dr. Zahid Hasan, Committee Chair

Dr. Joseph Chavez, Committee Member

Dr. Ilseop Han, Committee Member

Dr. Charles Stanton, Chair,
Department of Mathematics

Dr. Corey Dunn
Graduate Coordinator,
Department of Mathematics
Abstract

In this thesis, we will give our discovery of original symmetric presentations of several important groups. We have investigated permutation and monomial progenitors $2^{*} : (2^3 : 2^2)$, $2^{*} : (3^2 : 2^4)$, $2^{10} : (2^4 : (2 \times 5))$, $5^{*} : m (2^3 : 2^2)$, $7^{*} : m (3^2 : 2^4)$, and $3^{*} : m (2^4 : (2 \times 5))$. The finite images of the above progenitors include the Mathieu sporadic group M_{12}, the linear groups $L_2(8)$ and $L_2(13)$, and the extensions $S_6 \times 2$, $2^8 : L_2(8)$, and $2^7 : .A_5$. We will show our construction of the four groups S_3, $L_2(8)$, $L_2(13)$, and $S_6 \times 2$ over S_3, 2^2, $S_3 : 2$, and S_5, by using the technique of double coset enumeration. We will also provide isomorphism types all of the groups that have appeared as finite homomorphic images. We will show that the group $L_2(8)$ does not satisfy the conditions of Iwasawa’s Lemma and that the group $L_2(13)$ is simple by Iwasawa’s Lemma. We give constructions of $M_{22} \times 2$ and M_{22} as homomorphic images of the progenitor S_6.
Acknowledgements

It is hard to transfer all my feelings into several lines. In simple words, I want to thank Allah for giving me this chance to improve my life and to help me through it. I want to extend sincere thanks to my greatest adviser I have ever met, Dr. Zahid Hasan. Dr. Zahid started with me from the zero in the Group Theory. He guided me through developing my thesis. I could not have done my thesis without Dr. Zahed’s advises. I would like also to thank some of the faculty members of the mathematics department who support me with the M.A. program as the Chair and Graduate Coordinator, Dr. Charles Stanton and Dr. Corey Dunn. Respectively, they collaborated and advised me in the program. I will not forget my committee members of my thesis Dr. Joseph Chavez and Dr. Ilseop Han with their assistance. Moreover, I appreciate my government for the financial support and the health care. I thank my family for standing by my side in all the difficulties that I have faced. I thank my mother, Kefaiah Mansour, and my father, Abdulkarim Marouf, for pushing me to success from I was born to the last day in my life. From my heart, I thank my grandma, Aisha, for her prayers to my succeed in future. I thank my sisters and my brothers for encouraging me to be where I am at right now. Last but not least, I thank my friends who pray for me, or be next to me when I need a company.
Table of Contents

Abstract iii

Acknowledgements iv

List of Tables viii

List of Figures ix

1 Basic in Groups 1
 1.1 Permutation of Groups . 1
 1.2 Groups . 1
 1.3 Subgroup . 4
 1.4 Cyclic Groups . 4
 1.5 Group Homomorphisms . 4
 1.6 Coset . 5

2 Extensions of Groups and Relations 6
 2.1 Extensions of Groups . 6
 2.2 Relations . 7

3 Wreath Product of Permutation Groups 10
 3.1 $2^5 : Z_2 \wr Z_3$. 10

4 The Transitive Group 15
 4.1 The Transitive Group (8,22) . 15
 4.2 Isomorphic Type of N . 18
 4.3 The Transitive Group (9,19) . 21
 4.4 The Transitive Group (18,12) . 21

5 Progenitors 23
 5.1 Progenitors $2^{+30} : S_6 \text{ of } M_{22}$. 23
 5.2 Progenitors $2^{+60} : 2 \times A_5 \text{ of } J_1$. 23
 5.3 Progenitors $2^{+13} : (13 : 4) \text{ of } S Z_8$. 24
5.4 Progenitors $2^7 : (13 : 12)$ of $tw(42)$.
 The Lie Group Twisted $F(4, 2)$ on 1755 Letters 24

5.5 Progenitors $2^4 : (17 : 2) 25$

5.6 Progenitors $2^4 : N 25$

5.7 Progenitors $2^4 : N 25$

5.8 Progenitors $2^4 : N 26$

5.9 Progenitors $2^4 : N 26$

6 Double Coset Enumeration 28

6.1 The Double Coset Enumeration of $2^* : S_3$ Over $S_3 28$

6.2 The Isomorphism Type of $N 32$

6.3 The Double Coset Enumeration of $3^* : S_3$ Over $S_5 35$

6.4 Construction Of $L_2(8) 42$

7 Simple Groups 68

7.1 The Group $L_2(8)$ Over $2^2 68$

7.2 Construction Of The Simple Group $L_2(13) 74$

7.3 Construction Of $S_6 99$

7.4 How To Write The Elements Of The Group: 108

8 Construction of $M_{22} 110$

8.1 Double Coset Enumeration Of $M_{22} \times 2$ Over $S_6 110$

8.2 Factor $M_{22} \times 2$ By It’s Center 126

9 Group Representation and Character Theory 134

9.1 Group Representation 134

9.2 Character Theory 136

9.3 Character Table 138

9.4 Induced Character and Monomial Character 143

9.5 The Monomial Progenitor $5^* m(2^3 : 2^2) 143$

9.6 The Monomial Progenitor $7^* m(3^2 : 2^4) 150$

10 Homomorphic Images 156

10.1 The Group $M_{22} 156$

10.2 The Group $M_{24} 157$

10.3 The Group $M_{11} 158$

10.4 The Group $M_{12} 159$

10.5 The Group $J_1 160$

10.6 The Group $J_2 160$

Appendix A MAGMA Code for DCE of $L_2(8)$ Over $2^2 165$

Appendix B MAGMA Code for DCE of $L_2(13)$ Over M and $N 185$

Appendix C MAGMA Code for DCE of $S_6 \times 2$ Over $S_5 205$
Appendix D MAGMA Code for DCE of $M_{22} \times 2$ Over S_6 210
Appendix E MAGMA Code for DCE of M_{22} Over S_6 220
Appendix F MAGMA Code for The Progenitor $2^8 : (2^3 : 2^2)$ 224
Appendix G MAGMA Code for The Progenitor $2^9 : (3^2 : 2^4)$ 229
Appendix H MAGMA Code for The Progenitor $2^{10} : (2^4 : (2 \times 5))$ 233
Appendix I MAGMA Code for The Progenitor $2^{18} : (2,(3^2 : 2))$ 235
Appendix J MAGMA Code for Monomial Progenitor $5^4 :_{m}(2^3 : 2^2)$ 240
Appendix K MAGMA Code for Monomial Progenitor $7^8 :_{m}(3^2 : 2^4)$ 250
Appendix L MAGMA Code for Monomial Progenitor $3^5 :_{m}(2^4 : (2 \times 5))$ 258
Appendix M MAGMA Code for Isomorphism Type of $2^8 : \cdot L_2(8)$ 264
Appendix N MAGMA Code for Isomorphism Type of $2^7 : \cdot A_5$ 270
Appendix O MAGMA Code for Isomorphism Type of $3 : (PSL(2,19) \times 2)$ 276
Appendix P MAGMA Code for Isomorphism Type of $2^3 : \cdot(L_3(4) \times 2)$ 279
Appendix Q MAGMA Code for Isomorphism Type of $2^2 : M_{12}$ 284
Appendix R MAGMA Code for Isomorphism Type of $2^6 : \cdot S_4$ 287
Appendix S MAGMA Code for Isomorphism Type of $2 : S_7$ 292
Bibliography 295
List of Tables

3.1 $\gamma(3)$.. 11
3.2 $\gamma(4)$.. 11
3.3 $\gamma(5)$.. 12
3.4 $\gamma \cdot k^*$.. 12

4.1 Some Finite Homomorphic Image of $2^*8 : N$ 18
4.2 Some Finite Homomorphic Image of $2^*9 : N$ 21
4.3 Some Finite Homomorphic Images of $2^*18 : N$ 22

7.1 Permutation Representation of x, y, and t_0 103

9.1 Table for Conjugacy Classes of S_3 .. 137
9.2 Character Table of S_3 .. 139
9.3 Table of Conjugacy Classes of D_9 .. 140

10.1 Some Finite Homomorphic Image of $2^*16 : (2^4 : 2)$ 157
10.2 Some Finite Homomorphism Image of $2^*6 : ((2 \times 3) : 2)$ 158
10.3 Some Finite Homomorphism Image of $2^*8 : (2^3 : 2)$ 159
10.4 Some Finite Homomorphism Image of $2^*8 : (2^2 : 2)$ 160
10.5 Some Finite Homomorphism Image of $2^*6 : ((2 \times 3) : 2)$ 162
10.6 Some Finite Homomorphism Image of $2^*12 : ((2^2 \times 3) : 2)$.. 164
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Cayley Diagram for $2^3 : S_3$ Over S_3</td>
<td>32</td>
</tr>
<tr>
<td>6.2</td>
<td>Cayley Diagram for S_5 Over S_3</td>
<td>41</td>
</tr>
<tr>
<td>6.3</td>
<td>Cayley Diagram for $L_2(8)$ Over 2^2</td>
<td>67</td>
</tr>
<tr>
<td>7.1</td>
<td>Cayley Diagram for $L_2(13)$ Over M and N</td>
<td>94</td>
</tr>
<tr>
<td>7.2</td>
<td>Cayley Diagram for $S_6 \times 2$ Over S_5</td>
<td>102</td>
</tr>
<tr>
<td>7.3</td>
<td>Cayley Diagram for S_6 Over S_5</td>
<td>107</td>
</tr>
<tr>
<td>8.1</td>
<td>Cayley Diagram for $M_{22} \times 2$ Over S_6</td>
<td>125</td>
</tr>
<tr>
<td>8.2</td>
<td>Cayley Diagram for M_{22} Over S_6</td>
<td>133</td>
</tr>
</tbody>
</table>
Chapter 1

Basic in Groups

In this chapter we will define the group and the permutation. Then we will introduce some different groups with some examples about them. For example, we will talk about the symmetric group, alternating group, dihedral group, and the general linear group. On the other hand, we will give some properties and relation about groups.

1.1 Permutation of Groups

Definition 1.1. If X is a nonempty set, a permutation of X is a bijection $\alpha : X \rightarrow X$. We denote the set of all permutation of X by S_X.

Lemma 1.2. Let S be a set.

1. Let f and g be two permutations of S. Then the composition of f and g is a permutation of S.

2. Let f be a permutation of S. Then the inverse of f is a permutation of S.

Definition 1.3. A permutation $\alpha \in S$ is even if it is a product of an even number of transpositions; otherwise, α is odd.

1.2 Groups

Definition 1.4. A group is a set G together with a binary operation $(a, b) \mapsto a * b : G \times G \rightarrow G$ satisfying the following conditions:
1. (Associativity) for all $a, b, c \in G$, $(a * b) * c = a * (b * c)$.

2. (Existence of a neutral element) there exists an element $e \in G$ such that $a * e = a = e * a$, for all $a \in G$.

3. (Existence of inverses) for each $a \in G$, there exists an $\hat{a} \in G$ such that $a * \hat{a} = e = \hat{a} * a$.

We usually abbreviate $(G, *)$ to G. Also, we usually write ab for $a * b$, 1 or Id for e, and a^{-1} for \hat{a}. There is no requirement that $a * b = b * a$ for all $a, b \in G$. If this property (commutative) does hold, we say that G is abelian.

Definition 1.5. Symmetric Group:

The set S_X of bijections $\varphi : X \to X$ from X to itself forms a group under composition whose identity element is the identity function $\varphi(x) = x$, called the symmetric group of $X = 1, 2, \ldots, n$. The elements of S_X are usually called permutations, and the identity is the trivial permutation.

Since X is set with $1, 2, \ldots, n$ elements imply S_X, we define S_X by S_n which called the symmetric group with n litters. We can find the order of S_n by having the factorial of n. Otherwise, S_n is non-abelian group because $\varphi(xy) \neq \varphi(yx)$ for all $x, y \in X$.

Example 1.6. Suppose we have the group S_3 as symmetric group send $X = 1, 2, 3$ to itself. Find all the element to S_3 and its order?

We have S_3 is a group of 6 elements, and the elements of S_3 will be e, $a = (1, 2, 3)$, $a^2 = (1, 3, 2)$, $b = (2, 3)$, $ab = (1, 2)$, and $a^2b = (1, 3)$.

Definition 1.7. Alternating Group:

The alternating group is that group which have even permutations of n degree; for all $n > 1$, we denote that by A_n. We can generate that by saying A_n is the subgroup of S_n in order of that the order of A_n is $\frac{n!}{2}$, so it will be all the even permutation in S_n.

Example 1.8. Find the order and all the elements of the group A_3.

We can see that the order of A_3 is 3, so the group A_3 has 3 elements the two 3-cycles and the identity which are e, $a = (1, 2, 3)$, and $a^2 = (1, 3, 2)$. As what we say before it is clearly that A_3 is subgroup of S_3, and we defined that by $A_3 \triangleleft S_3$.

Definition 1.9. **Dihedral Group:**

The **dihedral group** D_n or D_{2n}, for $(2n \geq 4)$ is the group of order $2n$ which is generated by two elements s and t such that

$$s^n = 1, \quad t^2 = 1, \quad \text{and} \quad tst = s^{-1}.$$

Note that D_{2n} is not abelian for all $n \geq 3$, while D_4 is the 4-group V.

Otherwise, D_n can be defined to be the subgroup of S_n generated by $r : i \to i + 1 \pmod{n}$ and $s : i \to n + 2 - i \pmod{n}$.

For example, the order of the dihedral group D_3 is 6, and the elements of the group are to be $e, a = (1, 2), b = (2, 3), ab = (1, 3, 2), ba = (1, 2, 3), aba = (13)$. By comparing between the results of example 1.1 and this example, we can see clearly that S_3 and D_3 have the same elements and the same orders. So, we can say that D_3 is symmetric subgroup of S_3.

Definition 1.10. **General Linear Group:**

Let F be a field. The $n \times n$ matrices with coefficients in F and nonzero determinant form a group $GL_n(F)$ called the general linear group of degree n. For a finite dimensional F-vector space V, the F-linear automorphisms of V form a group $GL(V)$ called the general linear group of V. Note that if V has dimension n, then the choice of a basis determines an isomorphism $GL(V) \to GL_n(F)$ sending an automorphism to its matrix with respect to the basis.

Definition 1.11. The number of elements of a group (finite or infinite) is called its **order**. We will use $|G|$ to denote the order of G.

Definition 1.12. **The order of an element** g in a group G is the smallest positive integer n such that $g^n = e$. (In additive notation, this would be $ng = 0$). If no such integer exists, we say that g has infinite order. The order of an element g is denoted by $|g|$.

Definition 1.13. Let a be a fixed element of a group G. The **centralizer** of a in G, $C_G(a)$, is the set of all elements in G that commute with a. In symbols, $C_G(a) = \{g \in G | ga = ag\}$.

1.3 Subgroup

Definition 1.14. A nonempty subset S of a group G is a **subgroup** of G if $s \in G$ implies $s^{-1} \in G$ and $s, t \in G$ imply $st \in G$.

Definition 1.15. A subgroup $K \leq G$ is a **normal subgroup**, denoted by $K \trianglelefteq G$, if $gKg^{-1} = K$ for every $g \in G$.

Definition 1.16. If $x \in G$, then a **conjugate** of x in G is an element of the form axa^{-1} for some $a \in G$; equivalently, x and y are conjugate if $y = \gamma_a(x)$ for some $a \in G$.

1.4 Cyclic Groups

Definition 1.17. A group G is called cyclic if there is an element a in G such that $G = \{a^n | n \in \mathbb{Z}\}$. Such an element a is called a generator of G. We may indicate that G is a cyclic group generated by a by writing $G = \langle a \rangle$.

Theorem 1.18. Theorem (Cayley, 1878):
Every group G can be imbedded as a subgroup of S_G. In particular, if $|G| = n$, then G can be imbedded in S_n.

1.5 Group Homomorphisms

Definition 1.19. Let (G, \ast) and (H, \circ) be groups. A function $f : G \to H$ is a **homomorphism** if, for all $a, b \in G$, $f(a \ast b) = f(a) \circ f(b)$. An **isomorphism** is a homomorphism that is also a bijection. We say that G is isomorphic to H, denoted by $G \cong H$, if there exists an isomorphism $f : G \to H$. An isomorphism $f : G \to G$ is called an **automorphism**.

Definition 1.20. An automorphism of a group G is an isomorphism $\varphi : G \to G$. A subgroup H of G is called characteristic in G, denoted by $H \text{ char } G$, if $\varphi(H) = H$ for every automorphism φ of G.

Definition 1.21. Let $f : G \to H$ be a homomorphism, and define **kernel** $f = \{a \in G : f(a) = 1\}$, and **image** $f = \{h \in H : h = f(a)\}$ for some $a \in G$.

Theorem 1.22. (First Isomorphism Theorem (Jordan, 1870)) Let ϕ be a group homomorphism from G to \bar{G}. Then the mapping from $G/\ker \phi$ to $\phi(G)$, given by $g\ker \phi \to \phi(g)$, is an isomorphism. In symbols, $G/\ker \phi \cong \phi(G)$.
1.6 Coset

Definition 1.23. Let G be a group and let H be a subset of G. For any $a \in G$, the set $\{ah|h \in H\}$ is denoted by aH. Analogously, $Ha = \{ha|h \in H\}$ and $aHa^{-1} = aha^{-1}|h \in H$. When H is a subgroup of G, the set aH is called the left coset of H in G containing a, whereas Ha is called the right coset of H in G containing a. In this case, the element a is called the coset representative of aH (or Ha). We use $|aH|$ to denote the number of elements in the set aH, and $|Ha|$ to denote the number of elements in Ha.

If $S \leq G$, then the index of S in G, denoted by $[G : S]$, is the number of right cosets of S in G.

Theorem 1.24. (Lagrange) If G is a finite group and $S \leq G$, then $|S|$ divides $|G|$ and $[G : S] = |G|/|S|$.

Definition 1.25. If X is a set and G is a group, then X is the G-set if there is a function $\alpha : G \times X \rightarrow X$ (called an action), denoted by $\alpha : (g, x) \rightarrow gx$, such that:

1. $1x = x$ for all $x \in X$; and
2. $g(hx) = (gh)x$ for all $g, h \in G$ and $x \in X$.

One also say that G act on X. If $|X| = n$, then n is called the degree of the G-set X.

Chapter 2

Extensions of Groups and Relations

In this chapter we will offer to the reader the definitions of extensions of groups with given some examples. Then we will show other type of product which is the wreath product. Finally, we will give some ways to find relations such as the first order relation and the Lemma.

2.1 Extensions of Groups

The Direct Product

Definition 2.1. If H and K are groups, then their direct product, denoted by $H \times K$, is group with elements all ordered pairs (h,k), where $h \in H$ and $k \in K$, and with operation $(h,k)(h',k') = (hh',kk')$.

It is easy to check that $H \times K$ is group: the identity is $(1,1)$; the inverse $(h,k)^{-1}$ is (h^{-1},k^{-1}). Notice that neither H nor K is a subgroup of $H \times K$, but $H \times K$ does contain isomorphic replicas of each, namely, $H \times 1 = \{(h,1) : h \in H\}$ and $1 \times K = \{(1,k) : k \in K\}$.

Theorem 2.2. Let G be a group with normal subgroups H and K. If $HK = G$ and $H \cap K = 1$, then $G \cong H \times K$.

Corollary 2.3. If $G = H \times K$, then $G/(H \times 1) \cong K$.

Semi-direct Product

Definition 2.4. A group G is a semi-direct product of K by Q, denoted by $G = K : Q$, if $K \triangleleft G$ and K has a complement $Q_1 \cong Q$. One also says that G splits over K. However, Q_1 is a normal subgroup, then G is the direct product $K \times Q_1$.

A progenitor is a semi-direct product of the following form:

$$P \cong 2^*n : N = \{ \pi \omega | \pi \in N, \omega \text{ a reduced word in the } t_i \}.$$

Where 2^*n denotes a free product of n copies of the cyclic group of order 2 generated by involutions t_i for $i = 1, ..., n$; and N is a transitive permutation group of degree n which acts on the free product by permuting the involutory generators.

Central Extension

Definition 2.5. A central extension of K by Q is an extension G of K by Q with $K \leq Z(G)$.

2.2 Relations

A progenitor $P \cong m^*n : N$ is infinite. In order to find finite homomorphism images. We factor it by appropriate relations. In this part we will introduce two possible ways to get relations which can help the reader to find the homomorphism images for any progenitors.

The First Order Relation

In order to find the first order relations, we need to find a presentation of the progenitor $G = m^*n : N$. New we find the first order relation. Then, we will factor the progenitor by finding the classes of N. We compute the centralizers of all classes non-identity and the orbits of all the centralizers, then we will create that first order relation from those orbits. We will give some examples from groups which we will talk about it in more details in chapter 4. However we use MAGMA to give all those steps.

Example 2.6. The Progenitor $2^8 : (2 \cdot 2^4)$

In order to state the steps of the first order relations we use a presentation of the progenitor $G = 2^8 : (2 \cdot 2^4)$. We will talk about this later in chapter 4.
\(S := \text{Sym}(8); \)
\(aa := S! (2, 5)(6, 7); \)
\(bb := S! (1, 2)(3, 7)(4, 5)(6, 8); \)
\(cc := S! (1, 3)(2, 6)(4, 8)(5, 7); \)
\(dd := S! (1, 2)(3, 6)(4, 5)(7, 8); \)
\(ee := S! (1, 4)(2, 5)(3, 8)(6, 7); \)
\(N := \text{sub}\langle aa, bb, cc, dd, ee\rangle; \)
\(G < a, b, c, d, e, t > := \text{Group}\langle a, b, c, d, e, t | a^2, b^2, c^2, d^2, \\
e^2, b^a = b*e, c^a = c, c^b = c*e, d^a = d*e, d^b = d, d^c = d, e^a = e \\
e^b = e, e^c = e, e^d = e, t^2, (t, a), (t, b*d) >; \)
\(C := \text{Classes}(N); \)
\(C; \)

Conjugacy Classes of group N

\[\begin{array}{ll}
\text{Order} & \text{Length} \\
1 & 1 \\
2 & 2 \\
3 & 2 \\
17 & 2 \\
\end{array}\]

\(C2 := \text{Centraliser}(N, N!(1, 4)(2, 5)(3, 8)(6, 7)); \)
\(C3 := \text{Centraliser}(N, N!(1, 2)(3, 7)(4, 5)(6, 8)); \)
\(C17 := \text{Centraliser}(N, N!(1, 6, 4, 7)(2, 8, 5, 3)); \)
\(\text{Set}(C2); \text{Orbits}(C2); \)
\(\text{Set}(C3); \text{Orbits}(C3); \)
\(\text{Set}(C17); \text{Orbits}(C17); \)

Since we let \(t \) to be \(t_1 \). Then, we find the following from the orbits.

\(\text{Orbits}(C2) = \{ 1, 2, 3, 4, 5, 6, 7, 8 \} \)

The relation has to be \((e*t)^f\)

\(\text{Orbits}(C3) = \{ 1, 2, 3, 4, 7, 6, 8 \} \)

The relation has to be \((b*t)^j\)
Orbits(C17) = GSet{0, 1, 6, 2, 4, 8, 5, 7, 3, 0}
The relation has to be (a*c*d*t)^r

After we find the first order relations, we will add them to the presentation of the progenitor and run it in MAGMA to find some homomorphic images. We also write relations based on the following lemma.

Lemma 2.7. (Curtis(page 58)) \(N \cap \langle t_i, t_j \rangle \leq C_N(N_{ij}) \), where \(N_{ij} \) denotes the stabilizer in \(N \) of the two points \(i \) and \(j \).

In this case we will factor the progenitor \(G = m^*n : N \) by finding the point stabilizer of \(i \) and \(j \), \(N_{ij} \), in \(N \). In order to create relations we will let \(t \) be \(t_i \). According to the above lemma, the stabilizer is if \(x \in N_{ij} \) such that it sends \(i \rightarrow j \) and \(j \rightarrow i \) then we have \((x * t_i)^m = 1\), where \(m \) is a positive integer. Also, if \(y \in N_{ij} \) fixes \(i \) or \(j \) the relation \((t_i * t_j)^k = y\). We add then we try these relations in the presentation of the progenitor to get the homomorphic images.

Example 2.8. The Progenitor \(2^8 : (2 \cdot 2^4) \)

In this example we let \(t \) be \(t_1 \) and we will find the stabilizer \(N^{12} \).

\[
> N12 := \text{Stabiliser}(N, \{1, 2\});
> N12;
\]
Permutation group \(N12 \) acting on a set of cardinality 8
Order = 4 = 2\(^2\)
\((3, 8)(6, 7) \quad (1, 2)(3, 7)(4, 5)(6, 8)\)

We know that the element \((3, 8)(6, 7)\) is \(b * d \), and the element \((1, 2)(3, 7)(4, 5)(6, 8)\) is \(b \), so the relations have to be \((t * t^b)^k = b * d\) and \((b * t)^m = 1\) respectively.
Chapter 3

Wreath Product of Permutation Groups

Definition 3.1. Let H and K be permutation groups on X and Y, respectively. Let $Z = X \times Y$, define the permutation groups on Z. Called the wreath product of H by K, given by $H \wr K$ or $H \text{ Wr } K$.

Let $\gamma \in H$ and y be the fixed element of Y. Define by,

$$\gamma(y) = \begin{cases} (x, y) & \mapsto ((x)\gamma, y) \\ (x, y_1) & \mapsto (x, y_1), \text{ if } y_1 \neq y \end{cases}$$

Let $k \in K$, define by $k^*(x, y) \mapsto (x, (y)k)$.

3.1 $2^*5 : Z_2 \wr Z_3$

We consider the Permutation Wreath Product $2^*5 : Z_2 \wr Z_3$.

The order of this group is $2^3 \cdot 3 = 24$.

Suppose, $X = \{1, 2\}$,

$Y = \{3, 4, 5\}$,

$H = Z_2 = \{e, (12)\}$,

$K = Z_3 = \{e, (345)\}$,

$\gamma = (12) ,

The $Z = X \times Y = \{(1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5)\}.$
We label the elements of Z as follow:
1) $\rightarrow (1,3)$
2) $\rightarrow (1,4)$
3) $\rightarrow (1,5)$
4) $\rightarrow (2,3)$
5) $\rightarrow (2,4)$
6) $\rightarrow (2,5)$

We will use the function $\gamma(y)$ to compute the images of elements of Y, we will try all of them.

Starting with $\gamma(3)$ we found that, We see from the above table that 1 goes to 4 and 4 goes to 1, so the permutation is $H(3) = (1,4)$.

Then the Second element $\gamma(4)$ we found that, We see from the above table that 1 goes to 5 and 5 goes to 1, so the permutation is $H(4) = (2,5)$.

$\gamma(5)$ is found in table below.

We see from the above table that 3 goes to 6 and 6 goes to 3, so the permutation is $H(5) = (3,6)$.

$H(3) \times H(4) \times H(5) = (1,4) \times (2,5) \times (3,6)$. New, given $k = (345)$, and the formula for
Table 3.3: $\gamma(5)$

<table>
<thead>
<tr>
<th>The Permutation</th>
<th>$\gamma(5)$</th>
<th>The Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,3) \rightarrow</td>
<td>(1,3)</td>
<td>1 \rightarrow 1</td>
</tr>
<tr>
<td>(1,4) \rightarrow</td>
<td>(1,4)</td>
<td>2 \rightarrow 2</td>
</tr>
<tr>
<td>(1,5) \rightarrow</td>
<td>(2,5)</td>
<td>3 \rightarrow 6</td>
</tr>
<tr>
<td>(2,3) \rightarrow</td>
<td>(2,3)</td>
<td>4 \rightarrow 4</td>
</tr>
<tr>
<td>(2,4) \rightarrow</td>
<td>(2,4)</td>
<td>5 \rightarrow 5</td>
</tr>
<tr>
<td>(2,5) \rightarrow</td>
<td>(1,5)</td>
<td>6 \rightarrow 3</td>
</tr>
</tbody>
</table>

$\gamma \cdot k^*$ is $:(x, y) \rightarrow (x, yk)$.

Table 3.4: $\gamma \cdot k^*$

<table>
<thead>
<tr>
<th>The Permutation</th>
<th>$k = (345)$</th>
<th>The Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,3) \rightarrow</td>
<td>(1,4)</td>
<td>1 \rightarrow 2</td>
</tr>
<tr>
<td>(1,4) \rightarrow</td>
<td>(1,5)</td>
<td>2 \rightarrow 3</td>
</tr>
<tr>
<td>(1,5) \rightarrow</td>
<td>(2,3)</td>
<td>3 \rightarrow 1</td>
</tr>
<tr>
<td>(2,3) \rightarrow</td>
<td>(2,4)</td>
<td>4 \rightarrow 5</td>
</tr>
<tr>
<td>(2,4) \rightarrow</td>
<td>(2,5)</td>
<td>5 \rightarrow 6</td>
</tr>
<tr>
<td>(2,5) \rightarrow</td>
<td>(2,3)</td>
<td>6 \rightarrow 4</td>
</tr>
</tbody>
</table>

We see from the above table that the permutation is $k^* = (1, 2, 3)(4, 5, 6)$.

We now use MAGMA to check the answer,

```magma
> S:=Sym(6);
> X:=S!(1,4);
> Y:=S!(2,5);
> Z:=S!(3,6);
> F:=S!(1,2,3)(4,5,6);
> N:=sub<S|X,Y,Z,F>;
> #N;
24
> W:=WreathProduct(CyclicGroup(2),CyclicGroup(3));
> #W;
24
> S:=IsIsomorphic(N,W);
> S;
true
> N1:=Stabiliser(N,1);
> N1;
Permutation group N1 acting on a set of cardinality 6
Order = 4 = 2^2
```
Permutation group N_{12} acting on a set of cardinality 6
Order = 2

> C:=Centraliser(N,N_{12});
> C;
Permutation group C acting on a set of cardinality 6
Order = 8 = 2^3

(2, 5)
(1, 4)
(3, 6)

> N_{14}:=Stabiliser(N,[1,4]);
> N_{14};
Permutation group N_{14} acting on a set of cardinality 6
Order = 4 = 2^2

(2, 5)
(3, 6)

> C:=Centraliser(N,N_{14});
> C;
Permutation group C acting on a set of cardinality 6
Order = 8 = 2^3

(1, 4)
(3, 6)
(2, 5)

> N:=G;
> Sch:=SchreierSystem(NN,sub<NN|Id(NN)>);
> ArrayP:=[Id(N): i in [1..24]];
> for i in [2..24] do
 for P:=Id(N): l in [1..#Sch[i]] do
 if Eltseq(Sch[i])[l] eq 1 then P:=X; end if;
 if Eltseq(Sch[i])[l] eq 2 then P:=Y; end if;
 if Eltseq(Sch[i])[l] eq 3 then P:=Z; end if;
 if Eltseq(Sch[i])[l] eq -4 then P:=F^-1; end if;
 end for;
 PP:=Id(N);
 for k in [1..#P] do
 PP:=PP*P[k]; end for;
 ArrayP[i]:=PP;
end for;
> for i in [1..24] do if ArrayP[i] eq N!(2, 5) then print Sch[i]; end if; end for;
y
> for i in [1..24] do if ArrayP[i] eq N!(3,6) then print Sch[i];
end if; end for;
z
X^F=Y,Y^F=Z,Z^F=X,t^2,(t,X),(t,Y),(t,Z)>; #H;
> for k,l,m,n,o in [0..24] do
for> H<X,Y,Z,F,t>::=Group<X,Y,Z,F,t|X^2,Y^2,Z^2,F^3,(X,Y),(X,Z),
(Y,Z),X^F=Y,Y^F=Z,Z^F=X,t^2,(t,X),(t,Y),(t,Z),(t*t^F)^k=Z,(t*t^X)^l=Z>;
#H; k,l,m,n,o; end for;
Chapter 4

The Transitive Group

We will work in this chapter on some k-transitive Groups and learn how to find them by using MAGMA. First of all, in order to find the permutation for a transitive group on k points, we use MAGMA to determine how many transitive group on k points exist. We can chose any transitive groups and find faithful permutation representations. Second, we will use MAGMA to find the progenitor $(2^k : N)$. In this project we will chose k to be 8, 9, and 18 respectively. Third, we will find the homomorphic images for G. Finally, we will show the isomorphic type of the subgroup N of S_k. Here, we are starting with some definitions of transitive group.

Definition 4.1. A G-set X is **transitive** if it has one orbit; that is, for every $x, y \in X$, there exists $\sigma \in G$ with $y = \sigma x$.

4.1 The Transitive Group (8,22)

By using MAGMA we will find a faithful permutation representation of the transitive group $(8,22)$.

```plaintext
> NumberOfTransitiveGroups(8); 50
> N:=TransitiveGroup(8,22);
> D:=SmallGroupDatabase ();
> G:=SmallGroup(D,IdentifyGroup(N)[1],IdentifyGroup(N)[2]);
> f,G1,k:=CosetAction(G,sub<G|Id(G)>);
> SL:=Subgroups(G1);
```
T:= \{X\text{'}subgroup: } X \text{ in } SL\};
TrivCore:=\{H: H \text{ in } T| \#Core(G1,H) \text{ eq 1}\};
mdeg:=\text{Min}\{(\text{Index}(G1,H)):H \text{ in } \text{TrivCore})\};
Good:=\{H: H \text{ in } \text{TrivCore}| \text{Index}(G1,H) \text{ eq mdeg}\};
H:=\text{Rep}(\text{Good});
f,G1,K := \text{CosetAction}(G1,H);
G1;
Permutation group G1 acting on a set of cardinality 8
Order = 32 = 2^5
(2, 5)(6, 7)
(1, 2)(3, 7)(4, 5)(6, 8)
(1, 3)(2, 6)(4, 8)(5, 7)
(1, 2)(3, 6)(4, 5)(7, 8)
(1, 4)(2, 5)(3, 8)(6, 7)
> FPGroup(G);
Finitely presented group on 5 generators
Relations
$.1^2 = \text{Id}($)
$.2^2 = \text{Id}($)
$.3^2 = \text{Id}($)
$.4^2 = \text{Id}($)
$.5^2 = \text{Id}($)
$.2$.1 = $.2 * $.5
$.3$.1 = $.3
$.3$.2 = $.3 * $.5
$.4$.1 = $.4 * $.5
$.4$.2 = $.4
$.4$.3 = $.4
$.5$.1 = $.5
$.5$.2 = $.5
$.5$.3 = $.5
$.5$.4 = $.5$
Mapping from: GrpFP to GrpPC: G
G<a,b,c,d,e>:=\text{Group}<a,b,c,d,e| a^2, b^2, c^2, d^2, e^2, b*a=b*e, c=a*c, c*b=c*e, d*a=d*e, d*b=d, d*c=d, e=a*e, e*b=e, e*c=e, e*d=e>;
> #G;
32
By using the Schreier System and the point stabilizer in MAGMA we will write a presentation for the progenitor 2^8 : N.

Sch:=\text{SchreierSystem}(G,\text{sub}\langle G|\text{Id}(G)\rangle);
ArrayP:=[\text{Id}(N): i \text{ in } [1..32]];
for i in [2..32] do
P:=Id(N); l in [1..#Sch[i]]
for j in [1..#Sch[i]] do
if Eltseq(Sch[i])[j] eq 1 then P[j]:=aa; end if;
if Eltseq(Sch[i])[j] eq 2 then P[j]:=bb; end if;
if Eltseq(Sch[i])[j] eq 3 then P[j]:=cc; end if;
if Eltseq(Sch[i])[j] eq 4 then P[j]:=dd; end if;
if Eltseq(Sch[i])[j] eq 5 then P[j]:=ee; end if;
end for;
PP:=Id(N);
for k in [1..#P] do
PP:=PP*P[k]; end for;
ArrayP[i]:=[PP];
end for;
for i in [1..32] do Sch[i], ArrayP[i]; end for;
N1:=Stabiliser(N,1);
N1;
Permutation group N1 acting on a set of cardinality 8
Order = 4 = 2^2
(2, 5)(6, 7)
(3, 8)(6, 7)

> G<a,b,c,d,e,t>:=Group<a,b,c,d,e,t|a^2,b^2,c^2,d^2,e^2,b^a=b*e,c^a=c, c^b=c*e,d^a=d*e,d^b=d,c^d=e,a^e=e^b=e,c^e=e^d=e,t^2,(t,a),(t,b*d)>;
> #G;

We add the first order relation as we showed in chapter 2, and have this presentation:

for f,j,h,i,l,S,n,o,p,q,x,y,z,v,s,g,I,u,r in [0..10] do
G<a,b,c,d,e,t>:=Group<a,b,c,d,e,t|a^2,b^2,c^2,d^2,e^2,b^a=b*e,c^a=c, c^b=c*e,d^a=d*e,d^b=d,c^d=e,a^e=e^b=e,c^e=e^d=e,t^2,(t,a),(t,b*d),
i*(t) f,(b*t) j,(c*t) h,(a*t) ^i,(a*t) ^2,1,(a*t) ^3,S,(a*b*c*t) ^n, (b*d*t) o,(b*d*t) ^2,p,(d*t) q,(c*d*t) x,(a*b*d*t) y,(a*b*d*t) z, (a*b*e*t) v,(b*c*t) s,(b*c*d*t) ^g,(a*d*e*t) ^I,(a*b*c*d*t) ^u, (a*c*d*t) ^r);
if #G gt 32 then f,j,h,i,l,S,n,o,p,q,x,y,z,v,s,g,I,u,r, Index(G,sub<G|a,b,c,d,e>), #G; end if; end for;

By using the lemma, we get this presentation:

for r,k in [0..10] do
G<a,b,c,d,e,t>:=[G|a,b,c,d,e>, (t,a),(t,b*d), (a*c*d*t) ^r,(t*t) ^b=k*b*d>;}
<table>
<thead>
<tr>
<th>a</th>
<th>v</th>
<th>s</th>
<th>g</th>
<th>I</th>
<th>u</th>
<th>r</th>
<th>Order of G</th>
<th>Group Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>15360</td>
<td>$2^{4} : \cdot (A_{5} \times 2)$</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>10</td>
<td>7680</td>
<td>$2^{7} : \cdot A_{5}$</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>7</td>
<td>9</td>
<td>129024</td>
<td>$2^{8} : \cdot L_{2}(8)$</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>8</td>
<td>7</td>
<td>86016</td>
<td>$2^{8} : \cdot (2^{4} \times 3 \times 7)$</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>61440</td>
<td>$2^{3} : \cdot (2^{3} \times 3 \times 5)$</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>20480</td>
<td>$2^{7} : \cdot (2^{5} \times 5)$</td>
</tr>
<tr>
<td>0</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>3</td>
<td>9</td>
<td>20520</td>
<td>$3 : (PSL(2,19) \times 2)$</td>
<td></td>
</tr>
</tbody>
</table>

4.2 Isomorphic Type of N

Consider the subgroup N of S_{8} below. We will show that N is isomorphic to the semi-direct product of (4×2) by 2^{2}. We will search for the largest Abelian subgroup, $NL[i]$, of N, using the normal subgroup lattice NL.

Thus, $NL[50]$ is the largest Abelian subgroup of N. We factor N by $NL[50]$, and call it q. Thus N is a mixed extension of $NL[50]$ by q, the factor group $N/NL[50]$. We now find isomorphism type and presentations of $NL[50]$ and q. We show below that $NL[50]$ is isomorphic to 4×2.

```plaintext
> X:=AbelianGroup(GrpPerm,[4,2]);
> IsIsomorphic(NL[50],X);
true Mapping from: GrpPerm: $, Degree 8, Order 2^3 to GrpPerm: X
Composition of Mapping from: GrpPerm: $, Degree 8, Order 2^3 to GrpPC and
Mapping from: GrpPC to GrpPC and
Mapping from: GrpPC to GrpPerm: X
```
$NL[50]$ is generated by A and B given below.

\begin{verbatim}
> A:=N!(1, 8, 4, 3)(2, 6, 5, 7);
> B:=N!(1, 6)(2, 3)(4, 7)(5, 8);
> A*B eq B*A;
true
> A*B;
(1, 5, 4, 2)(3, 6, 8, 7)
> NL[50] eq sub<N\{A,B\}>
true
\end{verbatim}

A presentation of $NL[50]$ is \{$x, y|x^4, y^2, (x,y)$\}. We factor N by $N[50]$ and find the generators of q a presentation for q.

\begin{verbatim}
> q,ff:=quo<N\{NL[50]\}>
> q1:=q.1; q3:=q.3;
> q eq sub<q\{q.1,q.3\}>
true
\end{verbatim}

We show below that q is isomorphic to 2^2.

\begin{verbatim}
> H<a,b>:=Group<a,b|a^2,b^2,(a*b)^2>;
> #H;
4
> f,h1,k:=CosetAction(H,sub<H\{Id(H)\}>
> s:=IsIsomorphic(h1,q);
true Isomorphism of GrpPerm: h1, Degree 4, Order 2^2 into GrpPerm: q,
> Degree 4, Order 2^2 induced by
> (1, 2)(3, 4) |--> (1, 2)(3, 4)
> (1, 3)(2, 4) |--> (1, 3)(2, 4)
\end{verbatim}

We now see if the generators and relations of q can be expressed in terms of non-identity elements of $NL[50]$.

\begin{verbatim}
> T:=Transversal(N,NL[50]);
> q,ff:=quo<N\{NL[50]\}>
> ff(T[2]) eq q.1;
true
> ff(T[3]) eq q.3;
true
> ff(T[2]*T[3]) eq q.1*q.3;
true
> Order(T[2]) eq Order(q.1);
true
\end{verbatim}
The computation above demonstrates, it is not possible. Thus N is a semi-direct product of $N[50]$ by q; that is, 4×2 by 2^2. Thus N is isomorphic to $(4 \times 2) : 2^2$. We now determine the action of q on $NL[50]$.

Here is a presentation for the semi-direct product of 4×2 by 2^2.

Now, we show that G is isomorphic to the semi-direct product of 4×2 by 2^2.

Thus, N is isomorphic $(2^3 : 2^2)$.
4.3 The Transitive Group (9,19)

By using Magma we will find a faithful permutation representation of the transitive group (9,19).

S:=Sym(9);
aa:=S!(2, 3, 4, 8, 5, 7, 9, 6);
bb:=S!(2, 4)(3, 7)(5, 9);
cc:=S!(2, 4, 5, 9)(3, 8, 7, 6);
dd:=S!(2, 5)(3, 7)(4, 9)(6, 8);
ee:=S!(1, 2, 5)(3, 6, 9)(4, 8, 7);
ff:=S!(1, 3, 7)(2, 6, 4)(5, 9, 8);
N:=sub<S|aa, bb, cc, dd, ee, ff>;

After we work in MAGMA, we find that the transitive group (9,19) is semi-direct product of 3^2 by 2^4, and we write it as $N = 3^2 : 2^4$. Subsequently, by adding relations to the presentation of $2^4 : N$, we get the following homomorphic images.

for E,w,F,q,j,n,o,r,u,i,y,h,l,s,x,z in [0..10] do
G<a,b,c,d,e,f,t>:=Group<a,b,c,d,e,f,t|a^8,b^2,c^4,d^2,e^3,f^3, (e,f), a^2=c, c^2=d, b^a=b*c*d, c^a=c, c*b=c*d, d^a=d, d*b=d, d*c=d,
e^a=f, e^b=e*(f^2), e^c=e*(f^2), e^d=e^2, f^a=e*(f^2), f^b=f^2, f^c=(e^2)*(f^2), f^d=f^2, f^e=f, t^a=t, (t,b), (t,c), (t,d), (c*f^e-1*c*t^e)^t\
E, (c*f^e-1*c*t^e)^w, (b*f*t)^F, (b*f*t^e)^q, (e*t)^j, (e*c^-1*t)^n, (e*c^-1*t^e)^o, (a*e*b*t)^r, (a*e*b*t^e)^u,
(a*e*b*t^e)^i, (e*b*t)^y, (e*b*t^e)^h, (a*t)^l, (a*t*e)^s, (a*d*t)^x, (a*d*t^e)^z>;

if #G gt 144 then E,w,F,q,j,n,o,r,u,i,y,h,l,s,x,z, Index(G,sub\ <G|a,b,c,d,e,f>), #G; end if; end for;

<table>
<thead>
<tr>
<th>E</th>
<th>y</th>
<th>h</th>
<th>l</th>
<th>s</th>
<th>x</th>
<th>z</th>
<th>Order of G</th>
<th>Group Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>645120</td>
<td>2^4 : (L_3(4) \times 2)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>73728</td>
<td>2^9 : (2^4 \times 3^2)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>518400</td>
<td>(A_6 \times A_6) : (2^4)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>5668704</td>
<td>3^7 : (2^5 \times 3^4)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1555200</td>
<td>3 : (S_6 \times S_6)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>6</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>629856</td>
<td>3^5 : (2^5 \times 3^4)</td>
<td></td>
</tr>
</tbody>
</table>

4.4 The Transitive Group (18,12)

By using Magma we will find a permutation of the transitive group (18,12).
\(S:=\text{Sym}(18);\)
\[aa:=S! (3, 7)(4, 9)(5, 10)(6, 12)(8, 14)(11, 17)(13, 15)(16, 18);\]
\[bb:=S! (1, 2)(3, 5)(4, 6)(7, 10)(8, 11)(9, 12)(13, 16)(14, 17)(15, 18);\]
\[cc:=S! (1, 3, 7)(2, 5, 10)(4, 8, 13)(6, 11, 16)(9, 15, 14)(12, 18, 17);\]
\[dd:=S! (1, 4, 9)(2, 6, 12)(3, 8, 15)(5, 11, 18)(7, 13, 14)(10, 16, 17);\]
\[N:=\text{sub}\langle S \mid aa, bb, cc, dd\rangle;\]

After we work in MAGMA, we find that the transitive group (18,12) is a central extension
of 2 by \([3^2 : 2]\), and we can define it as \(N = 2.[3^2 : 2]\). Subsequently, by adding relations
to the presentation of \(2^{*18} : N\), we get the following homomorphic images.

for \(e, f, g, h, i, j, l, n, o, p, q, r, s, w, x, y, z, v, u\) in [0..10] do
\[G<a, b, c, d, t>:=\text{Group}<a, b, c, d, t\mid a^2, b^2, c^3, d^3, b^a=b, c^a=c^2, c^b=c,\]
\[d^a=d^2, d^b=d, c^d=c, t^2, (t, a), (b*t)^e, (a*t)^f, (a*t^c)^g, (a*t^d)^h,\]
\[(a*t^d)^i, (a*t^d*c^d)^j, (a*b*t^d)^k, (a*b*t^d*c^d)^l, (a*b*t^d*c^d)^m,\]
\[(a*b*t^d)^n, (a*b*t^d)^o, (a*b*t^d)^p, (a*b*t^d)^q, (c*t)^r, (d*t)^s, (c*d*t)^w,\]
\[(c*d-1)^x, (b*c*t)^y, (b*d*t)^z, (b*c*d)^u, (b*c*d)^v, (b^c*d-1)^u, (u^v);\]
if #G gt 36 then \(e, f, g, h, i, j, l, n, o, p, q, r, s, w, x, y, z, v, u,\)
Index(G, sub\(<G\mid a, b, c, d>\), #G); end if; end for;

<table>
<thead>
<tr>
<th>(e)</th>
<th>(w)</th>
<th>(x)</th>
<th>(y)</th>
<th>(z)</th>
<th>(v)</th>
<th>Order of (G)</th>
<th>Group Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>9</td>
<td>78732</td>
<td>3(^3) : (2^2 \times 3^2)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>8</td>
<td>4</td>
<td>63763200</td>
<td>63763200</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>8</td>
<td>10</td>
<td>1062720</td>
<td>(2 \cdot GL(2, 81))</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>188743680</td>
<td>188743680</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>8</td>
<td>368640</td>
<td>2^{10} \cdot A_6</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>1524096</td>
<td>(PSL(2, 8) \times PSL(2, 8)) : S_3</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2211840</td>
<td>2^9 : (S_3 \cdot A_6)</td>
</tr>
</tbody>
</table>
Chapter 5

Progenitors

In this chapter we will discuss some important groups and presentations.

5.1 Progenitors $2^{30} : S_6$ of M_{22}

$S := \text{Sym}(30);$
$xx := \text{Sym}(1, 2, 4, 8)(3, 6, 11, 18, 26, 20, 29, 22)(5, 10, 17, 12, 19, 28, 30, 25)(7, 13, 21, 27, 15, 24, 23, 14)(9, 16);$
$yy := \text{Sym}(1, 3, 7, 14, 23, 29, 4, 9)(2, 5, 10, 6, 12, 20, 28, 30)(8, 15, 25, 21)(11, 16, 26, 19, 13, 22, 24, 17)(18, 27);$
$N := \text{Sub}S_{xx, yy};$
$G := \langle x, y, t | x^{8}, y^{8}, (x^{-1}y^{-1})^{-4}, (x^{-1}y^{-1})^{-4}, (y^{-1}x^{-1}y^{3}x^{-1}y^{-1}x), (y^{x}\cdot y^{x-1}y^{-1}x^{-1}y^{-1}x), x^{4}, t^{2}, (x, y^{4}), (t, x^{4}), (t, x^{4}), (t, x^{4}), (t, x^{4}) \rangle;$

5.2 Progenitors $2^{60} : 2 \times A_5$ of J_1

$S := \text{Sym}(60);$
$yy := \text{Sym}(1, 3, 10, 4, 11, 5)(2, 6, 14, 7, 15, 8)(9, 17, 30, 18, 31, 19)(12, 21, 34, 20, 33, 22)(13, 23, 36, 24, 35, 25)(16, 27, 39, 26, 38, 28)(29, 41, 51, 42, 48, 43)(32, 45, 37, 44, 53, 46)(40, 49, 55, 47, 54, 50)(52, 58, 56, 57, 60, 59);$
N:=sub<S|xx,yy,zz>;
G<x,y,z,t>:=Group<x,y,z,t|x^2,y^6,z^2,(y^3*z),(x*z)^2,(x*y^-1)^5,
(t,t~(x*y)),(t,t~(y*z)),(t,t~(x*y^5)),(t,t~(y^2)),(t,t~(y*z)),
(t,t~((y^5)*x)),(t,t~(x*y*x)),(t,t~(x*y^2)),(t,t~(x*y*z)),(t,t~
(x*(y^5)*x)),(t,t~(y*x*y)),(t,t~(y*x*y^5)),(t,t~((y^2)*x)),(t,t~
((y^5)*x*y)),(t,t~((y^5)*x*(y^5))), (t,t~((x*(y^4)*x)),(t,t~(x*(y^
2)*x)),(t,t~(x*(y^5)*x*y)),(t,t~(x*(y^5)*x*(y^5))), (t,t~(y*x*y^
2))), (t,t~(y*x*y^4)),(t,t~((y^2)*x*y)),(t,t~(x*y*x*(y^2)*x*x)) ,
(t,t~(x*(y^5)*x*(y^2))), (t,t~(x*(y^5)*x*x*x)),(t,t~(y*x*y*x*(y^
5))), (t,t~(x*(y^5)*x*y*x*z)));

5.3 Progenitors 2^{13} : $(13 : 4)$ of SZ_8

S:=Sym(13);
xx:=S!(1, 2, 3, 5)(4, 8, 7, 10)(6, 9, 11, 13);
yy:=S!(1, 4, 9, 8, 10, 13, 7, 3, 2, 6, 12, 11, 5);
N:=sub<S|xx,yy>;
G<x,y,t>:=Group<x,y,t|x^4,(x^-1*y^-1*x^2*y^-1*x^-1),(x*y^-2*x^-1*y^3),
t^2,(t,(x^-1)*y)>;

5.4 Progenitors 2^{78} : $(13 : 12)$ of twf_{42},

The Lie Group Twisted $F(4,2)$ on 1755 Letters

S:=Sym(78);
xx:=S!(1, 2, 5)(3, 9, 11)(4, 12, 15)(6, 17, 13)(7, 18, 20)(8, 21, 19)
(10, 24, 26)(14, 32, 34)(16, 37, 22)(23, 39, 42)(25, 48, 50)
(27, 52, 54)(28, 55, 53)(29, 30, 56)(31, 58, 59)(33, 44, 61)
(35, 63, 46)(36, 65, 64)(38, 67, 47)(40, 68, 69)(41, 70, 66)
(43, 57, 51)(45, 71, 60)(49, 72, 73)(62, 77, 75)(74, 78, 76);
(43, 46)(45, 63)(47, 54)(48, 70)(50, 59)(52, 72)(55, 73)(61, 76)
(65, 71)(67, 78)(74, 77);
zz:=S!(1, 4, 14, 33, 60, 76, 65, 67, 39, 17, 9, 6)(2, 7, 3, 10, 25, 49)
, 59, 55, 32, 16, 5, 8)(11, 27, 23, 47, 69, 78, 68, 77, 66, 37
, 48, 28)(12, 29, 13, 31, 38, 50, 54, 70, 72, 51, 26, 30)(15,
35, 24, 43, 20, 41, 18, 40, 19, 42, 44, 36)(21, 45, 22, 34, 62
\[N := \text{sub}<S|xx, yy, zz>;
G<x, y, z, t> := \text{Group}<x, y, z, t| x^3, y^2, (z*y*x*z), (z*x*y*x^{-1}z^{-1}y), t^2, (t, x*y*x^{-1})>;
\]

5.5 Progenitors \(2^{*17}: (17 : 2)\)

\[S := \text{Sym}(17);
xx := S!(1, 2)(3, 6)(4, 5)(7, 10)(8, 9)(11, 14)(12, 13)(15, 16);
yy := S!(1, 3, 7, 11, 15, 17, 16, 14, 10, 6, 2, 5, 9, 13, 12, 8, 4);
N := \text{sub}<S|xx, yy>;
G<x, y, t> := \text{Group}<x, y, t| x^2, y^{-17}, (y^{-1}*x)^2, t^2, (t, x*y^7)>;
\]

5.6 Progenitors \(2^{*49}: N\)

\[S := \text{Sym}(49);
xx := S!(1, 3, 8, 12, 28, 4, 11)(2, 6, 16, 17, 20, 10, 25)(5, 14,
31, 35, 41, 24, 40)(7, 19, 39, 30, 42, 15, 33)(9, 22, 43, 48, 23, 36)(13, 29, 47, 45, 49, 26, 46)(18, 37, 34, 38,
27, 32, 21);
yy := S!(1, 2, 5, 13, 15, 32, 48)(3, 6, 14, 29, 33, 21, 23)(4, 10,
24, 26, 30, 38, 43)(7, 18, 36, 8, 16, 31, 47)(9, 12, 17,
35, 45, 19, 37)(11, 25, 40, 46, 42, 27, 44)(20, 41, 49,
39, 34, 22, 28);
zz := S!(2, 4, 9, 21, 42, 49, 31)(3, 7, 17, 34, 24, 44, 13)(5,
12, 27, 47, 10, 23, 39)(6, 15, 11, 26, 22, 35, 18)(8,
20, 40, 29, 19, 38, 48)(14, 30, 36, 25, 45, 32, 28);
N := \text{sub}<S|xx, yy, zz>;
G<x, y, z, t> := \text{Group}<x, y, z, t| x^{-2}, y^{-17}, (y^{-1}*x)^{-2}, t^{-2}, (t, x*y^7)>;
\]

5.7 Progenitors \(2^{*12}: N\)

\[S := \text{Sym}(12);
xx := S!(1, 4)(2, 3)(5, 6)(7, 10)(8, 9)(11, 12);
yy := S!(1, 3, 5, 4, 2, 6)(7, 9, 11, 10, 8, 12);
zz := S!(1, 7, 4, 10)(2, 8, 3, 9)(5, 11, 6, 12);
ww := S!(1, 2, 5)(3, 6, 4)(7, 11, 8)(9, 10, 12);
N := \text{sub}<S|xx, yy, zz, ww>;
G<x, y, z, w, t> := \text{Group}<x, y, z, w, t| x^{-2}, z^{-4}, w^{-3}, (y^{-3}*x), (z^{-1}*x*z^{-1}), (y^{-1}*w^{-1}*z*w^{-1}), t^{-2}, (t, x*y*w^{-1})>;
5.8 Progenitors $2^{48} : N$

\[S := \text{Sym}(48); \]
\[\text{bb} := S!((1, 5, 20, 4, 8, 17)(2, 6, 19, 3, 7, 18)(9, 29, 40, 12, 32, 37)(10, 30, 39, 11, 31, 38)(13, 26, 44, 16, 27, 41)(14, 25, 43, 15, 28, 42)(21, 46, 34, 24, 47, 35)(22, 45, 33, 23, 48, 36)); \]
\[N := \text{sub}<S|\text{aa}, \text{bb}, \text{cc}, \text{dd}, \text{ee}, \text{gg}, \text{hh}>; \]
\[G<x, y, z, u, w, v, k, t> := \text{Group}<x, y, z, u, v, k, t | x^2, y^6, z^2, w^2, u^2, v^2, k^2, (x*z)^2, (y^{-1}*u*y*u), (x*w)^2, (z*w)^2, (x*u)^2, (z*u)^2, (w*u)^2, (y^{-1}*u*y*u), (x*v)^2, (z*v)^2, (u*v)^2, (x*v)^2, (z*k)^2, (w*k)^2, (v*k)^2, (y^{-3}*v*v), (z*x*y^{-1}*u*y), (k*z*y^{-1}*k*y), (k*w*y^{-1}*z*y), (u*x*y^{-2}*u*k*y^{-1}), t^2, (t, w*u), (t, x*v*k)>; \]

5.9 Progenitors $2^{24} : N$

\[S := \text{Sym}(24); \]
\[\text{xx} := S!((1, 2)(3, 4)(5, 6)(7, 8)(9, 13)(10, 14)(11, 16)(12, 15)) \]
(17, 22)(18, 21)(19, 23)(20, 24);
yy:=S!(1, 6)(2, 5)(3, 7)(4, 8)(9, 10)(11, 12)(13, 14)(15, 16)
 (17, 21)(18, 22)(19, 24)(20, 23);
zz:=S!(1, 9, 18, 2, 10, 17)(3, 11, 20, 4, 12, 19)(5, 13, 22,
 6, 14, 21)(7, 15, 24, 8, 16, 23);
ww:=S!(1, 8, 2, 7)(3, 6, 4, 5)(9, 16, 10, 15)(11, 14, 12, 13)
 (17, 24, 18, 23)(19, 22, 20, 21);
uu:=S!(1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12)(13, 14)(15, 16)
 (17, 18)(19, 20)(21, 22)(23, 24);
vv:=S!(1, 5, 2, 6)(3, 7, 4, 8)(9, 21, 10, 22)(11, 23, 12, 24)
 (13, 18, 14, 17)(15, 20, 16, 19);
N:=sub<S|xx, yy, zz, ww, uu, vv>;
G<x, y, z, w, u, v>:=Group<x, y, z, w, u, v|x^2, y^2, z^6, w^4, u^2, v^4, (x*y)^2,
 (y*z^-1*x*z), (z^3*u), (x*w^-1*x*w), (y*w^-1*y*w), (z, w), (w^-2*u),
 (v^-1*w^2*v^-1), (x*v^-1*x*v), (z^-1*v^-1*z^-1*v), (w, v),
 (z^-1*y*x*z*x)>;
Chapter 6

Double Coset Enumeration

Definition 6.1. Let \(H \) and \(K \) be subgroups of a group \(G \). A double coset of \(H \) and \(K \) in \(G \) is a set of the form \(HaK = \{ hak | h \in H, k \in K \} \) for some \(a \in G \).

Theorem 6.2. (Coset Enumeration)
Let \(G \) have a presentation with a finite number of generators and relations. Set up one table for each relation, add new integer entries and enlarge the auxiliary table when possible, and delete any large numbers involved in coset collapse. If the procedure ends with all relation tables complete and having \(n \) rows, then the presented group \(G \) has order \(n \).

6.1 The Double Coset Enumeration of \(2^*^3 : S_3 \) Over \(S_3 \)

We take the progenitor \(2^*^3 : S_3 \), where \(2^*^3 \) is the free product of 3 copies of the cyclic groups of order 2, and \(S_3 \) is the group of automorphisms of \(2^*^3 \) which permutes the three symmetric generators by conjugation and factor it by the relation \(t_0t_1 = t_1t_0 \).

The double coset enumeration partitions the image of the group \(G \) as a union double cosets \(NgN \) where \(g \in 2^*^3 : S_3 \). Thus, we can find the set of elements \(g_1, g_2, ... \) of \(G \) such that \(G = Ng_1N \cup Ng_2N \cup ... \), and for each \(i \), we have \(g_i = p_iw_i \), where \(p_i \in N \), and \(w_i \) is a word in the \(t_i \)s. Hence, the double coset decomposition is given by

\[
G = Nw_1N \cup Nw_2N \cup Nw_3N \cup,
\]

where \(w_1 = e \) (the identity). We perform a double coset enumeration of the group \(
\overline{2^*^3 : S_3} \) over \(S_3 \). We will show
\[G = \frac{2^*3 : S_3}{[ttx]^2 = 1} \cong 2^3 : S_3. \]

A symmetric presentation of the progenitor \(2^*3 : S_3\) is given by:

\[2^*3 : S_3 \cong \langle x, y, t | x^3, y^2, (x \ast y)^2, t^2, (t, y) \rangle \]

\(G\) factored by \([ttx]^2\) which simplify to \(t_0t_1 = t_1t_0\). Show the simplification where \(N \cong S_3 = \langle x, y \rangle\), where \(x \sim (1, 2, 3)\) and \(y \sim (12)\), and \(t = t_3 = t_0\).

Using computer-based program - MAGMA:

1. The order of the group, \(|G|\) is equal to 48.
2. There are 4 double coset in this double coset enumeration of \(G\) over \(N\).

Relations

We see that

\[(ttx)^2 = 1 \Rightarrow t_0t_1t_0t_1 = 1 \Rightarrow t_0t_1 = t_1t_0. \]

Moreover, if we conjugate the previous relation by all elements in \(S_3 = \{e, (1, 2), (0, 1), (0, 2), (0, 1, 2)\}\) we get relations. We have

1. \((01 = 10)^e \Rightarrow 01 = 10\)
2. \((01 = 10)^{(1, 2)} \Rightarrow 02 = 20\)
3. \((01 = 10)^{(0, 1)} \Rightarrow 10 = 01\)
4. \((01 = 10)^{(0, 2)} \Rightarrow 21 = 12\)
5. \((01 = 10)^{(0, 1, 2)} \Rightarrow 12 = 21\)
6. \((01 = 10)^{(0, 2, 1)} \Rightarrow 20 = 02\)

\[\Rightarrow 12 \approx 21, 10 \approx 01 \text{ and } 02 \approx 20. \]

Double Coset \([*]:\) We start with the double coset \(NeN\), where \(e\) is the word of length zero, denoted by \([*]\). We have

\[NeN = \{Nen : n \in N\} = \{Ne\} = \{N\} \]
So, the double coset \(N e N \) consists of the single coset \(N \). Thus, \(\frac{|N|}{|N|} = \frac{6}{6} = 1 \).

Note, since \(N \) is transitive on \(\{0, 1, 2\} \), we take a representative coset \(N \) from \([*]\) and a representative from \(\{0, 1, 2\} \) and determine the double coset to which \(N t_i \) belongs, where \(i \in \{0, 1, 2\} \). We consider \(i = 0 \), so \(N t_0 \) is a representative coset, and hence we will have a new double coset \(N t_0 N \) which can denoted by \([0]\). There will be three possible \(t_i \)s that can advance to the next double coset \([0]\).

Word of Length One \([0]\)

We consider the double coset \(N w N \), where \(w \) is a word of length one.

\[
N t_0 N = \{N t_0 n|n \in N\}, \text{ or } [0]. \quad N t_0 N = [0] = \{N t_0 n|n \in N\} = \{N t_0 N, N t_1 N, N t_2 N\}.
\]

Since, the point stabilizer of 0 in the subgroup \(N \) is the set of permutations in \(N \) that fix 0 and permute the rest of the elements in the set \(\{1, 2\} \). Note:

\[
N(0) = \{n \in N|t_0 n = t_0\} \geq \langle (1, 2) \rangle.
\]

Since \(|N(0)| = 2 \) then the number of single cosets in \([0]\) is \(\frac{|N|}{|N(0)|} = \frac{6}{2} = 3 \).

Now, the orbits of \(N^0 \) on \(\{0, 1, 2\} \) are \(\{0\} \) and \(\{1, 2\} \). We choose a representative from each orbit, \(\{0\} \) and \(\{1, 2\} \). If we choose \(t_0 \) from the orbit \(\{0\} \) and choose \(t_1 \) from the orbit \(\{1, 2\} \), then we notice the following:

- \(N t_0 \cdot t_0 = N t_0^2 = N \in [*] \). This will collapse and hence it will go back to \([*]\). This is denoted by number 1 in Cayley diagram (to the left of the circle containing 3).

- \(N t_0 \cdot t_1 = N t_0 t_1 \in [01] \). This is a new double coset, which will extend the Cayley diagram from \([0]\) to \([01]\). Since there are 2 elements in this orbit, there are 2 \(t_i \)s that extend \([0]\) to \([01]\).

Word of Length Two \([01]\)

We are at a new double coset \([01]\), \(N t_0 t_1 N = \{N(t_0 t_1) n|n \in N\} \). Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer \(N^{01} \), this means finding the set of elements that fix 0 and 1 in \(N \) and permute the rest of the elements in the set \(\{1, 2, 3\} \). Now, using our relation \(t_0 t_1 = t_0 t_2 \). We can see that :

\[
0 \rightarrow 0 \quad \text{and} \quad 1 \rightarrow 2.
\]

\[
\Rightarrow N t_0 t_1^{(1,2)} = N t_0 t_2 = N t_0 t_1 \Rightarrow (1, 2) \in N^{(01)}.
\]

\[
\Rightarrow N^{(01)} \geq \langle (1, 2) \rangle. \text{ Thus, } |N^{(01)}| = 2. \text{ So, the number of single cosets in } [01] \text{ is } \frac{|N|}{|N^{(01)}|} = \frac{6}{2} = 3. \text{ In order to find these 3 single cosets, we need to determine the transversals (right coset representatives) of } N^{(01)} \text{ in } N. \text{ The 3 single distinct cosets of}
\]

the double coset [01] are: \(\{Nt_0t_1, Nt_0t_2, Nt_1t_2\} \). Now, we need to find the orbits of \(N^{(01)} \) to advance to the next double coset. From the generator of \(N^{(01)} \geq \langle (1, 2) \rangle \), the orbits of \(N^{(01)} \) on \{0, 1, 2\} are: \(\{0\} \), and \{1, 2\}. Considering a representative from each orbit of \(N^{(01)} \), we will choose the following representative from each orbit: \(t_0 \) from \{0, 1\} and \(t_2 \) from \{2\}. Multiply each representative with \(Nt_0t_1 \):

- \(Nt_0t_1 \cdot t_0 = Nt_0t_0t_0 = Nt_1t_0t_0 = Nt_1t_0^2 = Nt_1 \in [0] \). Hence two elements will go back to that double coset because \{0, 1\} is one orbit.

- \(Nt_0t_1 \cdot t_2 \in [012] \). New double coset, hence one element can advance from [01] to [012] because \{2\} is separate orbit.

Word of Length Three [012]:

Again we need to find the point stabilizer of 0, 1, and 2 in \(N \). This is denoted by \(N^{[012]} \). Therefore, we need to find the permutations in \(N \) that fix 0, 1, and 2. The coset stabilizer of the coset \(Nt_0t_1t_2 \), \(N^{[012]} \geq N^{[012]} \). Using relation \(t_0t_1 = t_1t_0 \), if we multiply both sides by \(t_2 \), we get \(t_0t_1t_2 = t_1t_0t_2 \)

1) \(N(t_0t_1t_2)^{[012]} = Nt_1t_2t_0 = Nt_1t_0t_2 = Nt_0t_1t_2 \Rightarrow (0, 1, 2) \in N^{[012]} \)

2) \(N(t_0t_1t_2)^{[01]} = Nt_1t_0t_2 = Nt_0t_1t_2 \Rightarrow (0, 1, 2) \in N^{[012]} \)

\(\Rightarrow N^{[012]} \geq \langle (0, 1, 2), (0, 1) \rangle \cong S_3 \). Hence, \(|N^{[012]}| = 3! = 6 \), so \(\frac{|N|}{|N^{[012]}|} = \frac{6}{6} = 1 \).

Therefore, there are 1 distinct coset representative. The transversal of \(N^{[012]} \) in \(N \) is: \(Nt_0t_1t_2 \), and the orbit of \(N^{[012]} \) in \{0, 1, 2\} is \{0, 1, 2\}. We choose a representative from the orbit, and determine the double cosets to which \(Nt_0t_1t_2t_2 \) belongs. But \(Nt_0t_1t_2 \in [01] \).

Conclusion:

The double coset enumeration gives that

\[|G| \leq \frac{|N|}{|N^{(0)}|} + \frac{|N|}{|N^{(01)}|} + \frac{|N|}{|N^{(012)}|} \times |N| = (1 + 3 + 3 + 1) \times 6 = (8 \times 6) = 48 \]

A Cayley diagram of \(G \) over \(S_3 \) is given below.
6.2 The Isomorphism Type of N

Consider the subgroup N of $S_3 = N$ below. We will show that N is isomorphic to the semi-direct product of 3 by 2. We will search for the largest Abelian subgroup of N, $NL[i]$, using the normal subgroup lattice NL.

> for i in [1..3] do if IsAbelian(NL[i]) then i; end if; end for;

1 2

Thus, $NL[2]$ is the largest Abelian subgroup of N. We factor N by $NL[2]$, and call it q. Then N is a mixed extension of $NL[2]$ by q, the factor group $N/NL[2]$. We now find isomorphism types and presentations of $NL[2]$ and q.

We show below that $NL[2]$ is isomorphic to 3.

> X:=AbelianGroup(GrpPerm,[3]);
> IsIsomorphic(NL[2],X);

true Isomorphism of GrpPerm: $, Degree 3, Order 3 into GrpPerm: X, Degree 3, Order 3 induced by
 (1, 2, 3) |--> (1, 2, 3) $

$NL[2]$ is generated by A given below.

> A:=N!(1, 2, 3);
> NL[2] eq sub<N|A>;

true

A presentation of $NL[2]$ is $\{x|x^3\}$. We factor N by $N[2]$ and find the generators of q a presentation for q.

> q,ff:=quo<N|NL[2]>;
> q.2;
We show below that q is isomorphic to 2.

We now see if the generators and relations of q can be expressed in terms of nonidentity elements of $NL[2]$.

The computation above demonstrates, it is not possible. Thus N is a semi-direct product of $Nl[2]$ by q; that is, 3 by 2. Thus N is isomorphic to $3 : 2$. We now determine the action of q on $NL[2]$.

Here is a presentation for the semi-direct product of 3 by 2.

Now, we show that N is isomorphic to the semi-direct product of 3 by 2 given above.
Composition of Mapping from: GrpPerm: g1 to GrpPC and
Mapping from: GrpPC to GrpPC and
Mapping from: GrpPC to GrpPerm: N

Thus, N is isomorphic to $(3 : 2)$.
6.3 The Double Coset Enumeration of $3^*3 : S_3$ Over S_5

We take the progenitor $3^*3 : S_3$, where 3^*3 is the free product of three copies of the cyclic groups of order 3, and S_3 is the group of automorphisms of 3^*3 which permutes the three symmetric generators by conjugation and factor it by the two relations $t_3t_1 = t_4t_6$ and $x^2t_1t_5 = t_4t_6$.

The double coset enumeration partitions the image of the group G as a union double cosets NgN where $g \in 3^*3 : S_3$. Thus, we can find the set of elements $g_1, g_2, ...$ of G such that $G = Ng_1N \cup Ng_2N \cup ...$, and for each i, we have $g_i = p_iw_i$, where $p_i \in N$, and w_i is a word in the t_is. Hence, the double coset decomposition is given by

$$G = Nw_1N \cup Nw_2N \cup Nw_3N \cup$$

where $w_1 = e$ (the identity). We perform a double coset enumeration of the group $\frac{3^*3 : S_3}{[tt^2, [xt(t^x)^2]^2]}$ over S_3. We will show

$$G = \frac{3^*3 : S_3}{[tt^2, [xt(t^x)^2]^2]} \cong S_5.$$

A symmetric presentation of the progenitor $3^*3 : S_3$ is given by:

$$3^*3 : S_3 \cong \langle x, y, t | x^3, y^2, (x \ast y)^2, t^3, (t, y) \rangle$$

G factored by $(t \ast t^x)^2$, and $(xt(t^x)^2)^2$ which simplify to $x^2t_1t_5 = t_1t_6$ and $t_3t_1 = t_4t_6$.

$N \cong S_3 = \langle x, y \rangle = \langle (t_1, t_2, t_3)(t_1^2, t_2^2, t_3^2), (t_1, t_2)(t_1^2, t_2^2) \rangle$,

where $x \sim (1, 2, 3)(4, 5, 6)$, and $y \sim (1, 2)(4, 5)$, and $t = t_3$.

Using computer-based program - Magma:

1. The order of the group, $|G|$ is equal to 120.

2. There are 7 double cosets in this double coset enumeration of G over N.

Relations

By seeing that (I) $[xt(t^x)^2]^2 = 1 \Rightarrow [xt_3(t_4^x)^2]^2 = 1 \Rightarrow [xt_3(t_1)^2]^2 = 1 \Rightarrow [xt_3t_4]^2 = 1 \Rightarrow x^2(t_3t_4)^x(t_3t_4) = 1 \Rightarrow x^2t_1t_5t_3t_4 = 1 \Rightarrow x^2t_1t_5 = t_4^{-1}t_3^{-1} \Rightarrow x^2t_1t_5 = t_1t_6 = Nt_1t_5 = t_1t_6$.

Moreover, if we conjugate the previous relation by all elements in $S_3 = \{e, (1, 2)(4, 5), (1, 3)(4, 6), (2, 3)(5, 6), (1, 3, 2)(4, 6, 5), (1, 2, 3)(4, 5, 6)\}$ we get relations. We obtain:

1. $((1, 3, 2)(4, 6, 5)t_1t_5 = t_1t_6)^e \Rightarrow (1, 3, 2)(4, 6, 5)t_1t_5 = t_1t_6$
2. \(((1,3,2)(4,6,5)t_1t_5 = t_1t_6)^{(1,2)(4,5)} \Rightarrow (2,3,1)(5,6,4)t_2t_4 = t_2t_6\\
3. \(((1,3,2)(4,6,5)t_1t_5 = t_1t_6)^{(1,3)(4,6)} \Rightarrow (3,1,2)(6,4,5)t_3t_5 = t_3t_4\\
4. \(((1,3,2)(4,6,5)t_1t_5 = t_1t_6)^{(2,3)(5,6)} \Rightarrow (1,2,3)(4,5,6)t_1t_6 = t_1t_5\\
5. \(((1,3,2)(4,6,5)t_1t_5 = t_1t_6)^{(1,2,3)(4,6,5)} \Rightarrow (2,1,3)(5,4,6)t_2t_6 = t_2t_4\\
6. \(((1,3,2)(4,6,5)t_1t_5 = t_1t_6)^{(1,3,2)(4,5,6)} \Rightarrow (3,2,1)(6,5,4)t_3t_4 = t_3t_5\\

\[(II) \ (tt^x)^2 = 1 \Rightarrow t_3t_1t_3t_1 = 1 \Rightarrow t_3t_1 = t_1^{-1}t_3^{-1} \Rightarrow t_3t_1 = t_4t_6. \]

Moreover, if we conjugate the previous relation by all elements in \(S_3\), we obtain:

1. \((31 = 46)^e \Rightarrow 31 = 46\\
2. \((31 = 46)^{(1,2)(4,5)} \Rightarrow 32 = 56\\
3. \((31 = 46)^{(1,3)(4,6)} \Rightarrow 13 = 64\\
4. \((31 = 46)^{(2,3)(5,6)} \Rightarrow 21 = 45\\
5. \((31 = 46)^{(1,2,3)(4,5,6)} \Rightarrow 12 = 54\\
6. \((31 = 46)^{(1,3,2)(4,6,5)} \Rightarrow 23 = 65\\

Double Coset \(*\):

We start with the double coset \(NeN\), where \(e\) is word of length zero, denoted by \(*\). We have

\[NeN = \{Nen : n \in N\} = \{Ne\} = \{N\} \]

So, the double coset \(NeN\) consists of the single coset \(N\). Thus, \(\frac{|N|}{|N|} = \frac{6}{6} = 1.\)

Note, since \(N\) is transitive on \(\{1,2,3,4,5,6\}\), we take a representative coset \(N\) from \(*\) and a representative from \(\{1,2,3,4,5,6\}\) and determine the double coset to which \(Nt_i\) belongs, where \(i \in \{1,2,3\}\) and \(\{4,5,6\}\). We consider \(i = 3\) and \(i = 6\), so \(Nt_3\) and \(Nt_6\) are the representative coset, and hence we will have a new double coset \(Nt_3N\) and \(Nt_6N\) which can denoted by \([3]\) and \([6]\). There will be six possibles \(t_is\) in \(*\) that can advance to the next double cosets \([3]\) and \([6]\).

Word of Length One \([3]\) and \([6]\):
(i) Word of Length One \([3]\):
we consider the double coset \(NwN\), where \(w\) is a word of length one. \(N_t^3 N = \{Nt_3^n | n \in N\} = [3]\). We need to find the point stabilizer of 3. So, \(N_t^3 N = [3] = \{Nt_3^n | n \in N\} = \{Nt_3 N, Nt_1 N, Nt_2 N\}\). Since, the point stabilizer of 3 in the subgroup \(N\) is the permutations in \(N\) that fixes 3 and permute the rest of the elements in the set \(\{1, 2, 4, 5\}\). **Note:** \(N^{(3)} = \{n \in N | t_3^n = t_3\} \geq \langle (1, 2)(4, 5) \rangle\).

Since \(|N^{(3)}| = 2\) then the number of single cosets in \([3]\) is \(|N| \times |N^{(3)}| = \frac{6}{2} = 3\).

Now, the orbits of \(N^{(3)}\) on \(\{1, 2, 3, 4, 5, 6\}\) are \(\{3\}\), \(\{6\}\), \(\{1, 2\}\), and \(\{4, 5\}\). We choose a representative from each orbit, and determine the double cosets to which \(N_t^3 t_i\) belongs for each \(i \in \{1, 3, 4, 6\}\).

- \(N_t^3 t_3 = Nt_3^2 = Nt_6 \in [6]\). This double coset will go back to \([6]\). Since there is one element in this orbit, there is one \(t_i\) that takes \([3]\) to \([6]\).

- \(N_t^3 t_1 = Nt_3 t_1 \in [31]\). This is a new double coset, which will extend the Cayley graph from \([3]\) to \([31]\). Since there are 2 elements in this orbit, there are 2 \(t_i s\) that take \([3]\) to \([31]\).

- \(N_t^3 t_6 = Nt_3 t_3^2 = Nt_3^3 = e \in [\ast]\). This double coset will go back to \([\ast]\). Since there is one element in this orbit, there is one \(t_i\) that takes \([3]\) to \([\ast]\).

- \(N_t^3 t_4 = Nt_3 t_4 \in [34]\). This is a new double coset, which extends our graph from \([3]\) to \([34]\). Since there are 2 elements in this orbit, there are 2 \(t_i s\) that take \([3]\) to \([34]\).

(ii) Word of Length One \([6]\):
we consider the double coset \(NwN\), where \(w\) is a word of length one. \(N_t^6 N = \{Nt_6^n | n \in N\} = [6]\). We need to find the point stabilizer of 6. So, \(N_t^6 N = [6] = \{Nt_6^n | n \in N\} = \{Nt_6 N, Nt_4 N, Nt_5 N\}\). Since, the point stabilizer of 6 in the subgroup \(N\) is the permutations in \(N\) that fixes 6 and permute the rest of the elements in the set \(\{1, 2, 4, 5\}\). **Note:** \(N^{(6)} = \{n \in N | t_6^n = t_6\} \geq \langle (1, 2)(4, 5) \rangle\).

Since \(|N^{(6)}| = 2\) then the number of single cosets in \([6]\) is \(|N| \times |N^{(6)}| = \frac{6}{2} = 3\).

Now, the orbits of \(N^{(6)}\) on \(\{1, 2, 3, 4, 5, 6\}\) are \(\{3\}\), \(\{6\}\), \(\{1, 2\}\), and \(\{4, 5\}\). We choose a representative from each orbit, and determine the double cosets to which \(N_t^6 t_i\)
belongs for each $i \in \{1, 3, 4, 6\}$.

- $N_{t_6} \cdot t_6 = N_{t_6^2} t_6 = N_{t_3} \in [3]$. This double coset will go back to [3]. Since there is one element in this orbit, there is one t_i that takes [6] to [3].

- $N_{t_6} \cdot t_1 = N_{t_6 t_1} \in [61]$. This is a new double coset, which extends our graph from [6] to [61]. Since there are 2 elements in this orbit, there are 2 t_is that take [6] to [61].

- $N_{t_6} \cdot t_3 = N_{t_6^2 t_3} = N_{t_3^6} = e \in [\ast]$. This double coset will go back to [\ast]. Since there is one element in this orbit, there is one t_i that takes [6] to [\ast].

- $N_{t_6} \cdot t_4 = N_{t_6 t_4}$ by the relation (II) $N_{t_6 t_4} = N_{t_1 t_3}$ then by conjugate $N_{t_1 t_3}$ by $n = (1, 3)(4, 6)$ we will get that $N(t_1 t_3)^n = N_{t_3 t_1}$. So, this double coset will go to [31]. Since there are 2 elements in this orbit, there are 2 t_is that take [6] to [31].

Word of Length Two [31], [34], and [61]

(i) We are at a new double coset $[31] = N_{t_3 t_1} N = \{N(t_3 t_1)^n | n \in N\}$. Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer $N^{(31)}$, this means finding the set of elements that fix 3 and 1 in N and permute the rest of the elements in the set $\{2, 5\}$. **Note:** $N^{(31)} = \{n \in N | (t_3 t_1)^n = t_3 t_1\} \geq \langle e \rangle$.

Since $|N^{(31)}| = 1$ then the number of single cosets in [31] is $\frac{|N|}{|N^{(31)}|} = \frac{6}{1} = 6$.

Now, the orbits of $N^{(31)}$ on $\{1, 2, 3, 4, 5, 6\}$ are $\{1\}$, $\{2\}$, $\{3\}$, $\{4\}$, $\{5\}$, and $\{6\}$. We choose a representative from each orbit, and determine the double cosets to which $N_{t_3 t_1} t_i$ belongs for each $i \in \{1, 2, 3, 4, 5, 6\}$.

- $N_{t_3 t_1} \cdot t_1 = N_{t_3 t_1^2} = N_{t_3 t_4} \in [34]$. This double coset will go back to [34]. Since there is one element in this orbit, then there will be one t_i that takes [31] to [34].

- $N_{t_3 t_1} \cdot t_2 = N_{t_3 t_5 t_4} = N_{t_3 t_4} t_4 = N_{t_3 t_1^2} = N_{t_3 t_1} \in [31]$. This is double coset will collapse. Since there is one element in this orbit, there is one t_i that takes [31] to itself.

- $N_{t_3 t_1} \cdot t_3 = N_{t_3 t_6 t_4} = N_{t_4} \in [6]$. This double coset will go back to [6]. Since there is one element in this orbit, there is one t_i that takes [31] to [6].
• $Nt_3 t_1 \cdot t_4 = Nt_3 \in [3]$. This double coset will go back to [3]. Since there is one element in this orbit, there is one t_i that takes [31] to [3].

• $Nt_3 t_1 \cdot t_5 = Nt_3 t_1 t_2 t_2 = Nt_3 t_1 t_2 = Nt_3 t_3 \in [3]$. This double coset will collapse. Since there is one element in this orbit, there is one t_i that takes [31] to itself.

• $Nt_3 t_1 \cdot t_6 = Nt_4 t_6 t_6 = Nt_4 t_3 \in [61]$. This double coset will go back to [61]. Since there is one element in this orbit, there is one t_i that takes [31] to [61].

(ii) We are at a new double coset $[34] = Nt_3 t_4 N = \{N(t_3 t_4)^n | n \in N\}$. Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer $N^{[34]}$, this means finding the set of elements that fix 3 and 4 in N and permute the rest of the elements in the set $\{1, 2, 4, 5\}$. Now, using our relation $Nt_3 t_5 = t_3 t_4$.

$\Rightarrow N(t_3 t_4)^{(1,2)(4,5)} = Nt_3 t_5 = Nt_3 t_4 \Rightarrow (1, 2)(4, 5) \in N^{[34]}$.

$\Rightarrow N^{[34]} \geq (1, 2)(4, 5)$. Thus, $|N^{[34]}| = 2$. So, the number of single cosets in [34] is $\frac{|N|}{|N^{[34]}|} = \frac{6}{2} = 3$. In order to find these 3 single cosets, we need to determine the transversals (right coset representatives) of $N^{[34]}$. The 3 single distinct cosets of the double coset [34] are: $\{Nt_3 t_4, Nt_2 t_4, Nt_1 t_5\}$. Now, we need to find the orbits of $N^{[34]}$ to advance to the next double coset. From the generator of $N^{[34]} \geq (1, 2)(4, 5)$, the orbits of $N^{[34]}$ on $\{1, 2, 3, 4, 5, 6\}$ are: $\{1, 2\}$, $\{3\}$, $\{4, 5\}$, and $\{6\}$. Considering a representative from each orbit of $N^{[34]}$, and determine the double cosets to which $Nt_3 t_4 t_i$ belongs for each $i \in \{1, 3, 4, 6\}$.

• $Nt_3 t_4 \cdot t_1 = Nt_3 t_3 = Nt_3 \in [3]$. This double coset will go back to [3]. Since there is one element in this orbit, there is one t_i that takes [34] to [3].

• $Nt_3 t_4 \cdot t_3 \in [343]$. This is a new double coset, which extends our graph from [34] to [343]. Since there is one element in this orbit, there is one t_i that takes [34] to [343].

• $Nt_3 t_4 \cdot t_4 = Nt_3 t_1 \in [31]$. This double coset will go back to [31]. Since there is one element in this orbit, there is one t_i that takes [34] to [31].

• $Nt_3 t_4 \cdot t_6 = Nt_3 t_3 t_1 = Nt_6 t_4 \in [61]$. This double coset will go back to [61]. Since there is one element in this orbit, there is one t_i that takes [34] to [61].
(iii) We are at a new double coset \([61] = Nt_6t_1N = \{N(t_6t_1)^n | n \in N\}\). Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer \(N^{(61)}\), this means finding the set of elements that fix 6 and 1 in \(N\) and permute the rest of the elements in the set \(\{1, 2, 4, 5\}\). Now, using our relations;
\[
\Rightarrow N((t_6t_1)^{(1,2),(4,5)}) = Nt_6t_2 = Nt_4t_2t_3t_6 = Nt_4t_2t_3t_1 = Nt_3t_1t_5t_1 = Nt_2t_3t_1t_6 = Nt_6t_5t_1t_6 = Nt_6t_1 \Rightarrow (1, 2)(4, 5) \in N^{(61)}.
\]
\[
\Rightarrow |N^{(61)}| \geq ((1, 2)(4, 5)). \text{ Thus, } |N^{(61)}| = 2. \text{ So, the number of single cosets in } [61] \text{ is } \frac{6}{2} = 3. \text{ In order to find these 3 single cosets, we need to determine the transversals (right coset representatives) of } N^{(61)}. \text{ The 3 single distinct cosets of the double coset } [61] \text{ are: } \{Nt_6t_1, Nt_5t_1, Nt_4t_2\}. \text{ Now, we need to find the orbits of } N^{(61)} \text{ to advance to the next double coset. From the generator of } N^{(61)} \geq ((1, 2)(4, 5)), \text{ the orbits of } N^{(61)} \text{ on } \{1, 2, 3, 4, 5, 6\} \text{ are: } \{1, 2\}, \{3\}, \{4, 5\}, \text{ and } \{6\}. \text{ Considering a representative from each orbit of } N^{(61)}, \text{ and determine the double cosets to which } Nt_6t_1t_i \text{ belongs for each } i \in \{1, 3, 4, 6\}.

- \(Nt_6t_1 \cdot t_1 = Nt_6t_1t_1 = Nt_6t_4 = Nt_1t_3 \in [31]. \) This double coset will go back to [31]. Since there is one element in this orbit, there is one \(t_i \) that takes [61] to [31].
- \(Nt_6t_1 \cdot t_3 = Nt_6t_3t_4 = Nt_3t_4 \in [34]. \) This double coset will go back to [34]. Since there is one element in this orbit, there is one \(t_i \) that takes [61] to [34].
- \(Nt_6t_1 \cdot t_4 = Nt_6 \in [6]. \) This double coset will go back to [6]. Since there is one element in this orbit, there is one \(t_i \) that takes [61] to [6].
- \(Nt_6t_1 \cdot t_6 = Nt_3t_3t_1t_3t_4 = Nt_3t_6t_4t_3 = Nt_3t_4t_3 \in [343]. \) So that, this is a new double coset, which extends our graph from [61] to [343]. Since there is one element in this orbit, there is one \(t_i \) that takes [61] to [343].

Word of Length Three [343]:

Again we need to find the point stabilizer of 3, 4 and 3. This is denoted by \(N^{343} \) in this case will be the identity. Therefore, we need to find the permutations in \(N \) that fixes 3, 4 and 3. The group stabilizer, \(N^{(343)} \). Now, using our relations;
\[
\Rightarrow N((t_3t_4t_3)^{(1,2),(4,5)}) = Nt_3t_5t_3 = Nt_3t_4t_3 \Rightarrow (1, 2)(4, 5) \in N^{(343)}, \text{ and}
\]
\[
\Rightarrow N((t_3t_4t_3)^{(1,2,3),(4,5,6)}) = Nt_1t_5t_1 = Nt_1t_4t_1 = Nt_6t_4t_3t_1 = Nt_6t_4t_6.
\]
\[N_{t_3t_1t_2} = N_{t_3t_1t_2} = N_{t_3t_4t_4} = N_{t_3t_4t_3} \Rightarrow (1, 2, 3)(4, 5, 6) \in N^{(343)}. \]
\[N^{(343)} \geq \langle (1, 2, 3)(4, 5, 6), (1, 2)(4, 5) \rangle. \] Thus, \(|N^{(343)}| = 6. \) So, the number of single cosets in \([343]\) is \(\frac{|N|}{|N^{(343)}|} = \frac{6}{6} = 1. \) In order to find these 1 single coset, we need to determine the transversals (right coset representatives) of \(N^{(343)}).\)

A single distinct cosets of the double coset \([343]\) are: \(\{N_{t_3t_4t_3}\}.\) Now, we need to find the orbits of \(N^{(343)}\) to advance to the next double coset. From the generator of \(N^{(343)} \geq \langle (1, 2, 3)(4, 5, 6), (1, 2)(4, 5) \rangle,\) the orbits of \(N^{(343)}\) on \(\{1, 2, 3, 4, 5, 6\}\) are: \(\{1, 2, 3\}\) and \(\{4, 5, 6\}.\) Considering a representative from each orbit of \(N^{(343)},\) we will choose the following representative from each orbit:

- \(N_{t_3t_4t_3} \cdot t_3 = N_{t_3t_4t_6} = N_{t_3t_1} = N_{t_4t_1} \in [61].\) This double coset will go back to \([61].\) Since there are 3 elements in this orbit, there are 3 \(t_i\)s that take \([343]\) to \([61].\)

- \(N_{t_3t_4t_3} \cdot t_6 = N_{t_3t_4} \in [34].\) This double coset go back to \([34].\) Since there are 3 elements in this orbit, there are 3 \(t_i\)s that take \([343]\) to \([34].\)

Conclusion:

The double coset enumeration gives that
\[|G| \leq \left(\frac{|N|}{|N|} + \frac{|N|}{|N^{(3)}|} + \frac{|N|}{|N^{(31)}|} + \frac{|N|}{|N^{(34)}|} + \frac{|N|}{|N^{(6)}|} + \frac{|N|}{|N^{(61)}|} + \frac{|N|}{|N^{(343)}|} \right) \times |N| = (1 + 3 + 3 + 3 + 6 + 3 + 1) \times 6 = (20 \times 6) = 120. \] A Cayley diagram of \(G\) over \(S_3\) is given below.

![Cayley Diagram for S_5 Over S_3](image)

Figure 6.2: Cayley Diagram for \(S_5\) Over \(S_3\)
6.4 Construction Of $L_2(8)$

Double Coset Enumeration $L_2(8)$ Over 2^2

We take the progenitor $2^{*4} : 2^2$, where 2^{*4} is the free product of 4 copies of the cyclic groups of order 2, and 2^2 is the group of automorphisms of 2^{*4} which permutes the four symmetric generators by conjugation and factor it by the three relations

$$ (xyx)^7t_1t_3t_1t_3t_1t_3t_1 = 1, (x)^9t_1t_2t_1t_2t_1t_2t_2t_1 = 1, \text{ and } (xy)^3t_1t_4t_1 = 1. $$

The double coset enumeration partitions the image of the group G as a union double cosets NgN where $g \in 2^{*4} : 2^2$. Thus, we can find the set of elements $g_1, g_2, ...$ of G such that $G = N g_1 N \cup N g_2 N \cup ...$, and for each i, we have $g_i = p_i w_i$, where $p_i \in N$, and w_i is a word in the t_is. Hence, the double coset decomposition is given by

$$ G = N w_1 N \cup N w_2 N \cup N w_3 N \cup ... , $$

where $w_1 = e$ (the identity). We perform a double coset enumeration of the group $2^{*4} : 2^2$ over 2^2. We will show

$$ 2^{*4} : 2^2 \cong (xyx)[(xyx)t]^7, [xt]^9, [(xy)t]^3 \cong L_2(8). $$

A symmetric presentation of the progenitor $2^{*4} : 2^2$ is given by:

$$ 2^{*4} : 2^2 \cong G<x,y,t>:=\text{Group}<x,y,t| x^2, y^2, (x,y), t^2>; $$

G factored by $(x * y * x * t)^7, (x * t)^9, \text{ and } (x * y * t)^3$ which simplify to

$$(xyx)^7t_1t_3t_1t_3t_1t_3t_1 = 1, (x)^9t_1t_2t_1t_2t_1t_2t_2t_1 = 1, \text{ and } (xy)^3t_1t_4t_1 = 1. $$

Show simplification where $N \cong 2^2 = (x,y)$, where $x \sim (1,2)(3,4)$ and $y \sim (1,3)(2,4)$, and $t = t_1$.

Using computer-based program - Magma:

1. The order of the group, $|G|$ is equal to 504.
2. There are 36 double cosets in this double cosets enumeration of G over N.

Relations

We see that

$$ (I) \quad [(xyx)t]^7 = 1 \Rightarrow (xyx)^7t(xy^x)^6t(xy^x)^5t(xy^x)^4t(xy^x)^3t(xy^x)^2t(xy^x)t(xy^x)^0 = 1 $$

$$ \Rightarrow (1,3)(2,4)t_1t_3t_1t_3t_1t_3t_1 = 1 \Rightarrow Nt_1t_3t_1t_3t_1t_3t_1 = 1. $$

Moreover, if we conjugate the previous relation by all elements in $2^2 = \{e, (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)\}$, we obtain:
Moreover, if we conjugate the previous relation by all elements in 2^2, we obtain

1. $((1,3)(2,4)t_1t_3t_1t_3t_1t_3t_1t_3 = 1)^e \Rightarrow (1,3)(2,4)t_1t_3t_1t_3t_1t_3t_1t_3 = 1.$

2. $((1,3)(2,4)t_1t_3t_1t_3t_1t_3t_1t_3 = 1)^{1,2}(3,4) \Rightarrow (2,4)(1,3)t_2t_4t_2t_4t_2t_4 = 1.$

3. $((1,3)(2,4)t_1t_3t_1t_3t_1t_3t_1t_3 = 1)^{1,3}(2,4) \Rightarrow (3,1)(4,2)t_3t_1t_3t_1t_3t_1t_3 = 1.$

4. $((1,3)(2,4)t_1t_3t_1t_3t_1t_3t_1t_3 = 1)^{1,4}(2,3) \Rightarrow (4,2)(3,1)t_4t_2t_4t_2t_4t_2t_4 = 1.$

(II) $[xt]^9 = 1 \Rightarrow (x)^9 t(x)^8 t(x)^7 t(x)^6 t(x)^5 t(x)^4 t(x)^3 t(x)^2 t(x) t(x)^0 = 1$

$\Rightarrow (1,2)(3,4)t_1t_2t_2t_1t_2t_1t_2t_1 = 1 \Rightarrow Nt_1t_2t_1t_2t_1t_2t_1t_1 = 1.$

Moreover, if we conjugate the previous relation by all elements in 2^2, we obtain

1. $((1,2)(3,4)t_1t_2t_1t_2t_1t_2t_1t_2 = 1)^e \Rightarrow (1,2)(3,4)t_1t_2t_1t_2t_1t_2t_1t_2 = 1.$

2. $((1,2)(3,4)t_1t_2t_1t_2t_1t_2t_1t_2 = 1)^{1,2}(3,4) \Rightarrow (2,1)(4,3)t_2t_1t_2t_1t_2t_1t_2t_1 = 1.$

3. $((1,2)(3,4)t_1t_2t_1t_2t_1t_2t_1t_2 = 1)^{1,3}(2,4) \Rightarrow (3,4)(1,2)t_3t_4t_3t_4t_3t_4t_3t_4 = 1.$

4. $((1,2)(3,4)t_1t_2t_1t_2t_1t_2t_1t_2 = 1)^{1,4}(2,3) \Rightarrow (4,3)(2,1)t_4t_3t_4t_3t_4t_3t_4t_4 = 1.$

(III) $[(xy)t]^3 = 1 \Rightarrow (xy)^3 t(xy)^2 t(xy)^3 t(xy)^0 = 1$

$\Rightarrow (1,4)(3,2)t_1t_4t_1 = 1 \Rightarrow Nt_1t_4t_1 = 1.$

Moreover, if we conjugate the previous relation by all elements in 2^2, we obtain

1. $((1,4)(3,2)t_1t_4t_1 = 1)^e \Rightarrow (1,4)(3,2)t_1t_4t_1 = 1$

2. $((1,4)(3,2)t_1t_4t_1 = 1)^{1,2}(3,4) \Rightarrow (2,3)(4,1)t_2t_3t_2 = 1$

3. $((1,4)(3,2)t_1t_4t_1 = 1)^{1,3}(2,4) \Rightarrow (3,2)(1,4)t_3t_2t_3 = 1$

4. $((1,4)(3,2)t_1t_4t_1 = 1)^{1,4}(2,3) \Rightarrow (4,1)(2,3)t_4t_1t_4 = 1$

Double Coset $[s]$:

We start with the double coset NeN, where e is the word of length zero, denoted by $[s]$. We have

$$NeN = \{NeN : n \in N\} = \{Ne\} = \{N\}$$
So, the double coset NeN consists of the single coset N. Thus, $\frac{|N|}{|N|} = \frac{4}{4} = 1$.

Note, since N is transitive on $\{1, 2, 3, 4\}$, we take a representative coset N from $[$*] and a representative from $\{1, 2, 3, 4\}$ and determine the double coset to which Nt_i belongs, where $i \in \{1, 2, 3, 4\}$. We consider $i = 1$, so Nt_1 is the representative coset, and hence we will have a new double coset Nt_1N which can denoted by $[1]$. There will be four possibles t_is in $[$*] that will advance to the next double cosets $[1]$.

Word of Length One $[1]$:

We consider the double coset NwN, where w is a word of length one. $Nt_1N = \{Nt_1^n | n \in N\}$ = $[1]$. We need to find the point stabilizer of 1. So, $Nt_1N = [1] = \{Nt_1^n | n \in N\} = \{Nt_1N, Nt_2N, Nt_3N, Nt_4N\}$. Since, the point stabilizer of 1 in the subgroup N is the permutations in N that fixes 1 and permute the rest of the element in the set $\{1, 2, 3, 4\}$.

Note: $N^{(1)} = \{n \in N | t_1^n = t_1 \} \geq \langle e \rangle$.

Since $|N^{(1)}| = 1$ then the number of single cosets in $[1]$ is $\frac{|N|}{|N^{(1)}|} = \frac{4}{1} = 4$.

Now, the orbits of $N^{(1)}$ on $\{1, 2, 3, 4\}$ are $\{1\}$, $\{2\}$, $\{3\}$, and $\{4\}$. We choose a representative from each orbit, and determine the double cosets to which Nt_1t_i belongs for each $i \in \{1, 2, 3, 4\}$.

- $Nt_1 \cdot t_1 = Nt_1^2 = N \in [\ast]$. This double coset will go back to $[\ast]$. Since there is one element in this orbit, there is one t_i that takes $[1]$ to $[\ast]$.

- $Nt_1 \cdot t_2 = Nt_1t_2 \in [12]$. This is a new double coset, which will extend the Cayley graph from $[1]$ to $[12]$. Since there is one element in this orbit, there is one t_i that takes $[1]$ to $[12]$.

- $Nt_1 \cdot t_3 = Nt_1t_3 \in [13]$. This is a new double coset, which extends our graph from $[1]$ to $[13]$. Since there is one element in this orbit, there is one t_i that takes $[1]$ to $[13]$.

- $Nt_1 \cdot t_4 = Nt_1t_4 = Nt_1 \in [1]$. This is double coset will collapse. Since there is one element in this orbit, there is one t_i that takes $[1]$ to $[1]$.

Word of Length Two $[12]$, and $[13]$:

(i) We are at a new double coset $[12]$, $Nt_1t_2N = \{N(t_1t_2)^n | n \in N\}$. Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer N^{12},
this means finding the set of elements that fix 1 and 2 in \(N \) and permute the rest of the elements in the set \(\{1, 2, 3, 4\} \). Note: \(N^{(12)} = \{ n \in N | (t_1 t_2)^n = t_1 t_2 \} \geq \langle e \rangle \).

Since \(|N^{(12)}| = 1 \) then the number of single cosets in \([12]\) is \(\frac{|N|}{|N^{(12)}|} = \frac{4}{1} = 4 \).

Now, the orbits of \(N^{(12)} \) on \(\{1, 2, 3, 4\} \) are \{1\}, \{2\}, \{3\}, and \{4\}. We choose a representative from each orbit, and determine the double cosets to which \(N t_1 t_2 t_i \) belongs for each \(i \in \{1, 2, 3, 4\} \).

- \(N t_1 t_2 \cdot t_1 = N t_1 t_2 t_1 \in [121] \). This is a new double coset, which extends our graph from \([12]\) to \([121]\). Since there is one element in this orbit, there is one \(t_i \) that takes \([12]\) to \([121]\).

- \(N t_1 t_2 \cdot t_2 = N t_1 t_2^2 \in [1] \). This double coset will go back to \([1]\). Since there is one element in this orbit, there is one \(t_i \) that takes \([12]\) to \([1]\).

- \(N t_1 t_2 \cdot t_3 = N t_1 t_2 t_3 = N t_4 t_2 \in [13] \). This double coset will go to \([13]\). Since there is one element in this orbit, there is one \(t_i \) that takes \([12]\) to \([13]\).

- \(N t_1 t_2 \cdot t_4 \in [124] \). So, this is a new double coset, which extends our graph from \([12]\) to \([124]\). Since there is one element in this orbit, there is one \(t_i \) that takes \([12]\) to \([124]\).

(ii) We are at a new double coset \([13]\), \(N t_1 t_3 N = \{ N(t_1 t_3)^n | n \in N \} \). Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer \(N^{(13)} \), this means finding the set of elements that fix 1 and 3 in \(N \) and permute the rest of the elements in the set \(\{1, 2, 3, 4\} \). Note: \(N^{(13)} = \{ n \in N | (t_1 t_3)^n = t_1 t_3 \} \geq \langle e \rangle \).

Since \(|N^{(13)}| = 1 \) then the number of single cosets in \([13]\) is \(\frac{|N|}{|N^{(13)}|} = \frac{4}{1} = 4 \).

Now, the orbits of \(N^{(13)} \) on \(\{1, 2, 3, 4\} \) are \{1\}, \{2\}, \{3\}, and \{4\}. We choose a representative from each orbit, and determine the double cosets to which \(N t_1 t_2 t_i \) belongs for each \(i \in \{1, 2, 3, 4\} \).

- \(N t_1 t_3 \cdot t_1 = N t_1 t_3 t_1 \in [131] \). This is a new double coset, which extends our graph from \([13]\) to \([131]\). Since there is one element in this orbit, there is one \(t_i \) that takes \([13]\) to \([131]\).

- \(N t_1 t_3 \cdot t_3 = N t_1 t_3^2 \in [1] \). This double coset will go back to \([1]\). Since there is one element in this orbit, there is one \(t_i \) that takes \([13]\) to \([1]\).
\[Nt_1 \cdot t_2 = Nt_1 t_3 t_2 = Nt_4 t_3 \in [12]. \] This double coset will go to [12]. Since there is one element in this orbit, there is one \(t_i \) that takes [13] to [12].

\[Nt_1 \cdot t_4 \in [134]. \] So, this is a new double coset, which extends our graph from [13] to [134]. Since there is one element in this orbit, there is one \(t_i \) that takes [13] to [134].

Word of Length Three [121], [124], [131] and [134]:

(i) We are at a new double coset [121], \(Nt_1 t_2 t_1 N = \{ N(t_1 t_2 t_1)^n | n \in N \}. \) Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer \(N^{121} \), this means finding the set of elements that fix 1, 2, and 1 in \(N \) and permute the rest of the elements in the set \{1, 2, 3, 4\}. **Note:** \(N^{121} = \{ n \in N | (t_1 t_2 t_1)^n = t_1 t_2 t_1 \} \geq \langle e \rangle \). Since \(|N^{121}| = 1 \) then the number of single cosets in [121] is \(\frac{|N|}{|N^{121}|} = 4 \).

Now, the orbits of \(N^{121} \) on \{1, 2, 3, 4\} are \{1\}, \{2\}, \{3\}, and \{4\}. We choose a representative from each orbit, and determine the double cosets to which \(Nt_1 t_2 t_1 t_i \) belongs for each \(i \in \{1, 2, 3, 4\} \).

\[Nt_1 t_2 t_1 \cdot t_1 = Nt_1 t_2 t_1 t_1 \in [12]. \] This double coset will go back to [12]. Since there is one element in this orbit, there is one \(t_i \) that takes [121] to [12].

\[Nt_1 t_2 t_1 \cdot t_2 \in [1212]. \] This is a new double coset, which extends our graph from [121] to [1212]. Since there is one element in this orbit, there is one \(t_i \) that takes [121] to [1212].

\[Nt_1 t_2 t_1 \cdot t_3 \in [1213]. \] This is a new double coset, which extends our graph from [121] to [1213]. Since there is one element in this orbit, there is one \(t_i \) that takes [121] to [1213].

\[Nt_1 t_2 t_1 \cdot t_4 = Nt_1 t_2 t_1 t_4 = Nt_4 t_3 t_1 \in [124]. \] This double coset will go to [124]. Since there is one element in this orbit, there is one \(t_i \) that takes [121] to [124].

(ii) We are at a new double coset [124], \(Nt_1 t_2 t_4 N = \{ N(t_1 t_2 t_4)^n | n \in N \}. \) Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer of \(N^{124} \), this means finding the set of elements that fix 1, 2 and, 4 in \(N \) and permute the rest of the elements in the set \{1, 2, 3, 4\}. **Note:** \(N^{124} = \{ n \in N | (t_1 t_2 t_4)^n = t_1 t_2 t_4 \} \geq \langle e \rangle \). Since \(|N^{124}| = 1 \) then the number of single cosets in [124] is \(\frac{|N|}{|N^{124}|} = 4 \).
Now, the orbits of $N^{(124)}$ on $\{1, 2, 3, 4\}$ are $\{1\}$, $\{2\}$, $\{3\}$, and $\{4\}$. We choose a representative from each orbit, and determine the double cosets to which $N t_1 t_2 t_4 t_i$ belongs for each $i \in \{1, 2, 3, 4\}$.

- $N t_1 t_2 t_4 \cdot t_1 = N t_1 t_2 t_4 t_1 = N t_4 t_3 t_4 \in [121]$. This double coset will go to $[121]$. Since there is one element in this orbit, there is one t_i that takes $[124]$ to $[121]$.

- $N t_1 t_2 t_4 \cdot t_2 \in [1242]$. This is a new double coset, which extends our graph from $[124]$ to $[1242]$. Since there is one element in this orbit, there is one t_i that takes $[124]$ to $[1242]$.

- $N t_1 t_2 t_4 \cdot t_3 \in [1243]$. This is a new double coset, which extends our graph from $[124]$ to $[1243]$. Since there is one element in this orbit, there is one t_i that extend $[124]$ to $[1243]$.

- $N t_1 t_2 t_4 \cdot t_4 = N t_1 t_2 \in [12]$. This double coset will go back to $[12]$. Since there is one element in this orbit, there is one t_i that takes $[124]$ to $[12]$.

(iii) We are at a new double coset $[131]$, $N t_1 t_3 t_1 N = \{N(t_1 t_3 t_1)^n|n \in N\}$. Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer N^{131}, this means finding the set of elements that fix 1, 3, and 1 in N and permute the rest of the elements in the set $\{1, 2, 3, 4\}$. **Note:** $N^{(131)} = \{n \in N|(t_1 t_3 t_1)^n = t_1 t_3 t_1\} \geq \langle e \rangle$. Since $|N^{(131)}| = 1$ then the number of single cosets in $[131]$ is $\frac{|N|}{|N^{(131)}|} = \frac{4}{1} = 4$.

Now, the orbits of $N^{(131)}$ on $\{1, 2, 3, 4\}$ are $\{1\}$, $\{2\}$, $\{3\}$, and $\{4\}$. We choose a representative from each orbit, and determine the double cosets to which $N t_1 t_3 t_1 t_i$ belongs for each $i \in \{1, 2, 3, 4\}$.

- $N t_1 t_3 t_1 \cdot t_1 = N t_1 t_3 t_1^2 \in [13]$. This double coset will go back to $[13]$. Since there is one element in this orbit, there is one t_i that takes $[131]$ to $[13]$.

- $N t_1 t_3 t_1 \cdot t_3 = N t_1 t_3 t_1 t_3 = N t_1 t_3 t_1 \in [131]$. This double coset will collapse. Since there is one element in this orbit, there is one t_i that extend $[131]$ to itself.

- $N t_1 t_3 t_1 \cdot t_2 \in [1312]$. This is a new double coset, which extends our graph from $[131]$ to $[1312]$. Since there is one element in this orbit, there is one t_i that takes $[131]$ to $[1312]$.
\[N_{t_1}t_3t_1 \cdot t_4 = N_{t_1}t_3t_4t_3 = N_{t_4}t_2t_1 \in [134]. \] This double coset will go to [134]. Since there is one element in this orbit, there is one \(t_i \) that takes [131] to [134].

(iv) We are at a new double coset [134], \(N_{t_1}t_3t_4N = \{N(t_1t_3t_4)^n | n \in N\} \). Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer of \(N^{134} \), this means finding the set of elements that fix 1, 3 and 4 in \(N \) and permute the rest of the elements in the set \{1, 2, 3, 4\}. Note: \(N^{(134)} = \{n \in N|(t_1t_3t_4)^n = t_1t_3t_4 \} \geq \langle e \rangle \).

Since \(|N^{(134)}| = 1 \) then the number of single cosets in [134] is \(\frac{|N|}{|N^{(134)}|} = \frac{4}{1} = 4 \).

Now, the orbits of \(N^{(134)} \) on \{1, 2, 3, 4\} are \{1\}, \{2\}, \{3\}, and \{4\}. We choose a representative from each orbit, and determine the double cosets to which \(N_{t_1}t_3t_4t_i \) belongs for each \(i \in \{1, 2, 3, 4\} \).

\[N_{t_1}t_3t_4 \cdot t_1 = N_{t_1}t_3t_4t_1 = N_{t_4}t_3t_1 \in [131]. \] This double coset will go back to [131]. Since there is one element in this orbit, there is one \(t_i \) that takes [134] to [131].

\[N_{t_1}t_3t_4 \cdot t_2 \in [1342]. \] This is a new double coset, which extends our graph from [134] to [1342]. Since there is one element in this orbit, there is one \(t_i \) that takes [134] to [1342].

\[N_{t_1}t_3t_4 \cdot t_3 \in [1343]. \] This is a new double coset, which extends our graph from [131] to [1343]. Since there is one element in this orbit, there is one \(t_i \) that takes [131] to [1343].

\[N_{t_1}t_3t_4 \cdot t_4 = N_{t_1}t_3 \in [13]. \] So that, this double coset will go back to [13]. Since there is one element in this orbit, there is one \(t_i \) that takes [131] to [13].

Word of Length four [1212], [1213], [1242], [1243], [1312], [1342] and [1343]:

(i) We are at a new double coset [1212], \(N_{t_1}t_2t_1t_2N = \{N(t_1t_2t_1t_2)^n | n \in N\} \). Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer \(N^{1212} \), this means finding the set of elements that fix 1, 2, 1, and 2 in \(N \) and permute the rest of the elements in the set \{1, 2, 3, 4\}.

Note: \(N^{(1212)} = \{n \in N|(t_1t_2t_1t_2)^n = t_1t_2t_1t_2 \} \geq \langle e \rangle \).

Since \(|N^{(1212)}| = 1 \) then the number of single cosets in [1212] is \(\frac{|N|}{|N^{(1212)}|} = \frac{4}{1} = 4 \).

Now, the orbits of \(N^{(1212)} \) on \{1, 2, 3, 4\} are \{1\}, \{2\}, \{3\}, and \{4\}. We choose a representative from each orbit, and determine the double cosets to which \(N_{t_1}t_2t_1t_2t_i \) belongs for each \(i \in \{1, 2, 3, 4\} \).
\[Nt_1t_2t_1t_2 \cdot t_1 = Nt_1t_2t_1t_2t_1 = Nt_1t_2t_1t_2 \in [1212]. \] This is double coset will collapse. Since there is one element in this orbit, there is one \(t_i \) that takes \([1212]\) to \([1212]\).

\[Nt_1t_2t_1t_2 \cdot t_2 \in [121]. \] This double coset will go back to \([121]\). Since there is one element in this orbit, there is one \(t_i \) that takes \([1212]\) to \([121]\).

\[Nt_1t_2t_1t_2 \cdot t_3 = Nt_1t_2t_1t_2t_3 \in [1213]. \] This double coset will go to \([1213]\). Since there is one element in this orbit, there is one \(t_i \) that takes \([1212]\) to \([1213]\).

\[Nt_1t_2t_1t_2 \cdot t_4 \in [12124]. \] This double coset, which extends our graph from \([1212]\) to \([12124]\). Since there is one element in this orbit, there is one \(t_i \) that takes \([1212]\) to \([12124]\).

\[(ii)\] We are at a new double coset \([1213]\), \(Nt_1t_2t_1t_3N = \{N(t_1t_2t_1t_3)^n | n \in N\} \). Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer \(N^{1213} \), this means finding the set of elements that fix 1, 2, 1, and 3 in \(N \) and permute the rest of the elements in the set \(\{1, 2, 3, 4\} \).

Note: \(N^{1213} = \{n \in N | (t_1t_2t_1t_3)^n = t_1t_2t_1t_3\} \geq \langle e \rangle \).

Since \(|N^{1213}| = 1 \) then the number of single cosets in \([1213]\) is \(\frac{|N|}{|N^{1213}|} = \frac{4}{1} = 4 \).

Now, the orbits of \(N^{1213} \) on \(\{1, 2, 3, 4\} \) are \(\{1\}, \{2\}, \{3\}, \{4\} \). We choose a representative from each orbit, and determine the double cosets to which \(Nt_1t_2t_1t_3t_i \) belongs for each \(i \in \{1, 2, 3, 4\} \).

- \(Nt_1t_2t_1t_2 \cdot t_1 \in [12131] \). This is a new double coset, which extends our graph from \([1213]\) to \([12131]\). Since there is one element in this orbit, there is one \(t_i \) that takes \([1213]\) to \([12131]\).

- \(Nt_1t_2t_1t_2 \cdot t_2 = Nt_1t_2t_1t_2t_2 = Nt_4t_3t_4t_3 \in [1212]. \) This double coset which will go to \([1212]\). Since there is one element in this orbit, there is one \(t_i \) that extend \([1213]\) to \([1212]\).

- \(Nt_1t_2t_1t_3 \cdot t_3 = Nt_1t_2t_1 \in [121]. \) This double coset will go back to \([121]\). Since there is one element in this orbit, there is one \(t_i \) that takes \([1213]\) to \([121]\).

- \(Nt_1t_2t_1t_3 \cdot t_4 \in [12134] \). This is a new double coset, which extends our graph from \([1213]\) to \([12134]\). Since there is one element in this orbit, there is one \(t_i \) that takes \([1213]\) to \([12134]\).
(iii) We are at a new double coset $[1242]$, $N_{t_1t_2t_4t_2} = \{N(t_1t_2t_4t_2)^n | n \in N\}$. Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer $N^{124} = e$, this means finding the set of elements that fix 1, 2, 4, and 2 in N. The coset stabilizers of the coset $N_{t_1t_2t_4t_2}$, $N^{(1242)}$. Now, using our relations;

$$\Rightarrow N(t_1t_2t_4t_2)^{(1,3)(2,4)} = N_{t_3t_4t_2t_4} = N_{t_1t_2t_4t_2} \Rightarrow (1, 3)(2, 4) \in N^{(1242)}$$

$$\Rightarrow N^{(1242)} \geq \langle (1, 3)(2, 4) \rangle.$$ Thus, $|N^{(1242)}| = 2$. Since $|N^{(1242)}| = 2$ then the number of single cosets in $[1242]$, $\frac{|N|}{|N^{(1242)}|} = \frac{4}{2} = 2$.

Now, the orbits of $N^{(1242)}$ on $\{1, 2, 3, 4\}$ are $\{1, 3\}$ and $\{2, 4\}$. We choose a representative from each orbit call, and determine the double cosets to which $N_{t_1t_2t_4t_2}t_i$ belongs for each $i \in \{2, 3\}$.

- $N_{t_1t_2t_4t_2} \cdot t_3 = N_{t_1t_2t_4t_2t_3} = N_{t_3t_4t_2t_3} \in [1243]$. This double coset will sent to $[1243]$. Since there are two elements in this orbit, then there will be two $t_i's$ that take $[1242]$ to $[1243]$.

- $N_{t_1t_2t_4t_2} \cdot t_2 \in [124]$. This double coset will go back to $[124]$. Since there are two elements in this orbit, then there will be two $t_i's$ that take $[1242]$ to $[124]$.

(iv) We are at a new double coset $[1243]$, $N_{t_1t_2t_4t_3} = \{N(t_1t_2t_4t_3)^n | n \in N\}$. Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer N^{1243}, this means finding the set of elements that fix 1, 2, 4, and 3 in N and permute the rest of the elements in the set $\{1, 2, 3, 4\}$.

Note: $N^{(1243)} = \{n \in N | (t_1t_2t_4t_3)^n = t_1t_2t_4t_3 \} \geq \langle e \rangle$.

Since $|N^{(1243)}| = 1$ then the number of single cosets in $[1243]$ is $\frac{|N|}{|N^{(1243)}|} = \frac{4}{1} = 4$.

Now, the orbits of $N^{(1243)}$ on $\{1, 2, 3, 4\}$ are $\{1\}$, $\{2\}$, $\{3\}$, and $\{4\}$. We choose a representative from each orbit, and determine the double cosets to which $N_{t_1t_2t_4t_3}t_i$ belongs for each $i \in \{1, 2, 3, 4\}$.

- $N_{t_1t_2t_3} \cdot t_1 \in [12431]$. This is a new double coset, which extends our graph from $[1243]$ to $[12431]$. Since there is one element in this orbit, there is one t_i that takes $[1243]$ to $[12431]$.

- $N_{t_1t_2t_4} \cdot t_2 = N_{t_1t_2t_4t_3} = N_{t_3t_4t_2t_3} \in [1242]$. This double coset will go to $[1242]$. Since there is one element in this orbit, there is one t_i that takes $[1243]$ to $[1242]$.

• \(Nt_1t_2t_3t_4 \cdot t_3 = Nt_1t_2t_4 \in [124] \). This double coset will go back to [124]. Since there is one element in this orbit, there is one \(t_i \) that takes [1243] to [124].

• \(Nt_1t_2t_3t_4 \cdot t_4 \in [12434] \). This is a new double coset, which extends our graph from [1243] to [12434]. Since there is one element in this orbit, there is one \(t_i \) that takes [1243] to [12434].

(v) We are at a new double coset [1312], \(Nt_1t_3t_1t_2N = \{N(t_1t_3t_1t_2)^n|n \in N\} \). Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer \(N^{1312} = e \), this means finding the set of elements that fix 1, 3, 1, and 2 in \(N \). The coset stabilizers of the coset \(Nt_1t_3t_1t_2, N^{(1312)} \). Now, using our relations;

\[N(t_1t_3t_1t_2)^{(1,4)(2,3)} = Nt_4t_2t_4t_3 = Nt_1t_3t_1t_2N \Rightarrow (1, 4)(2, 3) \in N^{(1312)} \]

\[N^{(1312)} \geq (1, 4)(2, 3) \]. Thus, \(|N^{(1312)}| = 2 \). Since \(|N^{(1312)}| = 2 \) then the number of single cosets in [1312] is \(\frac{|N|}{|N^{(1312)}|} = \frac{4}{2} = 2 \).

Now, the orbits of \(N^{(1312)} \) on \{1, 2, 3, 4\} are \{1, 4\}, and \{2, 3\}. We choose a representative from each orbit call, and determine the double cosets to which \(Nt_1t_3t_1t_2t_i \) belongs for each \(i \in \{1, 2\} \).

• \(Nt_1t_3t_1t_2 \cdot t_1 \in [13121] \). This is a new double coset, which extends our graph from [1312] to [13121]. Since there are two element in this orbit, there are two \(t_i \)s that take [1312] to [13121].

• \(Nt_1t_3t_1t_2 \cdot t_2 \in [131] \). This double coset will go back to [131]. Since there are two elements in this orbit, there are two \(t_i \)s that take [1312] to [131].

(vi) We are at a new double coset [1342], \(Nt_1t_3t_4t_2N = \{N(t_1t_3t_4t_2)^n|n \in N\} \). Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer \(N^{1342} \), this means finding the set of elements that fix 1, 3, 4, and 2 in \(N \) and permute the rest of the elements in the set \{1, 2, 3, 4\}.

Note: \(N^{(1342)} = \{n \in N|(t_1t_3t_4t_2)^n = t_1t_3t_4t_2\} \geq \langle e \rangle \).

Since \(|N^{(1342)}| = 1 \) then the number of single cosets in [1342] is \(\frac{|N|}{|N^{(1342)}|} = \frac{4}{1} = 4 \).

Now, the orbits of \(N^{(1342)} \) on \{1, 2, 3, 4\} are \{1\}, \{2\}, \{3\}, and \{4\}. We choose a representative from each orbit, and determine the double cosets to which \(Nt_1t_3t_4t_2t_i \) belongs for each \(i \in \{1, 2, 3, 4\} \).

• \(Nt_1t_3t_4t_2 \cdot t_1 \in [13421] \). This is a new double coset, which extends our graph from
[1342] to [13421]. Since there is one element in this orbit, there is one \(t_i \) that takes [1342] to [13421].

- \(Nt_1t_3t_4t_2 \cdot t_2 = Nt_1t_3t_4 \in [134] \). This double coset will go back to [134]. Since there is one element in this orbit, there is one \(t_i \) that takes [1342] to [134].

- \(Nt_1t_3t_4t_2 \cdot t_3 = Nt_1t_3t_4t_2t_3 = Nt_4t_2t_1 \in [1343] \). This double coset will go to [1343]. Since there is one element in this orbit, there is one \(t_i \) that takes [1342] to [1343].

- \(Nt_1t_3t_4t_2 \cdot t_4 = Nt_1t_3t_4t_2t_4 = Nt_3t_1t_4t_2t_4t_2 = Nt_2t_1t_2t_4t_2 \in [12131] \). This double coset will go to [12131]. Since there is one element in this orbit, there is one \(t_i \) that takes [1342] to [12131].

(vii) We are at a new double coset [1343], \(Nt_1t_3t_4t_3N = \{N(t_1t_3t_4t_3)^n|n \in N\} \). Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer \(N^{1343} \), this means finding the set of elements that fix 1, 3, 4, and 3 in \(N \) and permute the rest of the elements in the set \{1, 2, 3, 4\}.

Note: \(N^{(1343)} = \{n \in N|(t_1t_3t_4t_3)^n = t_1t_3t_4t_3\} \geq \langle e \rangle \).

Since \(|N^{(1343)}| = 1 \) then the number of single cosets in [1343] is \(\frac{|N|}{|N^{(1343)}|} = 4 \) = 4.

Now, the orbits of \(N^{(1343)} \) on \{1, 2, 3, 4\} are \{1\}, \{2\}, \{3\} , and \{4\}. We choose a representative from each orbit, and determine the double cosets to which \(Nt_1t_3t_4t_3t_i \) belongs for each \(i \in \{1, 2, 3, 4\} \).

- \(Nt_1t_3t_4t_3 \cdot t_1 \in [13431] \). This is a new double coset, which extends our graph from [1343] to [13431]. Since there is one element in this orbit, there is one \(t_i \) that takes [1343] to [13431].

- \(Nt_1t_3t_4t_3 \cdot t_2 = Nt_1t_3t_4t_2t_3 = Nt_4t_2t_1t_3 \in [1342] \). This double coset will go to [1342]. Since there is one element in this orbit, there is one \(t_i \) that takes [1343] to [1342].

- \(Nt_1t_3t_4t_3 \cdot t_3 \in [134] \). This double coset will go back to [134]. Since there is one element in this orbit, there is one \(t_i \)s that takes [1343] to [134].

- \(Nt_1t_3t_4t_3 \cdot t_4 \in [13434] \). This is a new double coset, which extends our graph from [1343] to [13434]. Since there is one element in this orbit, there is one \(t_i \)s that takes [1343] to [13434].
Word of Length five [12124], [12131], [12134], [12431], [12434], [13121], [13421], [13431], and [13434]:

(i) We are at a new double coset [12124], \(N_{t_1t_2t_1t_2t_4}N = \{N(t_1t_2t_1t_2t_4)^n|n \in N\}\). Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer \(N_{12124} = e\), this means finding the set of elements that fix 1, 3, 1, and 2 in \(N\).

The group stabilizer, \(N_{12124}\). Now, using our relations;
\[
\Rightarrow N(t_1t_2t_1t_2t_4)^{(1,4)(2,3)} = Nt_4t_3t_4t_3t_1 = Nt_1t_2t_1t_2t_4 = Nt_1t_2t_1t_2t_4 \\
\Rightarrow (1, 4)(2, 3) \in N_{12124}, \Rightarrow N_{12124} \geq \langle (1, 4)(2, 3) \rangle.
\]
Thus, \(|N_{12124}| = 2\).

Since \(|N_{12124}| = 2\) then the number of single cosets in [12124] is \(\frac{|N|}{|N_{12124}|} = \frac{4}{2} = 2\).

Now, the orbits of \(N_{12124}\) on \(\{1, 2, 3, 4\}\) are \(\{1, 4\}\), and \(\{2, 3\}\). We choose a representative from each orbit call, and determine the double cosets to which \(N_{t_1t_2t_1t_2t_4t_1}N\) belongs for each \(i \in \{2, 4\}\).

- \(N_{t_1t_2t_1t_2t_4} \cdot t_4 \in [1212].\) This double coset will go to [1212]. Since there are two elements in this orbit, there are two \(t_i\)s that take [12124] to [1212].

- \(N_{t_1t_2t_1t_2t_4} \cdot t_2 = Nt_4t_3t_4t_3t_2 = Nt_1t_2t_1t_2t_4 \in [124313].\) This double coset will go to [124313]. Since there are two elements in this orbit, there are two \(t_i\)s that take [12124] to [124313].

(ii) We are at a new double coset [12131], \(N_{t_1t_2t_1t_3t_1}N = \{N(t_1t_2t_1t_3t_1)^n|n \in N\}\). Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer \(N_{12131}\), this means finding the set of elements that fix 1, 2, 1, 3, and 1 in \(N\) and permute the rest of the elements in the set \(\{1, 2, 3, 4\}\). Note: \(N_{12131} = \{n \in N| (t_1t_2t_1t_3t_1)^n = t_1t_2t_1t_3t_1\} \geq \langle e \rangle\).

Since \(|N_{12131}| = 1\) then the number of single cosets in [12131] is \(\frac{|N|}{|N_{12131}|} = \frac{4}{1} = 4\).

Now, the orbits of \(N_{12131}\) on \(\{1, 2, 3, 4\}\) are \(\{1\}\), \(\{2\}\), \(\{3\}\), and \(\{4\}\). We choose a representative from each orbit, and determine the double cosets to which \(N_{t_1t_2t_1t_3t_1t_1}N\) belongs for each \(i \in \{1, 2, 3, 4\}\).

- \(N_{t_1t_2t_1t_3t_1} \cdot t_1 \in [1213].\) This double coset will go back to [1213]. Since there is one element in this orbit, there is one \(t_i\) that takes [12131] to [1213].

- \(N_{t_1t_2t_1t_3t_1} \cdot t_2 = Nt_4t_3t_4t_3t_2 = Nt_1t_2t_1t_2t_4 \in [13421].\) This double coset will go to [13421]. Since there is one element in this orbit, there is one \(t_i\) that takes [12131] to [13421].
• $N t_1 t_2 t_1 t_3 t_1 \cdot t_3 = N t_1 t_2 t_1 t_3 t_1 = N t_3 \in [1342]$. This double coset will go back to $[1342]$. Since there is one element in this orbit, there is one t_i that takes $[12131]$ to $[1342]$.

• $N t_1 t_2 t_3 t_1 \cdot t_4 = N t_1 t_2 t_1 t_3 t_4 = N t_4 t_2 t_3 t_1 \in [12134]$. This double coset will go to $[12134]$. Since there is one element in this orbit, there is one t_i that takes $[12131]$ to $[12134]$.

(iii) We are at a new double coset $[12134]$, $N t_1 t_2 t_1 t_3 t_4 N = \{N(t_1 t_2 t_1 t_3 t_4)^n|n \in N\}$. Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer $N_{[12134]} = e$, this means finding the set of elements that fix 1, 2, 3, and 4 in N. The coset stabilizers of the coset $N t_1 t_2 t_1 t_3 t_1$, $N_{[12134]}$. Note: $N_{[12134]} = \{n \in N(t_1 t_2 t_1 t_3 t_4)^n = t_1 t_2 t_1 t_3 t_1 \}$.

Since $|N_{[12134]}| = 1$ then the number of single cosets in $[12134]$ is $\frac{|N|}{|N_{[12134]}|} = 4 \cdot 1 = 4$.

Now, the orbits of $N_{[12134]}$ on $\{1, 2, 3, 4\}$ are $\{1\}$, $\{2\}$, $\{3\}$, and $\{4\}$. We choose a representative from each orbit, and determine the double cosets to which $N t_1 t_2 t_1 t_3 t_4 t_i$ belongs for each $i \in \{1, 2, 3, 4\}$.

• $N t_1 t_2 t_1 t_3 t_4 \cdot t_1 = N t_1 t_2 t_1 t_3 t_4 t_1 = N t_4 t_2 t_3 t_1 \in [12131]$. This double coset will go to $[12131]$. Since there is one element in this orbit, there is one t_i that takes $[12134]$ to $[12131]$.

• $N t_1 t_2 t_1 t_3 t_4 \cdot t_2 \in [121342]$. This is a new double coset, which extends our graph from $[12134]$ to $[121342]$. Since there is one element in this orbit, there is one t_i that takes $[12134]$ to $[121342]$.

• $N t_1 t_2 t_1 t_3 t_4 \cdot t_3 \in [121343]$. This is a new double coset, which extends our graph from $[12134]$ to $[121343]$. Since there is one element in this orbit, there is one t_i that takes $[12134]$ to $[121343]$.

• $N t_1 t_2 t_1 t_3 t_4 \cdot t_4 \in [1213]$. This double coset will go back to $[1213]$. Since there is one element in this orbit, there is one t_i that takes $[12134]$ to $[1213]$.

(iv) We are at a new double coset $[12431]$, $N t_1 t_2 t_4 t_3 t_1 N = \{N(t_1 t_2 t_4 t_3 t_1)^n|n \in N\}$. Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer $N_{[12431]}$, this means finding the set of elements that fix 1, 2, 4, 3, and
1 in N and permute the rest of the elements in the set $\{1, 2, 3, 4\}$. **Note:** $N^{(12431)} = \{n \in N|(t_1t_2t_4t_3t_1)^n = t_1t_2t_4t_3t_1\} \geq \langle e \rangle$.

Since $|N^{(12431)}| = 1$ then the number of single cosets in $[12431]$ is $\frac{|N|}{|N^{(12431)}|} = \frac{4}{1} = 4$.

Now, the orbits of $N^{(12431)}$ on $\{1, 2, 3, 4\}$ are $\{1\}$, $\{2\}$, $\{3\}$, and $\{4\}$. We choose a representative from each orbit, and determine the double cosets to which $Nt_1t_2t_4t_3t_1t_i$ belongs for each $i \in \{1, 2, 3, 4\}$.

- $Nt_1t_2t_4t_3t_1 \cdot t_1 \in [1243]$. This double coset will go back to $[1243]$. Since there is one element in this orbit, there is one t_i that takes $[12431]$ to $[1243]$.

- $Nt_1t_2t_4t_3t_1 \cdot t_2 \in [124312]$. This is a new double coset, which extends our graph from $[12431]$ to $[124312]$. Since there is one element in this orbit, there is one t_i that takes $[12431]$ to $[124312]$.

- $Nt_1t_2t_4t_3t_1 \cdot t_3 \in [124313]$. This is a new double coset, which extends our graph from $[12431]$ to $[124313]$. Since there is one element in this orbit, there is one t_i that takes $[12431]$ to $[124313]$.

- $Nt_1t_2t_4t_3t_1 \cdot t_4 = Nt_1t_2t_4t_3 t_1 t_4 = Nt_4t_3t_1t_2t_1 \in [12434]$. This double coset will go to $[12434]$. Since there is one element in this orbit, there is one t_i that takes $[12431]$ to $[12434]$.

(v) We are at a new double coset $[12434]$, $Nt_1t_2t_4t_3t_4N = \{N(t_1t_2t_4t_3)^n|n \in N\}$.

Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer $N^{(12434)}$, this means finding the set of elements that fix 1, 2, 4, 3, and 4 in N and permute the rest of the elements in the set $\{1, 2, 3, 4\}$. **Note:** $N^{(12434)} = \{n \in N|(t_1t_2t_4t_3)^n = t_1t_2t_4t_3\} \geq \langle e \rangle$.

Since $|N^{(12434)}| = 1$ then the number of single cosets in $[12434]$ is $\frac{|N|}{|N^{(12434)}|} = \frac{4}{1} = 4$.

Now, the orbits of $N^{(12434)}$ on $\{1, 2, 3, 4\}$ are $\{1\}$, $\{2\}$, $\{3\}$, and $\{4\}$. We choose a representative from each orbit, and determine the double cosets to which $Nt_1t_2t_4t_3t_4t_i$ belongs for each $i \in \{1, 2, 3, 4\}$.

- $Nt_1t_2t_4t_3t_4 \cdot t_1 = Nt_1t_2t_4t_3 t_1 t_4 = Nt_4t_3t_1t_2t_4 \in [12431]$. This double coset will go to $[12431]$. Since there is one element in this orbit, there is one t_i that takes $[12434]$ to $[12431]$.

\(N_{t_1 t_2 t_3 t_4} \cdot t_2 \in [124342] \). This is a new double coset, which extends our graph from [12434] to [124342]. Since there is one element in this orbit, there is one \(t_i \) that takes [12434] to [124342].

\(N_{t_1 t_2 t_4 t_3} \cdot t_3 \in [124343] \). This is a new double coset, which extends our graph from [12434] to [124343]. Since there is one element in this orbit, there is one \(t_i \) that takes [12434] to [124343].

\(N_{t_1 t_2 t_4 t_3} \cdot t_4 \in [1243]. \) This double coset will go back to [1243]. Since there is one element in this orbit, there is one \(t_i \) that takes [12434] to [1243].

(vi) We are at a new double coset \([13121]\), \(N_{t_1 t_3 t_1 t_2 t_1} N = \{ N(t_1 t_3 t_1 t_2 t_1)^n | n \in N \} \). Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer \(N_{[13121]} \), this means finding the set of elements that fix 1, 3, 1, 2, and 1 in \(N \) and permute the rest of the elements in the set \(\{1, 2, 3, 4\} \). \textbf{Note:} \(N_{[13121]} = \{ n \in N | (t_1 t_3 t_1 t_2 t_1)^n = t_1 t_3 t_1 t_2 t_1 \} \geq \langle e \rangle \).

Since \(|N_{[13121]}| = 1 \) then the number of single cosets in \([13121]\) is \(\frac{|N|}{|N_{[13121]}|} = \frac{4}{1} = 4 \).

Now, the orbits of \(N_{[13121]} \) on \(\{1, 2, 3, 4\} \) are \(\{1\} \), \(\{2\} \), \(\{3\} \), and \(\{4\} \). We choose a representative from each orbit, and determine the double cosets to which \(N_{t_1 t_3 t_1 t_2 t_1} \) belongs for each \(i \in \{1, 2, 3, 4\} \).

\(N_{t_1 t_3 t_1 t_2 t_1} \cdot t_1 \in [1312]. \) This double coset will go back to [1312]. Since there is one element in this orbit, there is one \(t_i \) that takes [13121] to [1312].

\(N_{t_1 t_3 t_1 t_2 t_1} \cdot t_2 = N_{t_1 t_3 t_1 t_2 t_1} t_2 = N_{t_4 t_3 t_1 t_2 t_1} t_2 = N_{t_3 t_4 t_1 t_2 t_1} t_2 \in [124343]. \) This double coset will go to [124343]. Since there is one element in this orbit, there is one \(t_i \) that takes [13121] to [124343].

\(N_{t_1 t_3 t_1 t_2 t_1} \cdot t_3 = N_{t_1 t_3 t_1 t_2 t_1} t_3 = N_{t_4 t_3 t_1 t_2 t_3} t_3 = N_{t_1 t_3 t_4 t_1 t_3} t_3 = N_{t_3 t_4 t_1 t_3} t_3 = N_{t_4 t_1 t_3} t_3 \in [13431]. \) This double coset will go to [13431]. Since there is one element in this orbit, there is one \(t_i \) that takes [13121] to [13431].

\(N_{t_1 t_3 t_1 t_2 t_1} \cdot t_4 = N_{t_1 t_3 t_1 t_2 t_1} t_4 = N_{t_4 t_3 t_4 t_1 t_3} t_4 = N_{t_1 t_3 t_4 t_1 t_3} t_4 = N_{t_3 t_4 t_1 t_3} t_4 = N_{t_4 t_1 t_3} t_4 \in [13121]. \) This double coset will collapse. Since there is one element in this orbit, there is one \(t_i \) that takes [13121] to itself.
(vii) We are at a new double coset $[13421]$. $N_{t_1}t_3t_4t_2t_1N = \{N(t_1t_3t_4t_2t_1)^n|n \in N\}$. Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer N^{13421}, this means finding the set of elements that fix 1, 3, 4, 2, and 1 in N and permute the rest of the elements in the set $\{1, 2, 3, 4\}$. **Note:** $N^{13421} = \{n \in N|(t_1t_3t_4t_2t_1)^n = t_1t_3t_4t_2t_1\} \geq \langle e \rangle$.

Since $|N^{13421}| = 1$ then the number of single cosets in $[13421]$ is $\frac{|N|}{|N^{13421}|} = \frac{4}{1} = 4$.

Now, the orbits of N^{13421} on $\{1, 2, 3, 4\}$ are $\{1\}$, $\{2\}$, $\{3\}$, and $\{4\}$. We choose a representative from each orbit, and determine the double cosets to which $N_{t_1}t_3t_4t_2t_1t_i$ belongs for each $i \in \{1, 2, 3, 4\}$.

- $N_{t_1}t_3t_4t_2t_1 \cdot t_1 \in [1342]$. This double coset will go back to $[1342]$. Since there is one element in this orbit, there is one t_i that takes $[13421]$ to $[1342]$.

- $N_{t_1}t_3t_4t_2t_1 \cdot t_2 \in [134212]$. This is a new double coset, which extends our graph from $[13421]$ to $[134212]$. Since there is one element in this orbit, there is one t_i that takes $[13421]$ to $[134212]$.

- $N_{t_1}t_3t_4t_2t_1 \cdot t_3 \in [134213]$. This is a new double coset, which extends our graph from $[13421]$ to $[134213]$. Since there is one element in this orbit, there is one t_i that takes $[13421]$ to $[134213]$.

- $N_{t_1}t_3t_4t_2t_1 \cdot t_4 = N_{t_1}t_3t_4t_2t_4t_1t_3t_1 = N_{t_1}t_3t_4t_2t_3t_1t_3t_1 = N_{t_1}t_3t_4t_3t_1t_3 \in [12131]$. This double coset will go to $[12131]$. Since there is one element in this orbit, there is one t_i that takes $[13421]$ to $[12131]$.

(viii) We are at a new double coset $[13431]$. $N_{t_1}t_3t_4t_3t_1N = \{N(t_1t_3t_4t_3t_1)^n|n \in N\}$. Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer N^{13431}, this means finding the set of elements that fix 1, 3, 4, 3, and 1 in N and permute the rest of the elements in the set $\{1, 2, 3, 4\}$. **Note:** $N^{13431} = \{n \in N|(t_1t_3t_4t_3t_1)^n = t_1t_3t_4t_3t_1\} \geq \langle e \rangle$.

Since $|N^{13431}| = 1$ then the number of single cosets in $[13431]$ is $\frac{|N|}{|N^{13431}|} = \frac{4}{1} = 4$.

Now, the orbits of N^{13431} on $\{1, 2, 3, 4\}$ are $\{1\}$, $\{2\}$, $\{3\}$, and $\{4\}$. We choose a representative from each orbit, and determine the double cosets to which $N_{t_1}t_3t_4t_3t_1t_i$ belongs for each $i \in \{1, 2, 3, 4\}$.

- $N_{t_1}t_3t_4t_3t_1 \cdot t_1 \in [1343]$. This double coset will go back to $[1343]$. Since there is one element in this orbit, there is one t_i that takes $[13431]$ to $[1343]$.

• $N_{t_1}t_3t_4t_3t_1 \cdot t_2 \in [134312]$. This is a new double coset, which extends our graph from [13431] to [134312]. Since there is one element in this orbit, there is one t_i that takes [13431] to [134312].

• $N_{t_1}t_3t_4t_3t_1 \cdot t_3 = N_{t_1}t_3t_4t_3t_1 \cdot t_3 = N_{t_4}t_2t_4t_1t_3t_1t_3 = N_{t_4}t_2t_4t_2t_1t_3t_1t_3$

 $= N_{t_2}t_4t_3t_4t_1 \cdot t_3t_1 = N_{t_4}t_1t_3t_4t_3t_1 \in [13121]$. This double coset will go to [13121]. Since there is one element in this orbit, there is one t_i that takes [13431] to [13121].

• $N_{t_1}t_3t_4t_3t_1 \cdot t_4 = N_{t_1}t_3t_4t_3t_4t_4 = N_{t_4}t_2t_1t_2t_1 \in [13434]$. This double coset will go to [13434]. Since there is one element in this orbit, there is one t_i that takes [13431] to [13434].

(viii) We are at a new double coset [13434], $N_{t_1}t_3t_4t_3t_4N = \{N(t_1t_3t_4t_3t_4)^n|n \in N\}$. Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer $N^{13434} = e$, this means finding the set of the elements that fix 1, 3, 4, 3, and 4 in N. The coset stabilizers of the coset $N_{t_1}t_3t_4t_3t_4$, $N^{(13434)}$. Now, using our relations;

$\Rightarrow N(t_1t_3t_4t_3t_4)^{(1,2)(3,4)} = N_{t_2}t_3t_4t_3t_4$

$= N_{t_2}t_3t_4t_3t_4 \Rightarrow (1,2)(3,4) \in N^{(13434)}$,

$\Rightarrow N^{(13434)} \geq \langle (1,2)(3,4) \rangle$. Thus, $|N^{(13434)}| = 2$. Since $|N^{(13434)}| = 2$ then the number of single cosets in [13434] is $\frac{|N|}{|N^{(13434)}|} = \frac{4}{2} = 2$.

Now, the orbits of $N^{(13434)}$ on $\{1, 2, 3, 4\}$ are $\{1, 2\}$, and $\{3, 4\}$. We choose a representative from each orbit call, $\{1\}$, and determine the double cosets to which $N_{t_1}t_3t_4t_3t_4t_i$ belongs for each $i \in \{1, 4\}$.

• $N_{t_1}t_3t_4t_3t_4 \cdot t_1 = N_{t_1}t_3t_4t_3t_4t_1 = N_{t_4}t_2t_1t_2t_4 \in [13431]$. This double coset will sent to [13431]. Since there are two elements in this orbits, there are two t_is that take [13434] to [13431].

• $N_{t_1}t_3t_4t_3t_4 \cdot t_4 \in [1343]$. This double coset will back to [1343]. Since there are two elements in this orbit, there are two t_is that take [13434] to [1343].

Word of Length Six [121342], [121343], [124312], [124313],[124342],[124343] , [134212], [134213], and [134312]:

(i) We are at a new double coset [121342], $N_{t_1}t_2t_1t_3t_4t_2N = \{N(t_1t_2t_1t_3t_4t_2)^n|n \in N\}$. Now, to determine all the single cosets of this double cosets, we need to determine the
point stabilizer $N^{121342} = e$, this means finding the set of elements that fix 1, 2, 1, 3, 4, and 2 in N. The group stabilizer, $N^{(121342)}$. Now, using our relations:

\[
N(t_1t_2t_1t_3t_4t_2)^{(1,3)(2,4)} = Nt_3t_4t_3t_1t_2t_4 = Nt_1t_2t_1t_3t_4t_2 \Rightarrow (1,3)(2,4) \in N^{(121342)}.
\]

$N^{(121342)} \geq ((1,3)(2,4))$. Thus, $|N^{(121342)}| = 2$. Since $|N^{(121342)}| = 2$ then the number of single cosets in $[12124]$ is $\frac{|N|}{|N^{(121342)}|} = \frac{4}{2} = 2$.

Now, the orbits of $N^{(121342)}$ on \{1, 2, 3, 4\} are \{1, 3\}, and \{2, 4\}. We choose a representative from each orbit, and determine the double cosets to which $Nt_1t_2t_1t_3t_4t_2t_i$ belongs for each $i \in \{2, 3\}$.

- $Nt_1t_2t_1t_3t_4t_2 \cdot t_2 \in [12134]$. This double coset will go to $[12134]$. Since there are two elements in this orbit, there are two t_is that take $[121342]$ to $[12134]$.

- $Nt_1t_2t_1t_3t_4t_2 \cdot t_3 = Nt_1t_2t_1t_3t_4t_2t_3 = Nt_3t_4t_3t_1t_2t_3 = Nt_1t_2t_4t_1t_2t_1t_2t_3 = Nt_3t_4t_3t_1t_2t_3t_1 = Nt_3t_4t_3t_2t_1t_2 \in [121343]$. This double coset will go to $[121343]$. Since there are two elements in this orbit, there are two t_is that take $[121342]$ to $[121343]$.

(ii) We are at a new double coset $[121343]$, $Nt_1t_2t_1t_3t_4t_3N = \{N(t_1t_2t_1t_3t_4t_3)^n | n \in N\}$. Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer N^{121343}, this means finding the set of elements that fix 1, 2, 1, 3, 4, and 3 in N and permute the rest of the elements in the set \{1, 2, 3, 4\}. Note: $N^{(121343)} = \{n \in N | (t_1t_2t_1t_3t_4t_3)^n = t_1t_2t_1t_3t_4t_3 \} \geq \langle e \rangle$.

Since $|N^{(121343)}| = 1$ then the number of single cosets in $[121343]$ is $\frac{|N|}{|N^{(121343)}|} = \frac{4}{1} = 4$.

Now, the orbits of $N^{(121343)}$ on \{1, 2, 3, 4\} are \{1\}, \{2\}, \{3\}, and \{4\}. We choose a representative from each orbit, and determine the double cosets to which $Nt_1t_2t_1t_3t_4t_3t_i$ belongs for each $i \in \{1, 2, 3, 4\}$.

- $Nt_1t_2t_1t_3t_4t_3 \cdot t_1 \in [1243124]$. This will go to $[1243124]$. Since there is one element in this orbit, there is one t_i that takes $[121343]$ to $[1243124]$.

- $Nt_1t_2t_1t_3t_4t_3 \cdot t_2 = Nt_1t_2t_1t_3t_4t_3t_2 = Nt_4t_3t_4t_2t_1t_3 \in [121342]$. This double coset will go to $[121342]$. Since there is one element in this orbit, there is one t_i that takes $[121343]$ to $[121342]$.

- $Nt_1t_2t_1t_3t_4t_3 \cdot t_3 = Nt_1t_2t_1t_3t_4t_3t_3 \in [12134]$. This double coset will go back to $[12134]$. Since there is one element in this orbit, there is one t_i that takes $[121343]$ to $[12134]$.
• $N_{t_1}t_2t_3t_4t_5 \cdot t_4 \in [124312]$. This double coset will go to [124312]. Since there is one element in this orbit, there is one t_i that takes [121343] to [124312].

(iii) We are at a new double coset [124312], $N_{t_1}t_2t_3t_4t_5t_1t_2N = \{N(t_1t_2t_3t_4t_5t_2)n | n \in N\}$. Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer $N^{124312} = e$, this means finding the set of elements that fix 1, 2, 4, 3, 1, and 2 in N. Note: $N^{(124312)} = \{n \in N|(t_1t_2t_3t_4t_5t_2)n = t_1t_2t_3t_4t_5t_2\} \geq \langle e \rangle$.

Since $|N^{(124312)}| = 1$ then the number of single cosets in [124312] is $\frac{|N|}{|N^{(124312)}|} = \frac{4}{1} = 4$.

Now, the orbits of $N^{(124312)}$ on $\{1, 2, 3, 4\}$ are $\{1\}$, $\{2\}$, $\{3\}$, and $\{4\}$. We choose a representative from each orbit, and determine the double cosets to which $N_{t_1}t_2t_3t_4t_5t_1t_2t_i$ belongs for each $i \in \{1, 2, 3, 4\}$.

• $N_{t_1}t_2t_3t_4t_5t_1t_2 \cdot t_1 = N_{t_1}t_2t_3t_4t_5t_1t_2t_1 = N_{t_1}t_2t_3t_4t_5t_1t_2t_1 = N_{t_1}t_2t_3t_4t_5t_1t_2t_1$
 $\in [121343]$. This double coset will go back to [121343]. Since there is one element in this orbit, there is one t_i that takes [124312] to [121343].

• $N_{t_1}t_2t_3t_4t_5t_1t_2 \cdot t_2 \in [12431]$. This double coset will go back to [12431]. Since there is one element in this orbit, there is one t_i that takes [124312] to [12431].

• $N_{t_1}t_2t_3t_4t_5t_1t_2 \cdot t_3 = N_{t_1}t_2t_3t_4t_5t_1t_2t_3 = N_{t_1}t_2t_3t_4t_5t_1t_2t_3 \in [124313]$. This double coset will go back to [124313]. Since there is one element in this orbit, there is one t_i that takes [124312] to [124313].

• $N_{t_1}t_2t_3t_4t_5t_1t_2 \cdot t_4 \in [1243124]$. This is a new double coset, which extends our graph from [124312] to [1243124]. Since there is one element in this orbit, there is one t_i that takes [124312] to [1243124].

(iv) We are at a new double coset [124313], $N_{t_1}t_2t_3t_4t_5t_1t_3N = \{N(t_1t_2t_3t_4t_5t_3)n | n \in N\}$. Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer N^{124313}, this means finding the set of elements that fix 1, 2, 4, 3, 1, and 3 in N and permute the rest of the elements in the set $\{1, 2, 3, 4\}$. Note: $N^{(124313)} = \{n \in N|(t_1t_2t_3t_4t_5t_3)n = t_1t_2t_3t_4t_5t_3\} \geq \langle e \rangle$.

Since $|N^{(124313)}| = 1$ then the number of single cosets in [124313] is $\frac{|N|}{|N^{(124313)}|} = \frac{4}{1} = 4$.

Now, the orbits of $N^{(124313)}$ on $\{1, 2, 3, 4\}$ are $\{1\}$, $\{2\}$, $\{3\}$, and $\{4\}$. We choose a
representative from each orbit, and determine the double cosets to which \(N_{t_1t_2t_4t_3t_1t_3t_i}\) belongs for each \(i \in \{1, 2, 3, 4\}\).

- \(N_{t_1t_2t_4t_3t_1t_3} \cdot t_1 = N_{t_1t_2t_4t_3t_1t_3t_1} = N_{t_4t_3t_4t_1t_3t_1} = N_{t_3t_4t_3t_1t_3t_1} = N_{t_2t_1t_3} = N_{t_3t_4t_3t_2} = N_{t_3t_4t_3t_2} \in [12124]\). This double coset will go to [12124]. Since there is one element in this orbit, there is one \(t_i\) that takes [124313] to [12124].

- \(N_{t_1t_2t_4t_3t_1t_3} \cdot t_2 = N_{t_1t_2t_4t_3t_1t_3t_2} = N_{t_4t_3t_4t_1t_3t_2} = N_{t_3t_4t_3t_2} \in [124312]\). This double coset will go to [124312]. Since there is one element in this orbit, there is one \(t_i\) that takes [124313] to [124312].

- \(N_{t_1t_2t_4t_3t_1t_3} \cdot t_3 \in [12431]\). This double coset will go back to [12431]. Since there is one element in this orbit, there is one \(t_i\) that takes [124313] to [12431].

- \(N_{t_1t_2t_4t_3t_1t_3} \cdot t_4 = N_{t_1t_2t_4t_3t_1t_3t_4} = N_{t_4t_3t_4t_1t_4t_1} = N_{t_3t_4t_3t_4t_3t_1} = N_{t_3t_4t_3t_3t_3t_1} = N_{t_3t_4t_3t_3t_3t_1} = N_{t_1t_2t_4t_3t_1t_3} \in [124313]\). This double coset will collapse. Since there is one element in this orbit, there is one \(t_i\) that takes [124313] to itself.

(v) We are at a new double coset \([124342]\), \(N_{t_1t_2t_4t_3t_4} = \{N(t_1t_2t_4t_3t_4)^n | n \in N\}\). Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer \(N^{124342}\), this means finding the set of elements that fix 1, 2, 4, 3, and 2 in \(N\) and permute the rest of the elements in the set \(\{1, 2, 3, 4\}\). Note: \(N^{(124342)} = \{n \in N | (t_1t_2t_4t_3t_4)^n = t_1t_2t_4t_3t_4\} = \langle e \rangle\).

Since \(|N^{(124342)}| = 1\) then the number of single cosets in \([124342]\) is \(\frac{|N|}{|N^{(124342)}|} = \frac{4}{1} = 4\). Now, the orbits of \(N^{(124342)}\) on \(\{1, 2, 3, 4\}\) are \(\{1\}\), \(\{2\}\), \(\{3\}\), and \(\{4\}\). We choose a representative from each orbit, and determine the double cosets to which \(N_{t_1t_2t_4t_3t_4t_2}\) belongs for each \(i \in \{1, 2, 3, 4\}\).

- \(N_{t_1t_2t_4t_3t_4} \cdot t_1 \in [1243421]\). This is a new double coset, which extends our graph from [124342] to [1243421]. Since there is one element in this orbit, there is one \(t_i\) that takes [124342] to [1243421].

- \(N_{t_1t_2t_4t_3t_4} \cdot t_2 \in [12434]. This double coset will go back to [12434]. Since there is one element in this orbit, there is one \(t_i\) that takes [124342] to [12434].
• \(N_{t_1}t_2t_3t_4t_3t_2 \cdot t_4 = N_{t_1}t_2t_4t_3t_4t_3t_2 = N_{t_1}t_3t_1t_2t_1t_2 \in [124343] \). This double coset will go to [124343]. Since there is one element in this orbit, there is one \(t_i \) that takes [124342] to [124343].

• \(N_{t_1}t_2t_4t_3t_4t_2 \cdot t_4 \in [124343] \). This double coset will go back to [124343]. Since there is one element in this orbit, there is one \(t_i \) that takes [124342] to [124343].

(vi) We are at a new double coset [124343], \(N_{t_1}t_2t_4t_3t_4t_3N = \{ N(t_1t_2t_4t_3t_4)\}n|n \in N \} \). Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer \(N_{124343} \). This means finding the set of elements that fix 1, 2, 4, 3, 4, and 3 in \(N \) and permute the rest of the elements in the set \(\{1, 2, 3, 4\} \). Note: \(N_{124343} = \{ n \in N|(t_1t_2t_4t_3t_4)n = t_1t_2t_4t_3t_4 \geq (e) \}. \)

Since \(|N_{124343}| = 1 \) then the number of single cosets in [124343] is \(\frac{|N|}{|N_{124343}|} = \frac{4}{1} = 4 \). Now, the orbits of \(N_{124343} \) on \(\{1, 2, 3, 4\} \) are \{1\}, \{2\}, \{3\}, and \{4\}. We choose a representative from each orbit, and determine the double cosets to which \(N_{t_1}t_2t_4t_3t_4t_3t_4t_i \) belongs for each \(i \in \{1, 2, 3, 4\} \).

• \(N_{t_1}t_2t_4t_3t_4t_3 \cdot t_1 \in [1243431] \). This is a new double coset, which extends our graph from [124343] to [1243431]. Since there is one element in this orbit, there is one \(t_i \) that takes [124343] to [1243431].

• \(N_{t_1}t_2t_4t_3t_4t_3 \cdot t_2 = N_{t_1}t_2t_4t_3t_4t_3t_2 = N_{t_1}t_3t_1t_2t_1t_3 \in [124342] \). This double coset will go to [124342]. Since there is one element in this orbit, there is one \(t_i \) that takes [124343] to [124342].

• \(N_{t_1}t_2t_4t_3t_4t_3 \cdot t_3 \in [12434] \). This double coset will go back to [12434]. Since there is one element in this orbit, there is one \(t_i \) that takes [124343] to [12434].

• \(N_{t_1}t_2t_4t_3t_4t_3 \cdot t_4 = N_{t_1}t_2t_4t_3t_4t_3t_4 \cdot t_4 = N_{t_3t_1t_3t_4t_3} = N_{t_2t_4t_3t_1t_3} = N_{t_2t_4t_2t_1t_3} \in [13121] \). This double coset will go back to [13121]. Since there is one element in this orbit, there is one \(t_i \) that takes [124343] to [13121].

(vii) We are at a new double coset [134312], \(N_{t_1}t_2t_4t_3t_2 \cdot t_2N = \{ N(t_1t_3t_2t_1t_2)\}n|n \in N \} \). Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer \(N_{134212} \), this means finding the set of elements that fix 1, 3, 4, 2, 1, and 2 in \(N \) and permute the rest of the elements in the set \(\{1, 2, 3, 4\} \).
\[N(t_1 t_3 t_4 t_2 t_1 t_2)^{(1,2)(3,4)} = N t_2 t_4 t_3 t_1 t_2 t_1 = t_1 t_3 t_4 t_2 t_1 t_2 \Rightarrow (1, 2)(3, 4) \in N^{(134212)}, \]
\[N^{(134212)} \geq \langle (1, 2)(3, 4) \rangle. \] Thus, \[|N^{(134212)}| = 2. \] Since \[|N^{(134212)}| = 2 \] then the number of single cosets in \([12124]\) is \[\frac{|N|}{|N^{(134212)}|} = \frac{4}{2} = 2. \]
Now, the orbits of \(N^{(134212)}\) on \(\{1, 2, 3, 4\}\) are \(\{1, 2\}\), and \(\{3, 4\}\). We choose a representative from each orbit, and determine the double cosets to which \(N t_1 t_3 t_4 t_2 t_1 t_2 t_i\) belongs for each \(i \in \{2, 3\}\).

- \(N t_1 t_3 t_4 t_2 t_1 t_2 \cdot t_2 \in [13421].\) This double coset will go back to \([13421]\). Since there are two elements in this orbit, there is two \(t_i\)s that take \([13421]\) to \([13421]\).

- \(N t_1 t_3 t_4 t_2 t_1 t_2 \cdot t_3 = N t_1 t_3 t_4 t_2 t_1 t_3 = N t_2 t_4 t_3 t_2 t_1 t_2 \in [134213].\) This double coset goes to \([134213]\). Since there are two elements in this orbit, there is two \(t_i\)s that take \([134212]\) to \([134213]\).

(viii) We are at a new double coset \([134213]\), \(N t_1 t_3 t_4 t_2 t_1 t_3 N = \{N(t_1 t_3 t_4 t_2 t_1 t_3)^n | n \in N\}\). Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer \(N^{(134213)}\), this means finding the set of elements that fix 1, 3, 4, 2, 1, and 3 in \(N\) and permute the rest of the elements in the set \(\{1, 2, 3, 4\}\). **Note:** \(N^{(134213)} = \{n \in N | (t_1 t_3 t_4 t_2 t_1 t_3)^n = t_1 t_3 t_4 t_2 t_1 t_3 \} \geq \langle c \rangle.\)
Since \[|N^{(134213)}| = 1 \] then the number of single cosets in \([134213]\) is \[\frac{|N|}{|N^{(134213)}|} = \frac{4}{1} = 4. \]
Now, the orbits of \(N^{(134213)}\) on \(\{1, 2, 3, 4\}\) are \(\{1\}\), \(\{2\}\), \(\{3\}\), and \(\{4\}\). We choose a representative from each orbit, and determine the double cosets to which \(N t_1 t_3 t_4 t_2 t_1 t_2 t_i\) belongs for each \(i \in \{1, 2, 3, 4\}\).

- \(N t_1 t_3 t_4 t_2 t_1 t_3 \cdot t_1 = N t_1 t_3 t_4 t_2 t_1 t_3 t_1 = N t_4 t_2 t_1 t_3 t_1 t_3 = N t_2 t_4 t_3 t_2 t_1 t_3 \in [134312].\) This double coset will go to \([134312]\). Since there is one element in this orbit, there is one \(t_i\) that takes \([134213]\) to \([134312]\).

- \(N t_1 t_3 t_4 t_2 t_1 t_3 \cdot t_2 = N t_1 t_3 t_4 t_2 t_1 t_3 t_2 = N t_4 t_2 t_1 t_3 t_2 t_3 \in [134212].\) This double coset will go to \([134212]\). Since there is one element in this orbit, there is one \(t_i\) that takes \([134213]\) to \([134212]\).

- \(N t_1 t_3 t_4 t_2 t_1 t_3 \cdot t_3 \in [13421].\) This double coset will go back to \([13421]\). Since there is one element in this orbit, there is one \(t_i\) that takes \([134213]\) to \([13421]\).
• $N_t t_3 t_4 t_2 t_1 t_3 \cdot t_4 \in [1243124]$. This double coset will go to [1243124]. Since there is one element in this orbit, there is one t_i that takes [134213] to [1243124].

(viii) We are at a new double coset [134312], $N_t t_3 t_4 t_3 t_1 t_2 N = \{N(t_1 t_3 t_4 t_3 t_1 t_2)^n| n \in N\}$. Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer N^{134312}, this means finding the set of elements that fix 1, 3, 4, 3, 1, and 2 in N and permute the rest of the elements in the set $\{1, 2, 3, 4\}$. **Note:** $N^{(134312)} = \{n \in N|(t_1 t_3 t_4 t_3 t_1 t_2)^n = t_1 t_3 t_4 t_3 t_1 t_2\} \geq \langle c \rangle$.

Since $|N^{(134312)}| = 1$ then the number of single cosets in [134312] is $\frac{|N|}{|N^{(134312)}|} = \frac{4}{1} = 4$. Now, the orbits of $N^{(134312)}$ on $\{1, 2, 3, 4\}$ are $\{1\}$, $\{2\}$, $\{3\}$, and $\{4\}$. We choose a representative from each orbit, and determine the double cosets to which $N_t t_3 t_4 t_3 t_1 t_2 t_i$ belongs for each $i \in \{1, 2, 3, 4\}$.

• $N_t t_3 t_4 t_3 t_1 t_2 \cdot t_1 \in [1243124]$. This double coset will go to [134213]. Since there is one element in this orbit, there is one t_i that takes [134312] to [1243124].

• $N_t t_3 t_4 t_3 t_1 t_2 \cdot t_2 \in [13431]$. This double coset will go back to [13431]. Since there is one element in this orbit, there is one t_i that takes [134312] to [13431].

• $N_t t_3 t_4 t_3 t_1 t_2 \cdot t_3 \in [1243431]$. This double coset will go back to [1243431]. Since there is one element in this orbit, there is one t_i that takes [134312] to [1243431].

• $N_t t_3 t_4 t_3 t_1 t_2 \cdot t_4 \in [134213]$. This double coset will go to [134213]. Since there is one element in this orbit, there is one t_i that takes [134312] to [134213].

Word of Length seven [1243421], [1243124], and [1243431]:

(i) We are at a new double coset [1243421], $N_t t_2 t_4 t_3 t_4 t_2 t_1 N = \{N(t_1 t_2 t_4 t_3 t_4 t_2 t_1)^n| n \in N\}$. Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer $N^{1243421}$, this means finding the set of elements that fix 1, 2, 4, 3, 4, 2, and 1 in N and permute the rest of the elements in the set $\{1, 2, 3, 4\}$. **Note:** $N^{(1243421)} = \{n \in N|(t_1 t_2 t_4 t_3 t_4 t_2 t_1)^n = t_1 t_2 t_4 t_3 t_4 t_2 t_1\} \geq \langle (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3) \rangle$.

Since $|N^{(1243421)}| = 4$ then the number of single cosets in [1243421] is $\frac{|N|}{|N^{(1243421)}|} = \frac{4}{4} = 1$. Now, the orbits of $N^{(1243421)}$ on $\{1, 2, 3, 4\}$ are $\{1, 2, 3, 4\}$. We choose a representative from the orbit, and determine the double cosets to which $N_t t_2 t_4 t_3 t_4 t_2 t_1 t_1$ which will go back to [124342].
Now, the orbits of \(N_t\) and permutate the rest of the elements in the set \(\{1, 2, 3, 4\}\). We choose a representative from each orbit, and determine the double cosets to which \(Nt_1t_2t_3t_1t_2t_4t_i\) belongs for each \(i \in \{1, 2, 3, 4\}\).

\[\text{Note: } N^{(1243124)} = \{n \in N | (t_1t_2t_4t_3t_1t_2t_4)^n = t_1t_2t_4t_3t_1t_2t_4 \} \geq \langle e \rangle.\]

Since \(|N^{(1243124)}| = 1\) then the number of single cosets in \([1243124]\) is \(\frac{|N|}{|N^{(1243124)}|} = 4 \cdot 4 = 4\).

Now, the orbits of \(N^{(1243124)}\) on \(\{1, 2, 3, 4\}\) are \(\{1\}\), \(\{2\}\), \(\{3\}\), and \(\{4\}\). We choose a representative from each orbit, and determine the double cosets to which \(Nt_1t_2t_4t_3t_1t_2t_4t_i\) belongs for each \(i \in \{1, 2, 3, 4\}\).

- \(Nt_1t_2t_3t_1t_2t_4 \cdot t_1 \in [121343]\). This double coset will go back to \([121343]\). Since there is one element in this orbit, there is one \(t_i\) that takes \([1243421]\) to \([121343]\).

- \(Nt_1t_2t_3t_1t_2t_4 \cdot t_2 \in [134312]\). This double coset will go to \([134312]\). Since there is one element in this orbit, there is one \(t_i\) that takes \([1243421]\) to \([134312]\).

- \(Nt_1t_2t_3t_1t_2t_4 \cdot t_3 \in [134213]\). This double coset will go to \([124343]\). Since there is one element in this orbit, there is one \(t_i\) that takes \([1243421]\) to \([134213]\).

- \(Nt_1t_2t_3t_1t_2t_4 \cdot t_4 \in [124312]\). This double coset will go back to \([124312]\). Since there is one element in this orbit, there is one \(t_i\) that takes \([1243124]\) to \([124312]\).

(iii) We are at a new double coset \([1243431]\), \(Nt_1t_2t_4t_3t_4t_3t_1N = \{N(t_1t_2t_4t_3t_4t_3t_1)^n | n \in N\}\). Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer \(N^{(1243431)}\), this means finding the set of elements that fix 1, 2, 4, 3, 1, 2, and 4 in \(N\) and permutate the rest of the elements in the set \(\{1, 2, 3, 4\}\). We choose a representative from each orbit, and determine the double cosets to which \(Nt_1t_2t_4t_3t_4t_3t_1t_i\) belongs for each \(i \in \{1, 2, 3, 4\}\).

- \(Nt_1t_2t_3t_4t_3t_1 \cdot t_1 \in [124343]\). This double coset will go back to \([124343]\). Since there is one element in this orbit, there is one \(t_i\) that takes \([1243431]\) to \([124343]\).

- \(Nt_1t_2t_3t_4t_3t_1 \cdot t_2 \in [13431]\). This double coset will go to \([1243431]\). Since there is one element in this orbit, there is one \(t_i\) that takes \([1243431]\) to \([13431]\).
• $N_t t_2 t_3 t_4 t_1 t_3 \in [13421]$. This double coset will go to $[134312]$. Since there is one element in this orbit, there is one t_i that takes $[1243431]$ to $[134312]$.

• $N_t t_2 t_3 t_4 t_1 t_4 \in [13121]$. This double coset will go back to $[13121]$. Since there is one element in this orbit, there is one t_i that takes $[1243431]$ to $[13121]$.

Conclusion:

The double coset enumeration gives that

$$|G| = (|N| + |N t_1 N| + |N t_1 t_2 N| + |N t_1 t_2 t_3 N| + |N t_1 t_2 t_4 N| + |N t_1 t_3 t_4 N| + |N t_1 t_3 t_1 N| + |N t_1 t_2 t_4 t_2 N| + |N t_1 t_2 t_4 t_3 N| + |N t_1 t_2 t_4 t_4 N| + |N t_1 t_3 t_4 t_3 N| + |N t_1 t_3 t_4 t_4 N| + |N t_1 t_3 t_1 t_2 t_3 N| + |N t_1 t_3 t_4 t_2 t_1 N| + |N t_1 t_3 t_4 t_3 t_4 N| + |N t_1 t_3 t_4 t_3 t_1 N| + |N t_1 t_3 t_4 t_3 t_3 N| + |N t_1 t_2 t_4 t_3 t_4 t_3 N| + |N t_1 t_2 t_4 t_3 t_1 t_2 N| + |N t_1 t_2 t_4 t_3 t_3 t_2 N| + |N t_1 t_3 t_4 t_3 t_1 t_2 N| + |N t_1 t_2 t_4 t_3 t_4 t_3 N| + |N t_1 t_2 t_4 t_3 t_4 t_4 N| + |N t_1 t_2 t_4 t_3 t_4 t_3 t_2 N| + |N t_1 t_3 t_4 t_3 t_4 t_4 N|) \times |N|$$

$$= (1 + 4 + 4 + 4 + 4 + 4 + 4 + 2 + 4 + 4 + 4 + 4 + 2 + 4 + 4 + 2 + 4 + 4 + 4 + 4 + 4 + 2 + 4 + 4 + 4 + 2 + 4 + 4 + 4 + 2 + 4 + 4 + 1 + 4 + 4) \times 4 = (126 \times 4) = 504.$$

A Cayley diagram of G over $L_2(8)$ is given below.
Figure 6.3: Cayley Diagram for $L_2(8)$ Over 2^2
Chapter 7

Simple Groups

Definition 7.1. If X is a G-set, then a **block** is a subset B of X such that, for each $g \in G$, either $gB = B$ or $gB \cap B = \phi$ (of course, $gB = \{gx : x \in B\}$).

Note: The blocks ϕ, X, and one-point subsets; any other block is called **non-trivial**.

Definition 7.2. A transitive G-set X is **primitive** if it contains no nontrivial block; otherwise, it is **imprimitive**.

Theorem 7.3. Every doubly transitive G-set X is primitive.

Theorem 7.4. (Iwasawa, 1941): Let $G = G'$ (such a group is called **perfect**) and let X be a faithful primitive G-set. If there is $x \in X$ and an abelian normal subgroup $K \triangleleft G_x$ whose conjugates $\{gKg^{-1} : g \in G\}$ generate G, then G is **simple**.

7.1 The Group $L_2(8)$ Over 2^2

Example 7.5. Prove the following group is simple by using its Cayley diagram.

$$G = 2^4 \cdot 2^2 \langle [xyt]^7, [xt]^9, [(xy)t]^3 \rangle \cong L_2(8)$$

Solution: In order to prove G is simple, we need to show;

Step 1: (G acts faithfully and primitively)
(i) Suppose we have the G-set call it X and we have the subset B of X, then to show G is primitive we will show that G is transitive and has no nontrivial blocks of X under the action G.

By using the Cayley diagram of G, we have $X = \{ N, Nt_1, Nt_2, Nt_3, Nt_4, \ldots, Nt_1t_2t_4t_3t_4t_2t_1t_3t_4t_2, Nt_4t_3t_1t_2t_4t_3t_1 \}$; Note: $|X| = 126$.

We know X is a transitive G-set by using the diagram (since any group G represented by a Cayley diagram is transitive). Next, we note that if B is a block of X under the action of G then $|B|$ has to divide $|X|$.

So, possible orders of B are positive divisors of 126.

$|B| = 1, 2, 3, 6, 7, 9, 63, 42, 21, 18, 14, 126$.

We will discard the orders 1 and 126 because those are trivial blocks. Now, a nontrivial block must be of size 2, 3, ..., or 63. Let B be a nontrivial block and $N \in B$. Then if $Nt_1t_2t_4 \in B$, we show that X has a system of blocks of imperatively of size 2.

$X = B \cup Bt_1 \cup Bt_2 \cup \ldots \cup Bt_4t_3t_1t_2t_4t_3t_1$ Since G is transitive, but X has a nontrivial block, then G dose not acts primitively.

(ii) We show G acts faithfully on X, we know that G acts on X implies there exists a homomorphism $f : G \to S_x$, where ($|X| = 126$).

By First Isomorphic Theorem, $G/\ker f \cong f(G)$. So, if $\ker f = 1$ then $G \cong f(G)$. Only elements of N fix N that implies G_1 is the point stabilizer of 1 in G, $G_1 = N$.

$\Rightarrow |G| = 126 \times |G_1| = 126 \times |N| = 126 \times 36 = 504$.

$\Rightarrow |G| = 504$.

From Cayley Diagram, $|G| = 504$. G will not be faithful on X if $\ker f > 1$ and $|G| > 504$.

Thus, G acts faithfully on X since $\ker f = 1$.

Thus, G acts faithfully on X, but it dose not acts primitively.

Step 2: G is perfect ($G = G'$)

Note: $G = \langle x, y, t \rangle = \langle t_1, t_2, t_3, t_4 \rangle$ and $2^2 = \langle x, y \rangle = \langle (1, 2)(3, 4), (1, 3)(2, 4) \rangle$.

$xy = (1, 4)(2, 3)$. Now $2^2 \leq G \Rightarrow (2^2)' \leq G'$.

We know that $2^{2^2} = \langle [x, y] \mid x, y \in 2^2 \rangle$ that implies the following;
\[x = (1, 2)(3, 4), y = (1, 3)(2, 4) \implies [(1, 2)(3, 4), (1, 3)(2, 4)] = (1, 2)(3, 4)^{-1} (1, 3)(2, 4)^{-1} (1, 2)(3, 4)(1, 3)(2, 4) = e. \]

\[x = (1, 2)(3, 4), y = (1, 4)(2, 3) \implies [(1, 2)(3, 4), (1, 4)(2, 3)] = (1, 2)(3, 4)^{-1} (1, 4)(2, 3)^{-1} (1, 2)(3, 4)(1, 4)(2, 3) = e. \]

\[x = (1, 3)(2, 4), y = (1, 4)(2, 3) \implies [(1, 3)(2, 4), (1, 4)(2, 3)] = (1, 3)(2, 4)^{-1} (1, 4)(2, 3)^{-1} (1, 2)(3, 4)(1, 4)(2, 3) = e. \]

Since \(2^2\) is abelian \((2^2)' = \{e\}\). We note \(G = \langle t_1, t_2, t_3, t_4 \rangle\) since \(x = t_1t_2t_1t_2t_1t_2t_1t_2\) and \(y = t_1t_3t_1t_3t_1t_3t_1\). In order to have \(G = G'\), we will use our relations to prove one of the \(t_i\)'s in \(G'\).

Let us take this relation \((1, 4)(3, 2) = t_1t_4t_1\)
\[\implies (1, 4)(3, 2) = t_1t_4t_1 \implies (1, 4)(3, 2)t_4 = t_1t_4t_1t_4 \implies t_4t_1 = t_1t_4t_1t_4. \]
\[\implies t_4t_1 = [t_1, t_4] \implies t_4t_1 \in G' \implies (t_4t_1)^{-1} \in G'. \]

Let us take the other relations which are \(t_1t_3t_1t_2t_1t_3 = (1, 2)(3, 4)t_2t_1t_3t_4t_3t_4t_2\)
and \(t_1t_3t_4t_2t_1t_3t_4 = t_2t_1t_3t_4t_2t_1t_3t_4\).

In the relation \(t_1t_3t_1t_2t_1t_3 = (1, 2)(3, 4)t_2t_1t_3t_4t_3t_4t_2\) we replace \(t_2t_1t_3t_4\) by using the relation \(t_1t_3t_4t_2t_1t_3t_4 = t_2t_1t_3t_4t_2t_1t_3t_4\) \(\implies t_1t_3t_1t_2t_1t_3 = (1, 2)(3, 4)t_1t_3t_4t_2t_1t_3t_4t_3t_1t_2t_1t_3t_4t_2. \]
\[\implies (t_1t_3t_1t_2t_3)^t_3 = ((1, 2)(3, 4)t_1t_3t_4t_2t_1t_3t_4t_3t_1t_2t_1t_3t_4t_2)^t_3. \]
\[\implies t_3t_1t_3t_1t_2t_3t_3 = (1, 2)(3, 4)t_3t_1t_3t_4t_2t_1t_3t_4t_3t_1t_2t_1t_3t_4t_2t_3. \]
\[\implies t_3t_1t_3t_1t_2t_1 = (1, 2)(3, 4)t_3t_1t_3t_4t_2t_1t_3t_4t_3t_1t_2t_1t_3t_4t_2t_3. \]
\[\implies t_3t_1t_3t_1t_2t_1 = (1, 2)(3, 4)t_1t_3t_4t_2t_1t_3t_4t_3t_1t_2t_1t_3t_4t_2t_3. \]
\[\implies t_3t_1t_3t_1t_2t_1 = (1, 3)(2, 4)t_1t_3t_4t_2t_1t_3t_4t_3t_1t_2t_1t_3t_4t_2t_3. \]
\[\implies t_3t_1t_3t_1t_2t_1 = (1, 3)(2, 4)t_1t_3t_4t_2t_1t_3t_4t_3t_1t_2t_1t_3t_4t_2t_3. \]
\[\implies t_3t_1t_3t_1t_2t_1 = (1, 3)(2, 4)t_1t_3t_4t_2t_1t_3t_4t_3t_1t_2t_1t_3t_4t_2t_3. \]
\[\implies t_3t_1t_3t_1t_2t_1 = (1, 2)(3, 4)t_1t_3t_4t_2t_1t_3t_4t_3t_1t_2t_1t_3t_4t_2t_3. \]
\[[t_3, t_1][t_1, t_2] = (1, 4)(2, 3)t_3t_4t_3t_4t_1t_3t_1t_2t_1t_3t_4. \]
\[[t_3, t_1][t_1, t_2] = (1, 4)(2, 3)t_3t_4t_3t_4t_1t_3t_1t_2t_1t_3t_4. \]
\[[t_3, t_1][t_1, t_2] = (1, 3)(2, 4)t_3t_4t_3t_4t_1t_3t_1t_2t_1t_3t_4. \]
\[[t_3, t_1][t_1, t_2] = (1, 3)(2, 4)t_3t_4t_3t_4t_1t_3t_1t_2t_1t_3t_4. \]
\[[t_3, t_1][t_1, t_2] = (1, 3)(2, 4)t_3t_4t_3t_4t_1t_3t_1t_2t_1t_3t_4. \]
\[[t_3, t_1][t_1, t_2] = (1, 3)(2, 4)t_3t_4t_3t_4t_1t_3t_1t_2t_1t_3t_4. \]
\[[t_3, t_1][t_1, t_2] = (1, 4)(2, 3)t_3t_4t_3t_4t_1t_3t_1t_2t_1t_3t_4. \]
\[[t_3, t_1][t_1, t_2] = (1, 4)(2, 3)t_3t_4t_3t_4t_1t_3t_1t_2t_1t_3t_4. \]
\[[t_3, t_1][t_1, t_2] = (1, 4)(2, 3)t_3t_4t_3t_4t_1t_3t_1t_2t_1t_3t_4. \]
\[[t_3, t_1][t_1, t_2] = (1, 4)(2, 3)t_3t_4t_3t_4t_1t_3t_1t_2t_1t_3t_4. \]
\[[t_3, t_1][t_1, t_2] = (1, 4)(2, 3)t_3t_4t_3t_4t_1t_3t_1t_2t_1t_3t_4. \]
\[[t_3, t_1][t_1, t_2][t_4, t_1][t_4, t_2] = (1,3)(2,4)t_3t_4t_3t_4(1,3)(2,4)t_1t_3t_1t_3t_1. \]
\[[t_3, t_1][t_1, t_2][t_4, t_1][t_4, t_2] = t_1t_2t_1t_2t_3t_1t_3t_1. \]
\[[t_3, t_1][t_1, t_2][t_4, t_1][t_4, t_2][t_1t_2t_1t_3] = t_1t_2t_1t_2t_1. \]
\[[t_3, t_1][t_1, t_2][t_4, t_1][t_4, t_2][t_1, t_3] = t_1t_2t_1t_2t_1. \]
\[[t_3, t_1][t_1, t_2][t_4, t_1][t_4, t_2][t_1, t_3][t_1, t_2] = t_1. \]
\[[t_3, t_1][t_1, t_2][t_4, t_1][t_4, t_2][t_1, t_3][t_1, t_2] \in G'. \]

We see the left side is belong to \(G' \), so the right side is belong to \(G' \).

\(t_1 \in G' \), then we conjugate \(t_1 \) by \(x, y \), and \(x, y \) to get \(t_2, t_3, \) and \(t_4 \) respectively. So, \(G' \geq \langle t_1, t_2, t_3, t_4 \rangle \), and we know that \(G = \langle t_1, t_2, t_3, t_4 \rangle \).

So, \(G' \geq \langle t_1, t_2, t_3, t_4 \rangle = G \), and \(G' \subseteq G \)

\(\Rightarrow G' = G \). Thus, \(G \) is perfect.

Step 3: Show there exists a normal abelian subgroup \(K \leq G \) such that \(K \triangleleft G \)

and the conjugates of \(K \) generate \(G \).

We now that \(G_1 = N = 2^2 \), and \(N \) is a normal abelian subgroup of \(G \) has center \(1 \).

So, \(K = N = \langle (1,2)(3,4), (1,3)(2,4) \rangle \).

Let take \((1,4)(2,3) \in K \), and let use the relations \(t_1t_2t_1t_4 = (1,4)(2,3)t_4t_3t_1 \)
and \(t_1t_2t_1t_3t_4t_3t_4 = t_4t_3t_1t_2t_4t_3) \) to find \((1,4)(2,3) \).

We will replace \(t_1t_2t_1 \) in the first relation by using the second relation as the following,

\(t_1t_2t_3 = t_4t_3t_1t_2t_4t_3t_4t_3t_4 \)

\(\Rightarrow t_1t_2t_4 = (1,4)(2,3)t_4t_3t_1 \Rightarrow t_4t_3t_1t_2t_4t_3t_4t_3t_4t_4 = (1,4)(2,3)t_4t_3t_1. \)

\(\Rightarrow t_4t_3t_1t_2t_4t_3t_4t_3t_4t_3t_4t_4 = (1,4)(2,3). \)

Since \(t_4t_3t_1t_2t_4t_3t_4t_3t_4t_3t_4t_4) \in K \) and \(t_4 \in G \)

We have \((t_4t_3t_1t_2t_4t_3t_4t_3t_4t_3t_4t_4)^{t_4} \in K^G \)

\(\Rightarrow (t_4)^{-1}(t_4t_3t_1t_2t_4t_3t_4t_3t_4t_3t_4t_4)(t_4) \in K^G \)

\(\Rightarrow t_4t_3t_1t_2t_4t_3t_4t_3t_4t_3t_4t_4) \in K^G \)

\(\Rightarrow t_3t_1t_2t_3t_4t_3t_4t_3t_4t_1t_3 \in K^G \)

\(\Rightarrow (1,2)(3,4)t_4t_3t_1t_3 \in K^G \)

\(\Rightarrow (1,2)(3,4)t_4t_2t_1t_3t_3t_1t_3 \in K^G \)

\(\Rightarrow (1,2)(3,4)t_4t_2t_1t_3t_3t_1t_3 \in K^G \)
\[(1, 2)(3, 4)t_4t_2(1, 4)(2, 3)t_1t_3t_3 \in K^G \]
\[(1, 3)(2, 4)t_1t_3t_3t_1t_3 \in K^G \]
\[(1, 3)(2, 4)t_1t_3t_1t_3t_3 \in K^G \]
\[t_1 \in K^G \]
\[K^G \supseteq \{ t_1, t_1^y, t_1^x \} \]
\[K^G \supseteq \{ t_1, t_2, t_3, t_4 \} = < t_1, t_2, t_3, t_4 > = G \]
\[G = K^G. \]

From steps (1), (2), and (3) we find that \(G \) is not simple group because \(G \) does not act primitively.
7.2 Construction Of The Simple Group \(L_2(13) \)

Double Coset Enumeration of \(L_2(13) \) Over \(M \) and \(N \)

We take the progenitor \(2^*^4 : 2^2 \), where \(2^*^4 \) is the free product of 4 copies of the cyclic groups of order 2, and \(2^2 \) is the group of automorphisms of \(2^*^4 \) which permutes the four symmetric generators by conjugation and factor it by the three relations:

\[
(xy^7 t_1 t_3 t_1 t_1 t_1 = 1, (x)^3 t_1 t_2 t_1 = 1, \text{ and } (xy)^{13} t_1 t_4 t_1 t_4 t_1 t_4 t_1 t_4 t_1 t_4 t_1 = 1.
\]

We see that \(G \) is large group and Magma can not compute it’s elements by using Schreier System.

Then, we find the Maximal Subgroups of \(G \) call it \(M \) to decrease the cosets from 75 to 28 single coset.

We get that \(M = (S_3 : 2) = \langle x, y, t \mid t_1 \rangle \) over \(2^2 \) and \(S_3 : 2 \). We will show

\[
G = \langle x, y, t \mid t_1 \rangle \cong L_2(13).
\]

A symmetric presentation of the progenitor \(2^*^4 : 2^2 \) is given by:

\[
2^*^4 : 2^2 \cong \langle x, y, t \mid x^2, y^2, (x, y), t^2 \rangle;
\]

\(G \) factored by \((x \ast y \ast x \ast t)^7 = 1, (x \ast t)^3 = 1, \text{ and } (x \ast y \ast t)^{15} = 1 \) which simplifies to

\[
(xy)^7 t_1 t_3 t_1 t_3 t_1 = 1, (x)^3 t_1 t_2 t_1 = 1, \text{ and } (xy)^{13} t_1 t_4 t_1 t_4 t_1 t_4 t_1 t_4 t_1 t_4 = 1.
\]

We have \(N \cong 2^2 = \langle x, y \rangle \), where \(x \sim (1, 2)(3, 4) \text{ and } y \sim (1, 3)(2, 4) \),

\[
M = \langle x, y, t \mid (t^y)^* (t^y)^* t \ast (t^y)^* (t^y)^* t \rangle, \text{ and } t = t_1. \text{ The order of } M \text{ is } 12.
\]
Using computer-based program - Magma:
1. The order of the group, $|G|$ is equal to 1092.
2. There are 28 double cosets in this double cosets enumeration of G over M and N.

Relations
We see that

(1) $[(xy)t]^7 = 1 \Rightarrow (xy)^7t(xy)^5t(xy)^4t(xy)^3t(xy)^2t(xy)^0t(xy)^0 = 1$
$\Rightarrow (1, 3)(2, 4)t_1t_3t_1t_3t_1t_3t_1 = 1 \Rightarrow Mt_1t_3t_1t_3t_1 = 1.$

Moreover, if we conjugate the previous relation by all elements in $2^2 = \{e, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)\}$, we obtain different relations.

1. $((1, 3)(2, 4)t_1t_3t_1t_3t_1t_3t_1 = 1)^e \Rightarrow (1, 3)(2, 4)t_1t_3t_1t_3t_1t_3t_1 = 1.$
2. $((1, 3)(2, 4)t_1t_3t_1t_3t_1t_3 = 1)^{(1, 2)(3, 4)} \Rightarrow (2, 4)(1, 3)t_2t_4t_2t_4t_2t_4 = 1.$
3. $((1, 3)(2, 4)t_1t_3t_1t_3t_1t_3t_1 = 1)^{(1, 3)(2, 4)} \Rightarrow (3, 1)(4, 2)t_3t_3t_1t_3t_1 = 1.$
4. $((1, 3)(2, 4)t_1t_3t_1t_3t_1t_3t_1 = 1)^{(1, 4)(2, 3)} \Rightarrow (4, 2)(3, 1)t_4t_2t_4t_2t_4 = 1.$

(II) $[xt]^3 = 1 \Rightarrow (x)^3t(x)^2t(x)^1t(x)^0 = 1$
$\Rightarrow (1, 2)(3, 4)t_1t_3 = 1 \Rightarrow Mt_1t_3 = 1.$

Moreover, if we conjugate the previous relation by all elements in 2^2, we obtain

1. $((1, 2)(3, 4)t_1t_2t_1 = 1)^e \Rightarrow (1, 2)(3, 4)t_1t_2t_1 = 1.$
2. $((1, 2)(3, 4)t_1t_2t_1 = 1)^{(1, 2)(3, 4)} \Rightarrow (2, 1)(4, 3)t_2t_1 = 1.$
3. $((1, 2)(3, 4)t_1t_2t_1 = 1)^{(1, 3)(2, 4)} \Rightarrow (3, 4)(1, 2)t_3t_4 = 1.$
4. $((1, 2)(3, 4)t_1t_2t_1 = 1)^{(1, 4)(2, 3)} \Rightarrow (4, 3)(2, 1)t_4t_3 = 1.$

(III) $[(xy)]^{13} = 1$
$\Rightarrow (xy)^{13}t(xy)^{12}t(xy)^1t(xy)^{10}t(xy)^9t(xy)^8t(xy)^7t(xy)^6t(xy)^5t(xy)^4t(xy)^3t(xy)^2t(xy)^1t(xy)^0 = 1$
$\Rightarrow (1, 4)(3, 2)t_1t_4t_1t_4t_1t_4t_1t_4t_1t_4t_1 = 1 \Rightarrow Mt_1t_4t_1t_4t_1t_4t_1t_4t_1t_4t_1 = 1.$

Moreover, if we conjugate the previous relation by all elements in 2^2, we obtain

1. $((1, 4)(3, 2)t_1t_4t_1t_4t_1t_4t_1t_4t_1t_4t_1 = 1)^e$
$\Rightarrow (1, 4)(3, 2)t_1t_4t_1t_4t_1t_4t_1t_4t_1t_4t_1 = 1.$
2. $((1, 4)(3, 2)t_1t_4t_1t_4t_1t_4t_1t_4t_1t_4t_1 = 1)^{(1, 2)(3, 4)}$
$\Rightarrow (2, 3)(4, 1)t_2t_3t_2t_3t_2t_3t_2t_3t_2t_3 = 1.$
3. \(((1, 4)(3, 2)t_1t_1t_4t_4t_1t_4t_4t_1t_4t_4t_1t_4t_4t_1 = 1)^{(1,3),(2,4)}\)
 \[\Rightarrow (3, 2)(1, 4)t_3t_2t_3t_2t_3t_2t_3t_2t_3 = 1.\]

4. \(((1, 4)(3, 2)t_1t_1t_4t_1t_4t_1t_4t_1t_4t_1t_4t_1 = 1)^{(1,4),(2,3)}\)
 \[\Rightarrow (4, 1)(2, 3)t_4t_4t_4t_1t_4t_1t_4t_1t_4t_1t_4t_4t_1t_4 = 1.\]

Double Coset [s]:

We start with the double coset \(MeN\), where \(e\) is the word of length zero denoted by \([s]\).

It also can be represented as

\[
MeN = \{Men : n \in N\} = \{Me\} = \{M\}
\]

So, the double coset \(MeN\) consists of the single coset \(M\). Thus, \(|N| = \frac{4}{4} = 1.\)

Note, since \(M\) is transitive on \(\{1, 2, 3, 4\}\), we take a representative coset \(M\) from \([s]\) and a representative from \(\{1, 2, 3, 4\}\) and determine the double coset to which \(Mt_i\) belongs, where \(i \in \{1, 2, 3, 4\}\). We consider \(i = 1\), so \(Mt_1\) is the representative coset, and hence we will have a new double coset \(Mt_1N\) which can denoted by \([1]\). There will be four possibles \(t_is\) in \([s]\) that will advance to the next double cosets \([1]\).

Word of Length One [1]:

We consider the double coset \(MwN\), where \(w\) is a word of length one. \(Mt_1N = \{Mt_1^n|n \in N\} = [1]\). We need to find the point stabilizer of 1. So, \(Mt_1N = [1] = \{Mt_1^n|n \in N\} = \{Mt_1N, Mt_2N, Mt_3N, Mt_4N\}\). Since, the point stabilizer of 1 in the subgroup \(N\) is the permutations in \(N\) that fixes 1 and permute the rest of the element in the set \(\{1, 2, 3, 4\}\). **Note:** \(N^{(1)} = \{n \in N|t_1n = t_1\} \geq \langle e \rangle\).

Since \(|N^{(1)}| = 1\) then the number of single cosets in \([1]\) is \(\frac{|N|}{|N^{(1)}|} = \frac{4}{1} = 4.\)

Now, the orbits of \(N^{(1)}\) on \(\{1, 2, 3, 4\}\) are \(\{1\}, \{2\}, \{3\},\) and \(\{4\}\). We choose a representative from each orbit, and determine the double coset that contain \(Nt_1t_i\), where \(i \in \{1, 2, 3, 4\}\).

- \(Mt_1 \cdot t_1 = Mt_1^2 = M \in [s]\). This double coset will go back to \([s]\). Since there is one element in this orbit, there is one \(t_i\) that takes \([1]\) to \([s]\).

- \(Mt_1 \cdot t_2 = Mt_1t_2 = Mt_1 \in [1]\). This double coset will collapse. Since there is one element in this orbit, there is one \(t_i\) that takes \([1]\) to \([1]\).
• $Mt_1 \cdot t_3 = Mt_1t_3 \in [13]$. This is a new double coset, which will extend the Cayley graph from [1] to [13]. Since there is one element in this orbit, there is one t_i that takes [1] to [13].

• $Mt_1 \cdot t_4 = Mt_1t_4 \in [14]$. This is a new double coset, which extends our graph from [1] to [14]. Since there is one element in this orbit, there is one t_i that takes [1] to [14].

Word of Length Two [13], and [14]:

(i) We are at a new double coset [13], $Mt_1t_3N = \{M(t_1t_3)^n|n \in N\}$. Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer N^{13}, this means finding the set of elements that fix 1 and 3 in N and permutes the rest of the elements in the set $\{1, 2, 3, 4\}$. **Note:** $N^{(13)} = \{n \in N|(t_1t_3)^n = t_1t_3\} \geq \langle e \rangle$.

Since $|N^{(13)}| = 1$ then the number of single cosets in [13] is $\frac{|N|}{|N^{(13)}|} = 4$.

Now, the orbits of N^{13} on $\{1, 2, 3, 4\}$ are $\{1\}$, $\{2\}$, $\{3\}$, and $\{4\}$. We choose a representative from each orbit, and determine the double coset to which Nt_1t_i belongs for $i = \{1, 2, 3, 4\}$.

• $Mt_1t_3 \cdot t_1 = Mt_1t_3t_1 \in [131]$. This is a new double coset, which extends our graph from [13] to [131]. Since there is one element in this orbit, there is one t_i that takes [13] to [131].

• $Mt_1t_3 \cdot t_2 = Mt_1t_3t_2 \in [132]$. This is a new double coset, which extends our graph from [13] to [132]. Since there is one element in this orbit, there is one t_i that takes [13] to [132].

• $Mt_1t_3 \cdot t_3 = Mt_1t_3^2 \in [1]$. This double coset will go back to [1]. Since there is one element in this orbit, there is one t_i that takes [13] to [1].

• $Mt_1t_3 \cdot t_4 = Mt_1t_3t_4 = Mt_2t_3 = Mt_1t_4 \in [14]$. This double coset will send to [14]. Since there is one element in this orbit, there is one t_i that takes [13] to [14].

(ii) We are at a new double coset [14], $Mt_1t_4N = \{M(t_1t_4)^n|n \in N\}$. Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer N^{14}, this means finding the set of elements that fix 1 and 4 in N and permute the rest of the elements in the set $\{1, 2, 3, 4\}$. **Note:** $N^{(14)} = \{n \in N|(t_1t_4)^n = t_1t_4\} \geq \langle e \rangle$.
Since $|N(13)| = 1$ then the number of single cosets in [14] is $\frac{|N|}{|N(13)|} = \frac{4}{1} = 4$. Now, the orbits of $N(14)$ on $\{1, 2, 3, 4\}$ are $\{1\}, \{2\}, \{3\},$ and $\{4\}$. We choose a representative from each orbit, and determine the double coset to which $Nt_1t_4t_i$ belongs for $i = \{1, 2, 3, 4\}$.

- $Mt_1t_4 \cdot t_1 = Mt_1t_4t_1 \in [141]$. This is a new double coset, which extends our graph from [14] to [141]. Since there is one element in this orbit, there is one t_i that takes [14] to [141].

- $Mt_1t_4 \cdot t_2 = Mt_1t_4t_2 \in [142]$. This is a new double coset, which extends our graph from [14] to [142]. Since there is one element in this orbit, there is one t_i that takes [14] to [142].

- $Mt_1t_4 \cdot t_3 = Mt_1t_4t_3 = Mt_4t_1 = Mt_4t_1 \in [13]$. This double coset will go to [13]. Since there is one element in this orbit, there is one t_i that takes [14] to [13].

- $Mt_1t_4 \cdot t_4 = Mt_1t_4^2 \in [1]$. This double coset will go back to [1]. Since there is one element in this orbit, there is one t_i that takes [14] to [1].

Word of Length Three [131], [132], [141] and [142]:

(i) We are at a new double coset [131], $Mt_1t_3t_1N = \{M(t_1t_3t_1)^n|n \in N\}$. Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer N^{131}, this means finding the set of elements that fix 1, 3, and 1 in N and permute the rest of the elements in the set $\{1, 2, 3, 4\}$. **Note:** $N^{(131)} = \{n \in N|(t_1t_3t_1)^n = t_1t_3t_1\} \geq \langle c \rangle$. Since $|N^{(131)}| = 1$ then the number of single cosets in [131] is $\frac{|N|}{|N^{(131)}|} = \frac{4}{1} = 4$. Now, the orbits of $N^{(131)}$ on $\{1, 2, 3, 4\}$ are $\{1\}, \{2\}, \{3\},$ and $\{4\}$. We choose a representative from each orbit, and determine the double coset to which $Nt_1t_3t_1t_i$ belongs for $i = \{1, 2, 3, 4\}$.

- $Mt_1t_3t_1 \cdot t_1 = Mt_1t_3t_1^2 \in [13].$ This double coset will go back to [13]. Since there is one element in this orbit, there is one t_i that takes [131] to [13].

- $Mt_1t_3t_1 \cdot t_2 = Mt_1t_3t_1t_2 = Mt_2t_4t_1 \in [132]$. This double coset will go to [132]. Since there is one element in this orbit, there is one t_i that takes [131] to [132].

- $Mt_1t_3t_1 \cdot t_3 = Mt_1t_3t_1t_2 = Mt_1t_3t_1 \in [131]$. This double coset will collapse. Since there is one element in this orbit, there is one t_i that takes [131] to [131].
\(M_{t_1 t_3 t_1} \cdot t_4 \in [1314] \). So that, this is a new double coset, which extends our graph from [131] to [1314]. Since there is one element in this orbit, there is one \(t_i \) that takes [131] to [1314].

(ii) We are at a new double coset [132], \(M_{t_1 t_3 t_2} N = \{ M(t_1 t_3 t_2)^n | n \in N \} \). Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer \(N^{(132)} \), this means finding the set of elements that fix 1, 3, and 2 in \(N \) and permute the rest of the elements in the set \{1, 2, 3, 4\}. \textbf{Note:} \(N^{(132)} = \{ n \in N | (t_1 t_3 t_2)^n = t_1 t_3 t_2 \} \geq \langle e \rangle \). Since \(|N^{(132)}| = 1 \) then the number of single cosets in [132] is \(\frac{|N|}{|N^{(132)}|} = \frac{4}{1} = 4 \). Now, the orbits of \(N^{(132)} \) on \{1, 2, 3, 4\} are \{1\}, \{2\}, \{3\}, and \{4\}. We choose a representative from each orbit, and determine the double coset to which \(N t_1 t_3 t_2 t_i \) belongs for \(i = \{1, 2, 3, 4\} \).

\(M_{t_1 t_3 t_2} \cdot t_1 = M_{t_1 t_3 t_2 t_1} = M_{t_2 t_4 t_2} \in [131] \). This double coset will go to [131]. Since there is one element in this orbit, there is one \(t_i \) that takes [132] to [131].

\(M_{t_1 t_3 t_2} \cdot t_2 = M_{t_1 t_3} \in [13] \). This double coset will go back to [13]. Since there is one element in this orbit, there is one \(t_i \) that takes [132] to [13].

\(M_{t_1 t_3 t_2} \cdot t_3 \in [1323] \). This is a new double coset, which extends our graph from [132] to [1323]. Since there is one element in this orbit, there is one \(t_i \) that takes [132] to [1323].

\(M_{t_1 t_3 t_2} \cdot t_4 \in [1324] \). This is a new double coset, which extends our graph from [132] to [1324]. Since there is one element in this orbit, there is one \(t_i \) that takes [132] to [1324].

(iii) We are at a new double coset [141], \(M_{t_1 t_4 t_1} N = \{ M(t_1 t_4 t_1)^n | n \in N \} \). Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer \(N^{(141)} \), this means finding the set of elements that fix 1, 4, and 1 in \(N \) and permute the rest of the elements in the set \{1, 2, 3, 4\}. \textbf{Note:} \(N^{(141)} = \{ n \in N | (t_1 t_4 t_1)^n = t_1 t_4 t_1 \} \geq \langle e \rangle \). Since \(|N^{(141)}| = 1 \) then the number of single cosets in [141] is \(\frac{|N|}{|N^{(141)}|} = \frac{4}{1} = 4 \). Now, the orbits of \(N^{(141)} \) on \{1, 2, 3, 4\} are \{1\}, \{2\}, \{3\}, and \{4\}. We choose a representative from each orbit, and determine the double coset to which \(N t_1 t_4 t_1 t_i \) belongs for \(i = \{1, 2, 3, 4\} \).
• $Mt_1t_4t_1 \cdot t_1 = Mt_1t_4t_1^2 \in [14]$. This double coset will go back to [14]. Since there is one element in this orbit, there is one t_i that takes [141] to [14].

• $Mt_1t_4t_1 \cdot t_2 = Mt_1t_4t_1t_2 = Mt_2t_4t_1 \in [142]$. This double coset will go to [142]. Since there is one element in this orbit, there is one t_i that takes [141] to [142].

• $Mt_1t_4t_1 \cdot t_3 = Mt_1t_4t_1t_3 \in [1413]$. So, this is a new double coset, which extends our graph from [141] to [1413]. Since there is one element in this orbit, there is one t_i that takes [141] to [1413].

• $Mt_1t_4t_1 \cdot t_4 \in [1414]$. So, this is a new double coset, which extends our graph from [141] to [1414]. Since there is one element in this orbit, there is one t_i that takes [141] to [1414].

(iv) We are at a new double coset [142], $Mt_1t_4t_2N = \{M(t_1t_4t_2)^n|n \in N\}$. Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer N_{142}, this means finding the set of elements that fix 1, 4, and 2 in N and permute the rest of the elements in the set $\{1, 2, 3, 4\}$. **Note:** $N_{142} = \{n \in N|(t_1t_4t_2)^n = t_1t_4t_2\} \geq \langle e \rangle$. Since $|N_{142}| = 1$ then the number of single cosets in [142] is $\frac{|N|}{|N_{142}|} = \frac{4}{1} = 4$.

Now, the orbits of N_{142} on $\{1, 2, 3, 4\}$ are $\{1\}$, $\{2\}$, $\{3\}$, and $\{4\}$. We choose a representative from each orbit, and determine the double coset to which $Nt_1t_4t_2t_i$ belongs for $i = \{1, 2, 3, 4\}$.

• $Mt_1t_4t_2 \cdot t_1 = Mt_1t_4t_2t_1 = Mt_2t_3t_2 \in [141]$. This double coset will go to [141]. Since there is one element in this orbit, there is one t_i that takes [142] to [141].

• $Mt_1t_4t_2 \cdot t_2 = Mt_1t_4 \in [14]$. This double coset will go back to [14]. Since there is one element in this orbit, there is one t_i that takes [142] to [14].

• $Mt_1t_4t_2 \cdot t_3 \in [1423]$. This is a new double coset, which extends our graph from [142] to [1423]. Since there is one element in this orbit, there is one t_i that takes [142] to [1423].

• $Mt_1t_4t_2 \cdot t_4 \in [1424]$. This is a new double coset, which extends our graph from [142] to [1424]. Since there is one element in this orbit, there is one t_i that takes [142] to [1424].

Word of Length four [1314], [1323], [1324], [1413], [1414], [1423] and [1424]:
(i) We are at a new double coset \([1314]\), \(M t_1 t_3 t_4 N = \{M(t_1 t_3 t_4)^n | n \in N\}\). Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer \(N^{1314}\), this means finding the set of elements that fix 1, 3, 1, and 4 in \(N\) and permute the rest of the elements in the set \(\{1, 2, 3, 4\}\). **Note:** \(N^{(1314)} = \{n \in N | (t_1 t_3 t_1 t_4)^n = t_1 t_3 t_1 t_4\}\)

\[\Rightarrow (t_1 t_3 t_1 t_4)^{(1,2)(3,4)} = t_2 t_4 t_2 t_3 = t_2 t_4 t_2 (1, 2)(3, 4) t_3 t_4 = (1, 2)(3, 4) t_1 t_3 t_1 t_4\]

\[= (1, 2)(3, 4) t_1 t_3 t_1 t_3 t_4 = (1, 2)(3, 4)(1, 3)(2, 4) t_1 t_3 t_4 = (1, 4)(2, 3) t_1 t_3 t_4\]

Since \(|N^{(1314)}| = 2\) then the number of single cosets in \([1314]\) is \(\frac{|N|}{|N^{(1314)}|} = \frac{4}{2} = 2\).

Now, the orbits of \(N^{(1314)}\) on \(\{1, 2, 3, 4\}\) are \(\{1, 2\}\) and \(\{3, 4\}\). We choose a representative from each orbit, and determine the double coset to which \(N t_1 t_3 t_1 t_4 t_i\) belongs for \(i = \{1, 4\}\).

- \(M t_1 t_3 t_1 t_4 \cdot t_1 \in [1314]\). This double coset will collapse. Since there are two elements in this orbit, there are 2 \(t_i\)s that take \([1314]\) to \([1314]\).

- \(M t_1 t_3 t_1 t_4 \cdot t_4 \in [131]\). This double coset will go back to \([131]\). Since there are two elements in this orbit, there are 2 \(t_i\)s that take \([1314]\) to \([131]\).

(ii) We are at a new double coset \([1323]\), \(M t_1 t_3 t_2 t_3 N = \{M(t_1 t_3 t_2 t_3)^n | n \in N\}\). Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer \(N^{1323}\), this means finding the set of elements that fix 1, 3, 2, and 3 in \(N\) and permute the rest of the elements in the set \(\{1, 2, 3, 4\}\).

Note: \(N^{(1323)} = \{n \in N | (t_1 t_3 t_2 t_3)^n = t_1 t_3 t_2 t_3\}\)

\[\Rightarrow (t_1 t_3 t_2 t_3)^{(1,3)(2,4)} = t_3 t_1 t_3 t_4 = (1, 3)(2, 4) t_3 t_1 t_3 t_4 t_1\]

\[= (1, 3)(2, 4) t_3 t_1 t_3 t_1 (1, 2)(3, 4) t_3 t_1 = (1, 4)(2, 3) t_1 t_3 t_4 t_2 t_3 t_4 = (1, 2)(3, 4) t_4 t_2 t_4 t_3 t_1\]

\[= t_3 t_1 t_4 t_1 = t_3 t_1 t_3 t_4 \geq ((1, 3)(2, 4)).\]

Since \(|N^{(1323)}| = 2\) then the number of single cosets in \([1323]\) is \(\frac{|N|}{|N^{(1323)}|} = \frac{4}{2} = 2\).

Now, the orbits of \(N^{(1323)}\) on \(\{1, 2, 3, 4\}\) are \(\{1, 3\}\) and \(\{2, 4\}\). We choose a representative from each orbit, and determine the double coset to which \(N t_1 t_3 t_2 t_3 t_i\) belongs for \(i = \{3, 4\}\).

- \(M t_1 t_3 t_2 t_3 \cdot t_3 \in [132]\). This double coset will go back to \([132]\). Since there are two elements in this orbit, there are 2 \(t_i\)s that take \([1323]\) to \([132]\).

- \(M t_1 t_3 t_2 t_3 \cdot t_4 = M t_1 t_3 t_2 t_3 t_4 = M t_2 t_4 t_1 t_3 \in [1324]\). This double coset will go to
[1324]. Since there are two elements in this orbit, there are 2 \(t_i \)s that take [1323] to [1324].

(iii) We are at a new double coset [1324], \(Mt_1t_3t_2t_4N = \{ M(t_1t_3t_2t_4)^n | n \in N \} \). Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer \(N^{1324} \), this means finding the set of elements that fix 1, 3, 2, and 4 in \(N \) and permute the rest of the elements in the set \{1, 2, 3, 4\}.

Note: \(N^{(1324)} = \{ n \in N | (t_1t_3t_2t_4)^n = t_1t_3t_2t_4 \} \geq \langle e \rangle \).

Since \(|N^{(1324)}| = 1 \) then the number of single cosets in [1324] is \(\frac{|N|}{|N^{(1324)}|} = 4 \).

Now, the orbits of \(N^{(1324)} \) on \{1, 2, 3, 4\} are \{1\}, \{2\}, \{3\}, and \{4\}. We choose a representative from each orbit, and determine the double coset to which \(Nt_1t_3t_2t_3t_i \) belongs for \(i = \{1, 2, 3, 4\} \).

- \(Mt_1t_3t_2t_4 \cdot t_1 \in [13241] \). This is a new double coset, which extends our graph from [1324] to [13241]. Since there is one element in this orbit, there is one \(t_i \) that takes [1324] to [13241].

- \(Mt_1t_3t_2t_4 \cdot t_2 \in [13242] \). This is a new double coset, which extends our graph from [1324] to [13242]. Since there is one element in this orbit, there is one \(t_i \) that takes [1324] to [13242].

- \(Mt_1t_3t_2t_4 \cdot t_3 = Mt_1t_3t_2t_4t_3 = Mt_2t_4t_1t_4 \in [1323] \). This double coset will go to [1323]. Since there is one element in this orbit, there is one \(t_i \) that takes [1324] to [1323].

- \(Mt_1t_3t_2t_4 \cdot t_4 \in [132] \). This double coset will go back to [132]. Since there is one element in this orbit, there is one \(t_i \) that takes [1324] to [132].

(iv) We are at a new double coset [1413], \(Mt_1t_4t_1t_3N = \{ M(t_1t_4t_1t_3)^n | n \in N \} \). Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer \(N^{1413} \), this means finding the set of elements that fix 1, 4, 1, and 3 in \(N \) and permute the rest of the elements in the set \{1, 2, 3, 4\}.

Note: \(N^{(1413)} = \{ n \in N | (t_1t_4t_1t_3)^n = t_1t_4t_1t_3 \} \geq \langle e \rangle \).

Since \(|N^{(1413)}| = 1 \) then the number of single cosets in [1413] is \(\frac{|N|}{|N^{(1413)}|} = 4 \).

Now, the orbits of \(N^{(1413)} \) on \{1, 2, 3, 4\} are \{1\}, \{2\}, \{3\}, and \{4\}. We choose a representative from each orbit, and determine the double coset to which \(Nt_1t_4t_1t_3t_i \) belongs for \(i = \{1, 2, 3, 4\} \).
• $Mt_1t_4t_1t_3 \cdot t_1 \in [13242]$. This double coset will go to [13242]. Since there is one element in this orbit, there is one t_i that takes [1413] to [13242].

• $Mt_1t_4t_1t_3 \cdot t_2 \in [14132]$. This is a new double coset, which extends our graph from [1413] to [14132]. Since there is one element in this orbit, there is one t_i that takes [1413] to [14132].

• $Mt_1t_4t_1t_3 \cdot t_3 = Mt_1t_4t_1 \in [141]$. This double coset will go back to [141]. Since there is one element in this orbit, there is one t_i that takes [1413] to [141].

• $Mt_1t_4t_1t_3 \cdot t_4 = Mt_1t_4t_1t_3t_4 = Mt_2t_3t_2t_3 \in [1414]$. This double coset will go back to [1414]. Since there is one element in this orbit, there is one t_i that takes [1414] to [141].

(v) We are at a new double coset [1414], $Mt_1t_4t_1t_4N = \{M(t_1t_4t_1t_4)^n | n \in N\}$. Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer N^{1414}, this means finding the set of elements that fix 1, 4, 1, and 4 in N and permute the rest of the elements in the set $\{1, 2, 3, 4\}$.

Note: $N^{(1414)} = \{n \in N | (t_1t_4t_1t_4)^n = t_1t_4t_1t_4 \} \geq \langle e \rangle$.

Since $|N^{(1414)}| = 1$ then the number of single cosets in [1414] is $\frac{|N|}{|N^{(1414)}|} = \frac{4}{1} = 4$.

Now, the orbits of $N^{(1414)}$ on $\{1, 2, 3, 4\}$ are $\{1\}$, $\{2\}$, $\{3\}$, and $\{4\}$. We choose a representative from each orbit, and determine the double coset to which $Nt_1t_4t_1t_4t_i$ belongs for $i = \{1, 2, 3, 4\}$.

• $Mt_1t_4t_1t_4 \cdot t_1 \in [14141]$. This is a new double coset, which extends our graph from [1414] to [14141]. Since there is one element in this orbit, there is one t_i that takes [1414] to [14141].

• $Mt_1t_4t_1t_4 \cdot t_2 \in [14142]$. This is a new double coset, which extends our graph from [1414] to [14142]. Since there is one element in this orbit, there is one t_i that takes [1414] to [14142].

• $Mt_1t_4t_1t_4 \cdot t_3 = Mt_1t_4t_1t_4t_3 = Mt_2t_3t_2t_4 \in [1413]$. This double coset will go back to [1413]. Since there is one element in this orbit, there is one t_i that takes [1414] to [1413].

• $Mt_1t_4t_1t_4 \cdot t_4 = Mt_1t_4t_1 \in [141]$. This double coset will go back to [141]. Since there is one element in this orbit, there is one t_i that takes [1414] to [141].
(vi) We are at a new double coset $[1423]$, $Mt_1t_4t_2t_3 N = \{M(t_1t_4t_2t_3)^n|n \in N\}$. Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer N^{1423}, this means finding the set of elements that fix 1, 4, 2, and 3 in N and permute the rest of the elements in the set $\{1, 2, 3, 4\}$.

Note: $N^{(1423)} = \{n \in N|(t_1t_4t_2t_3)^n = t_1t_4t_2t_3\} \geq \langle e \rangle$.

Since $|N^{(1423)}| = 1$ then the number of single cosets in $[1423]$ is $\frac{|N|}{|N^{(1423)}|} = \frac{4}{1} = 4$.

Now, the orbits of $N^{(1423)}$ on $\{1, 2, 3, 4\}$ are $\{1\}$, $\{2\}$, $\{3\}$, and $\{4\}$. We choose a representative from each orbit, and determine the double coset to which $Mt_1t_4t_2t_3 t_i$ belongs for $i = \{1, 2, 3, 4\}$.

- $Mt_1t_4t_2t_3 \cdot t_1 \in [14231]$. This is a new double coset, which extends our graph from $[1423]$ to $[14231]$. Since there is one element in this orbit, there is one t_i that takes $[1423]$ to $[14231]$.
- $Mt_1t_4t_2t_3 \cdot t_2 \in [14232]$. This is a new double coset, which extends our graph from $[1423]$ to $[14232]$. Since there is one element in this orbit, there is one t_i that takes $[1423]$ to $[14232]$.
- $Mt_1t_4t_2t_3 \cdot t_3 = Mt_1t_4t_2 \in [142]$. This double coset will go back to $[142]$. Since there is one element in this orbit, there is one t_i that takes $[1423]$ to $[142]$.
- $Mt_1t_4t_2t_3 \cdot t_4 = Mt_1t_4t_2t_3t_4 = Mt_2t_3t_1t_3 \in [1424]$. This double coset will go back to $[1424]$. Since there is one element in this orbit, there is one t_i that takes $[1423]$ to $[1424]$.

(vii) We are at a new double coset $[1424]$, $Mt_1t_4t_2t_4 N = \{M(t_1t_4t_2t_4)^n|n \in N\}$. Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer N^{1424}, this means finding the set of elements that fix 1, 4, 2, and 4 in N and permute the rest of the elements in the set $\{1, 2, 3, 4\}$.

Note: $N^{(1424)} = \{n \in N|(t_1t_4t_2t_4)^n = t_1t_4t_2t_4\}$

$\Rightarrow (t_1t_4t_2t_4)^{(1,3)(2,4)} = t_3t_2t_4t_3 = (1, 3)(2, 4)t_1t_4t_2t_4t_3t_1t_4t_2t_4 = (1, 4)(2, 3)t_1t_4t_2t_4$

$\geq \langle (1, 3)(2, 4) \rangle$. Since $|N^{(1424)}| = 2$ then the number of single cosets in $[1424]$ is $\frac{|N|}{|N^{(1424)}|} = \frac{4}{2} = 2$.

Now, the orbits of $N^{(1424)}$ on $\{1, 2, 3, 4\}$ are $\{1, 3\}$ and $\{2, 4\}$. We choose a representative from each orbit, and determine the double coset to which $Mt_1t_4t_2t_4 t_i$ belongs for $i = \{3, 4\}$.
\[M_{t_1} t_3 t_4 t_3 \cdot t_3 = M_{t_1} t_3 t_4 t_4 t_3 = M_{t_2} t_3 t_1 t_4 \in [1423]. \] This double coset will go back to [1423]. Since there are two elements in this orbit, there are 2 \(t_i \)s that take [1424] to [1423].

\[M_{t_1} t_4 t_2 t_2 \cdot t_4 = M_{t_1} t_4 t_2 \in [142]. \] This double coset will go back to [142]. Since there are two elements in this orbit, there are 2 \(t_i \)s that take [1424] to [142].

Word of Length five [13241], [13242], [14132], [14141], [14142], [14231], and [14232]:

(i) We are at a new double coset [13241], \(M_{t_1} t_3 t_2 t_4 t_1 N = \{ M(t_1 t_3 t_2 t_4 t_1)^n | n \in N \} \). Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer \(N^{13241} \), this means finding the set of elements that fix 1, 3, 2, 4, and 1 in \(N \) and permute the rest of the elements in the set \{1, 2, 3, 4\}. **Note:** \(N^{13241} = \{ n \in N | (t_1 t_3 t_2 t_4 t_1)^n = t_1 t_3 t_2 t_4 t_1 \} \geq \langle e \rangle \). Since \(|N^{13241}| = 1 \) then the number of single cosets in [13241] is \(|N| |N^{13241}| = 1 \times 1 = 4 \).

Now, the orbits of \(N^{13241} \) on \{1, 2, 3, 4\} are \{1\}, \{2\}, \{3\}, and \{4\}. We choose a representative from each orbit, and determine the double coset to which \(N t_1 t_3 t_2 t_4 t_1 t_i \) belongs for \(i = \{1, 2, 3, 4\} \).

- \(M_{t_1} t_3 t_2 t_4 t_1 \cdot t_1 \in [1324]. \) This double coset will go back to [1324]. Since there is one element in this orbit, there is one \(t_i \) that takes [13241] to [1324].

- \(M_{t_1} t_3 t_2 t_4 t_1 \cdot t_2 = M_{t_1} t_3 t_2 t_4 t_1 t_2 = M_{t_2} t_4 t_1 t_3 t_1 \in [13242]. \) This double coset will go to [13242]. Since there is one element in this orbit, there is one \(t_i \) that takes [13241] to [13242].

- \(M_{t_1} t_3 t_2 t_4 t_1 \cdot t_3 \in [132413]. \) This is a new double coset, which extends our graph from [13241] to [132413]. Since there is one element in this orbit, there is one \(t_i \) that takes [13241] to [132413].

- \(M_{t_1} t_3 t_2 t_4 t_1 \cdot t_4 \in [132414]. \) This is a new double coset, which extends our graph from [13241] to [132414]. Since there is one element in this orbit, there is one \(t_i \) that takes [13241] to [132414].

(ii) We are at a new double coset [13242], \(M_{t_1} t_3 t_2 t_4 t_2 N = \{ M(t_1 t_3 t_2 t_4 t_2)^n | n \in N \} \). Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer \(N^{13242} \), this means finding the set of elements that fix 1, 3, 2, 4, and
2 in N and permute the rest of the elements in the set $\{1, 2, 3, 4\}$. **Note:** $N^{(13242)} = \{n \in N | (t_1t_3t_2t_4t_2)^n = t_1t_3t_2t_4t_2 \} \geq \langle e \rangle$.

Since $|N^{(13242)}| = 1$ then the number of single cosets in $[13242]$ is $\frac{|N|}{|N^{(13242)}|} = \frac{4}{1} = 4$.

Now, the orbits of $N^{(13242)}$ on $\{1, 2, 3, 4\}$ are $\{1\}$, $\{2\}$, $\{3\}$, and $\{4\}$. We choose a representative from each orbit, and determine the double coset to which $N_{t_1t_3t_2t_4t_2t_i}$ belongs for $i = \{1, 2, 3, 4\}$.

- $Mt_1t_3t_2t_4t_2t_1 \cdot t_1 = Mt_1t_3t_2t_4t_2t_1 = Mt_2t_4t_1t_3t_2 \in [13241]$. This double coset will go back to $[13241]$. Since there is one element in this orbit, there is one t_i that takes $[13242]$ to $[13241]$.

- $Mt_1t_3t_2t_4t_2 \cdot t_2 = Mt_1t_3t_2t_4 \in [1324]$. This double coset will go back to $[1324]$. Since there is one element in this orbit, there is one t_i that takes $[13242]$ to $[1324]$.

- $Mt_1t_3t_2t_4t_2 \cdot t_3 = Mt_1t_3t_2t_4t_2t_3 = Mt_4t_1t_4t_2t_4t_3 = Mt_3t_2t_1t_4 \in [14132]$. This double coset will go back to $[14132]$. Since there is one element in this orbit, there is one t_i that takes $[13242]$ to $[14132]$.

- $Mt_1t_3t_2t_4t_2 \cdot t_4 = Mt_1t_3t_2t_4t_4 = Mt_3t_1t_2t_4t_2 = Mt_4t_1t_4t_2 \in [1413]$. This double coset will go back to $[1413]$. Since there is one element in this orbit, there is one t_i that takes $[13242]$ to $[1413]$.

(iii) We are at a new double coset $[14132]$, $Mt_1t_4t_3t_2N = \{M(t_1t_4t_1t_3t_2)^n | n \in N\}$. Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer $N^{(14132)}$, this means finding the set of elements that fix 1, 4, 1, 3, and 2 in N and permute the rest of the elements in the set $\{1, 2, 3, 4\}$. **Note:** $N^{(14132)} = \{n \in N | (t_1t_4t_1t_3t_2)^n = t_1t_4t_1t_3t_2 \}$

$\Rightarrow (t_1t_4t_1t_3t_2)^{(1,4)(2,3)} = t_1t_4t_1t_3t_2 = (1,3)(2,4)t_2t_3t_4t_2t_4t_3$

$= (1,3)(2,4)t_2t_3t_4t_2t_4t_3 = (1,4)(2,3)t_1t_3t_2t_4t_2t_4t_3 = (1,3)(2,4)t_2t_4t_1t_3t_4$

$= t_4t_3t_1t_3t_4 = (1,2)(3,4)t_3t_2t_3t_1t_3t_4$

$= t_4t_1t_4t_2t_3 = t_1t_4t_1t_3t_2 \geq ((1,4)(2,3))$.

Since $|N^{(14132)}| = 2$ then the number of single cosets in $[14132]$ is $\frac{|N|}{|N^{(14132)}|} = \frac{4}{2} = 2$.

Now, the orbits of $N^{(14132)}$ on $\{1, 2, 3, 4\}$ are $\{1, 4\}$ and $\{2, 3\}$. We choose a representative from each orbit, and determine the double coset to which $N_{t_1t_4t_1t_3t_2t_i}$ belongs for $i = \{1, 2\}$.
• $Mt_1 t_4 t_1 t_3 t_2 \cdot t_1 = Mt_1 t_4 t_1 t_3 t_2 t_1 = Mt_2 t_3 t_2 t_4 t_2 = Mt_1 t_1 t_2 t_4 t_2 t_4 = Mt_3 t_1 t_4 t_2 t_4 ∈ [13242]$. This double coset will go back to [13242]. Since there are two elements in this orbit, there are 2 $t_i s$ that take [14132] to [13242].

• $Mt_1 t_4 t_1 t_3 t_2 \cdot t_2 ∈ [1413]$. This double coset will go back to [1413]. Since there are two elements in this orbit, there are 2 $t_i s$ that take [14132] to [1413].

(iv) We are at a new double coset [14141], $Mt_1 t_4 t_1 t_4 t_1 N$

$= \{M(t_1 t_4 t_1 t_4 t_1)^n|n ∈ N\}$. Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer of N^{14141}, this means finding the set of elements that fix 1, 4, 1, 4, and 1 in N and permute the rest of the elements in the set $\{1, 2, 3, 4\}$.

Note: $N^{(14141)} = \{n ∈ N|(t_1 t_4 t_1 t_4 t_1)^n = t_1 t_4 t_1 t_4 t_1\} ≥ \langle e \rangle$.

Since $|N^{(14141)}| = 1$ then the number of single cosets in [14141] is $\frac{|N|}{|N^{14141}|} = \frac{4}{1} = 4$.

Now, the orbits of $N^{(14141)}$ on $\{1, 2, 3, 4\}$ are $\{1\}$, $\{2\}$, $\{3\}$, and $\{4\}$. We choose a representative from each orbit, and determine the double coset to which $Nt_1 t_4 t_1 t_4 t_1 t_i$ belongs for $i = \{1, 2, 3, 4\}$.

• $Mt_1 t_4 t_1 t_4 t_1 \cdot t_1 ∈ [1414]$. This double coset will go back to [1414]. Since there is one element in this orbit, there is one t_i that takes [14141] to [1414].

• $Mt_1 t_4 t_1 t_4 t_1 \cdot t_2 = Mt_1 t_4 t_1 t_4 t_1 t_2 = Mt_2 t_3 t_2 t_3 t_1 ∈ [14142]$. This double coset will go back to [14142]. Since there is one element in this orbit, there is one t_i that takes [14141] to [14142].

• $Mt_1 t_4 t_1 t_4 t_1 \cdot t_3 ∈ [132414]$. This double coset will go to [132414]. Since there is one element in this orbit, there is one t_i that takes [14141] to [132414].

• $Mt_1 t_4 t_1 t_4 t_1 \cdot t_4 ∈ [141414]$. This is a new double coset, which extends our graph from [14141] to [141414]. Since there is one element in this orbit, there is one t_i that takes [14141] to [141414].

(v) We are at a new double coset [14142], $Mt_1 t_4 t_1 t_4 t_2 N$

$= \{M(t_1 t_4 t_1 t_4 t_2)^n|n ∈ N\}$. Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer N^{14142}, this means finding the set of elements that fix 1, 4, 1, 4, and 2 in N and permute the rest of the elements in the set $\{1, 2, 3, 4\}$.

Note: $N^{(14142)} = \{n ∈ N|(t_1 t_4 t_1 t_4 t_2)^n = t_1 t_4 t_1 t_4 t_2\} ≥ \langle e \rangle$.

(vi) We are at a new double coset \([14231]\), \(Mt\) that fix 1, 4, 2, 3, and 1 in \(N\) we need to determine the point stabilizer \(Nt\) representative from each orbit, and determine the double coset to which \(Nt1t4t1t3t2t1\) belongs for \(i = \{1, 2, 3, 4\}\).

- \(Mt1t4t1t4t2t1 = Mt1t4t1t4t2t1\)

 \(= Mt2t3t2t3t2 \in [14141]\). This double coset will go back to [14141]. Since there is one element in this orbit, there is one \(t_i\) that takes [14142] to [14141].

- \(Mt1t4t1t4t2t1 = Mt1t4t1t4t2t1\)

 \(= Mt3t3t3t3 \in [1414]\). This double coset will go back to [1414]. Since there is one element in this orbit, there is one \(t_i\) that takes [14142] to [1414].

- \(Mt1t4t1t4t2t1 = Mt1t4t1t4t2t1\)

 \(= Mt4t4t4t4 \in [14142]\). This double coset will collapse. Since there is one element in this orbit, there is one \(t_i\) that takes [14142] to [14142].

- \(Mt1t4t1t4t2t1 = Mt1t4t1t4t2t1\)

 \(= Mt5t5t5t5 \in [141424]\). This is a new double coset, which extends our graph from [14142] to [141424]. Since there is one element in this orbit, there is one \(t_i\) that takes [14142] to [141424].

Now, the orbits of \(N^{(14142)}\) on \(\{1, 2, 3, 4\}\) are \(\{1\}\), \(\{2\}\), \(\{3\}\), and \(\{4\}\). We choose a representative from each orbit, and determine the double coset to which \(Nt1t4t1t3t1t4\) belongs for \(i = \{1, 2, 3, 4\}\).

\(Mt1t4t2t3t1 = Mt1t4t2t3t1\)

This double coset will go back to [1423]. Since there is one element in this orbit, there is one \(t_i\) that takes [14231] to [1423].

\(Mt1t4t2t3t1 = Mt1t4t2t3t1\)

This double coset will go to [141424]. Since there is one element in this orbit, there is one \(t_i\) that takes [14231] to [14232].
\[Mt_1t_4t_2t_3t_1 \cdot t_4 \in [14231].\] This double coset will collapse. Since there is one element in this orbit, there is one \(t_i\) that takes [14231] to [14231].

(vii) We are at a new double coset [14232], \(Mt_1t_4t_2t_3t_2N = \{M(t_1t_4t_2t_3t_2)^n|n \in N\}.\)

Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer \(N^{14232}\), this means finding the set of elements that fix 1, 4, 2, 3, and 2 in \(N\) and permute the rest of the elements in the set \{1, 2, 3, 4\}. **Note:**

\[N^{(14232)} = \{n \in N|(t_1t_4t_2t_3t_2)^n = t_1t_4t_2t_3t_2\}\]

\[\Rightarrow (t_1t_4t_2t_3t_2)^{(1,4)(2,3)} = t_4t_1t_3t_2 = t_3t_1t_3t_2 \geq \langle (1,4)(2,3) \rangle.\]

Since \(|N^{(14232)}| = 2\) then the number of single cosets in [14232] is \(\frac{|N|}{|N^{(14232)}|} = \frac{4}{2} = 2.\)

Now, the orbits of \(N^{(14232)}\) on \{1, 2, 3, 4\} are \{1, 4\} and \{2, 3\}. We choose a representative from each orbit, and determine the double coset to which \(Mt_1t_4t_2t_3t_2t_i\) belongs for \(i = \{1, 2\}.

\[Mt_1t_4t_2t_3t_2 \cdot t_1 = Mt_1t_4t_2t_3t_1 = Mt_2t_3t_1t_4t_2 \in [14231].\] This double coset will back to [14231]. Since there are two elements in this orbit, there are 2 \(t_i\)s that take [14232] to [14231].

\[Mt_1t_4t_2t_3t_2 \cdot t_2 \in [1423].\] This double coset will back to [1423]. Since there are two elements in this orbit, there are 2 \(t_i\)s that take [14232] to [1423].

Word of Length six [132413], [132414], [141414], and [141424]:

(i) We are at a new double coset [132413], \(Mt_1t_3t_2t_4t_1t_3N = \{M(t_1t_3t_2t_4t_1t_3)^n|n \in N\}.\)

Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer \(N^{132413}\), this means finding the set of elements that fix 1, 3, 2, 4, 1, and 3 in \(N\) and permute the rest of the elements in the set \{1, 2, 3, 4\}. **Note:**

\[N^{(132413)} = \{n \in N|(t_1t_3t_2t_4t_1t_3)^n = t_1t_3t_2t_4t_1t_3\} \geq \langle e \rangle.\]

Since \(|N^{(132413)}| = 1\) then the number of single cosets in [132413] is \(\frac{|N|}{|N^{(132413)}|} = \frac{4}{1} = 4.\)

Now, the orbits of \(N^{(132413)}\) on \{1, 2, 3, 4\} are \{1\}, \{2\}, \{3\}, and \{4\}. We choose a representative from each orbit, and determine the double coset to which \(Mt_1t_3t_2t_4t_1t_3t_i\) belongs for \(i = \{1, 2, 3, 4\}.

\[Mt_1t_3t_2t_4t_1t_3 \cdot t_1 \in [132413].\] This double coset will collapse to [132413]. Since there is one element in this orbit, there is one \(t_i\) that takes [132413] to [132413].
• $Mt_1t_3t_2t_4t_1t_3 \cdot t_2 \in [132412]$. This is a new double coset, which extends our graph from $[132413]$ to $[132412]$. Since there is one element in this orbit, there is one t_i that takes $[132413]$ to $[132412]$.

• $Mt_1t_3t_2t_4t_1t_3 \cdot t_3 \in [132413]$. This double coset will go back to $[13241]$. Since there is one element in this orbit, there is one t_i that takes $[132413]$ to $[13241]$.

• $Mt_1t_3t_2t_4t_1t_3 \cdot t_4 = Mt_1t_3t_2t_4t_1t_3t_4 = Mt_2t_4t_1t_3t_2t_3 \in [132414]$. This double coset will go to $[132414]$. Since there is one element in this orbit, there is one t_i that takes $[132413]$ to $[132414]$.

(ii) We are at a new double coset $[132414]$, $Mt_1t_3t_2t_4t_1t_4N = \{M(t_1t_3t_2t_4t_1t_4)^n | n \in N\}$. Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer $N^{[132414]}$, this means finding the set of elements that fix 1, 3, 2, 4, 1, and 4 in N and permute the rest of the elements in the set $\{1, 2, 3, 4\}$. Note: $N^{[132414]} = \{n \in N | (t_1t_3t_2t_4t_1t_4)^n = t_1t_3t_2t_4t_1t_4 \} \geq \langle e \rangle$.

Since $|N^{[132414]}| = 1$ then the number of single cosets in $[132414]$ is $\frac{|N|}{|N^{[132414]}|} = \frac{4}{1} = 4$.

Now, the orbits of $N^{[132414]}$ on $\{1, 2, 3, 4\}$ are $\{1\}$, $\{2\}$, $\{3\}$, and $\{4\}$. We choose a representative from each orbit, and determine the double coset to which $Nt_1t_3t_2t_4t_1t_4t_i$ belongs for $i = \{1, 2, 3, 4\}$.

• $Mt_1t_3t_2t_4t_1t_4 \cdot t_1 \in [141414]$. This double coset will go to $[141414]$. Since there is one element in this orbit, there is one t_i that takes $[132414]$ to $[141414]$.

• $Mt_1t_3t_2t_4t_1t_4 \cdot t_2 \in [14141]$. This is a new double coset, which extends our graph from $[132414]$ to $[14141]$. Since there is one element in this orbit, there is one t_i that takes $[132414]$ to $[14141]$.

• $Mt_1t_3t_2t_4t_1t_4 \cdot t_5 = Mt_1t_3t_2t_4t_1t_3t_4 = Mt_2t_4t_1t_3t_2t_3 \in [132413]$. This double coset will go back to $[132413]$. Since there is one element in this orbit, there is one t_i that takes $[132414]$ to $[132413]$.

• $Mt_1t_3t_2t_4t_1t_4 \cdot t_4 \in [13241]$. This double coset will back to $[13241]$. Since there is one element in this orbit, there is one t_is that extend $[132414]$ to $[13241]$.

(iii) We are at a new double coset \([141414]\), \(Mt_1t_4t_1t_4t_1t_4N\)
\[= \{M(t_1t_4t_1t_4t_1t_4)n|n \in N\}\]. Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer \(N^{141414}\), this means finding the set of elements that fix 1, 4, 1, 4, 1, and 4 in \(N\) and permute the rest of the elements in the set \(\{1, 2, 3, 4\}\).

Note: \(N^{141414} = \{n \in N|(t_1t_4t_1t_4t_1t_4)n = t_1t_4t_1t_4t_1t_4\} \geq \langle e \rangle\).

Since \(|N^{141414}| = 1\) then the number of single cosets in \([141414]\) is \(\frac{|N|}{|N^{141414}|} = \frac{4}{1} = 4\).

Now, the orbits of \(N^{141414}\) on \(\{1, 2, 3, 4\}\) are \(\{1\}\), \(\{2\}\), \(\{3\}\), and \(\{4\}\). We choose a representative from and determine the double coset to which \(Nt_1t_4t_1t_4t_1t_4t_i\) belongs for \(i = \{1, 2, 3, 4\}\).

- \(Mt_1t_4t_1t_4t_1t_4 \cdot t_1 = Mt_1t_4t_1t_4t_1t_4 = Mt_1t_4t_1t_4t_1t_4 \in [141414]\). This double coset will collapse to [141414]. Since there is one element in this orbit, there is one \(t_i\) that takes [141414] to [141414].

- \(Mt_1t_4t_1t_4t_1t_4 \cdot t_2 \in [1414142]\). This is a new double coset will go to [1414142], which extends our graph from [141414] to [1414142]. Since there is one element in this orbit, there is one \(t_i\) that takes [141414] to [1414142].

- \(Mt_1t_4t_1t_4t_1t_4 \cdot t_3 \in [132414]\). This double coset will go to [132414]. Since there is one element in this orbit, there is one \(t_i\) that takes [141414] to [132414].

- \(Mt_1t_4t_1t_4t_1t_4 \cdot t_4 \in [14141]\). This double coset will go back to [14141]. Since there is one element in this orbit, there is one \(t_i\) that takes [141414] to [14141].

(iv) We are at a new double coset \([141424]\), \(Mt_1t_4t_1t_4t_2t_4N\)
\[= \{M(t_1t_4t_1t_4t_2t_4)n|n \in N\}\]. Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer \(N^{141424}\), this means finding the set of elements that fix 1, 4, 1, 4, 2, and 4 in \(N\) and permute the rest of the elements in the set \(\{1, 2, 3, 4\}\).

Note: \(N^{141424} = \{n \in N|(t_1t_4t_1t_4t_2t_4)n = t_1t_4t_1t_4t_2t_4\}\)
\[\Rightarrow (t_1t_4t_1t_4t_2t_4)^{(1,2)(3,4)} = t_2t_3t_2t_3t_1t_3 = t_1t_4t_1t_4t_2t_4 \geq ((1,2)(3,4))\).

Since \(|N^{141424}| = 2\) then the number of single cosets in \([141424]\) is \(\frac{|N|}{|N^{141424}|} = \frac{4}{2} = 2\).

Now, the orbits of \(N^{141424}\) on \(\{1, 2, 3, 4\}\) are \(\{1, 2\}\) and \(\{3, 4\}\). We choose a representative from each orbit, and determine the double coset to which \(Nt_1t_4t_1t_4t_2t_4t_i\) belongs for \(i = \{2, 4\}\).

- \(Mt_1t_4t_1t_4t_2t_4 \cdot t_2 = Mt_1t_4t_1t_4t_2t_4 = Mt_3t_2t_3t_2t_4 = Mt_4t_1t_3t_2t_4 \in [14231]\). This
double coset will go back to [14231]. Since there are two elements in this orbit, there are 2 t_is that take [141424] to [14231].

- $Mt_1t_4t_1t_4t_2t_4 \cdot t_4 \in [14142]$. This double coset will go back to [1423]. Since there are two elements in this orbit, there are 2 t_is that take [141424] to [14142].

Word of Length seven [1324132] and [1414142]:

(i) We are at a new double coset [1324132],

$Mt_1t_3t_2t_4t_1t_3t_2N = \{M(t_1t_3t_2t_4t_1t_3t_2)^n | n \in N\}$. Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer $N^{1324132}$, this means finding the set of elements that fix 1, 4, 1, 4, 1, 4, and 2 in N and permute the rest of the elements in the set $\{1, 2, 3, 4\}$.

Note: $N^{1324132} = \{n \in N | (t_1t_3t_2t_4t_1t_3t_2)^n = t_1t_3t_2t_4t_1t_3t_2 \} \geq \langle (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3) \rangle$. Since $|N^{1324132}| = 4$ then the number of single cosets in [1324132] is $\frac{|N|}{|N^{1324132}|} = \frac{4}{4} = 1$.

Now, the orbits of $N^{1324132}$ on $\{1, 2, 3, 4\}$ are $\{1, 2, 3, 4\}$. If we choose a representative from that orbit we will go back to [132413].

(ii) We are at a new double coset [1414142],

$Mt_1t_4t_1t_4t_1t_4t_2N = \{M(t_1t_4t_1t_4t_1t_4t_2)^n | n \in N\}$. Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer $N^{1414142}$, this means finding the set of elements that fix 1, 4, 1, 4, 1, 4, and 2 in N and permute the rest of the elements in the set $\{1, 2, 3, 4\}$.

Note: $N^{1414142} = \{n \in N | (t_1t_4t_1t_4t_1t_4t_2)^n = t_1t_4t_1t_4t_1t_4t_2 \} \geq \langle (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3) \rangle$.

Since $|N^{1414142}| = 4$ then the number of single cosets in [1414142] is $\frac{|N|}{|N^{1414142}|} = \frac{4}{4} = 1$.

Now, the orbits of $N^{1414142}$ on $\{1, 2, 3, 4\}$ are $\{1, 2, 3, 4\}$. If we choose a representative from that orbit we will go back to [141414].

Conclusion:

The double coset enumeration gives that

$|G| \leq |M| + |Mt_1N| + |Mt_1t_3N| + |Mt_1t_4N| + |Mt_1t_3t_1N| + |Mt_1t_3t_2N| + |Mt_1t_4t_1N| + |Mt_1t_4t_2N| + |Mt_1t_3t_1t_3N| + |Mt_1t_3t_2t_3N| + |Mt_1t_3t_2t_4N| + |Mt_1t_4t_1t_4N| + |Mt_1t_4t_2t_3N| + |Mt_1t_4t_2t_4N|$
\[+ |Mt_1t_3t_2t_4t_1N| + |Mt_1t_3t_2t_4t_2N| + |Mt_1t_4t_1t_3t_2N| + |Mt_1t_4t_1t_4t_2N| + |Mt_1t_4t_2t_3t_1N| + |Mt_1t_4t_2t_3t_2N| + |Mt_1t_3t_2t_4t_1t_3N| + |Mt_1t_3t_2t_4t_1t_4N| + |Mt_1t_4t_1t_4t_1t_4N| + |Mt_1t_4t_1t_4t_2t_4N| + |Mt_1t_3t_2t_4t_1t_3t_2N| + |Mt_1t_4t_1t_4t_1t_4t_2N| \times |M| \\
= (1 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 2 + 2 + 4 + 4 + 4 + 4 + 2 + 4 + 4 + 2 + 4 + 4 + 2 + 4 + 4 + 2 + 4 + 4 + 4 + 4 + 2 + 2 + 4 + 4 + 4 + 2 + 1 + 1) \times 12 \\
= (91 \times 12) = 1092. \text{ A Cayley diagram of } G \text{ over } L_2(13) \text{ is given below.}
Figure 7.1: Cayley Diagram for $L_2(13)$ Over M and N
Example 7.6. We prove the following group is simple by using its Cayley diagram.

\[G = \frac{2^4 : S_3 : 2}{[(xy)t]^7, [xt]^3, [(xy)t]^{13}} \cong L_2(13) \]

Solution: In order to prove \(G \) is simple, we need to show:

Step 1: \(G \) acts faithfully and primitively)

(i) Suppose we have the G-set call it \(X \), then to show \(G \) is primitive we will show that \(G \) is transitive and has no nontrivial blocks of \(X \) under the action \(G \).

By using the Cayley diagram of \(G \), we have

\[X = \{ M, Mt_1, Mt_2, Mt_3, Mt_4, ... , Mt_{t_1 t_4 t_4 t_2} \}, \Rightarrow |X| = 91. \]

We know \(X \) is transitive G-set by using the diagram (since any group \(G \) represented by a Cayley diagram is transitive). Next, we note that if \(B \) is a block of \(X \) under the action of \(G \) then \(|B| \) has to divide \(|X| \).

So, possible orders of \(B \) are positive divisors of 91. Thus \(|B| = 1, 7, 13, 91. \)

We will discard the orders 1 and 91 because these are trivial blocks. Now, a nontrivial block must be of size 7, or 13. From the Cayley diagram we see that a nontrivial block of size 7 is impossible. We rule out the possibility of a nontrivial block of size 13, here is an example,

Suppose, \(|B| = 13 \), and \(B = \{ Mt_{t_1 t_4 t_4 t_4 t_2}, Mt_{t_4 t_4 t_4 t_4 t_2} \}. \)

1. \(B_1 = \{ Mt_{t_2 t_3 t_2 t_3 t_2}, Mt_{t_4 t_4 t_4 t_4 t_2} \}. \)

2. \(B_2 = \{ Mt_{t_4 t_4 t_4 t_4 t_2}, Mt_{t_4 t_4 t_4 t_4 t_2} \}. \)

3. \(B_3 = \{ Mt_{t_4 t_4 t_4 t_4 t_2}, Mt_{t_4 t_4 t_4 t_4 t_2} \}. \)
4. $Bt_4 = \{ Mt_1 t_1 t_1 t_1 t_4 t_4 t_4, Mt_1 t_4 t_4 t_4 t_4 t_1 t_3, Mt_4 t_4 t_4 t_4 t_4 t_1 t_4, Mt_3 t_2 t_3 t_2 t_4, Mt_1 t_4 t_4 t_4 t_4 t_1 t_4, Mt_2 t_3 t_2 t_3 t_2 t_4, Mt_4 t_1 t_1 t_3, Mt_1 t_3 t_2 t_4 t_1 t_3, Mt_3 t_1 t_4 t_2 t_3 t_4, Mt_4 t_3 t_3 t_4 t_1 t_4 t_4 \}.$

We can see clearly that $\{ Bt_1, Bt_2, Bt_3, Bt_4 \} \cap B \neq \phi$ and $\{ Bt_1, Bt_2, Bt_3, Bt_4 \} \neq B$, so B has no possibilities for a block of any of the sizes.

Since G is transitive, and X has no a nontrivial block, then G acts primitively. (ii) To show G act faithful on X, we know that G acts on X implies there exist homomorphism $f : G \to S_X$, where $|X| = 91$.

By First Isomorphic Theorem, $G/kerf \cong f(G)$. So, if $kerf = 1$ then $G \cong f(G)$. Only elements of M fix M that implies G_1 is the point stabilizer of I in G, $G_1 = M$.

$\Rightarrow |G| = 91 \times |G_1| = 91 \times |M| = 91 \times 12 = 1092.$

$\Rightarrow |G| = 1092.$

From Cayley Diagram, $|G| = 1092$. G will not be faithful on X if $kerf > 1$ and $|G| > 1092$.

Thus, G acts faithfully on $|X|$ since $kerf = 1$. Thus, G acts faithfully and primitively on X.

Step 2: G is perfect ($G = G'$)

Note: $G = \langle x, y, t \rangle = \langle t_1, t_2, t_3, t_4 \rangle$ and $2^2 = \langle x, y \rangle = \langle (1, 2)(3, 4), (1, 3)(2, 4) \rangle$, $xy = (1, 4)(2, 3)$

Let us take the relation $t_1 t_4 t_4 t_1 t_4 t_3 = t_1 t_3 t_2 t_4 t_1 t_4 t_2 t_3 t_2.$

Conjugate the both sides by t_1 as $(t_1 t_4 t_1 t_4 t_3)^{t_1} = (t_1 t_3 t_2 t_1 t_4 t_2 t_3 t_4 t_2 t_3 t_2)^{t_1}$

$\Rightarrow (t_1^{-1})(t_1 t_4 t_1 t_4 t_4 t_3)(t_1) = (t_1^{-1})(t_1 t_3 t_2 t_1 t_4 t_2 t_3 t_1 t_4 t_2 t_3 t_2)(t_1).$

$\Rightarrow t_1 t_4 t_1 t_4 t_4 t_3 t_1 = t_1 t_1 t_3 t_2 t_4 t_1 t_4 t_1 t_4 t_2 t_3 t_1 t_4 t_2 t_3 t_2.$

$\Rightarrow t_4 t_1 t_4 t_1 t_4 t_3 t_1 = t_3 t_2 t_4 t_1 t_4 t_2 t_3 t_1 t_4 t_2 t_3 t_2.$

$\Rightarrow t_4 t_1 t_4 t_1 t_4 t_3 t_1 = t_3 t_2 t_4 t_1 t_4 t_2 t_3 t_1 t_4 t_2 t_3 t_2.$

$\Rightarrow t_4 t_1 t_4 t_1 t_4 t_3 t_1 = t_3 t_2 t_4 t_1 t_4 t_2 t_3 t_1 t_4 t_2 t_3 t_2.$

$\Rightarrow [t_4, t_1][t_4 t_3 t_1] = t_3 t_2 t_4 t_1 t_4 t_2 t_3 t_1 t_4 t_2 t_3 t_2.$

$\Rightarrow [t_4, t_1] = t_3 t_2 t_4 t_1 t_4 t_2 t_3 t_1 t_4 t_2 t_3 t_2.$

$\Rightarrow [t_4, t_1] = t_3 t_2 t_4 t_1 t_4 t_2 t_3 t_1 t_4 t_2 t_3 t_2.$

$\Rightarrow [t_4, t_1] = t_3 t_2 t_4 t_1 t_4 t_2 t_3 t_1 t_4 t_2 t_3 t_2.$

$\Rightarrow [t_4, t_1] = t_3 t_2 t_4 t_1 t_4 t_2 t_3 t_1 t_4 t_2 t_3 t_2.$

$\Rightarrow [t_4, t_1] = t_3 t_2 t_4 t_1 t_4 t_2 t_3 t_1 t_4 t_2 t_3 t_2.$

$\Rightarrow [t_4, t_1] = t_3 t_2 t_4 t_1 t_4 t_2 t_3 t_1 t_4 t_2 t_3 t_2.$

$\Rightarrow [t_4, t_1] = t_3 t_2 t_4 t_1 t_4 t_2 t_3 t_1 t_4 t_2 t_3 t_2.$

$\Rightarrow [t_4, t_1] = t_3 t_2 t_4 t_1 t_4 t_2 t_3 t_1 t_4 t_2 t_3 t_2.$

$\Rightarrow [t_4, t_1] = t_3 t_2 t_4 t_1 t_4 t_2 t_3 t_1 t_4 t_2 t_3 t_2.$

$\Rightarrow [t_4, t_1] = t_3 t_2 t_4 t_1 t_4 t_2 t_3 t_1 t_4 t_2 t_3 t_2.$

$\Rightarrow [t_4, t_1] = t_3 t_2 t_4 t_1 t_4 t_2 t_3 t_1 t_4 t_2 t_3 t_2.$

$\Rightarrow [t_4, t_1] = t_3 t_2 t_4 t_1 t_4 t_2 t_3 t_1 t_4 t_2 t_3 t_2.$

$\Rightarrow [t_4, t_1] = t_3 t_2 t_4 t_1 t_4 t_2 t_3 t_1 t_4 t_2 t_3 t_2.$

$\Rightarrow [t_4, t_1] = t_3 t_2 t_4 t_1 t_4 t_2 t_3 t_1 t_4 t_2 t_3 t_2.$

$\Rightarrow [t_4, t_1] = t_3 t_2 t_4 t_1 t_4 t_2 t_3 t_1 t_4 t_2 t_3 t_2.$
We see the left side is belong to G', so the right side is belong to G'.

$\Rightarrow t_3 \in G'$, then we conjugate t_3 by x, y, and xy to get t_4, t_1, and t_2 respectively. So, $G' \geq \langle t_1, t_2, t_3, t_4 \rangle$, and we know that $G = \langle t_1, t_2, t_3, t_4 \rangle$.

So, $G' \geq \langle t_1, t_2, t_3, t_4 \rangle = G$, and $G' \subseteq G$.

$\Rightarrow G' = G$. Thus, G is perfect.
Step 3: Show there exists a normal abelian subgroup \(K \leq G \) such that \(K \triangleleft G \), and the conjugates of \(K \) generate \(G \).

We now that \(G_1 = N = 2^2 \), and \(N \) is a normal abelian subgroup of \(G \) has center 1. So, \(K = N = (1,2)(3,4), (1,3)(2,4) \).

Let take \((1,4)(2,3) ∈ K\), and let use the relation \(t_1t_4t_1t_3t_1 = (1,4)(2,3)t_4t_2t_3t_1t_3 \).

\[t_1t_4t_1t_3t_1t_3t_4t_2t_4 = (1,4)(2,3) \]

Since \(t_1t_4t_1t_3t_1t_3t_4t_2t_4 \in K \) and \(t_4 \in G \)

We have \((t_1t_4t_1t_3t_1t_3t_4t_2t_4)^{t_4} ∈ K^G\)

\[(t_4)^{-1}(t_1t_4t_1t_3t_1t_3t_4t_2t_4)(t_4) ∈ K^G \]

\[t_4t_1t_4t_1t_3t_1t_3t_2t_4t_4 ∈ K^G \]

\[t_4t_1t_4t_1t_3t_1t_3t_2t_2 ∈ K^G \]

\[t_4t_1t_4t_1t_3t_1t_3t_2t_2t_2 ∈ K^G \]

\[t_4t_1t_4(1,3)(2,4)t_1t_2 ∈ K^G \]

\[(1,3)(2,4)t_2t_3t_2t_1t_2 ∈ K^G \]

\[(1,3)(2,4)t_2t_3t_2t_1t_2 ∈ K^G \]

\[(1,4)(2,3)t_1t_4 ∈ K^G \]

\[(1,4)(2,3)t_4t_4 ∈ K^G \]

\[t_1t_4t_1t_4t_1t_4t_1t_4t_1t_4t_1 ∈ K^G \]

\[(t_1t_4t_1t_4t_1t_4t_1t_4t_1)(t_1t_4t_1t_4t_1) ∈ K^G \]

\[(t_1t_4t_1t_4t_1)^{-1}(t_1t_4t_1t_4t_1t_4t_1t_4t_1)(t_1t_4t_1t_4t_1) ∈ K^G \]

\[t_1t_4t_1t_4t_1t_4t_1t_4t_1t_4t_1t_4t_1t_4t_1t_4t_1t_4t_1t_4t_1t_4t_1t_4t_1t_4t_1t_4t_1t_1 ∈ K^G \]

\[t_4 ∈ K^G \]

\[K^G \supset \{t_4, t_4^2, t_4^3, t_4^4\} \]

\[K^G \supset \{t_4, t_3, t_2, t_1\} = \langle t_4, t_3, t_2, t_1 \rangle = G \]

\[G = K^G. \]

From the steps (1), (2), and (3) and by Iwasawa’s Lemma \(G \) is simple group.
7.3 Construction of S_6

We take the progenitor $2^{*5} : S_5$, where 2^{*5} is the free product of 5 copies of the cyclic groups of order 2, and S_5 is the group of automorphisms of 2^{*5} which permutes the five symmetric generators by conjugation and factor it by the relation $(012) = t_0t_1t_2t_0$.

The double coset enumeration partitions the image of the group G as a union double cosets NgN where $g \in 2^{*5} \times S_5$. Thus, we can find the set of elements $g_1, g_2, ...$ of G such that $G = Ng_1 \cup Nw_2N \cup ...$, and for each i, we have $g_i = p_iw_i$, where $p_i \in N$, and w_i is a word in the t_is. Hence, the double coset decomposition is given by

$$G = Nw_1N \cup Nw_2N \cup Nw_3N \cup ...$$

where $w_1 = e$ (the identity). We perform a double coset enumeration of the group $2^{*5} : S_5$ over S_5. We will show

$$G = \frac{2^{*5} : S_5}{[(012) = tt^2t^2t]} \cong S_6 \times 2.$$

A symmetric presentation of the progenitor $2^{*5} : S_5$ is given by:

$$2^{*5} : S_5 \cong \langle x, y, t \rangle : \text{Group} < x, y, t | x^5, y^2, (x^{-1}y)^4, (x^2y^2x^{-2}y^2)^2, t^2, (t, y), (t, yx^2y), (t, x^{-2}y^2), (t, yxy^2x^2y) >.$$

G factored by $[(012) = tt^2t^2t]$. $N \cong S_5 = \langle x, y \rangle$, where $x \sim (0,1,2,3,4)$ and $y \sim (1,2)$ and $t = t_5 = t_0$.

Using computer-based program - MAGMA:

1. The order of the group, $|G|$ is equal to 120.
2. There are 4 double coset in this double coset enumeration of G over S_5.

Relations

We see that

$$(012) = t_0t_1t_2t_0 \Rightarrow (012)t_0t_2 = t_0t_1 \Rightarrow Nt_0t_2 = Nt_0t_1.$$

Moreover, if we conjugate the previous relation by all elements in S_5. Therefore, the different cosets are:

(1) $((012)t_0t_2 = t_0t_1)^{c} \Rightarrow (012)t_0t_2 = t_0t_1$
(2) \((012)t_0t_2 = t_0t_1 \Rightarrow (123)t_1t_3 = t_1t_2\)
(3) \((012)t_0t_2 = t_0t_1 \Rightarrow (102)t_1t_2 = t_1t_0\)
(4) \((012)t_0t_2 = t_0t_1 \Rightarrow (104)t_1t_4 = t_1t_0\)
(5) \((012)t_0t_2 = t_0t_1 \Rightarrow (321)t_3t_1 = t_3t_2\)

\[
\Rightarrow 01 \approx 02 \approx 03 \approx 04, 10 \approx 12 \approx 13 \approx 14, 20 \approx 21 \approx 23 \approx 24, 30 \approx 31 \approx 32 \approx 34, \text{ and } 40 \approx 41 \approx 42 \approx 43.
\]

Double Coset Enumeration of \(G\) over \(S_5\): Double Coset \([*]\):

We start with the double coset \(NeN\), where \(e\) is word of length zero, denoted by \([*]\). We have

\[
NeN = \{Ne : n \in N\} = \{Ne\} = \{N\}
\]

So, the double coset \(NeN\) consists of the single coset \(N\). Thus, \(\frac{|N|}{|N|} = \frac{120}{120} = 1\).

Note, since \(N\) is transitive on \(\{0, 1, 2, 3, 4\}\), we take a representative coset \(N\) from \([*]\) and a representative from \(\{0, 1, 2, 3, 4\}\) and determine the double coset to which \(Nt_i\) belongs, where \(i \in \{0, 1, 2, 3, 4\}\). We consider \(i = 0\), so \(Nt_0\) is a representative coset, and hence we will have a new double coset \(Nt_0N\) which can denoted by \([0]\). There will be three possible \(t_i\)s in \([*]\) that will advance to the next double coset \([0]\).

Word of Length One \([0]\):

we consider the double coset \(NwN\), where \(w\) is a word of length one. \(Nt_0N = \{Nt_0^n : n \in N\}\), or \([0]\). We need to find the point stabilizer of 0. So, \(Nt_0N = \{0\} = \{Nt_0^n : n \in N\} = \{Nt_0N, Nt_1N, Nt_2N, Nt_3N, Nt_4N\}\). Since, the point stabilizer of 0 in the subgroup \(N\) is the permutations in \(N\) that fixes 0 and permute the rest of the elements in the set \(\{1, 2, 3, 4\}\). **Note:** \(N^{(0)} = \{n \in N | (t_0)^n = t_0\} \geq \{(1, 2), (2, 3), (1, 4, 3, 2), (3, 4)\}\).

Since \(|N^{(0)}| = 24\) then the number of single cosets in \([0]\) is \(\frac{|N|}{|N^{(0)}|} = \frac{120}{24} = 5\).

Now, the orbits of \(N^{(0)}\) on \(\{0, 1, 2, 3, 4\}\) are \(\{0\}\) and \(\{1, 2, 3, 4\}\). We choose a representative from each orbit, \(\{0\}\) and \(\{1, 2, 3, 4\}\). If we choose \(t_0\) from the orbit \(\{0\}\) and choose \(t_1\) from the orbit \(\{1, 2, 3, 4\}\), then we notice the following
\[N_t \cdot t_0 = N t_0^2 = N \in [\ast]. \] This will go back to \([\ast].\) This is denoted by number 1 in the Cayley diagram (to the left of the circle containing 3).

\[N_t \cdot t_1 = N t_0 t_1 \in [01]. \] This is a new double coset, which will extend the Cayley graph from \([0]\) to \([01].\) Since there are 4 elements in this orbit, then there will be 4 \(t_i's\) that take \([0]\) to \([01].\)

\[N_t N = \{ N(t_0)^n | n \in N \} = \{ Nt_0, Nt_1, Nt_2, Nt_3, Nt_4 \}. \]

Word of Length Two \([01]:\)

We are at a new double coset \([01],\) \(N t_0 t_1 N = \{ N(t_0 t_1)^n | n \in N \}.\) Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer \(N^{01},\) this means finding the set of elements that fix 0 and 1 in \(N\) and permute the rest of the elements in the set \(\{2, 3, 4\}.\) Now, using our relation \((0,1,2)t_0 t_2 = t_0 t_1.\)

\[\Rightarrow N^{01} \geq \{(1,3,4), (1,2,4), (1,3,2), (1,2)(3,4), (1,3,2), (1,2),(3,4), (1,4,2), (2,4), (1,2,4,3), (1,2,3,4), (1,4), (1,3,2,4), (3,4), (1,4,3), (1,4,2,3), (1,2), (1,3), (1,4,3,2), (1,3,4,2)\}. \] Thus, \(|N^{01}| = 24.\)

So, the number of single cosets in \([01]\) is \(\frac{|N|}{|N^{01}|} = \frac{120}{24} = 5.\) In order to find these 5 single cosets, we need to determine the transversals (right coset representatives) of \(N^{01}.\) The 5 single distinct cosets of the double coset \([01]\) are: \(\{N_t_0 t_1, N_t_1 t_2, N_t_2 t_3, N_t_3 t_2, N_t_4 t_3\}.\)

Now, we need to find the orbits of \(N^{01}\) to advance to the next double coset. The orbits of \(N^{01}\) on \(\{0,1,2,3,4\}\) are: \(\{0\}, \text{and} \{1,2,3,4\}.\) Considering a representative from each orbit of \(N^{01}\), we will choose the following representative from each orbit: \(t_0 \) from \(\{0\}\) and \(t_1 \) from \(\{1,2,3,4\}.\) Multiply each representative with \(N t_0 t_1, :\)

\[N t_0 t_1 \cdot t_0 = N t_0 t_1 t_0 \in [01]. \] This is a new double coset, which extends our graph from \([01]\) to \([010].\) Since there is 1 element in this orbit, there is one \(t_i\) that take \([01]\) to \([010].\)

\[N t_0 t_1 \cdot t_1 \in [0]. \] This will go back to \([0]\). Since there is 4 element in this orbit, there are 4 \(t_i's\) that take \([01]\) to \([0].\)

Word of Length Three \([010]:\)

Again we need to find the point stabilizer of 0, 1, and 0. This is denoted by \(N^{010}.\) Therefore, we need to find the permutations in \(N\) that fixes 0, 1 and 0. The coset
stabilizer of the coset $t_0t_1t_0$, $N^{(010)} \geq N^{(010)}$. Using the relation $(012)t_0t_2 = t_0t_1$, we multiply both sides by t_0 to get $(0,1,2)t_0t_2t_0 = t_0t_1t_0$.

$\Rightarrow N^{(010)} \geq \langle(0,1,2,3,4),(1,2)\rangle \cong S_6$. Hence, $|N^{(010)}| = N = 120$.

so $\frac{|N|}{|N^{(010)}|} = \frac{120}{120} = 1$. Therefore, there are 1 distinct coset representative. There is single distinct coset of the double coset $[010]$ are: $\{Nt_0t_1t_0\}$. The transversal of $N^{(010)}$ in N is: $Nt_0t_1t_0$, and the orbit of $N^{(010)}$ in $\{0,1,2,3,4\}$ is $\{0,1,2,3,4\}$.

Conclusion:

The double coset enumeration gives that

$G = N \cup Nt_0 \cup Nt_1 \cup Nt_2 \cup Nt_3 \cup Nt_4 \cup Nt_0t_1 \cup Nt_1t_0 \cup Nt_2t_0 \cup Nt_3t_0 \cup Nt_4t_0 \cup Nt_0t_1t_0$.

$|G| \leq (|N| + \frac{|N|}{|N^{(0)}|} + \frac{|N|}{|N^{(01)}|} + \frac{|N|}{|N^{(010)}|}) \times |N|

= (1 + 5 + 5 + 1) \times 120

= (12 \times 120) = 1440$. A Cayley diagram of $S_6 \times 2$ over S_5 is given below.

![Figure 7.2: Cayley Diagram for $S_6 \times 2$ Over S_5](image-url)
To find the permutation representation of \(x, y, \) and \(t_0 \) we label all the right cosets and conjugate them by \(x \) and \(y \) and multiply them by \(t_0 \) as the following table,

<table>
<thead>
<tr>
<th>Cosets</th>
<th>(x \sim (0, 1, 2, 3, 4))</th>
<th>(y \sim (1, 2))</th>
<th>(t_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1.Nt_0)</td>
<td>(1.N)</td>
<td>(1.N)</td>
<td>(2.Nt_0)</td>
</tr>
<tr>
<td>(2.Nt_0)</td>
<td>(3.Nt_1)</td>
<td>(2.Nt_0)</td>
<td>(1.N)</td>
</tr>
<tr>
<td>(3.Nt_1)</td>
<td>(4.Nt_2)</td>
<td>(4.Nt_2)</td>
<td>(8.Nt_1t_0)</td>
</tr>
<tr>
<td>(4.Nt_2)</td>
<td>(5.Nt_3)</td>
<td>(3.Nt_1)</td>
<td>(9.Nt_2t_0)</td>
</tr>
<tr>
<td>(5.Nt_3)</td>
<td>(6.Nt_4)</td>
<td>(5.Nt_3)</td>
<td>(10.Nt_3t_0)</td>
</tr>
<tr>
<td>(6.Nt_4)</td>
<td>(2.Nt_0)</td>
<td>(6.Nt_4)</td>
<td>(11.Nt_4t_0)</td>
</tr>
<tr>
<td>(7.Nt_0t_1)</td>
<td>(8.Nt_1t_0)</td>
<td>(7.Nt_0t_1)</td>
<td>(12.Nt_0t_1t_0)</td>
</tr>
<tr>
<td>(8.Nt_1t_0)</td>
<td>(9.Nt_2t_0)</td>
<td>(9.Nt_2t_0)</td>
<td>(3.Nt_1)</td>
</tr>
<tr>
<td>(9.Nt_2t_0)</td>
<td>(10.Nt_3t_0)</td>
<td>(8.Nt_1t_0)</td>
<td>(4.Nt_2)</td>
</tr>
<tr>
<td>(10.Nt_3t_0)</td>
<td>(11.Nt_4t_0)</td>
<td>(10.Nt_3t_0)</td>
<td>(5.Nt_3)</td>
</tr>
<tr>
<td>(11.Nt_4t_0)</td>
<td>(7.Nt_0t_1)</td>
<td>(11.Nt_4t_0)</td>
<td>(6.Nt_4)</td>
</tr>
<tr>
<td>(12.Nt_0t_1t_0)</td>
<td>(12.Nt_0t_1t_0)</td>
<td>(12.Nt_0t_1t_0)</td>
<td>(7.Nt_0t_1)</td>
</tr>
</tbody>
</table>

\(\varphi(x) = (2, 3, 4, 5, 6)(7, 8, 9, 10, 11). \)
\(\varphi(y) = (3, 4)(8, 9). \)
\(\varphi(t) = (1, 2)(3, 8)(4, 9)(5, 10)(6, 11)(7, 12). \)

Then, we note that \(G = \frac{2^5 : S_5}{\langle (012) \rangle} = \langle t_0, x, y \rangle \) acts on the twelve cosets above and the actions of \(t, x \), and \(y \) on the twelve cosets is well-defined. Thus, we have a homomorphism \(\phi : G \to S_{12}. \) Then \(\phi(G) = \langle \varphi(x), \varphi(y), \varphi(t) \rangle; \) That is a homomorphic image of \(2^5 : S_5 \) if the following proved,

(1) \(\phi(N) \cong S_5. \)

We have \(\phi(N) = \langle \varphi(x), \varphi(y) \rangle = \langle (2, 3, 4, 5, 6)(7, 8, 9, 10, 11), (3, 4)(8, 9) \rangle \cong S_5 \) since \(S_5 = \{ x, y | x^5, y^2, (x * y)^4, ... \}. \)

\(\Rightarrow |(2, 3, 4, 5, 6)(7, 8, 9, 10, 11) * (3, 4)(8, 9)| = |(2, 4, 5, 6)(7, 9, 10, 11)| = 4 \) which is the first case proved.

(2) \(\varphi(t) \) has 5 conjugates acts under conjugation by \(\phi(N). \)

To find \(\varphi(t)^{\phi(N)} \) we will conjugate \(\varphi(t) \) by \(x, x^2, x^3, x^4, \) and \(x^5 \) respectively.

- \(\varphi(t)^x = ((1, 2)(3, 8)(4, 9)(5, 10)(6, 11), (7, 12))^{(2, 3, 4, 5, 6)(7, 8, 9, 10, 11)} = (1, 3)(2, 7)(4, 9)(5, 10)(6, 11)(8, 12) = t_1. \)
- \(\varphi(t)^{x^2} = ((1, 2)(3, 8)(4, 9)(5, 10)(6, 11), (7, 12))^{(2, 4, 6, 3, 5)(7, 9, 11, 8, 10)} = \)
\[(1, 4)(2, 7)(3, 8)(5, 10)(6, 11)(9, 12) = t_2.\]

- \(\varphi(t)^3 = ((1, 2)(3, 8)(4, 9)(5, 10)(6, 11), (7, 12))^{(2,5,3,6,4)(7,10,8,11,9)} = (1, 5)(2, 7)(3, 8)(4, 9)(6, 11)(10, 12) = t_3.\)

- \(\varphi(t)^4 = ((1, 2)(3, 8)(4, 9)(5, 10)(6, 11), (7, 12))^{(2,6,5,4,3)(7,11,10,9,8)} = (1, 6)(2, 7)(3, 8)(4, 9)(5, 10)(11, 12) = t_4.\)

- \(\varphi(t)^5 = ((1, 2)(3, 8)(4, 9)(5, 10)(6, 11), (7, 12))^c = ((1, 2)(3, 8)(4, 9)(5, 10)(6, 11), (7, 12) = t_0.\)

So, \(\varphi(t)^{\phi(N)} = \{t_0, t_1, t_2, t_3, t_4\}.\)

(3) \(\phi(N)\) acts as \(S_5\) on the 5 conjugates of the \(\varphi(t)\) by conjugates.

- The 5 \(t_i's\) conjugate by \(x = (0, 1, 2, 3, 4)\) as the following,
 - \(t_0^x = t_1.\)
 - \(t_1^x = t_2.\)
 - \(t_2^x = t_3.\)
 - \(t_3^x = t_4.\)
 - \(t_4^x = t_0.\)

 \(\Rightarrow \varphi(x) = (t_0, t_1, t_2, t_3, t_4).\)

- The 5 \(t_i's\) conjugate by \(y = (1, 2)\) as the following,
 - \(t_0^y = t_0.\)
 - \(t_1^y = t_2.\)
 - \(t_2^y = t_1.\)
 - \(t_3^y = t_3.\)
 - \(t_4^y = t_4.\)

 \(\Rightarrow \varphi(y) = (t_1, t_2).\)

(4) Now, to check if \(\varphi(yx^yx^{-1}) = \varphi(t_0t_1t_2t_0)\) we work in each side separately then compare them.

\(L.H.S. = \varphi(y * x * y * x^{-1}).\)
\[
= (3, 4)(8, 9) * (2, 3, 4, 5, 6)(7, 8, 9, 10, 11) * (3, 4)(8, 9) \star
\]
\[
((2, 3, 4, 5, 6)(7, 8, 9, 10, 11))^{-1}
\]
\[
= (3, 4)(8, 9) * (2, 3, 4, 5, 6)(7, 8, 9, 10, 11) * (3, 4)(8, 9)
\]
\[
(2, 6, 5, 4, 3)(7, 11, 10, 9, 8)
\]
\[
= (2, 3, 4)(7, 8, 9).
\]

R.H.S. = \(\varphi(t_0t_1t_2t_0)\)
\[
= (1, 2)(3, 8)(4, 9)(5, 10)(6, 11)(7, 12) * (1, 3)(2, 7)(4, 9)(5, 10)(6, 11)(8, 12)
\]
\[
*(1, 4)(2, 7)(3, 8)(5, 10)(6, 11)(9, 12) * (1, 2)(3, 8)(4, 9)(5, 10)(6, 11)(7, 12)
\]
\[
= (2, 3, 4)(7, 8, 9)
\]
So, the L.H.S. = R.H.S. that imply \(\phi : G \xrightarrow{\text{Homo.}} S_{12}\)

, so that \(\phi(G) = \langle \varphi(x), \varphi(y), \varphi(t) \rangle\).

We know \(G/k\ker \phi \cong \phi(G) \Rightarrow |G| = |\ker \phi| \cdot |\phi(G)|\). By using the Cayley diagram, \(|G| \leq 1440 \rightarrow (1)\).

By using MAGMA \(|\phi(G)| = |\langle \varphi(x), \varphi(y), \varphi(t) \rangle| = \text{1440}.
\]
\[
\Rightarrow |G| = |\ker \phi|\cdot \text{1440}.
\]
\[
\Rightarrow |G| \geq 1440 \rightarrow (2).
\]

from (1) and (2) we have \(|G| = 1440\).

\[
G = \frac{2^5 : S_5}{(012)} = t_0t_1t_2t_0 \cong S_6 \times Z(G)
\]

We showed if \(\varphi((012)) = \varphi(t_0t_1t_2t_0)\) then \(\langle \varphi(x), \varphi(y), \varphi(t_0) \rangle\) is homomorphic image of \(G\).

By (1), (2), (3), and (4) we have that \(\langle \varphi(x), \varphi(y), \varphi(t_0) \rangle\) is a homomorphic image of \(2^5 : S_5\).

Suppose we have the G-set call it \(X\) and we have the subset \(B\) of \(X\), then to show \(G\) is primitive we will show that \(G\) is transitive and has no nontrivial blocks of \(X\) under the action \(G\).

By using the Cayley diagram of \(G\), we have \(X = \{N, Nt_0, Nt_1, Nt_2, Nt_3, Nt_4, Nt_0t_1, Nt_1t_0, Nt_2t_0, Nt_3t_0, Nt_4t_0, Nt_0t_1t_0\}, \Rightarrow |X| = 12\).

We know \(X\) is transitive G-set by using the diagram (since any group \(G\) represnted by a Cayley diagram is transitive). Next, we note that if \(B\) is a block of \(X\) under the action of \(G\) then \(|B|\) has to divide \(|X|\).

So possible orders of \(B\) are positive divisors of 12. Thus, \(|B| = 1, 2, 3, 4, 6, 12\).
We will discard the orders 1 and 12 because those are blocks. Now, a nontrivial block must be of size 2, 3, 4, or 6. Let B be a nontrivial block and $N \in B$. X has a system of blocks of impermitivity of size 2. That imply the center element is $(1, 12)(2, 7)(3, 8)(4, 9)(5, 10)(6, 11)$, to prove the center:

Suppose $nt_0t_1t_0$ is the center’s element, where $n \in N$, then factor by the center $nt_0t_1t_0 = 1 \Rightarrow n^{-1} = t_0t_1t_0$.

Find the action of n on Nt_0, Nt_1, Nt_2, Nt_3 and Nt_4.

1) $Nt_0^{nt_0t_1t_0} = N(t_0t_1t_0)^{-1}t_0(t_0t_1t_0) = Nt_0t_1t_0t_0t_1t_0 = Nt_0t_1t_1t_0t_0 = Nt_1$.

2) $Nt_1^{nt_0t_1t_0} = N(t_0t_1t_0)^{-1}t_1(t_0t_1t_0) = Nt_0t_1t_0t_1t_0t_1t_0 = Nt_0t_1t_1t_0t_1t_0 = Nt_0$.

3) $Nt_2^{nt_0t_1t_0} = N(t_0t_1t_0)^{-1}t_2(t_0t_1t_0) = Nt_0t_1t_0t_2t_1t_0 = Nt_0t_2t_0t_1t_0t_0 = Nt_0t_2t_0t_1t_0t_0$.

4) $Nt_3^{nt_0t_1t_0} = N(t_0t_1t_0)^{-1}t_3(t_0t_1t_0) = Nt_0t_1t_0t_3t_0t_1t_0$.

5) $Nt_4^{nt_0t_1t_0} = N(t_0t_1t_0)^{-1}t_4(t_0t_1t_0) = Nt_0t_1t_0t_4t_0t_1t_0$.

$\Rightarrow t_0t_1t_0 = (0, 1)$

$\Rightarrow n^{-1} = (0, 1) \Rightarrow (n^{-1})^{-1} = (0, 1)^{-1} \Rightarrow n = (0, 1) \Rightarrow n = x * y * x^{-1}$.

So, the center call it $Z(G)$ is generated by $< x * y * x^{-1}t_0t_1t_0 >$.

$\Rightarrow 2^{10} : S_6$.

Thus, the new diagram of this group will decrease to be as the following:

We do not need the old relation since we can replace it by the new relation.

We will start with the relation $(x * y * x^{-1})t_0t_1t_0 = 1$ to find the relation $(012)t_0t_2t_1t_0 = 1$;

106
\[(x \ast y \ast x^{-1})t_0t_1t_0 = 1\]
\[\Rightarrow (01)t_0 = t_0t_1\]
\[\Rightarrow (01)t_0t_2 = t_0t_1t_2\]
\[\Rightarrow (01)t_0t_2t_0 = t_0t_1t_2t_0\]
\[\Rightarrow (01)t_0t_2t_0 = t_0t_1t_2t_0\]
\[\Rightarrow (01)(021)t_0t_1t_0 = t_0t_1t_2t_0\]
\[\Rightarrow (12)t_0t_1t_0 = t_0t_1t_2t_0\]
\[\Rightarrow (12)(01) = t_0t_1t_2t_0\]
\[\Rightarrow (012) = t_0t_1t_2t_0.\]

Finally:

\[G = \frac{2^{*5} : S_5}{(01) = t_0t_1t_0} \cong S_6\]
7.4 How To Write The Elements of The Group:

We know each group define by elements and there are two ways to write the elements of G in Symmetric or Permutation forms since G as the following form;

$$G = \frac{2^n \cdot S_n}{((012) = t_0 t_1 t_2 t_0)}$$

1. Symmetric To Permutation:

Every element of G is of the form nw where n is a permutation of S_n on n letters and w is a word of length at most 3.

Example 7.7. From the last group we work in $G = \frac{2^5 \cdot S_5}{((012) = t_0 t_1 t_2 t_0)}$. In this example n is the permutation of S_5 on 5 letters and w is a word of length at most 3.

We write the elements of G in the Symmetric form,

$$e \quad (0, 1, 2, 3, 4) \quad (1, 2) \quad \ldots \quad (1, 2)(3, 0)$$
$$t_0 \quad (0, 1, 2, 3, 4)t_0 \quad (1, 2)t_0 \quad \ldots \quad (1, 2)(3, 0)t_0$$
$$t_1 \quad (0, 1, 2, 3, 4)t_1 \quad (1, 2)t_1 \quad \ldots \quad (1, 2)(3, 0)t_1$$
$$\vdots \quad \vdots \quad \vdots \quad \ldots \quad \vdots$$
$$t_0t_1t_0 \quad (0, 1, 2, 3, 4)t_0t_1t_0 \quad (1, 2)t_0t_1t_0 \quad \ldots \quad (1, 2)(3, 0)t_0t_1t_0$$

Convert we take $(0, 1, 2, 3, 4)t_0t_1$ from the Symmetric form and we want to find the Permutation form.

$$(0, 1, 2, 3, 4)t_0t_1 = (1, 7)(2, 12)(3, 4, 5, 6)(8, 9, 10, 11)$$

$$x \quad (0, 1, 2, 3, 4) \quad (1, 2) \quad \ldots \quad (1, 2)(3, 0)$$
$$\varphi(x) \quad \varphi(t_0) \quad \varphi(t_1)$$
$$\varphi(x) \quad \varphi(t_0) \quad (\varphi(t_0))^{\varphi(x)}$$

(2,3,4,5,6)(7,8,9,10,11) (1,2)(3,8)(4,9)(5,10)(6,11)(7,12) (1,3)(2,7)(4,9)(5,10)(6,11)(8,12)

2. Permutation To Symmetric:

Let P be a permutation on m letters. In this way we will write it as nw form since
\(n \) is the permutation of \(S_n \) on \(n \) letters and \(w \) is a word of length at most 3. We write the elements of \(G \) as the following Permutation way.

\[
NP = 1^P = Nw \\
\Rightarrow NP = Nw, P \in NP \Rightarrow P \in Nw \\
\Rightarrow P = nw \text{ for some } n \in N \\
\Rightarrow n = Pw^{-1}
\]

Example 7.8. From the last group and the last example, we write the following Permutation in the Symmetric form,

Convert we take \(P = (1, 7)(2, 12)(3, 4, 5, 6)(8, 9, 10, 11) \);

\[
NP = 1^P = 7 = Nt_0 \\
\Rightarrow n = Pt_1t_0 = (1, 7)(2, 12)(3, 4, 5, 6)(8, 9, 10, 11) \cdot (1, 3)(2, 7)(4, 9)(5, 10)(6, 11)(8, 12) \cdot (1, 2)(3, 8)(4, 9)(5, 10)(6, 11)(7, 12) \\
\Rightarrow n = (2, 3, 4, 5, 6)(7, 8, 9, 10, 11)
\]

We write \(n \) in its action on \(\{Nt_0, Nt_1, Nt_2, Nt_3, Nt_4\} \), as the following:

\[
\Rightarrow (Nt_0)^{(2, 3, 4, 5, 6)(7, 8, 9, 10, 11)} = 2^{(2, 3, 4, 5, 6)(7, 8, 9, 10, 11)} = 3 = Nt_1, \\
\Rightarrow (Nt_1)^{(2, 3, 4, 5, 6)(7, 8, 9, 10, 11)} = 3^{(2, 3, 4, 5, 6)(7, 8, 9, 10, 11)} = 4 = Nt_2, \\
\Rightarrow (Nt_2)^{(2, 3, 4, 5, 6)(7, 8, 9, 10, 11)} = 4^{(2, 3, 4, 5, 6)(7, 8, 9, 10, 11)} = 5 = Nt_3, \\
\Rightarrow (Nt_3)^{(2, 3, 4, 5, 6)(7, 8, 9, 10, 11)} = 5^{(2, 3, 4, 5, 6)(7, 8, 9, 10, 11)} = 6 = Nt_4, \\
\Rightarrow (Nt_4)^{(2, 3, 4, 5, 6)(7, 8, 9, 10, 11)} = 6^{(2, 3, 4, 5, 6)(7, 8, 9, 10, 11)} = 2 = Nt_0, \\
\Rightarrow n = (0, 1, 2, 3, 4) \\
\Rightarrow P = (0, 1, 2, 3, 4)t_0t_1
Chapter 8

Construction of M_{22}

8.1 Double Coset Enumeration of $M_{22} \times 2$ Over S_6

We take the progenitor $2^{*30} : S_6$, where 2^{*30} is the free product of 30 copies of the cyclic groups of order 2, and S_6 is the group of automorphisms of 2^{*30} which permutes the thirty symmetric generators by conjugation and factor it by the two relations

$$(x) t_4 t_{13} t_{15} t_{14} = 1, \text{ and } (x)^4 t_1 t_9 t_{16} t_9 = 1.$$

We write $N = S_6 = \langle x, y \rangle$.

The double coset enumeration partitions the image of the group G as a union double cosets NgN where $g \in 2^{*30} : S_6$. Thus, we can find the set of elements g_1, g_2, \ldots of G such that

$$G = Ng_1 N \cup Ng_2 N \cup \ldots,$$

and for each i, we have $g_i = p_i w_i$, where $p_i \in N$, and w_i is a word in the t_is. Hence, the double coset decomposition is given by

$$G = N w_1 N \cup N w_2 N \cup N w_3 N \cup \ldots,$$

where $w_1 = e$ (the identity). We perform a double coset enumeration of the group

$$2^{*30} : S_6$$

over S_6. We will show

$$G = \frac{2^{*30} : (S_6)}{[(x^{-3})t^y]^5, [(x^{-3})t^y]^4} \cong M_{22} \times 2.$$

A symmetric presentation of the progenitor $2^{*30} : (S_6)$ is given by:

$$G < x, y, t : = \text{Group } x, y, t | x^8, y^8, (x \cdot y^{-2} \cdot x \cdot y^{-1})^2, (x^{-1} \cdot y^{-1} \cdot x \cdot y^{-1})^4, (x \cdot y^{-1})^4, (y^{-1} \cdot x^{-1} \cdot y \cdot x^{-1} \cdot y^{-1} \cdot x), (y \cdot x \cdot y \cdot x^{-1} \cdot x) \cdot (x \cdot y \cdot y \cdot x \cdot y^{-1} \cdot x), t \cdot t^{-2}, (t, x^4), (t, x \cdot y \cdot x^{-1} \cdot y^{-2} \cdot x), (t, x \cdot y \cdot x \cdot y \cdot x \cdot y^{-1} \cdot x) >;$$
G is factored by $((x^{-3} + t(y^9))^5 = 1 \Rightarrow (x^{-3} + t_{14})^5 = 1 \Rightarrow (x^{-3} + t_{14})^{-12} = 1$

and $((x^{-3} + t(y^7))^4 = 1 \Rightarrow (x^{-3} + t_9)^4 = 1 \Rightarrow (x^{-3} + t_9)^{-12} = 1$.

which simplify to

$$(x + t_4t_{23}t_{13}t_{15}t_{14} = 1, \text{ and } (x + t_{16})^4t_9t_{16}t_9 = 1.$$

$N \cong S_6 = \langle x, y \rangle$, where

$x \sim (1, 2, 4, 8)(3, 6, 11, 18, 26, 20, 29, 22)(5, 10, 17, 12, 19, 28, 30, 25)$

$(7, 13, 21, 27, 15, 24, 23, 14)(9, 16),$

and $y \sim (1, 3, 7, 14, 23, 29, 4, 9)(2, 5, 10, 6, 12, 20, 28, 30)(8, 15, 25, 21)$

$11, 16, 26, 19, 13, 22, 24, 17)(18, 27).$

Let $t = t_1$. The order of N is 720.

Using computer-based program - MAGMA extensively through this DCE:

1. The order of the group, $|G|$ is equal to 887040.

2. There are 10 double cosets in this double coset enumeration of $M_{22} \times 2$ over S_6.

Relations

We see that

(I) $[(x^{-3} + t(y^9))^5 = 1 \Rightarrow (x + t_27)t_{23}t_{13}t_{15}t_{14} = 1.$

Moreover, if we conjugate the previous relation by all elements in S_6, different relations we obtain

- $(x + t_27)t_{23}t_{13}t_{15}t_{14} = 1 \Rightarrow x + t_{27}t_{23}t_{13}t_{15}t_{14} = 1.$

- $(x + t_27)t_{23}t_{13}t_{15}t_{14} = 1 \Rightarrow x + t_{15}t_{14}t_{21}t_{24}t_7 = 1.$

- $(x + t_27)t_{23}t_{13}t_{15}t_{14} = 1 \Rightarrow x + t_{18}t_{29}t_{22}t_{25}t_{23} = 1.$

(II) $[(x^{-3} + t(y^7))^4 = 1 \Rightarrow (x + t_7)^4t_9t_{16}t_9 = 1.$

We obtain

- $(x + t_4)^4t_{16}t_9t_{16}t_9 = 1 \Rightarrow (x + t_4)^4t_{16}t_9t_{16}t_9 = 1.$

- $(x + t_4)^4t_{16}t_9t_{16}t_9 = 1 \Rightarrow (x + t_4)^4t_9t_{16}t_9t_{16} = 1.$

- $(x + t_4)^4t_9t_{16}t_9t_{16} = 1 \Rightarrow (x + t_4)^4t_9t_{16}t_9t_{16} = 1.$
\[((x)^4 t_{16} t_{16} t_{16} t_{16} = 1)^y \Rightarrow ((y^{-1} x y)^4 t_{16} t_{16} t_{16} t_{16} t_{16} = 1. \]

Double Coset \([\ast]\):

We start with the double coset \(NeN\), where \(e\) is the word of length zero, denoted by \([\ast]\).

We have

\[NeN = \{Nen : n \in N\} = \{Ne\} = \{N\} \]

So, the double coset \(NeN\) consists of the single coset \(N\). Thus, \(\frac{|N|}{|N|} = \frac{720}{720} = 1.\)

Note, since \(N\) is transitive on \(\{1, 2, ..., 30\}\), we take a representative coset \(N\) from \([\ast]\) and a representative from \(\{1, 2, ..., 30\}\) and determine the double coset to which \(Nt_i\) belongs, where \(i \in \{1, 2, ..., 30\}\). We consider \(i = 1\), so \(Nt_1\) is the representative coset, and hence we will have a new double coset \(Nt_1N\) which can denoted by \([1]\). There will be 30possibles \(t_i\)s in \([\ast]\) that will advance to the next double cosets \([1]\).

Word of Length One \([1]\):

We consider the double coset \(NwN\), where \(w\) is a word of length one.

\(Nt_1N = \{Nt_1^n : n \in N\} = [1]\). We need to find the point stabilizer of 1. So, \(Nt_1N = [1]\) = \(\{Nt_1^n : n \in N\} = \{Nt_1N, Nt_2N, ..., Nt_{30}N\}\). Since, the point stabilizer of 1 in the subgroup \(N\) is the permutations in \(N\) that fixes 1 and permutes the rest of the elements in the set \(\{1, 2, ..., 30\}\). The coset stabilizer of the coset \(Nt_1\) is \(N^{(1)} = \{n \in N | t_1^n = t_1\}\)

\[= < (3, 26) (5, 19) (6, 20) (7, 15) (10, 28) (11, 29) (12, 25) (13, 24) \]
\[(14, 27) (17, 30) (18, 22) (21, 23), \]
\[(2, 12) (4, 15) (5, 16) (6, 22) (8, 28) (9, 26) (11, 24) (13, 14) \]
\[(17, 18) (20, 30) (21, 23) (27, 29), \]
\[(2, 27) (4, 5) (6, 21) (8, 24) (9, 26) (10, 25) (11, 28) (12, 29) \]
\[(15, 16) (17, 30) (18, 20) (22, 23) > \]

Since \(|N^{(1)}| = 24\), the number of single cosets in \([1]\) is \(\frac{|N|}{|N^{(1)}|} = \frac{720}{24} = 30\).

Now, the orbits of \(N^{(1)}\) on \(\{1, 2, ..., 30\}\) are \(\{1\}\), \(\{2, 12, 27, 25, 29, 14, 10, 11, 13, 28, 24, 8\}\), \(\{3, 26, 9\}\), \(\{4, 15, 5, 7, 16, 9\}\) and \(\{6, 20, 22, 21, 30, 18, 23, 17\}\). We choose a representative from each orbit, determine the double costs that contain \(Nt_i t_i, i = 1, 2, 3, 4\) and 6.
Now, the orbits of $Nt_i \cdot t_1 = Nt_i^2 = N \in [\ast]$. This will go back to $[\ast]$. Since there is one element in this orbit, there is one t_i that takes $[1]$ to $[\ast]$.

- $Nt_1 \cdot t_2 = Nt_1t_2 \in [12]$. This is a new double coset, which will extend the Cayley graph from $[1]$ to $[12]$. Since there are 12 elements in this orbit, there are 12 t_i's that take $[1]$ to $[12]$.

- $Nt_1 \cdot t_3 = Nt_1t_3 \in [13]$. This is a new double coset, which extends our graph from $[1]$ to $[13]$. Since there are 3 elements in this orbit, there are 3 t_i's that take $[1]$ to $[13]$.

- $Nt_1 \cdot t_4 = Nt_1t_4 \in [14]$. This is a new double coset, which extends our graph from $[1]$ to $[14]$. Since there are 6 elements in this orbit, there are 6 t_i's that take $[1]$ to $[14]$.

- $Nt_1 \cdot t_6 = Nt_1t_6$. This gives the relation $t_1t_6 = t_{18}t_{16}$. This double coset will go to $[1, 4]$. Since there are 8 elements in this orbit, there are 8 t_i's that take $[1]$ to $[1, 4]$.

Word of Length Two $[1, 2], [13], \text{ and } [14]

(i) We are at a new double coset $[12], Nt_1t_2N = \{N(t_1t_2)^n | n \in N\}$. Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer of N^{12}, this means finding the set of elements that fix 1 and 2 in N and permute the rest elements of the elements in the set $\{1, 2, ..., 30\}$. The coset stabilizer of the coset Nt_1t_2 is $N^{12} = \{n \in N | (t_1t_2)^n = t_1t_2\} = \langle (3, 26)(5, 19)(6, 20)(7, 15)(10, 28)(11, 29)(12, 25)
(13, 24)(14, 27)(17, 30)(18, 22)(21, 23) \rangle$.

Since $|N^{12}| = 2$, the number of single cosets in $[12]$ is $\frac{|N|}{|N^{12}|} = \frac{720}{2} = 360$.

Now, the orbits of N^{12} on $\{1, 2, ..., 30\}$ are $\{1\}, \{2\}, \{3, 26\}, \{4\}, \{5, 19\}, \{6, 20\}, \{7, 15\}, \{8\}, \{9\}, \{10, 28\}, \{11, 29\}, \{12, 25\}, \{13, 24\}, \{14, 27\}, \{16\}, \{17, 30\}, \{18, 22\}, \text{ and } \{21, 23\}$. We choose a representative from each orbit, find the double costs to which $Nt_1t_2t_i$ belongs to each $i \in \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 21\}$.

- $Nt_1t_2 \cdot t_1 = Nt_1t_2t_1$. This gives the relation $t_1t_2t_1 = (yx^{-2}y)t_1t_2t_4$. This double coset will go to $[1, 2, 4]$. Since there is one element in this orbit, there is one t_i that takes $[1, 2]$ to $[1, 2, 4]$.

• $N_1 t_2 \cdot t_2 = N_1 t_2^2 \in [1]$. This will go back to [1]. Since there is one element in this orbit, there is one t_i that takes [12] to [1].

• $N_1 t_2 \cdot t_3 = N_1 t_2 t_3 \in [123]$. This is a new double coset, which extends our graph from [12] to [123]. Since there are 2 elements in this orbit, there are 2 t'_is that take [12] to [123].

• $N_1 t_2 \cdot t_4 = N_1 t_2 t_4 \in [124]$. This is a new double coset, which extends our graph from [12] to [124]. Since there is one element in this orbit, there is one t_i that takes [12] to [124].

• $N_1 t_2 \cdot t_5 = N_1 t_2 t_5$. This gives the relation $t_1 t_2 t_5 = (x y^{-1} x^{-2} y^{-1}) t_{20} t_9$. This double coset will collapse. Since there are 2 elements in this orbit, there are 2 t'_is that take [12] to [12].

• $N_1 t_2 \cdot t_6 = N_1 t_2 t_6$. This gives the relation $t_1 t_2 t_6 = (y^{-1} x^{-1} y^2) t_{4} t_{26} t_{29}$. This double coset will go to [1, 2, 3]. Since there are 2 elements in this orbit, there are 2 t'_is that take [12] to [1, 2, 3].

• $N_1 t_2 \cdot t_7 = N_1 t_2 t_7$. This gives the relation $t_1 t_2 t_7 = (x y x^{-1} y^{-2}) t_6 t_9$. This double coset will collapse. Since there are 2 elements in this orbit, there are 2 t'_is that take [1, 2] to [1, 2].

• $N_1 t_2 \cdot t_8 = N_1 t_2 t_8 \in [128]$. This is a new double coset, which extends our graph from [12] to [128]. Since there is one element in this orbit, there is one t_i that takes [12] to [128].

• $N_1 t_2 \cdot t_9 = N_1 t_2 t_9$. This gives the relation $t_1 t_2 t_9 = t_{1} t_{29} t_3$. This double coset will go to [1, 2, 3]. Since there is one element in this orbit, there is one t_i that takes [1, 2] to [1, 2, 3].

• $N_1 t_2 \cdot t_{10} = N_1 t_2 t_{10}$. This gives the relation $t_1 t_2 t_{10} = t_{1} t_{28} t_9$. This double coset will go to [1, 2, 3]. Since there are 2 elements in this orbit, there are 2 t'_is that take [1, 2] to [1, 2, 3].

• $N_1 t_2 \cdot t_{11} = N_1 t_2 t_{11}$. This gives the relation $t_1 t_2 t_{11} = t_{1} t_{13} t_{14}$. This double coset will go to [1, 2, 8]. Since there are 2 elements in this orbit, there are 2 t'_is that take [1, 2] to [1, 2, 8].
\(N t_1 t_2 \cdot t_{12} = N t_1 t_2 t_{12} \). This gives the relation \(t_1 t_2 t_{12} = t_1 t_{13} t_9 \). This double coset will send to \([1, 2, 3]\). Since there are 2 elements in this orbit, there are 2 \(t'_i \)s that take \([1, 2]\) to \([1, 2, 3]\).

\(N t_1 t_2 \cdot t_{13} = N t_1 t_2 t_{13} \). This gives the relation \(N t_1 t_2 t_{13} = t_1 t_{27} t_3 \). This double coset will go to \([1, 2, 3]\). Since there are 2 elements in this orbit, there are 2 \(t'_i \)s that take \([1, 2]\) to \([1, 2, 3]\).

\(N t_1 t_2 \cdot t_{14} = N t_1 t_2 t_{14} \). This gives the relation \(t_1 t_2 t_{14} = t_1 t_{12} t_9 \). This double coset will go to \([1, 2, 3]\). Since there are 2 elements in this orbit, there are 2 \(t'_i \)s that take \([1, 2]\) to \([1, 2, 3]\).

\(N t_1 t_2 \cdot t_{15} = N t_1 t_2 t_{15} \). This gives the relation \(N t_1 t_2 t_{15} = t_1 t_{27} t_3 \). This double coset will go to \([1, 2, 3]\). Since there is one element in this orbit, there is one \(t_i \) that takes \([1, 2]\) to \([1, 2, 3]\).

\(N t_1 t_2 \cdot t_{16} = N t_1 t_2 t_{16} \). This gives the relation \(t_1 t_2 t_{16} = (yx^{-2}y) t_1 t_{29} t_{26} \). This double coset will go to \([1, 2, 3]\). Since there are 2 elements in this orbit, there are 2 \(t'_i \)s that take \([1, 2]\) to \([1, 2, 3]\).

(ii) We are at a new double coset \([1, 3]\), \(N t_1 t_3 N = \{ N(t_1 t_3)^n | n \in N \} \). Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer \(N^{13} \), this means finding the set of elements that fix 1 and 3 in \(N \) and permute the rest elements of the set \([1, 2, \ldots, 30]\).

The coset stabilizer of the coset \(N t_1 t_3 \) is \(N^{(13)} = \{ n \in N | (t_1 t_3)^n = t_1 t_3 \} \)

\(= < (2, 12) (4, 15) (5, 16) (6, 22) (8, 28) (9, 26) (11, 24) (13, 14) (17, 18) (20, 30) (21, 23) (27, 29), (2, 27) (4, 5) (6, 21) (8, 24) (9, 26) (10, 25) (11, 28) (12, 29) (15, 16) (17, 30) (18, 20) (22, 23) \),}
Since $|N^{(13)}| = 16$, the number of single cosets in $[13]$ is $\frac{|N|}{|N^{(13)}|} = \frac{720}{16} = 45$.

Now, the orbits of $N^{(13)}$ on $\{1, 2, \ldots, 30\}$ are $\{1, 3\}$, $\{2, 12, 27, 11, 20, 21, 22, 17, 18, 6, 23, 30, 29, 28, 24, 8\}$, $\{4, 15, 5, 16, 25, 14, 13, 10\}$, and $\{7, 19, 9, 26\}$. We choose a representative from each orbit, find the double costs to which $N_{t1}t_3t_i$ belongs to each $i \in \{2, 3, 4, 7\}$.

- $N_{t1}t_3 \cdot t_3 = N_{t1}t_3^2 \in [1]$. This will go back to $[1]$. Since there are two elements in this orbit, there are 2 $t_i's$ that take $[1, 3]$ to $[1]$.

- $N_{t1}t_3 \cdot t_2 = N_{t1}t_3t_2$. This gives the relation $N_{t1}t_3t_2 = t_1t_2t_3$. This double coset will go to $[1, 2, 3]$. Since there are 16 elements in this orbit, then there will be 16 $t_i's$ that take $[1, 3]$ to $[1, 2, 3]$.

- $N_{t1}t_3 \cdot t_4 = N_{t1}t_3t_4$. This gives the relation $N_{t1}t_3t_4 = (y^2x^2yx)t_3t_5t_7$. This double coset will go to $[1, 2, 3]$. Since there are 8 elements in this orbit, then there will be 8 $t_i's$ that take $[1, 3]$ to $[1, 2, 3]$.

- $N_{t1}t_3 \cdot t_7 = N_{t1}t_3t_7$. This gives the relation $N_{t1}t_3t_7 = (xyxy^{-1}y^{-1})t_1t_2t_6t_9$. This double coset will go to $[1, 2, 3]$. Since there are 4 elements in this orbit, then there are 4 $t_i's$ that take $[1, 3]$ to $[1, 2, 3]$.

(iii) We are at a new double coset $[1, 4]$, $N_{t1}t_4N = \{N(t_1t_4)^n | n \in N\}$. Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer N^{14}, this means finding the set of elements that fix 1 and 4 in N and permute the rest of the elements in the set $\{1, 2, \ldots, 30\}$.

The coset stabilizer of the coset $N_{t1}t_4$ is $N^{(14)} = \{n \in N | (t_1t_4)^n = t_1t_4\}$

Since $|N^{(14)}| = 24$, the number of single cosets in $[14]$ is $\frac{|N|}{|N^{(14)}|} = \frac{720}{24} = 30$.

Now, the orbits of $N^{(14)}$ on $\{1, 2, \ldots, 30\}$ are
\begin{align*}
\{1, 4\}, \{3, 11\}, \{5, 23\}, \{6, 20\}, \{7, 30\}, \{10, 13\}, \{12, 14\}, \{15, 17\}, \\
\{19, 24\}, \{21, 28\}, \{25, 27\}, \{26, 29\}, \\
\{1, 18\}, \{3, 27\}, \{4, 22\}, \{5, 17\}, \{7, 17\}, \{10, 24\}, \{11, 26\}, \{12, 14\}, \\
\{14, 25\}, \{15, 30\}, \{18, 22\}, \{19, 23\}, \\
\{1, 18\}, \{3, 27\}, \{4, 22\}, \{5, 17\}, \{7, 17\}, \{10, 24\}, \{11, 14\}, \\
\{12, 29\}, \{15, 19\}, \{23, 30\}, \{25, 26\}.
\end{align*}

Since $|N^{(14)}| = 24$, the number of single cosets in $[14]$ is $\frac{|N|}{|N^{(14)}|} = \frac{720}{24} = 30$.

Now, the orbits of $N^{(14)}$ on $\{1, 2, \ldots, 30\}$ are
\begin{align*}
\{1, 4\}, \{3, 11\}, \{5, 23\}, \{6, 20\}, \{7, 30\}, \{10, 13\}, \{12, 14\}, \{15, 17\}, \\
\{19, 24\}, \{21, 28\}, \{25, 27\}, \{26, 29\}, \\
\{1, 18\}, \{3, 27\}, \{4, 22\}, \{5, 17\}, \{7, 17\}, \{10, 24\}, \{11, 26\}, \{12, 14\}, \\
\{14, 25\}, \{15, 30\}, \{18, 22\}, \{19, 23\}, \\
\{1, 18\}, \{3, 27\}, \{4, 22\}, \{5, 17\}, \{7, 17\}, \{10, 24\}, \{11, 14\}, \\
\{12, 29\}, \{15, 19\}, \{23, 30\}, \{25, 26\}.
\end{align*}

We choose a representative from each orbit, find the double cosets to which $Nt_1t_4t_i$ belongs to each $i \in \{2, 3, 4, 5, 16\}$.

- $Nt_1t_4 \cdot t_4 = Nt_1t_4^2 \in [1]$. This will go back to $[1]$. Since there are 6 elements in this orbit, there are 6 t_i's that take $[14]$ to $[1]$.

- $Nt_1t_4 \cdot t_2 = Nt_1t_4t_2$. This gives the relation $t_1t_4t_2 = t_{16}t_{28}t_{13}$. This double coset will go to $[1, 2, 8]$. Since there are 3 elements in this orbit, there are 3 t_i's that take $[1, 4]$ to $[1, 2, 8]$.

- $Nt_1t_4 \cdot t_3 = Nt_1t_4t_3$. This gives the relation $t_1t_4t_3 = t_{16}t_{29}t_8$. This double coset will go to $[1, 2, 3]$. Since there are 12 elements in this orbit, there are 12 t_i's that take $[1, 4]$ to $[1, 2, 3]$.

- $Nt_1t_4 \cdot t_5 = Nt_1t_4t_5$. This gives the relation $t_1t_4t_5 = t_7$. This double coset will go back to $[1]$. Since there are 8 elements in this orbit, there are 8 t_i's that take $[1, 4]$ to $[1]$.

- $Nt_1t_4 \cdot t_{16} = Nt_1t_4t_{16} \in [1, 4, 16]$. This is a new double coset, which extends our graph from $[14]$ to $[1, 4, 16]$. Since there is one element in this orbit, there is one t_i that takes $[14]$ to $[1, 4, 16]$.

Word of Length Three $[123], [124], [128], [1, 2, 17]$ and $[1, 4, 16]$:

(i) We are at a new double coset $[1, 2, 3]$. $Nt_1t_2t_3N = \{N(t_1t_2t_3)^n | n \in N\}$. Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer N^{123}, this means finding the set of elements that fix 1, 2, and 3 in N and
permute the rest of the elements in the set \(\{1, 2, \ldots, 30\} \). The coset stabilizer of the coset \(Nt_1t_2t_3 \) is \(N^{(123)} = \{ n \in N | (t_1t_2t_3)^n = t_1t_2t_3 \} \)

\[
= \langle (2, 8) (3, 26) (5, 7) (6, 22) (10, 27) (12, 13) (14, 28) (15, 19) (17, 23) (18, 20) (21, 30) (24, 25) \rangle.
\]

Since \(|N^{(123)}| = 2 \), the number of single cosets in \([123]\) is \(\frac{|N|}{|N^{(123)}|} = \frac{720}{2} = 360 \).

Now, the orbits of \(N^{123} \) on \(\{1, 2, \ldots, 30\} \) are \(\{1\} \), \(\{2, 8\} \), \(\{3, 26\} \), \(\{4\} \), \(\{5, 7\} \), \(\{6, 22\} \), \(\{9\} \), \(\{10, 27\} \), \(\{11\} \), \(\{12, 13\} \), \(\{14, 28\} \), \(\{15, 19\} \), \(\{16\} \), \(\{17, 23\} \), \(\{18, 20\} \), \(\{21, 30\} \), \(\{24, 25\} \), and \(\{29\} \). We choose a representative from each orbit, find the double costs to which \(Nt_1t_2t_3t_i \) belongs to each \(i \in \{1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 14, 15, 16, 17, 18, 21, 24, 29\} \).

- \(Nt_1t_2t_3 \cdot t_1 = Nt_1t_2t_1 \). This gives the relation \(Nt_1t_2t_3t_1 = (xy^2yx^2x)t_3t_4t_27 \). This double coset will go to \([1, 2, 17] \). Since there is one element in this orbit, there is one \(t_i \) that takes \([1, 2, 3] \) to \([1, 2, 17] \).

- \(Nt_1t_2t_3 \cdot t_2 = Nt_1t_2t_2t_2 = Nt_1t_3t_2t_2 = Nt_1t_3t_2 \in [1, 3] \). This double coset will go back to \([1, 3] \). Since there are 2 elements in this orbit, there are 2 \(t_i \)s that take \([1, 2, 3] \) to \([1, 2, 3] \).

- \(Nt_1t_2t_3 \cdot t_3 = Nt_1t_2 \in [12] \). This double coset will go back to \([1, 2] \). Since there are 2 elements in this orbit, there are 2 \(t_i \)s that take \([1, 2, 3] \) to \([1, 2] \).

- \(Nt_1t_2t_3 \cdot t_4 = Nt_1t_2t_4 \). This gives the relation \(t_1t_2t_3t_4 = (xyyx^{-1})t_1t_11 \). This double coset will go back to \([1, 2] \). Since there is one element in this orbit, there is one \(t_i \) that takes \([1, 2, 3] \) to \([1, 2] \).

- \(Nt_1t_2t_3 \cdot t_5 = Nt_1t_2t_3t_5 \). This gives the relation \(Nt_1t_2t_3t_5 = (x^{-2}yx^{-1})t_30t_13t_10 \). This double coset will collapse. Since there are 2 elements in this orbit, there are 2 \(t_i \)s that take \([1, 2, 3] \) to \([1, 2, 3] \).

- \(Nt_1t_2t_3 \cdot t_6 = Nt_1t_2t_3t_6 \). This gives the relation \(t_1t_2t_3t_6 = (yx^4yx^{-1})t_9t_21t_29 \). This double coset will go to \([1, 2, 4] \). Since there are 2 elements in this orbit, there are 2 \(t_i \)s that take \([1, 2, 3] \) to \([1, 2, 4] \).

- \(Nt_1t_2t_3 \cdot t_9 = Nt_1t_2t_3t_9 \). This gives the relation \(t_1t_2t_3t_9 = t_1t_29 \). This double coset will go back to \([1, 2] \). Since there is one element in this orbit, there is one \(t_i \) that takes \([1, 2, 3] \) to \([1, 2] \).
• \(Nt_1t_2t_3 \cdot t_{10} = Nt_1t_2t_3t_{10} \). This gives the relation \(t_1t_2t_3t_{10} = t_1t_{12} \). This double coset will go back to \([1, 2]\). Since there are 2 elements in this orbit, there are 2 \(t_i' \)s that take \([1, 2, 3]\) to \([1, 2]\).

• \(Nt_1t_2t_3 \cdot t_{11} = Nt_1t_2t_3t_{11} \). This gives the relation \(t_1t_2t_3t_{11} = t_4t_{16} \). This double coset will go back to \([1, 4]\). Since there is one element in this orbit, there is one \(t_i \) that takes \([1, 2, 3]\) to \([1, 4]\).

• \(Nt_1t_2t_3 \cdot t_{12} = Nt_1t_2t_3t_{12} \). This gives the relation \(t_1t_2t_3t_{12} = t_1t_{10} \). This double coset will go back to \([1, 2]\). Since there are 2 elements in this orbit, there are 2 \(t_i' \)s that take \([1, 2, 3]\) to \([1, 2]\).

• \(Nt_1t_2t_3 \cdot t_{14} = Nt_1t_2t_3t_{14} \). This gives the relation \(t_1t_2t_3t_{14} = t_1t_{28} \). This double coset will go back to \([1, 2]\). Since there are 2 elements in this orbit, there are 2 \(t_i' \)s that take \([1, 2, 3]\) to \([1, 2]\).

• \(Nt_1t_2t_3 \cdot t_{15} = Nt_1t_2t_3t_{15} \). This gives the relation
\[
t_{1t_2t_3t_{15}} = (xyx^{-1}y^{-1}x^{-1}yx)t_{21}t_{10}t_{13}.
\]This double coset will collapse. Since there are 2 elements in this orbit, there are 2 \(t_i' \)s that take \([1, 2, 3]\) to \([1, 2, 3]\).

• \(Nt_1t_2t_3 \cdot t_{16} = Nt_1t_2t_3t_{16} \). This gives the relation
\[
t_{1t_2t_3t_{16}} = (x^{-1}yx^2y)t_{26}t_{14}t_{10}.
\]This double coset will go to \([1, 2, 17]\). Since there is one element in this orbit, there is one \(t_i \) that takes \([1, 2, 3]\) to \([1, 2, 17]\).

• \(Nt_1t_2t_3 \cdot t_{17} = Nt_1t_2t_3t_{17} \). This gives the relation
\[
t_{1t_2t_3t_{17}} = (x^{-2}y^{-1}x^2)t_{21}t_9t_{20}.
\]This double coset will go to \([1, 2, 17]\). Since there are two elements in this orbit, there are 2 \(t_i' \)s that take \([1, 2, 3]\) to \([1, 2, 17]\).

• \(Nt_1t_2t_3 \cdot t_{18} = Nt_1t_2t_3t_{18} \). This gives the relation
\[
t_{1t_2t_3t_{18}} = (x^{-2}y^{-1}x^2)t_{21}t_9t_{30}.
\]This double coset will go to \([1, 2, 4]\). Since there are two elements in this orbit, there are 2 \(t_i' \)s that take \([1, 2, 3]\) to \([1, 2, 4]\).

• \(Nt_1t_2t_3 \cdot t_{21} = Nt_1t_2t_3t_{21} \). This gives the relation
\[
t_{1t_2t_3t_{21}} = (xyx^{-1})^4t_{16}t_{11}.
\]This double coset will go back to \([1, 2]\). Since there are two elements in this orbit, there are 2 \(t_i' \)s that take \([1, 2, 3]\) to \([1, 2]\).
• \(Nt_1t_2t_3 \cdot t_{24} = Nt_1t_2t_3t_{24}\). This gives the relation
\(t_1t_2t_3t_{24} = t_1t_{25}\). This double coset will go back to \([1, 2]\). Since there are two
elements in this orbit, there are 2 \(t'_i\)'s that take \([1, 2, 3]\) to \([1, 2]\).

• \(Nt_1t_2t_3 \cdot t_{29} = Nt_1t_2t_3t_{29}\). This gives the relation
\(t_1t_2t_3t_{29} = t_1t_9\). This double coset will go back to \([1, 3]\). Since there is one element
in this orbit, there is one \(t_i\) that takes \([1, 2, 3]\) to \([1, 3]\).

(ii) We are at a new double coset \([1, 2, 4]\), \(Nt_1t_2t_4N = \{N(t_1t_2t_4)^n | n \in N\}\).

Now, to determine all the single cosets of this double cosets, we need to determine the
point stabilizer \(N^{124}\), this means finding the set of elements that fix 1, 2, and 4 in \(N\) and
permute the rest of the elements in the set \([1, 2, \ldots, 30]\). The coset stabilizer of the coset
\(Nt_1t_2t_4\) is \(N^{(124)} = \{n \in N | (t_1t_2t_4)^n = t_1t_2t_4\}\)
\[= < (1, 2) (3, 6, 26, 20) (4, 8) (5, 24, 19, 13) (7, 28, 15, 10) (9, 16) (11, 22, 29, 18) (12, 23, 25, 21) (14, 17, 27, 30) >.\]

Since \(|N^{(124)}| = 4\) then the number of single cosets in \([124]\) is \(\frac{|N|}{|N^{(124)}|} = \frac{720}{4} = 180\).

Now, the orbits of \(N^{124}\) on \([1, 2, \ldots, 30]\) are \([1, 2]\), \([4, 8]\), \([9, 16]\), \([3, 26, 6, 20]\), \([5, 15, 24, 13]\),
\([7, 15, 28, 10]\), \([11, 29, 22, 18]\), \([12, 25, 23, 21]\), and \([14, 27, 17, 30]\). We choose a representative from each orbit, find the double costs to
which \(Nt_1t_2t_4t_i\) belongs to each \(i \in \{1, 3, 4, 5, 7, 9, 11, 12, 14\}\).

• \(Nt_1t_2t_4 \cdot t_1 = Nt_1t_2t_4t_1\). This gives the relation \(t_1t_2t_4t_1 = (yx^{-2}y)t_1t_2\). This double
coset will go back to \([1, 2]\). Since there are two elements in this orbit, there are 2
\(t'_i\)'s that take \([1, 2, 4]\) to \([1, 2]\).

• \(Nt_1t_2t_4 \cdot t_3 = Nt_1t_2t_4t_3\). This gives the relation \(t_1t_2t_4t_3 = (y^{-1}x^{-2})t_22t_9t_{15}\). This
double coset will go to \([1, 2, 17]\). Since there are 4 elements in this orbit, there are 4
\(t'_i\)'s that take \([1, 2, 4]\) to \([1, 2, 17]\).

• \(Nt_1t_2t_4 \cdot t_4 = Nt_1t_2t_4^2 = Nt_1t_2 \in [1, 2]\). This double coset will go back to \([1, 2]\).
Since there are 2 elements in this orbit, there are 2 \(t'_i\)'s that take \([1, 2, 4]\) to \([1, 2]\).

• \(Nt_1t_2t_4 \cdot t_5 = Nt_1t_2t_4t_5\). This gives the relation
\(t_1t_2t_4t_5 = (yx^{-1}y)xy^{-1})t_{20}t_{13}t_{10}\). This double coset will go to \([1, 2, 3]\). Since there
are 4 elements in this orbit, there are 4 \(t'_i\)'s that take \([1, 2, 4]\) to \([1, 2, 3]\).
• $t_1 t_2 t_4 \cdot t_7 = N t_1 t_2 t_4 t_7$. This gives the relation

$$t_1 t_2 t_4 t_7 = (y x y x^{-1} y^{-1}) t_2 t_3 t_1 t_2 t_4 t_5.$$ This double coset will go to $[1, 2, 3]$. Since there are 4 elements in this orbit, there are 4 t_i's that take $[1, 2, 3]$ to $[1, 2, 3]$.

• $N t_1 t_2 t_4 \cdot t_9 = N t_1 t_2 t_4 t_9$. This gives the relation

$$t_1 t_2 t_4 t_9 = (x^{-1} y^{-1} x^{-2} y^{-1}) t_2 t_3 t_5.$$ This double coset will go to $[1, 2, 17]$. Since there are 2 elements in this orbit, there are 2 t_i's that take $[1, 2, 4]$ to $[1, 2, 17]$.

• $N t_1 t_2 t_4 \cdot t_{11} = N t_1 t_2 t_4 t_{11}$. This gives the relation

$$t_1 t_2 t_4 t_{11} = (x^2 y^{-1} x^{-2} y^{-1} x^{-2}) t_8 t_1.$$ This double coset will go back to $[1, 2, 3]$. Since there are 4 elements in this orbit, there are 4 t_i's that take $[1, 2, 4]$ to $[1, 2, 3]$.

• $N t_1 t_2 t_4 \cdot t_{12} = N t_1 t_2 t_4 t_{12}$. This gives the relation

$$t_1 t_2 t_4 t_{12} = (x^{-2} y^{-1}) t_1 t_3 t_4.$$ This double coset will collapse. Since there are 4 elements in this orbit, there are 4 t_i's that take $[1, 2, 4]$ to $[1, 2, 4]$.

• $N t_1 t_2 t_4 \cdot t_{14} = N t_1 t_2 t_4 t_{14}$. This gives the relation

$$t_1 t_2 t_4 t_{14} = (y x^2) t_1 t_4.$$ This double coset will collapse. Since there are 4 elements in this orbit, there are 4 t_i's that take $[1, 2, 4]$ to $[1, 2, 4]$.

(iii) We are at a new double coset $[1, 2, 8]$, $N t_1 t_2 t_8 N = \{N(t_1 t_2 t_8)^n | n \in N\}$. Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer N_{128}^\prime, this means finding the set of elements that fix 1, 2, and 8 in N and permute the rest of the elements in the set $\{1, 2, ..., 30\}$. The coset stabilizer of the coset $N t_1 t_2 t_8$ is $N_{128}^\prime = \{n \in N | (t_1 t_2 t_8)^n = t_1 t_2 t_8\}$

$$= \langle (3, 26), (5, 19), (6, 20), (7, 15), (10, 28), (11, 29), (12, 25), (13, 24), (14, 27), (17, 30), (18, 22), (21, 23), (1, 9), (2, 15, 29), (7, 8), (5, 11, 19), (3, 16, 26), (4, 6, 27, 17), (13, 18, 28, 21, 25), (10, 20, 24), (23, 14, 22, 12, 30) \rangle.$$

Since $|N_{128}^\prime| = 16$, the number of single cosets in $[128]$ is $\frac{|N|}{|N_{128}^\prime|} = \frac{720}{16} = 45$.

Now, the orbits of N_{128}^\prime on $\{1, 2, ..., 30\}$ are $\{1, 9\}$, $\{2, 5, 7, 8, 11, 15, 19, 29\}$, $\{3, 4, 16, 26\}$, and $\{6, 20, 27, 24, 23, 17, 14, 13, 25, 10, 21, 30, 28, 12, 18, 22\}$. We choose a representative from each orbit, find the double cosets to which $t_1 t_2 t_3 t_i$ belongs to each $i \in \{1, 3, 6, 8\}$.

• $N t_1 t_2 t_8 \cdot t_1 = N t_1 t_2 t_3 t_8 t_1$. This gives the relation $t_1 t_2 t_3 t_8 t_1 = (y x^{-2} x^{-1}) t_2 t_8$. This double coset will go back to $[1, 4]$. Since there are two elements in this orbit, there are 2 t_i's that take $[1, 2, 8]$ to $[1, 4]$.
\(Nt_1t_2t_3 \cdot t_3 = Nt_1t_2t_3t_3 \). This gives the relation \(t_1t_2t_3 = t_1t_26 \). This double coset will go back to \([1, 3]\). Since there are 4 elements in this orbit, there are 4 \(t'_s \)s that take \([1, 2, 8]\) to \([1, 3]\).

\(Nt_1t_2t_8 \cdot t_8 = Nt_1t_2t_8^2 = Nt_1t_2 \in [1, 2] \). This double coset will go back to \([1, 2]\). Since there are 8 elements in this orbit, there are 8 \(t'_s \)s that take \([1, 2, 8]\) to \([1, 2]\).

\(Nt_1t_2t_8 \cdot t_6 = Nt_1t_2t_8t_6 \). This gives the relation \(t_1t_2t_4t_5 = (xyx^{-2}yx^{-1})t_9t_{22} \). This double coset will go back to \([1, 2]\). Since there are 16 elements in this orbit, there are 16 \(t'_s \)s that take \([1, 2, 8]\) to \([1, 2]\).

(iv) We are at a new double coset \([1, 2, 17]\), \(Nt_1t_2t_17N = \{N(t_1t_2t_17)^n|n \in N\} \). Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer \(N^{(1217)} \), this means finding the set of elements that fix 1, 2, and 17 in \(N \) and permute the rest of the elements in the set \([1, 2, ..., 30]\). The coset stabilizer of the coset \(Nt_1t_2t_17 \) is \(N^{(1217)} = \{n \in N|(t_1t_2t_17)^n = t_1t_2t_17\} \)

Since \(|N^{(1217)}| = 4 \) then the number of single cosets in \([1, 2, 17]\) is \(\frac{|N|}{|N^{(1217)}|} = \frac{720}{4} = 180 \). Now, the orbits of \(N^{(1217)} \) on \([1, 2, ..., 30]\) are \([1, 28, 4, 13]\), \([2, 16]\), \([3, 5, 29, 21]\), \([6, 9]\), \([7, 11, 26, 17]\), \([8, 20]\), \([10, 24, 22, 18]\), \([12, 27, 23, 19]\), and \([14, 25, 15, 30]\). We choose a representative from each orbit, find the double costs to which \(Nt_1t_2t_17t_i \) belongs to each \(i \in \{1, 2, 3, 6, 8, 10, 12, 14, 17\} \):

\(Nt_1t_2t_17 \cdot t_1 = Nt_1t_2t_17t_1 \). This gives the relation \(t_1t_2t_17t_1 = (x^3y^{-1}x)t_9t_{20}t_8 \). This double coset will go back to \([1, 2, 4]\). Since there are 4 elements in this orbit, there are 4 \(t'_s \)s that take \([1, 2, 17]\) to \([1, 2, 4]\).

\(Nt_1t_2t_17 \cdot t_2 = Nt_1t_2t_17t_2 \). This gives the relation \(t_1t_2t_17t_2 = (xy^{-1}x^4y)t_9t_{6}t_8 \). This double coset will go back to \([1, 2, 4]\). Since there are 2 elements in this orbit, there are 2 \(t'_s \)s that take \([1, 2, 17]\) to \([1, 2, 4]\).

\(Nt_1t_2t_17 \cdot t_3 = Nt_1t_2t_17t_3 \). This gives the relation \(t_1t_2t_17t_3 = (xy^4)x_{28}t_{16} \). This double coset will go back to \([1, 2]\). Since there are 4 elements in this orbit, there are 4 \(t'_s \)s that take \([1, 2, 17]\) to \([1, 2]\).
• $N t_1 t_2 t_17 \cdot t_6 = N t_1 t_2 t_{17} t_6$. This gives the relation

 $t_1 t_2 t_{17} t_6 = (x y^{-1} x^{-2} y^{-1}) t_6 t_{10} t_{13}$. This double coset will send to $[1, 2, 3]$. Since there are 2 elements in this orbit, there are 2 t_i's that take $[1, 2, 17]$ to $[1, 2, 3]$.

• $t_1 t_2 t_{17} \cdot t_{17} = N t_1 t_2 t_{17}^2 = N t_1 t_2 \in [1, 2]$. This double coset will go back to $[1, 2]$. Since there are 4 elements in this orbit, there are 4 t_i's that take $[1, 2, 17]$ to $[1, 2, 3]$.

• $N t_1 t_2 t_{17} \cdot t_8 = N t_1 t_2 t_{17} t_8$. This gives the relation $t_1 t_2 t_{17} t_8 = (y y x y) t_9 t_{22} t_1$. This double coset will send to $[1, 2, 3]$. Since there are 2 elements in this orbit, there are 2 t_i's that take $[1, 2, 17]$ to $[1, 2, 3]$.

• $N t_1 t_2 t_{17} \cdot t_{10} = N t_1 t_2 t_{17} t_{10}$. This gives the relation $t_1 t_2 t_{17} t_{10} = (x y x^{-1} y x) t_9 t_{12}$. This double coset will collapse. Since there are 4 elements in this orbit, there are 4 t_i's that take $[1, 2, 17]$ to $[1, 2, 3]$.

• $N t_1 t_2 t_{17} \cdot t_{12} = N t_1 t_2 t_{17} t_{12}$. This gives the relation $t_1 t_2 t_{17} t_{12} = (y^2 x^{-1} y^{-1} x) t_7 t_2 t_4$. This double coset will collapse. Since there are 4 elements in this orbit, there are 4 t_i's that take $[1, 2, 17]$ to $[1, 2, 17]$.

(v) We are at a new double coset $[1, 4, 16]$, $N t_1 t_4 t_{16} N = \{N(t_1 t_4 t_{16})^n| n \in N\}$. Now, to determine all the single cosets of this double cosets, we need to determine the point stabilizer N^{1416}, this means finding the set of elements that fix 1, 4, and 16 in N and permute the rest of the elements in the set $\{1, 2, \ldots, 30\}$. The coset stabilizer of the coset $N t_1 t_4 t_{16}$ is $N^{(1416)} = \{n \in N|(t_1 t_4 t_{16})^n = t_1 t_4 t_{16}\}$

$$= \langle (1, 2, 4, 8) (3, 6, 11, 18, 26, 20, 29, 22) (5, 10, 17, 12, 19, 28, 30, 25) (7, 13, 21, 27, 15, 24, 23, 14) (9, 16),$$

$$= \langle (1, 3, 7, 14, 23, 29, 4, 9) (2, 5, 10, 6, 12, 20, 28, 30) (8, 15, 25, 21) (11, 16, 26, 19, 13, 22, 24, 17) (18, 27) \rangle \rangle.$$

Since $|N^{(1416)}| = 720$ then the number of single cosets in $[1, 4, 16]$ is $\frac{|N|}{|N^{(1416)}|} = \frac{720}{720} = 1$.

Now, the orbits of $N^{(1416)}$ on $\{1, 2, \ldots, 30\}$ is $\{1, 2, \ldots, 30\}$. We choose a representative from the orbit, and determine the double costs to which $N t_1 t_4 t_{16} t_{16}$ belongs.
\[N_t t_4 t_16 \cdot t_{16} = N_t t_4 t_2^3 t_{16} = N_t t_4 \in [1, 4]. \] This double coset will go back to \([1, 4]\). Since there are 30 elements in this orbit, there are 30 \(t_i\)’s that take \([1, 2, 16]\) to \([1, 4]\).

Conclusion:

The double coset enumeration gives that

\[
|G| \leq (|N| + |N_t N| + |N t_1 t_2 N| + |N t_1 t_3 N| + |N t_1 t_4 N| + |N t_1 t_2 t_3 N| + |N t_1 t_4 t_3 N| +
|N t_1 t_2 t_4 N| + |N t_1 t_2 t_17 N| + |N t_1 t_4 t_{16} N|) \times |N|
\]

\[= (1 + 30 + 360 + 45 + 30 + 360 + 180 + 45 + 180 + 1) \times 720 \]

\[= (1232 \times 720) = 887040. \] A Cayley diagram of \(G\) over \(S_6\) is given below.
Figure 8.1: Cayley Diagram for $M_{22} \times 2$ Over S_6
8.2 Factor $M_{22} \times 2$ By Its Center

By using Magma we have the center of G is

$$x^2 * t * x^{-1} * y * t * y^{-1} * x^{-1} * t = 1 \Rightarrow t_4 t_{16} t_1 = 1.$$

$$\Rightarrow (x t_4 t_{23} t_{13} t_{15} t_{14}), ((x)^4 t_{16} t_9 t_{16} t_9), (t_4 t_{16} t_1) \cong M_{22}.$$

Using computer-based program - MAGMA extensively through this DCE:

1. The order of the group, $|G|$ is equal to 443520.
2. There are 5 double cosets in this double coset enumeration of M_{22} over S_6.

Relations

We see that new relation

(III) $(t_4 t_{16} t_1 = 1)$.

Moreover, if we conjugate the previous relation by all elements in S_6, therefore, the different cosets we obtain

- $(t_2 t_9 t_8 = 1)$.
- $(t_9 t_{26} t_3 = 1)$.
- $(t_{20} t_{30} t_{19} = 1)$.

Double Coset Enumeration of M_{22} over S_6:

Double Coset $[\ast]$:

We start with the double coset NeN, where e is the word of length zero, denoted by $[\ast]$. We have

$$NeN = \{Nen : n \in N\} = \{Ne\} = \{N\}.$$

So, the double coset NeN consists of the single coset N. Thus, $\frac{|N|}{|N|} = \frac{720}{720} = 1$.

Note, since N is transitive on $\{1, 2, ..., 30\}$, we take a representative coset N from $[\ast]$ and a representative from $\{1, 2, ..., 30\}$ and determine the double coset to which $N t_i$ belongs, where $i \in \{1, 2, ..., 30\}$. We consider $i = 1$, so $N t_1$ is the representative coset, and hence
we will have a new double coset Nt_1N which can denoted by $[1]$. There will be 30 possi-
bles t_is that take N to the next double cosets $[1]$.

Word of Length One $[1]$

We consider the double coset NwN, where w is a word of length one.

$Nt_1N = \{ Nt_1^n | n \in N \} = [1]$. So, $Nt_1N = [1]$

$= \{ Nt_1^n | n \in N \} = \{ Nt_1N, Nt_2N, ..., Nt_{30}N \}$. The coset stabilizer of the coset Nt_1 is $N^{(1)} = \{ n \in N | t_1^n = t_1 \}$

(2, 12)(4, 15)(5, 16)(6, 22)(8, 28)(9, 26)(11, 24)(13, 14) (17, 18)(20, 30)(21, 23)(27, 29),

Since $|N^{(1)}| = 24$, the number of single cosets in $[1]$ is $\frac{|N|}{|N^{(1)}|} = \frac{720}{24} = 30$.

Now, the orbits of $N^{(1)}$ on $\{1, 2, ..., 30\}$ are $\{1\}$, $\{2, 12, 27, 25, 29, 14, 10, 11, 13, 28, 24, 8\}$, $\{3, 26, 9\}$, $\{4, 15, 5, 7, 16, 19\}$ and $\{6, 20, 22, 21, 30, 18, 23, 17\}$. We choose a representative from each orbit, find the double costs to which Nt_1t_i belongs to each $i \in \{1, 2, 3, 4, 6\}$.

- $Nt_1 \cdot t_1 = Nt_1^2 = N \in [\ast]$. This will go back to $[\ast]$. Since there is one element in this orbit, there is one t_i that thaks $[1]$ to $[\ast]$.

- $Nt_1 \cdot t_2 = Nt_1t_2 \in [12]$. This is a new double coset, which will extend the Cayley graph from $[1]$ to $[12]$. Since there are 12 elements in this orbit, there are 12 t_is that take $[1]$ to $[12]$.

- $Nt_1 \cdot t_3 = Nt_1t_3 \in [13]$. This is a new double coset, which extends our graph from $[1]$ to $[13]$. Since there are 3 elements in this orbit, there are 3 t_is that take $[1]$ to $[13]$.

- $Nt_1 \cdot t_4 = Nt_1t_4 = Nt_{16} \in [1]$. This double coset will collapse. Since there are 6 elements in this orbit, there are 6 t_is that take $[1]$ to $[1]$.

- $Nt_1 \cdot t_6 = Nt_1t_6 = Nt_{22} \in [1]$. This double coset will collapse. Since there are 8 elements in this orbit, there are 8 t_is that take $[1]$ to $[1]$.
Word of Length Two [12], and [13]

(i) We are at a new double coset $[12]$, $Nt_1t_2N = \{N(t_1t_2)^n|n \in N\}$. The coset stabilizer of the coset Nt_1t_2 is $N^{(12)} = \{n \in N|(t_1t_2)^n = t_1t_2\}$

$= \langle (3, 26) (5, 19) (6, 20) (7, 15) (10, 28) (11, 29) (12, 25) (13, 24) (14, 27) (17, 30) (18, 22) (21, 23) \rangle$.

Since $|N^{(12)}| = 2$ then the number of single cosets in $[12]$ is $\frac{|N|}{|N^{(12)}|} = \frac{720}{2} = 360$. Now, the orbits of $N^{(12)}$ on $\{1, 2, ..., 30\}$ are $\{1\}$, $\{2\}$, $\{3, 26\}$, $\{4\}$, $\{5, 19\}$, $\{6, 20\}$, $\{7, 15\}$, $\{8\}$, $\{9\}$, $\{10, 28\}$, $\{11, 29\}$, $\{12, 25\}$, $\{13, 24\}$, $\{14, 27\}$, $\{16\}$, $\{17, 30\}$, $\{18, 22\}$, and $\{21, 23\}$. We choose a representative from each orbit, and determine the double costs to which $Nt_1t_2t_1$,

where $i \in \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 21\}$ belongs.

- $Nt_1t_2 \cdot t_1 = Nt_1t_2t_1$. This gives the relation $t_1t_2t_1 = (yx^{-y})t_1t_2t_4$. This double coset will go to $[1, 2, 4]$. Since there is one element in this orbit, there is one t_i that takes $[12]$ to $[1, 2, 4]$.

- $Nt_1t_2 \cdot t_2 = Nt_1t_2^2 \in [1]$. This will go back to $[1]$. Since there is one element in this orbit, there is one t_i that takes $[12]$ to $[1]$.

- $Nt_1t_2 \cdot t_3 = Nt_1t_2t_3$. This gives the relation $t_1t_2t_3 = t_1t_{11}$. This double coset will collapse. Since there are 2 elements in this orbit, there are 2 $t_i's$ that take $[12]$ to $[12]$.

- $Nt_1t_2 \cdot t_4 = Nt_1t_2t_4 \in [124]$. This is a new double coset, which extends our graph from $[12]$ to $[124]$. Since there is one element in this orbit, there is one t_i that takes $[12]$ to $[124]$.

- $Nt_1t_2 \cdot t_5 = Nt_1t_2t_5$. This gives the relation $t_1t_2t_5 = (xy^{-1}x^{-2}y^{-1})t_{20}t_9$. This double coset will collapse. Since there are 2 elements in this orbit, there are 2 $t_i's$ that take $[12]$ to $[12]$.

- $Nt_1t_2 \cdot t_6 = Nt_1t_2t_6$. This gives the relation $t_1t_2t_6 = (y^{-1} \ast x^{-1} \ast y^2)^2t_4t_2$. This double coset will collapse. Since there are 2 elements in this orbit, there are 2 $t_i's$ that take $[12]$ to $[12]$.
• \(N_{t_1} t_2 t_7 = N_{t_1} t_2 t_7 \). This gives the relation \(t_1 t_2 t_7 = (yx y^{-1} y^{-2} x) t_6 t_9 \). This double coset will collapse. Since there are 2 elements in this orbit, there are 2 \(t'_i \)'s that take [12] to [12].

• \(N_{t_1} t_2 \cdot t_8 = N_{t_1} t_2 t_8 \). This gives the relation \(t_1 t_2 t_8 = t_1 t_9 \). This double coset will send to [13]. Since there is one element in this orbit, there is one \(t_i \) that takes [12] to [13].

• \(N_{t_1} t_2 \cdot t_9 = N_{t_1} t_2 t_9 \). This gives the relation \(t_1 t_2 t_9 = t_1 t_8 \). This double coset will collapse. Since there is one element in this orbit, there is one \(t_i \) that takes [12] to [12].

• \(N_{t_1} t_2 \cdot t_{10} = N_{t_1} t_2 t_{10} \). This gives the relation \(t_1 t_2 t_{10} = t_1 t_{24} \). This double coset will collapse. Since there are 2 elements in this orbit, there are 2 \(t'_i \)'s that take [12] to [12].

• \(N_{t_1} t_2 \cdot t_{11} = N_{t_1} t_2 t_{11} \). This gives the relation \(t_1 t_2 t_{11} = t_1 t_3 \). This double coset will send to [13]. Since there are 2 elements in this orbit, there are 2 \(t'_i \)'s that take [12] to [13].

• \(N_{t_1} t_2 \cdot t_{12} = N_{t_1} t_2 t_{12} \). This gives the relation \(t_1 t_2 t_{12} = t_1 t_{25} \). This double coset will collapse. Since there are 2 elements in this orbit, there are 2 \(t'_i \)'s that take [12] to [12].

• \(N_{t_1} t_2 \cdot t_{13} = N_{t_1} t_2 t_{13} \). This gives the relation \(N_{t_1} t_2 t_{13} = t_1 t_{28} \). This double coset will collapse. Since there are 2 elements in this orbit, there are 2 \(t'_i \)'s that take [12] to [12].

• \(N_{t_1} t_2 \cdot t_{14} = N_{t_1} t_2 t_{14} \). This gives the relation \(t_1 t_2 t_{14} = t_1 t_{27} \). This double coset will collapse. Since there are 2 elements in this orbit, there are 2 \(t'_i \)'s that take [12] to [12].

• \(N_{t_1} t_2 \cdot t_{16} = N_{t_1} t_2 t_{16} \). This gives the relation \(t_1 t_2 t_{16} = (y * x^{-2} * y) t_1 t_2 \). This double coset will collapse. Since there is one element in this orbit, there is one \(t_i \) that takes [12] to [12].
\[N_{t1}t_2 \cdot t_{17} = N_{t1}t_2t_{17}. \] This gives the relation \(t_{1}t_{2}t_{17} = t_{14}t_{16}t_{12}. \) This double coset will send to \([124]\). Since there are two elements in this orbit, there are 2 \(t_1 \) that take \([12]\) to \([124]\).

\[N_{t1}t_2 \cdot t_{18} = N_{t1}t_2t_{18}. \] This gives the relation \(t_{1}t_{2}t_{18} = (yxy^{-2})t_{4}t_{2}t_{1}. \) This double coset will send to \([1, 2, 4]\). Since there are two elements in this orbit, there are 2 \(t'_1 \) that take \([1, 2]\) to \([1, 2, 4]\).

\[N_{t1}t_2 \cdot t_{21} = N_{t1}t_2t_{21}. \] This gives the relation \(t_{1}t_{2}t_{21} = (x * y^{-1} * x^{-2} * y^{-1})t_{6}t_{9}t_{20}. \) This double coset will send to \([124]\). Since there are 2 elements in this orbit, there are 2 \(t'_1 \) that take \([12]\) to \([124]\).

(ii) We are at a new double coset \([13]\), \(N_{t1}t_3N = \{N(t_{1}t_{3})^n|n \in N\}. \) The coset stabilizer of the coset \(N_{t1}t_3 \) is \(N^{(13)} = \{n \in N|(t_{1}t_{3})^n = t_{1}t_{3}\}
\]
\[
= < (2, 12)(4, 15)(5, 16)(6, 22)(8, 28)(9, 26)(11, 24)(13, 14)
\]
\[
(17, 18)(20, 30)(21, 23)(27, 29),
\]
\[
\]
\[
(15, 16)(17, 30)(18, 20)(22, 23),
\]
\[
\]
\[
(17, 22)(18, 23)(20, 21)(24, 27),
\]
\[
(1, 3)(2, 20, 24, 23, 29, 17, 28, 6)(4, 25, 5, 13, 16, 10, 15, 14)(7, 9, 19, 26)(8, 30, 27, 22, 11, 18, 12, 21)>.\]

Since \(|N^{(13)}| = 16 \) then the number of single cosets in \([13]\) is \(\frac{|N|}{|N^{(13)}|} = \frac{720}{16} = 45. \)

Now, the orbits of \(N^{(13)} \) on \(\{1, 2, ..., 30\} \) are \(\{1, 3\}, \{2, 12, 27, 11, 20, 21, 22, 17, 18, 6, 23, 30, 29, 28, 24, 8\}, \{4, 15, 5, 16, 25, 14, 13, 10\}, \) and \(\{7, 19, 9, 26\}. \) We choose a representative from each orbit, and find the double costs to which \(N_{t1}t_3t_i \) belongs to each \(i \in \{2, 3, 4, 7\}. \)

\[N_{t1}t_3 \cdot t_3 = N_{t1}t_3^2 \in [1]. \] This will go back to \([1]\). Since there are two elements in this orbit, there are 2 \(t'_1 \) that take \([1, 3]\) to \([1]\).

\[N_{t1}t_3 \cdot t_2 = N_{t1}t_3t_2. \] This gives the relation \(N_{t1}t_3t_2 = t_{1}t_{11}. \) This double coset will send to \([12]\). Since there are 16 elements in this orbit, there are 16 \(t'_1 \) that take \([13]\) to \([12]\).

\[N_{t1}t_3 \cdot t_4 = N_{t1}t_3t_4. \] This gives the relation \(t_{1}t_{3}t_{4} = (y^2 * x^2 * y * x)t_{3}t_{16}. \) This double coset will send to \([12]\). Since there are 8 elements in this orbit, there are 8 \(t'_1 \) that take \([13]\) to \([12]\).
\[N_{t_3} \cdot t_7 = N_{t_3} t_7. \] This gives the relation \(t_1 t_3 t_7 = (x \ast y \ast x \ast y \ast x^{-1} \ast y^{-1}) t_1 t_3. \)

This double coset will collapse. Since there are 4 elements in this orbit, there are 4 \(t_i' \)s that take \([13] \) to \([13] \).

Word of Length Three \([124]:\)

We are at a new double coset \([124]\), \(N_{t_4} t_5 t_4 N = \{ N(t_4 t_5 t_4)^n \mid n \in N \}. \) Now, the coset stabilizer of the coset \(N_{t_4} t_5 t_4 \) is \(N^{(124)} = \{ n \in N \mid (t_4 t_5 t_4)^n = t_4 t_5 t_4 \} \)

\[= < (1, 2) (3, 6, 26, 20) (4, 8) (5, 24, 19, 13) (7, 28, 15, 10) \]
\[\quad (9, 16) (11, 22, 29, 18) (12, 23, 25, 21) (14, 17, 27, 30)>. \]

\(N^{(124)} \) generated by 4 elements.

Since \(|N^{(124)}| = 4\) then the number of single cosets in \([124]\) is \(|N|/|N^{(124)}| = \frac{720}{4} = 180.\)

Now, the orbits of \(N^{(124)} \) on \([1, 2, \ldots, 30]\) are \([1, 2]\), \([4, 8]\), \([9, 16]\), \([3, 26, 6, 20]\), \([5, 15, 24, 13]\), \([7, 15, 28, 10]\), \([11, 29, 22, 18]\), \([12, 25, 23, 21]\),

and \([14, 27, 17, 30]\). We choose a representative from each orbit, and determine the double cosets to which \(N_{t_4} t_5 t_4 t_i \) belongs to each \(i \in \{1, 3, 4, 5, 7, 9, 11, 12, 14\} \).

- \(N_{t_4} t_5 t_4 \cdot t_1 = N_{t_4} t_5 t_4 t_1. \) This gives the relation \(t_1 t_4 t_4 t_1 = (y^{-2} x y) t_1 t_2. \) This double coset will go back to \([1, 2]\). Since there are two elements in this orbit, there are 2 \(t_i' \)s that take \([1, 2]\) to \([1, 2]\).

- \(N_{t_4} t_5 t_4 \cdot t_3 = N_{t_4} t_5 t_4 t_3. \) This gives the relation \(t_1 t_4 t_4 t_3 = (x^2 x^{-1} x^{-2} y^{-1} x^{-2}) t_4 t_2. \) This double coset will collapse. Since there are 4 elements in this orbit, there are 4 \(t_i' \)s that take \([124]\) to \([124]\).

- \(N_{t_4} t_5 t_4 \cdot t_4 = N_{t_4} t_4 t_4 t_4 = N_{t_4} t_2 \in [1, 2]. \) This double coset will go back to \([1, 2]\). Since there are 2 elements in this orbit, there are 2 \(t_i' \)s that take \([1, 2]\) to \([1, 2]\).

- \(N_{t_4} t_5 t_4 \cdot t_5 = N_{t_4} t_4 t_5 t_4. \) This gives the relation \(t_1 t_4 t_4 t_5 = (y x y^{-2} x y x^{-1} y) t_5 t_9. \) This double coset will go back to \([12]\). Since there are 4 elements in this orbit, there are 4 \(t_i' \)s that take \([124]\) to \([12]\).

- \(t_1 t_4 t_4 \cdot t_7 = N_{t_4} t_4 t_4 t_7. \) This gives the relation \(t_1 t_4 t_4 t_7 = (y x y x^{-1} y^{-1})^3 t_7 t_9. \) This double coset will go back to \([12]\). Since there are 4 elements in this orbit, there are 4 \(t_i' \)s that take \([124]\) to \([12]\).
• $N_t t_2 t_4 \cdot t_9 = N_t t_2 t_4 t_9$. This gives the relation $t_1 t_2 t_4 t_9 = (x^2 * y * x^{-2} * y) t_1 t_2 t_4$. This double coset will collapse. Since there are 2 elements in this orbit, there are 2 t'_is that take [124] to [124].

• $N_t t_2 t_4 \cdot t_{11} = N_t t_2 t_4 t_{11}$. This gives the relation $t_1 t_2 t_4 t_{11} = (x^2 y^{-1} x^{-2} y^{-1} x^{-2}) t_8 t_1$. This double coset will go back to [12]. Since there are 4 elements in this orbit, there are 4 t'_is that take [124] to [12].

• $N_t t_2 t_4 \cdot t_{12} = N_t t_2 t_4 t_{12}$. This gives the relation $t_1 t_2 t_4 t_{12} = (x^{-2} y^{-1}) t_{16} t_3 t_4$. This double coset will collapse. Since there are 4 elements in this orbit, there are 4 t'_is that take [124] to [124].

• $N_t t_2 t_4 \cdot t_{14} = N_t t_2 t_4 t_{14}$. This gives the relation $t_1 t_2 t_4 t_{14} = (yx^2) t_{16} t_2 t_4$. This double coset will collapse. Since there are 4 elements in this orbit, there are 4 t'_is that take [124] to [124].

Conclusion:

The double coset enumeration gives that

$$|G| \leq (|N| + |N_t N| + |N t_1 t_2 N| + |N t_1 t_3 N| + |N t_1 t_2 t_4 N|) \times |N|$$

$$= (1 + 30 + 360 + 45 + 180) \times 720$$

$$= (616 \times 720) = 443520.$$

A Cayley diagram of G over S_6 is given below.
Figure 8.2: Cayley Diagram for M_{22} Over S_6
Chapter 9

Group Representation and Character Theory

9.1 Group Representation

The main reason to study the group representations is to simplify the study of groups. Representation theory shows how we can study groups by reducing many group theoretic problems to basic linear algebra calculations. In order to define the group representation we define groups, homomorphism, automorphism, the general linear group, and the module theory in the first chapter.

Definition 9.1. Let F be a field and let A be an F-vector space which is also a ring with 1. Suppose for all $c \in F$ and $x, y \in A$, that $(cx)y = c(xy) = x(cy)$. Then A is an F-algebra.

Definition 9.2. Let A be a F-algebra. A representation of A is an algebra homomorphism $\mathcal{X} : A \to M_n(F)$. The integer n is the degree of \mathcal{X}. Two representation \mathcal{X}, \mathcal{D} of degree n are similar if there exists a nonsingular $n \times n$ matrix P, such that $\mathcal{X}(a) = P^{-1} \mathcal{D}(a) P$ for all $a \in A$.

Definition 9.3. Let F be a field and G a group. Then a F-representation of G is a homomorphism $\chi : G \to GL(n, F)$ for some integer n.
Definition 9.4. In a linear representation, let K be field and G be a group, and let the function λ send the group G to the field K, then every group possesses the trivial or principle representation given by the constant function $\lambda(x) = 1; x \in G$.

Definition 9.5. The matrix representation $N(x)$ is permutation matrix, that is it has exactly one unit in each row and in each column.

Definition 9.6. The representation is injective or faithful if and only if the kernel reduces to the trivial group $\{1\}$.

Example 9.7. Let $A(x)$ and $A(y)$ be matrices representation of group G of degree (dimension) m over K, which K is a field. Then the equation $A(x) = A(y) \Rightarrow A(x)(A(y))^{-1} = A(y)(A(y))^{-1} \Rightarrow A(x)(A(y))^{-1} = I \Rightarrow A(xy^{-1}) = I$, for the faithful representation that implies $xy^{-1} = 1$, that is $x = y$.

Definition 9.8. Let G be a group. The vector space V over K is called a G-module, if a multiplication $vx(v \in V, x \in G)$ is defined, subject to the rules:

1. $vx \in V$;
2. $(hv + kw)x = h(vx) + k(wx), (v, w \in V; h, k \in K)$;
3. $v(xy) = (vx)y$;
4. $v1 = v$.

Definition 9.9. Let V be a G-module over k. We say that U is a submodule of V if

1. U is a vector space (over K) contained in V, and
2. U is a G-module, that is $ux \in U$ for all $u \in U$ and $x \in G$.

Every G-module V possesses the trivial submodules $U = V$ and $U = 0$. A non-trivial submodule is also called a proper submodule.
Definition 9.10. Let V be a nonzero A-module. Then V is irreducible if and only if submodules (subrepresentation) are 0 and V.

Theorem 9.11. (Maschkes Theorem)
Let G be a finite group and F a field whose characteristic can not divide $|G|$. Then every $F[G]$-module is completely reducible.

9.2 Character Theory

In this section we will determinate a representation by its character which is important for the study of finite group representations. In order to define the character and find the character table we will define the conjugacy classes of the group. We will find that there is an intimate relation between the character of a representation and the conjugacy classes of the group.

Definition 9.12. Let a and b be elements of a group G. We say that a and b are conjugate in G (and call b a conjugate of a) if $xax^{-1} = b$ for some $x \in G$. The conjugacy class of a is the set $\text{cl}(a) = \{xax^{-1} | x \in G\}$.

Note: We can define the conjugate in G for a and b by $a^x = xax^{-1} = b; \forall x \in G$, and the order of a^x is equal to the order of a.

Example 9.13. We will find the conjugacy classes of the symmetric group S_3. As we know that $S_3 = \{e, (12), (13), (23), (123), (132)\}$, and also we now the definition of the conjugacy classes C_i of the element a is the set $\text{cl}(a) = \{xax^{-1} | x \in G\}$.

So, we will start with e to find the first class C_1, suppose $a = e \Rightarrow \text{cl}(e) = \{e\}$.

\Rightarrow Let $h_1 = \{e\}$ be C_1.

Then, to find the second class C_2 we will take the second element which is a 2-cycle, suppose $a = (12) \Rightarrow \text{cl}((12)) = \{e(12)e^{-1}, (12)(12)^{-1}, (13)(12)^{-1} \}$.

\Rightarrow Let $h_2 = \{(12), (23), (13)\}$ be C_2.

To find the third class C_3 we will take element with a 3-cycle, suppose $a = (123) \Rightarrow \text{cl}((123)) = \{(123), (132)\}$.
Let \(h_3 = \{(123), (132)\} \) be \(C_3 \).

To check the work we will add the number of the elements in all classes to get the order of \(S_3 \),

\[h_1 = h_2 = h_3 = 1 + 3 + 2 = 6 = |S_3| \]

Thus, we have a table for conjugacy classes ready to use.

| Table 9.1: Table for Conjugacy Classes of \(S_3 \) |
|----------|----------|----------|
| | Order : Element | Length |
| \(C_1 \) = \{1\} | Order1 : 1 | 1 |
| \(C_2 \) = \{2\} | Order2 : (12) | 3 |
| \(C_3 \) = \{3\} | Order3 : (123) | 2 |

Definition 9.14. If \(a \in G \), then the \textbf{centralizer} of \(a \) in \(G \), denoted by \(C_G(a) \), is the set of all \(x \in G \) which commute with \(a \).

\[C_G(a) = \{ g \in G | a^g = a \} \]

It is immediate that \(C_G(a) \) is a subgroup of \(G \).

Theorem 9.15. If \(a \in G \), the number of the conjugates of \(a \) is equal to the index of its centralizer:

\[|a^G| = [G : C_G(a)] \]

and this number is divisor of \(|G| \) when \(G \) is finite.

Example 9.16. We find the centralizer of \(a = (1, 2, 3, 4, 5, 6, 7, 8, 9) \) in \(D_9 \) to illustrate the last theorem.

By using the definition of the centralizer, we have that \(C_G(a) = \{ g \in G | a^g = a \} = \{ a^e = a^a = a^{a^2} = a^{a^3} = a^{a^4} = a^{a^5} = a^{a^6} = a^{a^7} = a^{a^8} = a \} \)

\[\Rightarrow C_G(a) = \{ e, a, a^2, a^3, a^4, a^5, a^6, a^7, a^8 \} \]

We note that \(|C_G| = 9 \) since the order of \(D_9 \) is 18, we have

\[\frac{|G|}{|C_G(a)|} = \frac{18}{9} = 2 = \text{the number of the conjugates of } a. \]

Definition 9.17. Let \(\mathfrak{X} \) be an \(F \)-representation of \(G \). Then the \textbf{\(F \)-character} \(\chi \) of \(G \) afforded by \(\mathfrak{X} \) is the function given by \(\chi(g) = \text{tr}\mathfrak{X}(g) \);

where \(\text{tr}\mathfrak{X}(g) \) is the trace of the action of \(g \) on \(\mathfrak{X} \), and the traces of conjugate matrices are equal.

Note that we call a character \textbf{irreducible} if the associated representation is irreducible.

The dimension of the representation which is have the character value at 1 called \(\chi(1) \) is the \textbf{degree} of \(\chi \). We denote that by \(\chi(1) = \text{deg}\mathfrak{X} \). However, characters of degree 1 are called \textbf{linear characters}.

Definition 9.18. The \textbf{alternating character} of the symmetric group \(S_n \) (for each \(n \geq 1 \)) defined by
Lemma 9.19. (a) Similar F-representation of G afford equal characters.
(b) Characters are constant on the conjugacy classes of a group.

Corollary 9.20. The number k of the similarity classes of irreducible representation of G is equal to the number of conjugacy classes of G.

Corollary 9.21. The group G is abelian iff every irreducible character is linear.

Theorem 9.22. (Character relations of the first kind)
Let $\chi(x)$ and $\hat{\chi}(x)$ be the characters of the irreducible representations $A(x)$ and $B(x)$, respectively. Then
\[
\langle \chi, \hat{\chi} \rangle = \begin{cases}
1 & \text{if } A(x) \sim B(x) \\
-1 & \text{if } A(x) \not\sim B(x)
\end{cases}
\]

9.3 Character Table

In this part we will find the character table for some groups by using some of the definitions and theorems we mentioned before and using the conjugacy class for each irreducible character.

Definition 9.23. The character table is a square array of complex numbers whose rows correspond to the χ_i and whose columns correspond to the classes X_i.

Theorem 9.24. Let G be a group of order g. If G has k conjugacy classes, there are, up to equivalence, k distinct irreducible representation over C, $F^{(1)}, F^{(2)}, \ldots, F^{(k)}$. If $F^{(i)}$ is of degree $f^{(i)}$, then $g = \sum_{i=1}^{k} (f^{(i)})^2$.

Theorem 9.25. Let G be a finite group having the distinct irreducible characters $\chi^{(1)}, \chi^{(2)}, \ldots, \chi^{(k)}$. Let $1 \leq i, j \leq k$. Then $\sum_{i=1}^{k} \chi_a^{(i)} \chi^{(i)} = \frac{|G|}{h_\alpha} \delta_{\alpha\beta}$.
(a) In a character table, the dot product of any column with the conjugate of any other column is 0.
(b) In a character table, the dot product of the column α with its own conjugate is $\frac{|G|}{h_\alpha}$.
In order to build the character table of the symmetric group S_3 we will use the conjugacy classes and find the three simple characters which are the trivial, alternating, and arbitrary representation. From the conjugacy classes we know that the character table has to be a 3×3 matrix, and also we know how we can obtain degrees of unknown characters by squaring the degree from the conjugacy classes and add them together. We know that the trivial representation is a representation that takes every element in S_3 to the identity, so the first row will be the trivial character $\chi^{(1)}(x)$ which is the identity character. Then, the second row will be alternating representation which means we will look at C_i then if it even we will get 1 and if it odd we will get -1, so the second row will be $\chi^{(2)}(x) = 1, -1, 1$. To illustrate the last character which is the arbitrary representation we will use the last two theorems. The first element of the third row will be $1^2 + 1^2 + (f^{(3)})^2 = 6 \Rightarrow (f^{(3)})^2 = 4 \Rightarrow f^{(3)} = 2$. The next two elements x and y will be $(1.1) + (1.(-1)) + (2x) = 0 \Rightarrow 2x = 0 \Rightarrow x = 0$, and $(1.1) + (1.1) + (2y) = 0 \Rightarrow 2y = -2 \Rightarrow y = -1$. Then the character table will be,

<table>
<thead>
<tr>
<th>Classes</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Order</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>$\chi^{(1)}$</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$\chi^{(2)}$</td>
<td>1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>$\chi^{(3)}$</td>
<td>2</td>
<td>0</td>
<td>-1</td>
</tr>
</tbody>
</table>

Example 9.27. The conjugacy classes and the character table of D_9.
We now that $G = D_9 = \{a, b|a^9 = b^2 = e, bab^{-1} = a^{-1}\}$, so that mean we have $G = \{e, a, a^2, a^3, a^4, a^5, a^6, a^7, a^8, b, ab, a^2b, a^3b, a^4b, a^5b, a^6b, a^7b, a^8b\}$. From the definition of G, we have those $a^9 = 1 \Rightarrow a^8 = a^{-1}$, $b^2 = 1 \Rightarrow b = b^{-1}$, and $b * a * b^{-1} = a^{-1} \Rightarrow ba = a^{-1}b^{-1} \Rightarrow ba = a^8b$, then let $a = (1, 2, 3, 4, 5, 6, 7, 8, 9)$ and $b = (1, 9)(2, 8)(3, 7)(4, 6)$ Now, to find the conjugacy classes of G We will apply the definition of the conjugacy classes.
We will start with e to find the first class C_1. $e^G = \{e^g|g \in G\} = \{geg^{-1}|g \in G\} = \{e\}$. Let $d_1 = \{e\}$ be C_1;
To find the second class C_2 we will take a 2-cycle. $(b)^G = \{b^g|g \in G\}$
= \{b^2, b^3, b^4, b^5, b^6, b^7, b^8, b^9, \}
= \{b, a^2b, a^4b, a^6b, a^8b, ab, a^3b, a^5b, a^7b\}.

Let \(d_2 = \{b, a^2b, a^4b, a^6b, a^8b, ab, a^3b, a^5b, a^7b\}\) be \(C_2\);

To find the third class \(C_3\) we will take a 3-cycle. \((a^4)^G = \{(a^4)^g \mid g \in G\} = \{a^4, a^5\}\). Let \(d_3 = \{a^4, a^5\}\) be \(C_3\);

To find the forth class \(C_4\) we will take a 9-cycle. \((a^9)^G = \{(a^9)^g \mid g \in G\} = \{a^9\}\). Let \(d_4 = \{a, a^8\}\) be \(C_4\);

To find the fifth class \(C_5\) we will take a 9-cycle. \((a^2)^G = \{(a^2)^g \mid g \in G\} = \{a^2, a^7\}\). Let \(d_5 = \{a^2, a^7\}\) be \(C_5\);

Finally, to find the sixth class \(C_6\) we will take a 9-cycle. \((a^3)^G = \{(a^3)^g \mid g \in G\} = \{a^3, a^6\}\). Let \(d_6 = \{a^3, a^6\}\) be \(C_6\). We will construct the conjugacy classes table of \(D_9\) to be clearly.

<table>
<thead>
<tr>
<th>(D_9)</th>
<th>Order : Element</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_1) = {1}</td>
<td>Order1 : e</td>
<td>(d_1 = 1)</td>
</tr>
<tr>
<td>(C_2) = {2}</td>
<td>Order2 : (\langle 1, 9 \rangle (2, 8)(3, 7)(4, 6))</td>
<td>(d_2 = 9)</td>
</tr>
<tr>
<td>(C_3) = {3}</td>
<td>Order3 : (\langle 1, 4, 7 \rangle (2, 5, 8)(3, 6, 9))</td>
<td>(d_3 = 2)</td>
</tr>
<tr>
<td>(C_4) = {4}</td>
<td>Order9 : (\langle 1, 2, 3, 4, 5, 6, 7, 8, 9 \rangle)</td>
<td>(d_4 = 2)</td>
</tr>
<tr>
<td>(C_5) = {5}</td>
<td>Order9 : (\langle 1, 3, 5, 7, 9, 2, 4, 6, 8 \rangle)</td>
<td>(d_5 = 2)</td>
</tr>
<tr>
<td>(C_6) = {6}</td>
<td>Order9 : (\langle 1, 5, 9, 4, 8, 3, 7, 2, 6 \rangle)</td>
<td>(d_6 = 2)</td>
</tr>
</tbody>
</table>

Because we get 6 conjugacy classes, the character table has 6 irreducible characters called by \(\chi^{(1)}, \chi^{(2)}, \ldots, \chi^{(6)}\).

1. As usual the first character \(\chi^{(1)}\) will be the trivial character.

2. We know the order of the normal subgroup of \(D_9\) divides the order of \(D_9\). The possible order of the normal subgroup other then the identity or the whole group should be 2, 3, 6, 9. We use the right coset to find which order we will use, so we have \(G/N = \frac{G}{\langle a^3 \rangle} = \frac{G}{\{e, a^3\}} = \frac{18}{3} = 6\) right cosets. These look at normal
subgroup of order 6 to use it to find the first two nontrivial characters. We will choose S_3 to be the normal subgroup of order 6. Since we know the character table of S_3,

<table>
<thead>
<tr>
<th>Classes C_α</th>
<th>1</th>
<th>(1,2)</th>
<th>(1,2,3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size h_α</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>$\phi^{(2)}$</td>
<td>1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>$\phi^{(3)}$</td>
<td>2</td>
<td>0</td>
<td>-1</td>
</tr>
</tbody>
</table>

- We will use the alternation character to fill the irreducible character $\chi^{(2)}$.

$$\chi^{(2)} = 1, -1, 1, 1, 1$$

- We will use this method $\langle \phi^G, \phi^G \rangle_G$ to fill the irreducible character $\chi^{(3)}$. We construct the induced character ϕ^G with the definition:

$$\phi^G_\alpha = \frac{|G : S_3|}{h_\alpha} \sum_{w} \phi(w), (w \in C_\alpha \cap S_3)$$

Going through the six classes of G we obtain that

1) $\phi^G_1 = \frac{3}{2} \sum \phi(1) = \frac{3}{2} \times 1 = 3$.
2) $\phi^G_2 = \frac{3}{2} \sum b \phi(b) = \frac{9}{2} \times (3 \times -1) = -1$.
3) $\phi^G_3 = \frac{3}{2} \sum a \phi(a^4) = \frac{3}{2} \times (2 \times 1) = 3$.
4) $\phi^G_4 = \phi^G_5 = \phi^G_6 = \frac{3}{2} \sum \phi(0) = \frac{3}{2} \times (0) = 0$.

$$\Rightarrow \langle \phi^G, \phi^G \rangle_G = \frac{1}{18} (9 + 9 + 18 + 0 + 0 + 0) = 2$$

Thus, ϕ^G is the sum of two simple characters. Hence $\phi^G - \chi^{(2)}$ is simple character. We denote by $\chi^{(3)}$,

$$\chi^{(3)} = 2, 0, 2, -1, -1, -1$$

3. In order to continue our search for the characters we use cyclic group of order 9 call it U.

$U : 1, u, u^2, u^3, u^4, u^5, u^6, u^7, u^8$, where $u = (1, 2, 3, 4, 5, 6, 7, 8, 9)$.

$\lambda(u) = Z$, where Z is an arbitrary ninth root of unity other than unity. Take $Z = e^{\frac{2\pi i}{9}}$, where Z can replaced by Z^2, or Z^3, or ..., or Z^8 and $Z + Z^2 + ... + Z^8 = -1$.

To compute the induced character λ^G, $n = [G : U] = \frac{18}{9} = 2$.

(a) $C_1 \cap U = 1 \Rightarrow \lambda_1^G = \frac{2}{1} \sum_1 \lambda(1)$

\[= \frac{2}{1} \times 1 = 2.\]

(b) $C_2 \cap U = 0 \Rightarrow \lambda_2^G = \frac{2}{9} \sum_0 \lambda(0)$

\[= \frac{2}{9} \times 0 = 0.\]

(c) $C_3 \cap U = \{u^5, u^4\} \Rightarrow \lambda_3^G = \frac{2}{2} \sum_{u^5 + u^4} \lambda(u^5 + u^4)$

\[= \frac{2}{2} \times Z^5 + Z^4 = Z^5 + Z^4.\]

(d) $C_4 \cap U = \{u, u^8\} \Rightarrow \lambda_4^G = \frac{2}{2} \sum_{u + u^8} \lambda(u + u^8)$

\[= \frac{2}{2} \times Z + Z^8 = Z + Z^8.\]

(e) $C_5 \cap U = \{u^2, u^7\} \Rightarrow \lambda_5^G = \frac{2}{2} \sum_{u^2 + u^7} \lambda(u^2 + u^7)$

\[= \frac{2}{2} \times Z^2 + Z^7 = Z^2 + Z^7.\]

(f) $C_6 \cap U = \{u^3, u^6\} \Rightarrow \lambda_6^G = \frac{2}{2} \sum_{u^3 + u^6} \lambda(u^3 + u^6)$

\[= \frac{2}{2} \times Z^3 + Z^6 = Z^3 + Z^6.\]

\[\chi^{(4)} = 2, 0, Z^5 + Z^4, Z + Z^8, Z^2 + Z^7, Z^3 + Z^6\]

\[\chi^{(5)} = 2, 0, Z^5 + Z^4, Z^2 + Z^7, Z^3 + Z^6, Z + Z^8\]

\[\chi^{(6)} = 2, 0, Z^5 + Z^4, Z^3 + Z^6, Z + Z^8, Z^2 + Z^7\]
9.4 Induced Character and Monomial Character

Definition 9.28. Let $H \subseteq G$ and let φ be a class function of H. Then φ^G_α, the **induced character** function on G, is given by

$$\varphi^G_\alpha = \frac{g/h}{h} \sum \varphi(w), \quad (w \in C_\alpha \cap H)$$

where g and h are the order of G and H respectively, and C_α the conjugacy class of G.

Definition 9.29. Let χ be the character of G. Then χ is **monomial** if $\chi = \varphi^G$, where φ is a linear character of some (not necessary proper) subgroup of G. The group G is an M-group if every $\chi \in \text{Irr}(G)$ is monomial.

After we get the faithful linear character of the subgroup H we will work to find the **monomial matrix**. In order to find that we have to get a right transversal of H in G to determine how many t’s (right cosets) we have. We write $G = Ht_1 \cup Ht_2 \cup \ldots \cup Ht_n$, so we are ready to right the monomial matrices. That is

$$A(x) = \begin{pmatrix}
\varphi(t_1x^{-1}_1) & \varphi(t_1x^{-1}_2) & \ldots & \varphi(t_1x^{-1}_n) \\
\varphi(t_2x^{-1}_1) & \varphi(t_2x^{-1}_2) & \ldots & \varphi(t_2x^{-1}_n) \\
: & : & \ldots & : \\
\varphi(t_nx^{-1}_1) & \varphi(t_nx^{-1}_2) & \ldots & \varphi(t_nx^{-1}_n)
\end{pmatrix}$$

Then, we will do the monomial matrices for other generators of G. Note, the monomial matrix has to be $n \times n$ matrix, where n is the index of H in G. Therefore, we give some examples of groups for which we find the monomial representations matrices by using MAGMA.

9.5 The Monomial Progenitor $5^4 : m (2^3 : 2^2)$

First, we will find all irreducible characters of the finite group $(2^3 : 2^2)$ to search for the subgroup H of N such that $[N : H]$ equal to a degree of an irreducible character of $N.$

```plaintext
> S:=Sym(8);
> aa:=S! (2, 5)(6, 7);
> bb:=S! (1, 2)(3, 7)(4, 5)(6, 8);
> cc:=S! (1, 3)(2, 6)(4, 8)(5, 7);
> dd:=S! (1, 2)(3, 6)(4, 5)(7, 8);
> ee:=S! (1, 4)(2, 5)(3, 8)(6, 7);
```
As we see there is only one irreducible character of degree 4, so we need $H \triangleright [N : H] = 4$. In the character table of H we will look for an induced linear irreducible character of H that can give an irreducible character of N of degree 8. Then we need to check if that linear character is faithful or not.
X.1 + 1 1 1 1 1 1 1 1 1
X.2 + 1 1 -1 -1 1 1 -1 -1 -1
X.3 0 1 -1 -1 1 I I -I -I
X.4 0 1 -1 1 -1 -I -I I I
X.5 + 1 1 1 1 -1 -1 -1 -1 -1
X.6 + 1 1 -1 -1 -1 -1 1 1 1
X.7 0 1 -1 -1 1 I -I I I
X.8 0 1 -1 1 -1 I -I I I

Explanation of Character Value Symbols

I = RootOfUnity(4)

> I:=Induction(ch[3],N);
> I;
(4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
> IsFaithful(I);
true
> Norm(I);
1
> CH[17] eq I;
true
> T:=Transversal(N,H);
> T;
{Id(N),
 (2, 5) (6, 7),
 (1, 2) (3, 7) (4, 5) (6, 8),
 (1, 3) (2, 6) (4, 8) (5, 7)
}

We have induced the linear faithful irreducible character \(\chi_3 \) of \(H \) to the irreducible character \(\chi_{17} \) of \(N \). Note the degree of \(\chi_{17} \) is equal to index of \(H \) in \(N \).

A:=[0: i in [1..16]];
for i in [1..4] do if aa*T[i]^~1 in H then i, ch[3](aa*T[i])~1; end if; end for;
for i in [1..4] do if T[2]*aa*T[i]^~1 in H then i, ch[3](T[2]*aa*T[i])~1; end if; end for;
for i in [1..4] do if T[3]*aa*T[i]^~1 in H then i, ch[3](T[3]*aa*T[i])~1; end if; end for;
for i in [1..4] do if T[4]*aa*T[i]^~1 in H then i, ch[3](T[4]*aa*T[i])~1; end if; end for;

> A:=[0: i in [1..16]];
> A[2]:=1; A[5]:=1; A[12]:=1; A[15]:=1;
> G:=GL(4,5);
> Order(G!A);
2
> aa;
(2, 5)(6, 7)

B:=[0: i in [1..16]];
for i in [1..4] do if bb*T[i]^{-1} in H then i, ch[3](bb*T[i]^{-1}); end if; end for;
for i in [1..4] do if T[2]*bb*T[i]^{-1} in H then i, ch[3](T[2]*bb*T[i]^{-1}); end if; end for;
for i in [1..4] do if T[3]*bb*T[i]^{-1} in H then i, ch[3](T[3]*bb*T[i]^{-1}); end if; end for;
for i in [1..4] do if T[4]*bb*T[i]^{-1} in H then i, ch[3](T[4]*bb*T[i]^{-1}); end if; end for;
> B:=[0: i in [1..16]];
> B[3]:=1; B[8]:=-1; B[9]:=1; B[14]:=-1;
> G:=GL(4,5);
> Order(G!B);
2
> bb;
(1, 2)(3, 7)(4, 5)(6, 8)

C:=[0: i in [1..16]];
for i in [1..4] do if cc*T[i]^{-1} in H then i, ch[3](cc*T[i]^{-1}); end if; end for;
for i in [1..4] do if T[2]*cc*T[i]^{-1} in H then i, ch[3](T[2]*cc*T[i]^{-1}); end if; end for;
for i in [1..4] do if T[3]*cc*T[i]^{-1} in H then i, ch[3](T[3]*cc*T[i]^{-1}); end if; end for;
for i in [1..4] do if T[4]*cc*T[i]^{-1} in H then i, ch[3](T[4]*cc*T[i]^{-1}); end if; end for;
> C:=[0: i in [1..16]];
> C[4]:=1; C[7]:=1; C[10]:=1; C[13]:=1;
> G:=GL(4,5);
> Order(G!C);
2
> cc;
(1, 3)(2, 6)(4, 8)(5, 7)

D:=[0: i in [1..16]];
for i in [1..4] do if dd*T[i]^{-1} in H then i,
ch[3](dd*T[i]^{-1}); end if; end for;
for i in [1..4] do if T[2]*dd*T[i]^{-1} in H then i,
ch[3](T[2]*dd*T[i]^{-1}); end if; end for;
for i in [1..4] do if T[3]*dd*T[i]^{-1} in H then i,
ch[3](T[3]*dd*T[i]^{-1}); end if; end for;
for i in [1..4] do if T[4]*dd*T[i]^{-1} in H then i,
ch[3](T[4]*dd*T[i]^{-1}); end if; end for;

> D:=[0: i in [1..16]];
> D[2]:=2; D[5]:=3; D[12]:=3; D[15]:=2;
> G:=GL(4,5);
> Order(G!D);
2
> dd;
(1, 2)(3, 6)(4, 5)(7, 8)

E:=[0: i in [1..16]];
for i in [1..4] do if ee*T[i]^{-1} in H then i,
ch[3](ee*T[i]^{-1}); end if; end for;
for i in [1..4] do if T[2]*ee*T[i]^{-1} in H then i,
ch[3](T[2]*ee*T[i]^{-1}); end if; end for;
for i in [1..4] do if T[3]*ee*T[i]^{-1} in H then i,
ch[3](T[3]*ee*T[i]^{-1}); end if; end for;
for i in [1..4] do if T[4]*ee*T[i]^{-1} in H then i,
ch[3](T[4]*ee*T[i]^{-1}); end if; end for;

> E:=[0: i in [1..16]];
> E[1]:=-1; E[6]:=-1; E[11]:=-1; E[16]:=-1;
> G:=GL(4,5);
> Order(G!E);
2
> ee;
(1, 4)(2, 5)(3, 8)(6, 7)
> M:=sub<G|A,B,C,D,E>;
> #M;32
> M!A, M!B, M!C, M!D, M!E;
[0 1 0 0] [0 0 1 0] [0 0 0 1] [0 2 0 0] [4 0 0 0]
[1 0 0 0] [0 0 0 4] [0 0 1 0] [3 0 0 0] [0 4 0 0]
[0 0 0 1] [1 0 0 0] [0 1 0 0] [0 0 0 3] [0 0 4 0]
[0 0 1 0] [0 4 0 0] [1 0 0 0] [0 0 2 0] [0 0 0 4]

Those matrices have 4 columns, we will label them by 1, 2, 3, and 4 as $t_1, t_2, t_3,$ and t_4 respectively. Hence, $t_i's$ are of order 4. We label $(t_1^2, t_2^2, t_3^2, t_4^2, \ldots, t_1^4, t_2^4, t_3^4, t_4^4)$ by 5
to 16. In order to replace that monomial matrices to monomial permutations we will use that labeling. We know that A,B,C,D and E are monomial automorphism of $<t_1> *<t_2> *<t_3> *<t_4>$ given by $a_{ij} = a \leftrightarrow t_i \to t_j^a$. So, we will find A and B,C,D and E can be found similarly.

In the monomial matrix A, we have $a_{1,2} = 1$ and $a_{2,1} = 1$.

$\Rightarrow t_1 = t_1^1 = t_2^2, t_1^3 = t_2^3, t_1^4 = t_2^1$ gives $(1, 2)(5, 6)(9, 10)(13, 14)$

$a_{3,4} = 1$ and $a_{4,3} = 1$

$\Rightarrow t_3 = t_1^1 = t_3^1, t_3^3 = t_3^4, t_3^4 = t_4^1$ gives $(3, 4)(7, 8)(11, 12)(15, 16)$.

So, $A=(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16),$ $B=(1, 3)(2, 16)(5, 7)(6, 12)(9, 11)(10, 8)(13, 15)(14, 4),$ $C=(1, 4)(2, 3)(5, 8)(6, 7)(9, 12)(10, 11)(13, 16)(14, 15),$ $D=(1, 6)(5, 14)(9, 2)(13, 10)(3, 12)(7, 4)(11, 16)(15, 8),$ and $E=(1, 13)(5, 9)(2, 14)(6, 10)(3, 15)(7, 11)(4, 16)(8, 12)$.

The presentation of N is $a, b, c, d, e, |a^2 = b^2 = c^2 = d^2 = e^2 = 1, b^a = b*e, c^a = c*b = c*e, d^a = d*e, d^b = d, c^e = e, e^a = e, e^b = e, e^c = e, e^d = e >$. Now, we are in position to give a monomial presentation of the monomial progenitor $5^4 :_m (2^3 : 2^2)$.

We will fix one of the four t_i's, say t_1 and call it t. Then, compute the normalizer of the subgroup $<t_1>$ in N. Therefore, we will compute the set stabilizer in N of the set $\{t_1, t_1^2, t_1^3, t_1^4\} = 1, 5, 9, 13$.

> S:=Sym(16);;
> aa:=S! (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12)(13, 14)(15, 16);
> bb:=S! (1, 3)(2, 16)(5, 7)(6, 12)(9, 11)(10, 8)(13, 15)(14, 4);
> cc:=S! (1, 4)(2, 3)(5, 8)(6, 7)(9, 12)(10, 11)(13, 16)(14, 15);
> dd:=S! (1, 6)(5, 14)(9, 2)(13, 10)(3, 12)(7, 4)(11, 16)(15, 8);
> ee:=S! (1, 13)(5, 9)(2, 14)(6, 10)(3, 15)(7, 11)(4, 16)(8, 12);
> N:=sub<S|aa, bb, cc, dd, ee>;
> G<a, b, c, d, e>:=Group<a, b, c, d, e, a^2 = b^2 = c^2 = d^2 = e^2 = 1, b*a=b*e, c*a=c*e, d*a=d*e, d*b=d, c*e=e, e*a=e, e*b=e, c*e=e, c*d=e>;
> f,G1,k:=CosetAction(G,sub<G|Id(G)>);
> s:=IsIsomorphic(G1,N);
> s;
> true
> s:=IsIsomorphic(M,N);
> s;
> true
Sch:=SchreierSystem(G,sub<G|Id(G)>);
ArrayP:=[Id(N): i in [1..12]];
for i in [2..32] do
P:=[Id(N): l in [1..#Sch[i]]];
for j in [1..#Sch[i]] do
if Eltseq(Sch[i])[j] eq 1 then P[j]:=aa; end if;
if Eltseq(Sch[i])[j] eq 2 then P[j]:=bb; end if;
if Eltseq(Sch[i])[j] eq 3 then P[j]:=cc; end if;
if Eltseq(Sch[i])[j] eq 4 then P[j]:=dd; end if;
if Eltseq(Sch[i])[j] eq 5 then P[j]:=ee; end if;
end for;
PP:=Id(N);
for k in [1..#P] do
PP:=PP*P[k]; end for;
ArrayP[i]:=PP;
end for;
for i in [1..32] do Sch[i], ArrayP[i]; end for;
Now, we find the set stabilizer in \(N \) of the set \(\{t_1, t_2, t_3, t_4\} = \{1, 5, 9, 13\} \) is generated by two elements of order 2, let \(a \ast c \ast b = (2, 14)(4, 16)(6, 10)(8, 12) \) and \(c \ast b \ast d = (1, 5, 13, 9)(2, 10, 14, 6)(3, 11, 15, 7)(4, 8, 16, 12) \). Hence, presentation of the monomial progenitor \(5^4 : (3^2 : 2^2) \) is given by \(G < a, b, c, d, e, t > := \text{Group} < a, b, c, d, e, t | a^2 = b^2 = c^2 = d^2 = e^2 = 1, b^a = b \ast e, c^a = c, c^b = c \ast e, d^a = d \ast e, d^b = d, d^c = d, e^a = e, e^b = e, e^c = e, e^d = e, t^5, t^{(a \ast c \ast b)} = t, t^{(c \ast b \ast d)} = t^2 >. \) After that we add more relations to the presentation of the monomial progenitor \(5^4 : N \) to find its homomorphic images.

for h, i in [0..10] do
G<a,b,c,d,e,t>:=Group<a,b,c,d,e,t|a^2=b^2=c^2=d^2=e^2=1,b^a=b\ast e,c^a=c,c^b=c\ast e,d^a=d\ast e,d^b=d,d^c=d,e^a=e,e^b=e,e^c=e,e^d=e,e^a=e^b=e^c=e^d=e,t^5,t^{(a\ast c \ast b)}=t,t^{(c \ast b \ast d)}=t^2,((b\ast e)\ast t \ast t^d)^h,((b\ast e) \ast t \ast t^d)^i>;
if #G gt 32 then h, i, Index(G,sub<G|a,b,c,d,e>), #G; end if; end for;
2 3 900 28800
> G<a,b,c,d,e,t>:=Group<a,b,c,d,e,t|a^2=b^2=c^2=d^2=e^2=1,b^a=b\ast e,c^a=c,c^b=c\ast e,d^a=d\ast e,d^b=d,d^c=d,e^a=e,e^b=e,e^c=e,e^d=e,t^5,t^{(a\ast c \ast b)}=t,t^{(c \ast b \ast d)}=t^2,((b\ast e)\ast t \ast t^d)^2,((b\ast e) \ast t \ast t^d)^3>;
> #G;
28800
> f,G1,k:=CosetAction(G,sub<G|a,b,c,d,e>);
> #G1;
28800
> #k;
1
> IN:=sub<G1|f(a),f(b),f(c),f(d),f(e)>;
> T:=sub<G1|f(t)>;
> # Normalizer(IN,T);
8

9.6 The Monomial Progenitor $7^8:m (3^2 : 2^4)$

The group $(3^2 : 2^4)$ of order 144 has the distinct irreducible characters $\chi^{(1)}, \chi^{(2)}, \ldots, \chi^{(9)}$. We find there are two different irreducible characters; one of degree 2 and the other of degree 4, but the irreducible representation of degree 2 will give us an unfaithful linear character. So, we look for a subgroup of index 8 in N and take the subgroup H of order 18. By working in the character table of H and induce up to N, the third linear irreducible character of H is $\chi^{(3)}$ to obtain the irreducible character $\chi^{(9)}$ of N. There are 8 transversals of H in N, so there are 8 t_i's such that $N = He \cup H(2,3,4,8,5,7,9,6) \cup H(2,4,5,9)(3,8,7,6) \cup H(2,5)(3,7)(4,9)(6,8) \cup H(2,7,5,3)(4,8,9,6) \cup H(2,7,4,6,5,3,9,8) \cup H(2,9,5,4)(3,6,7,8) \cup H(2,6,9,7,5,8,4,3)$ and the monomial matrices will be 8×8. By using MAGMA, we get

$$A = \begin{pmatrix}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix} \quad B = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0
\end{pmatrix}$$
These matrices have 8 columns, we will label them by 1 to 8 as $t_1, t_2, t_3, ..., t_8$ respectively. The entries of the matrices are in \mathbb{Z}_7. Hence, t_i's are of order 6. We label $(t_1^2, t_2^2, t_3^2, t_4^2, t_5^2, t_6^2, t_7^2, t_8^2)$ by 7 to 48. In order to replace that monomial matrices to monomial permutations we will use that labeling. We know that A, B, C, D, E and F are monomial automorphism of $<t_1> < t_2> < t_3> < t_4> < t_5> < t_6> < t_7> < t_8>$ given by $a_{ij} = a \Leftrightarrow t_i \rightarrow t_j^a$. So, we get that, $A = (1, 2, 3, 5, 4, 6, 7, 8)(9, 10, 11, 13, 12, 14, 15, 16)(17, 18, 19, 21, 20, 22, 23, 24)(25, 26, 27, 29, 28, 30, 31, 32)(33, 34, 35, 37, 36, 38, 39, 40)(41, 42, 43, 45, 44, 46, 47, 48),$
C = (1, 3, 4, 7)(2, 5, 6, 8)(9, 11, 12, 15)(10, 13, 14, 16)(17, 19, 20, 23)(18, 21, 22, 24)(25, 27, 28, 31)(26, 29, 30, 32)(33, 35, 36, 39)(34, 37, 38, 40)(41, 43, 44, 47)(42, 45, 46, 48),$
The presentation of \(N \) is \(< a,b,c,d,e,f \mid a^8,b^2,c^4,d^2,e^2,f^3,(e,f),a^2 = c,c^2 = d,b^a = b * c * d,c^a = c,c^b = c * d,d^a = d,d^b = d,e^a = f,e^b = e *(f^2),e^c = e *(f^2),e^d = e^2,f^a = e *(f^2),f^b = f^2,f^c = (e^2) *(f^2),f^d = f^2,f^e = f >. \) Now, we are in position to give a monomial presentation of the monomial progenitor \(7^{m+} \) \(N \). We will fix one of the forth \(t'_i \)'s, say \(t_1 \) and call it \(t \). Then, compute the normalizer of the subgroup \(< t_1 > \) in \(N \). Therefore, we will compute the set stabilizer in \(N \) of the set \(\{ t_1,t_1^2,t_1^3,t_1^4,t_1^5 \} = 1,9,17,25,33,41,49,57 \). After we find the set stabilizer in \(N \) of the set \(\{ t_1,t_1^2,t_1^3,t_1^4,t_1^5 \} = 1,9,17,25,33,41,49,57 \) is \(\{ b,b * f^{-1},e \} \), where \(b= (2,5)(3,7)(6,8)(10,13)(11,15)(14,16)(18,21)(19,23)(22,24)(26,29)(27,31)(30,32)(34,37)(35,39)(38,40)(42,45)(43,47)(46,48) \), \(b * f^{-1} = (2,9)(3,31)(5,10)(6,16)(7,11)(8,30)(13,26)(14,32)(15,27)(18,37)(19,39)(21,42)(22,48)(23,43)(24,38)(34,35)(37,40,46) \), and \(e = (1,25,9)(2,26,10)(3,11,27)(4,12,28)(6,14,30)(7,15,31)(8,32,16)(18,34,42)(19,43,35)(20,44,36)(22,46,38)(23,47,39)(24,40,48) \).

Hence, a presentation of the monomial progenitor \(7^{m+} \) \(N \) is given by \(G < a,b,c,d,e,f,t > = \) Group \(< a,b,c,d,e,f,t | a^8,b^2,c^4,d^2,e^2,f^3,(e,f),a^2 = c,c^2 = d,b^a = b * c * d,c^a = c,c^b = c * d,d^a = d,d^b = d,e^a = f,e^b = e *(f^2),e^c = e *(f^2),e^d = e^2,f^a = e *(f^2),f^b = f^2,f^c = (e^2) *(f^2),f^d = f^2,f^e = f,f^t,t(b) = t,t(b) * f^{-1} = t,(t^e) = t^4 >. \) To check the monomial progenitor \(7^{m+} \) \(N \) is wright we will find the orbit of the set stabilizer in \(N \) of the set \(\{ t_1,t_1^2,t_1^3,t_1^4,t_1^5 \} = 1,9,17,25,33,41,49,57 \) by MAGMA which is the following set

\[
\text{Orbits(Stabilizer(N,\{1,9,17,25,33,41\}}));
\]

\[
\begin{align*}
&\text{GSet\{1, 25, 9 \}}, \text{GSet\{4, 12, 28 \}}, \text{GSet\{17, 33, 41 \}}, \\
&\text{GSet\{20, 44, 36 \}}, \text{GSet\{2, 5, 10, 29, 13, 26 \}}, \\
&\text{GSet\{3, 7, 11, 27, 31, 15 \}}, \text{GSet\{6, 8, 30, 16, 32, 14 \}}, \\
&\text{GSet\{18, 21, 42, 37, 45, 34 \}}, \text{GSet\{19, 23, 43, 35, 39, 47 \}}, \\
&\text{GSet\{22, 24, 38, 48, 40, 46 \}}
\end{align*}
\]

So, we find that \(t_1 \) is commute with \(t_2,t_3 \) and \(t_4 \). We will add them in to the last mono-
mial presentation then run it in MAGMA to get the order has to be \(7^8 \times 144\)

\[
G < a, b, c, d, e, f, t > := \text{Group} < a, b, c, d, e, f, t | a^8, b^2, c^4, d^2, e^3, f^3, (e, f), a^2 = c, c^2 = d, b^a = b * c * d, c^a = c, c^b = c * d, d^a = d, d^b = d, d^c = d, e^a = f, e^b = e * (f^2), e^c = e * (f^2), f^a = e * (f^2), f^b = f^2, f^c = (e^2) * (f^2), f^d = f^2, f^e = f, t^7, t^b = t, t^1(b * f^{-1}) = t, t^e = t^4, (t, t^a), (t, t^c), (t, t^d), (t, t^1(a * d)) >;
\]

830131344

The Monomial Progenitor \(3^{45}_m (2^4 : (2 \times 5))\)

In the group \((2^4 : (2 \times 5))\) of order 160 has the distinct irreducible characters \(\chi^{(1)}, \chi^{(2)}, \ldots, \chi^{(10)}\). We find there are two different irreducible characters: one of degree 2 and the other of degree 5, but the irreducible representation of degree 2 will give us an unfaithful linear character. So, we look at a subgroup of index 5 in \(N\) and take the subgroup \(H\) of order 32. By working in the character table of \(H\) and induce up to \(N\), the third linear irreducible character of \(H\) is \(\chi_2\) to obtain the irreducible character \(\chi^{(6)}\) of \(N\). There are 5 transversals of \(H\) in \(N\), so there are 5 \(t'_i\)s such that \(N = H \cup H(1, 3, 6, 10, 7)(2, 4, 8, 9, 5) \cup H(1, 6, 7, 3, 10)(2, 8, 5, 4, 9) \cup H(1, 7, 10, 6, 3)(2, 5, 9, 8, 4) \cup H(1, 10, 3, 7, 6)(2, 9, 4, 5, 8)\) and the monomial matrices will be \(5 \times 5\). By using MAGMA, we get

\[
A = \begin{pmatrix}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}
B = \begin{pmatrix}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{pmatrix}
C = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 2
\end{pmatrix}
D = \begin{pmatrix}
2 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}
E = \begin{pmatrix}
2 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}
F = \begin{pmatrix}
2 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 2
\end{pmatrix}
\]

These matrices have 5 columns, we will label them by 1 to 5 as \(t_1, t_2, t_3, t_4, t_5\) respectively. The entries of the matrices are in \(Z_3\). Hence, \(t'_i\)s are of order 2. We label
Then, compute the normalizer of the subgroup c,f.

The presentation of $D=(1, 6)(2, 7), E=(1, 6)(3, 8), \text{ and } F=(1, 6)(2, 7)(3, 8)(4, 9)(5, 10)$; $G=(1, 2)(3, 4)(6, 7)(8, 9)$, $B=(1, 2, 3, 5, 4)(6, 7, 8, 10, 9)$, $C=(2, 7)(3, 8)(4, 9)(5, 10)$, $D=(1, 6)(2, 7)$, $E=(1, 6)(3, 8)$, and $F=(1, 6)(2, 7)(3, 8)(5, 10)$;

The presentation of N is $<a,b,c,d,e,f,t|a^2, b^5, c^2, d^2, e^2, f^2, b^a = b^4, c^a = c*d, c^b = c*d,d^a = d, d^b = d*e, d^c = d,e^a = c*d*f, e^b = e*c, e^c = e, e^d = e,f^a = c*e, f^b = c*f^c = f, f^d = f, f^e = f*->$ is the following set $\{GSet{@1,13@}, GSet{@14@}, GSet{@15@}, GSet{@1,6@}, GSet{@2,7,4,9@}, GSet{@3,8,10,5}@\}$.

We will find the orbit of the set stabilizer in N of the set $\{t_1, t_1^2\} = 1, 6$. After we find the set stabilizer in N of the set $\{t_1, t_1^2\} = 1, 6$ is

$\{(3,8)(5,10),(2,7)(5,10),(4,9)(5,10),(2,4)(3,10)(5,8)(7,9),(1,6)(5,10)\}$

and that $d*f = (3,8)(5,10)$, $e*f = (2,7)(5,10)$, $c*d*e = (4,9)(5,10)$, $a*c*b^{-1}*d = (2,4)(3,10)(5,8)(7,9)$, and $d*e*f = (1,6)(5,10)$.

Hence, presentation of the monomial progenitor $3^{\ast 5} :_{m}(2^4 : (2 \times 5))$ is given by $G < a, b, c, d, e, f, t>$: Group $<a,b,c,d,e,f,t|a^2, b^5, c^2, d^2, e^2, f^2, b^a = b^4, c^a = c*d, c^b = c*d,d^a = d, d^b = d*e, d^c = d,e^a = c*d*f, e^b = e*c, e^c = e, e^d = e,f^a = c*e, f^b = c*f^c = f, f^d = f, f^e = f*->$ is wright. To check the monomial progenitor $3^{\ast 5} :_{m}(2^4 : (2 \times 5))$ is wright we will find the orbit of the set stabilizer in N of the set $\{t_1, t_1^2\} = 1, 6$ by MAGMA which is the following set

Orbits(Stabilizer(N,{1,6}));
[GSet@ 11 0, GSet@ 12 0, GSet@ 13 0, GSet@ 14 0,
 GSet@ 15 0, GSet@ 1 6 0, GSet@ 2 7 4 9 0,
 GSet@ 3, 8, 10, 5]

So, we find that t_1 is commute with t_2, and t_3. We will add them in to the last monomial presentation then run it in MAGMA to get the order has to be $3^5 \times 160$.

$G<a,b,c,d,e,f,t>$:Group$<a,b,c,d,e,f,t|a^-2, b^-5, c^-2, d^-2, e^-2, \text{ f}^-2, b^-a=b^-4, c^-a=c*d, c^-b=c*d, d^-a=d*e, d^-b=d*e, d^-c=d*e, a^-c*d*f, \text{ e}^-b=e*f, e^-c=e, e^-d=e, f^-a=c*e, f^-b=c, f^-c=f, f^-d=f, f^-e=f, t^-3, \text{ t}^-3, \text{ t}^-4>$.
\[t^{(c*d*e)} = t, t^{(d*f)} = t, t^{(e*f)} = t, t^{(a*c*b^{-1}*d)} = t, t^{(d*e*f)} = t^2, (t, t^a), (t, t^{a*b}) \];

\#G;
38880

\[f,G1,k := \text{CosetAction}(G, \text{sub}<G|a,b,c,d,e,f>); \]
\#G1; #k;
38880 1

IN := \text{sub}<G1|f(a),f(b),f(c),f(d),f(e),f(f)>;
\#IN;
160

T := sub<G1|f(t)>;
\#T;
3

\# \text{Normalizer}(IN,T);
32
Chapter 10

Homomorphic Images

In this chapter we will obtain the homomorphic images of various progenitor.

Theorem 10.1. Let \(G = \langle t_1, t_2, ..., t_n \rangle \), where \(|t_i| = 2 \), \(1 \leq i \leq n \) and let \(N = \text{Normalizer}(G, \{ < t_1 >, < t_2 >, ..., < t_n > \}) \), where \(N \) acts transitively on \(\{ < t_1 >, < t_2 >, ..., < t_n > \} \). Then \(G \) is a homomorphic image of \(2^n : N \).

10.1 The Group \(M_{22} \)

Example 10.2. \(M_{22} \) is a homomorphic image of the progenitor \(2^{*16} : (2^4 : 2) \).

We know that, \(M_{22} \) is generated by 16 elements of order 2. Let

\[
\begin{align*}
t_1 &= (1, 16)(3, 8)(5, 10)(6, 11)(7, 17)(9, 21)(13, 22)(18, 20), \\
t_2 &= (1, 8)(2, 12)(4, 22)(5, 19)(7, 14)(9, 15)(10, 13)(16, 20), \\
t_3 &= (1, 9)(3, 13)(5, 18)(6, 17)(7, 11)(8, 22)(10, 20)(16, 21), \\
t_4 &= (1, 7)(2, 19)(4, 13)(5, 12)(8, 14)(9, 16)(10, 22)(15, 20), \\
t_5 &= (1, 5)(3, 17)(6, 13)(7, 8)(9, 18)(10, 16)(11, 22)(20, 21), \\
t_6 &= (1, 15)(2, 10)(3, 13)(6, 11)(7, 8)(12, 18)(17, 22)(19, 21), \\
t_7 &= (1, 11)(2, 12)(3, 14)(4, 6)(5, 9)(10, 17)(15, 20)(16, 19), \\
t_8 &= (1, 20)(3, 11)(5, 21)(6, 8)(7, 13)(9, 10)(16, 18)(17, 22), \\
t_9 &= (1, 13)(2, 20)(4, 7)(5, 9)(8, 10)(12, 16)(14, 22)(15, 19), \\
t_{10} &= (1, 22)(2, 9)(4, 8)(5, 20)(7, 10)(12, 15)(13, 14)(16, 19), \\
t_{11} &= (1, 19)(2, 18)(3, 11)(6, 13)(7, 17)(8, 22)(10, 12)(15, 21), \\
t_{12} &= (1, 3)(2, 20)(4, 17)(5, 19)(6, 10)(9, 16)(11, 14)(12, 15),
\end{align*}
\]
Then $M_{22} = \langle t_1, t_2, t_3, t_4, t_5, t_6, t_7, t_8, t_9, t_{10}, t_{11}, t_{12}, t_{13}, t_{14}, t_{15}, t_{16} \rangle$.

Now $N = \text{Normalizer} (G, \{< t_1 >, < t_2 >, < t_3 >, < t_4 >, < t_5 >, < t_6 >, < t_7 >, < t_8 >, < t_9 >, < t_{10} >, < t_{11} >, < t_{12} >, < t_{13} >, < t_{14} >, < t_{15} >, < t_{16} > \}) \cong (2^4 : 2)$ and it acts transitively on $\{< t_1 >, < t_2 >, < t_3 >, < t_4 >, < t_5 >, < t_6 >, < t_7 >, < t_8 >, < t_9 >, < t_{10} >, < t_{11} >, < t_{12} >, < t_{13} >, < t_{14} >, < t_{15} >, < t_{16} > \}$. A presentation of the progenitor $2^*_{16} : (2^4 : 2)$ is given by

$$G < a, b, c, d, e, t > := \text{Group} < a, b, c, d, e, t | a^4, b^4, c^2, d^2, e^2, (a^{-2})*d, (b^{-1})*(a^2)*(b^{-1}), (a^{-1})*(b^{-1})*a*(b^{-1}), (a^{-1})*c*(a^{-1})*e, (b^{-1})*c*b*e, (c*e)^2, t^2, (t, c) >;$$

<table>
<thead>
<tr>
<th>f</th>
<th>s</th>
<th>w</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Order of G</th>
<th>Rough Shape of G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>4144</td>
<td>$2^4 : S_4$</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>254760</td>
<td>$2^11 \cdot (A_5 \times 2)$</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>768</td>
<td>$2^7 \cdot S_3$</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>1536</td>
<td>$2^6 : S_4$</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>9</td>
<td>384</td>
<td>$2^4 : S_4$</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>61440</td>
<td>$2^{10} : A_5$</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3072</td>
<td>$2^7 : S_3$</td>
</tr>
</tbody>
</table>

10.2 The Group M_{24}

Example 10.3. M_{24} is a homomorphic image of the progenitor $2^{*6} : ((2 \times 3) : 2)$.

We know that, M_{24} is generated by 6 elements of order 2. Let

$t_2 = (1, 21)(2, 23)(3, 16)(8, 13)(9, 22)(10, 11)(14, 15)(17, 18),$
$t_3 = (1, 16)(3, 9)(5, 19)(6, 15)(7, 18)(10, 12)(11, 14)(23, 24),$
$t_4 = (1, 11)(3, 21)(4, 12)(5, 22)(7, 8)(9, 18)(14, 24)(17, 20),$
$t_5 = (1, 15)(2, 20)(4, 13)(5, 18)(6, 16)(7, 19)(8, 17)(21, 22),$
\[t_6 = (2,8)(4,7)(5,20)(6,12)(9,10)(11,22)(13,23)(19,24). \]

Then \(M_{24} = \langle t_1, t_2, t_3, t_4, t_5, t_6 \rangle \).

Now \(N = \text{Normalizer} (G, \{ < t_1 >, < t_2 >, < t_3 >, < t_4 >, < t_5 >, < t_6 > \}) \cong (2 \times 3) : 2 \) and it acts transitively on \(\{ < t_1 >, < t_2 >, < t_3 >, < t_4 >, < t_5 >, < t_6 > \} \). A presentation of the progenitor \((2^6 : ((2 \times 3) : 2)) \) is given by

\[G < a, b, c, t > := \text{Group} \langle a, b, c, t | a^2, b^2, c^3, (a*b)^2, (a*c^{-1})^2, (b*(c^{-1})*b*c), t^2, (t, a*b) \rangle; \]

Table 10.2: Some Finite Homomorphism Image of \(2^{*^6} : ((2 \times 3) : 2) \)

<table>
<thead>
<tr>
<th>f</th>
<th>g</th>
<th>h</th>
<th>i</th>
<th>j</th>
<th>k</th>
<th>l</th>
<th>Order of G</th>
<th>Rough Shape of G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>7</td>
<td>24360</td>
<td>(PGL(2, 29))</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>1267200</td>
<td>(2 \cdot (2^4 \cdot L_2(11) \cdot A_5))</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>8</td>
<td>7</td>
<td>10</td>
<td>322560</td>
<td>(2^3 \cdot PGL(3, 4))</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>8</td>
<td>6</td>
<td>7</td>
<td>737280</td>
<td>(2^{10} \cdot S_6)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>4</td>
<td>9</td>
<td>10</td>
<td>51840</td>
<td>(2 \cdot U_4(2))</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>43008</td>
<td>(2^7 \cdot PGL(2, 7))</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>380160</td>
<td>(2^2 \cdot M_{12})</td>
</tr>
</tbody>
</table>

10.3 The Group \(M_{11} \)

Example 10.4. \(M_{11} \) is a homomorphic image of the progenitor \(2^{*^8} : (2^3 : 2) \).

We know that, \(M_{11} \) is generated by 8 elements of order 2. Let

\[t_1 = (1, 4)(2, 8)(3, 7)(9, 10), \]
\[t_1 = (1, 10)(2, 5)(3, 4)(6, 11), \]
\[t_1 = (1, 6)(2, 9)(3, 10)(7, 8), \]
\[t_1 = (1, 11)(2, 10)(3, 8)(7, 9), \]
\[t_1 = (1, 9)(2, 4)(3, 11)(5, 6), \]
\[t_1 = (1, 7)(2, 11)(3, 6)(4, 5), \]
\[t_1 = (1, 5)(2, 7)(3, 9)(8, 10), \]
\[t_1 = (1, 8)(2, 6)(3, 5)(4, 11). \]

Then \(M_{11} = \langle t_1, t_2, t_3, t_4, t_5, t_6, t_7, t_8 \rangle \).

Now \(N = \text{Normalizer} (G, \{ < t_1 >, < t_2 >, < t_3 >, < t_4 >, < t_5 >, < t_6 >, < t_7 >, < t_8 > \}) \cong (2^3 : 2) \) and it acts transitively on \(\{ < t_1 >, < t_2 >, < t_3 >, < t_4 >, < t_5 >, < t_6 >, < t_7 >, < t_8 > \} \). A presentation of the progenitor \((2^{*^8} : (2^3 : 2) \) is given by
\[G\langle a, b, c, d, t \rangle := \text{Group}\langle a, b, c, d, t | a^4, b^2, c^4, d^2, ((a^{-2}) * d), ((c^{-1}) * (a^{-1}) * (c^{-1})), ((a^{-1}) * b * (a^{-1}) * b * c), (b * (c^{-1}))^{-2}, t^{-2}, (t, b) \rangle; \]

Table 10.3: Some Finite Homomorphism Image of \(2^8 : (2^3 : 2) \)

<table>
<thead>
<tr>
<th></th>
<th>f</th>
<th>i</th>
<th>j</th>
<th>k</th>
<th>l</th>
<th>m</th>
<th>n</th>
<th>Order of G</th>
<th>Rough Shape of G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>...</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>15360</td>
<td>(2^4 \cdot (2^4 \cdot S_5))</td>
</tr>
<tr>
<td>0</td>
<td>...</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>21504</td>
<td>(2^6 \times PGL(2, 7))</td>
</tr>
<tr>
<td>0</td>
<td>...</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>9</td>
<td>82944</td>
<td>82944</td>
</tr>
<tr>
<td>0</td>
<td>...</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>6</td>
<td>1290240</td>
<td>(2^4 \cdot (PGL(3, 4) \times 2))</td>
</tr>
<tr>
<td>0</td>
<td>...</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>5</td>
<td>161280</td>
<td>((2^2 \cdot PSL(3, 4)))</td>
</tr>
</tbody>
</table>

10.4 The Group \(M_{12} \)

Example 10.5. \(M_{12} \) is a homomorphic image of the progenitor \(2^8 : (2^3 : 2) \).

We know that, \(M_{12} \) is generated by 8 elements of order 2. Let

\[
\begin{align*}
 t_1 &= (1, 6)(2, 4)(3, 10)(5, 8)(7, 12)(9, 11), \\
 t_2 &= (1, 11)(2, 6)(3, 4)(5, 12)(7, 8)(9, 10), \\
 t_3 &= (1, 4)(2, 11)(3, 5)(6, 12)(7, 9)(8, 10), \\
 t_4 &= (1, 5)(2, 3)(4, 12)(6, 7)(8, 9)(10, 11), \\
 t_5 &= (1, 10)(2, 5)(3, 7)(4, 8)(6, 9)(11, 12), \\
 t_6 &= (1, 3)(2, 10)(4, 9)(5, 6)(7, 11)(8, 12), \\
 t_7 &= (1, 7)(2, 8)(3, 9)(4, 6)(5, 11)(10, 12), \\
 t_8 &= (1, 8)(2, 7)(3, 12)(4, 11)(5, 9)(6, 10).
\end{align*}
\]

Then \(M_{12} = \langle t_1, t_2, t_3, t_4, t_5, t_6, t_7, t_8 \rangle \).

The \(N = \text{Normalizer} \) \((G, \{< t_1 >, < t_2 >, < t_3 >, < t_4 >, < t_5 >, < t_6 >, < t_7 >, < t_8 > \}) \cong (2^3 : 2) \) and it acts transitively on \(\{< t_1 >, < t_2 >, < t_3 >, < t_4 >, < t_5 >, < t_6 >, < t_7 >, < t_8 > \} \). A presentation of the progenitor \(2^8 : (2^3 : 2) \) is

\[G\langle a, b, c, d, t \rangle := \text{Group}\langle a, b, c, d, t | a^4, b^2, c^4, d^2, ((a^{-2}) * c), ((b^{-1}) * (a^{-2}) * (b^{-1})), ((a^{-1}) * (b^{-1}) * a * (b^{-1})), (d * (b^{-1}) * (a^{-1}) * d * (b^{-1})), ((a^{-1}) * d)^{-2}, t^{-2}, (t, d * a) \rangle; \]
Table 10.4: Some Finite Homomorphism Image of $2^8 \times (2^3 : 2)$

<table>
<thead>
<tr>
<th>f</th>
<th>i</th>
<th>j</th>
<th>k</th>
<th>l</th>
<th>m</th>
<th>n</th>
<th>Order of G</th>
<th>Rough Shape of G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>...</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>21504</td>
<td>$2^5 \cdot (PGL(2,7))$</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>...</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>8</td>
<td>6</td>
<td>1290240</td>
<td>$2^4 \cdot (PGL(3,4) \times 2)$</td>
</tr>
<tr>
<td>0</td>
<td>...</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>7</td>
<td>5</td>
<td>161280</td>
<td>$2^3 \cdot PGL(3,4)$</td>
</tr>
<tr>
<td>0</td>
<td>...</td>
<td>0</td>
<td>6</td>
<td>10</td>
<td>0</td>
<td>4</td>
<td>115200</td>
<td>$2^2 \cdot ((A_5 \times A_5) \cdot 2^3)$</td>
</tr>
</tbody>
</table>

10.5 The Group J_1

Example 10.6. J_1 is a homomorphic image of the progenitor $2^{*19} : (19 : 2)$.

We know that, J_1 is generated by 19 elements of order 2. Then

$J_1 = \langle t_1, t_2, t_3, t_4, t_5, t_6, t_7, t_8, t_9, t_{10}, t_{11}, t_{12}, t_{13}, t_{14}, t_{15}, t_{16}, t_{17}, t_{18}, t_{19} \rangle$.

Now $N = \text{Normalizer} \{ t_1, t_2, t_3, t_4, t_5, t_6, t_7, t_8, t_9, t_{10}, t_{11}, t_{12}, t_{13}, t_{14}, t_{15}, t_{16}, t_{17}, t_{18}, t_{19} \} \cong (19 : 2)$

$\Rightarrow 2^{*19} : (19 : 2)$ acts transitively on $\{ t_1, t_2, t_3, t_4, t_5, t_6, t_7, t_8, t_9, t_{10}, t_{11}, t_{12}, t_{13}, t_{14}, t_{15}, t_{16}, t_{17}, t_{18}, t_{19} \}$. A presentation of the progenitor $2^{*19} : (19 : 2)$ is given by

$$G \langle a, b, t \rangle := \text{Group} \langle a, b, t | a^2, b^{-19}, ((b^{-1})a)^2, t^2, (t, a) \rangle;$$

10.6 The Group J_2

Example 10.7. J_2 is a homomorphic image of the progenitor $2^{*6} : ((2 \times 3) : 2)$.

We know that, J_2 generated by 6 elements of order 2. Let

We know that,

Example 10.8. \(J_2\) is a homomorphic image of the progenitor \(2^{4+2} : ((2^2 \times 3) : 2)\). We know that, \(J_2\) is generated by 12 elements of order 2. Let

Then \(J_2 = \langle t_1, t_2, t_3, t_4, t_5, t_6 \rangle\).

Now \(N = \text{Normalizer} (G, \{< t_1 >, < t_2 >, < t_3 >, < t_4 >, < t_5 >, < t_6 >\}) \cong ((2 \times 3) : 2)\) and it acts transitively on \(\{< t_1 >, < t_2 >, < t_3 >, < t_4 >, < t_5 >, < t_6 >\}\). A presentation of the progenitor \(2^{4+2} : ((2 \times 3) : 2)\) is given by

\[G < a, b, c, t > : = \text{Group} < a, b, c, t / a^2, b^2, c^3, (a * b)^2, (a * (c^{-1}))^2, (b * (c^{-1}) * b * c), t^2, (t, a * b) >; \]
Table 10.5: Some Finite Homomorphism Image of \(2^6 : ((2 \times 3) : 2)\)

<table>
<thead>
<tr>
<th>f</th>
<th>g</th>
<th>h</th>
<th>i</th>
<th>j</th>
<th>k</th>
<th>l</th>
<th>Order of G</th>
<th>Rough Shape of G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>13680</td>
<td>(2 : PGL(2, 19))</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>8</td>
<td>322560</td>
<td>((2^3 \times PSL(3, 4)) : 2)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>8</td>
<td>6</td>
<td>737280</td>
<td>(2^{10} : \circ S_6)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>3</td>
<td>10</td>
<td>483840</td>
<td>((2 \times S_3) \bullet PGL(3, 4))</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>7</td>
<td>10080</td>
<td>(2 : S_7)</td>
</tr>
</tbody>
</table>

90)(31
49)(16
85)(46
50)(34
18)(17
86)(88
65)(51
57)(33
93)(19
73)(79
84)(52
44)(29
77)(14
96)(70
82)(29
86)(19
91)(63
74)(14
76)(74
87)(20
52)(34
82)(83
73)(48
84)(75
92)(54
97)(35
26)(19
95)(91
96)(72
98)(77,82)(91,96),

Then \(J_2 = \langle t_1, t_2, t_3, t_4, t_5, t_6, t_7, t_8, t_9, t_{10}, t_{11}, t_{12} \rangle \).

Now \(N = \text{Normalizer}(G, \{< t_1>, < t_2>, < t_3>, < t_4>, < t_5>, < t_6>, < t_7>, < t_8>,< t_9>, < t_{10}>, < t_{11}>, < t_{12}>\}) \cong ((2^2 \times 3) : 2) \) and it acts transitively on \(\{< t_1>, < t_2>, < t_3>, < t_4>, < t_5>, < t_6>, < t_7>, < t_8>, < t_9>, < t_{10}, < t_{11}>, < t_{12}>\} \). A presentation of the progenitor \(2^{*12} : ((2^2 \times 3) : 2) \) is given by

\[
G < a, b, c, d, t > := \text{Group} < a, b, c, d, t | b^3, c^2, ((a^{-2})*(d^{-1})), \\
(b*(a^2)*(d^{-1})), ((a^{-1})*c)^2, t^2, (t,a*c) >;
\]

Table 10.6: Some Finite Homomorphism Image of \(2^{*12} : ((2^2 \times 3) : 2) \)

<table>
<thead>
<tr>
<th>e</th>
<th>l</th>
<th>m</th>
<th>n</th>
<th>o</th>
<th>p</th>
<th>q</th>
<th>Order of G</th>
<th>Rough Shape of G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>3542880</td>
<td>((2 \times PGL(2, 121)) : 2)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>8</td>
<td>172032</td>
<td>2^3 \cdot PGL(2, 7)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>0</td>
<td>10</td>
<td>322560</td>
<td>322560</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>6298560</td>
<td>6298560</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>4</td>
<td>31457280</td>
<td>31457280</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>7</td>
<td>4</td>
<td>0</td>
<td>9596496</td>
<td>((13^3 \times 2) : \bullet(PGL(2, 13)))</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>5</td>
<td>4</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>983040</td>
<td>983040</td>
</tr>
</tbody>
</table>
Appendix A

MAGMA Code for DCE of \(L_2(8)\)
Over \(2^2\)

\[
S := \text{Sym}(4);
xx := S!(1,2)(3,4);
yy := S!(1,3)(2,4);
N := \text{sub}<S|xx,yy>;
G<x,y,t> := \text{Group}<x,y,t|x^2,y^2,(x,y),t^2,(x*y*x*t)^7,
 (x*t)^9,(x*y*t)^3>;
\]

\[
f,G1,k := \text{CosetAction}(G,\text{sub}<G|x,y>);
#G1, #k;
\text{CompositionFactors}(G1);
#\text{sub}<G|x,y>;
\text{DoubleCosets}(G,\text{sub}<G|x,y>,\text{sub}<G|x,y>);
\text{IsSimple}(G1);
\text{IsTransitive}(N);
\]

\[
\text{DoubleCosets}(G,\text{sub}<G|x,y>,\text{sub}<G|x,y>);
\]

\[
\text{Sch} := \text{SchreierSystem}(G,\text{sub}<G|\text{Id}(G)>);
\text{ArrayP} := [\text{Id}(N) : i \in [1..504]];
\text{for} i \in [2..504] \text{ do}
\text{P} := [\text{Id}(N) : l \in [1..\#\text{Sch}[i]]];
\text{for} j \in [1..\#\text{Sch}[i]] \text{ do}
\text{if Eltseq(Sch[i])[j] eq 1 then P[j] := xx; end if;}
\text{if Eltseq(Sch[i])[j] eq 2 then P[j] := yy; end if;}
\text{end for;}
\text{PP} := \text{Id}(N);
\text{for} k \in [1..\#\text{P}] \text{ do}
\]

\[
\]
PP:=PP*P[k]; end for;
ArrayP[i]:=PP;
end for;

ts:=[f(t), f(t*x), f(t*y), f(t*(x*y))];
IN:=sub<G1|f(x), f(y)>;
prodim := function(pt, Q, I)
/
Return the image of pt under permutations Q[I] applied sequentially.
*/
v := pt;
for i in I do
v := v^(Q[i]);
end for;
return v;
end function;

per2sym := function(G1, N, p)
ww := cst[1^p];
 tt := p * &*[G1|ts[ww[#ww - l + 1]]: l in [1 .. #ww]];
 zz := N![rep{j: j in [1..4] | (1^ts[i])^tt eq 1^ts[j]}: i in [1..4]];
return <zz, ww>;
end function;

cst := [null : i in [1 .. 126]] where null is [Integers()] / ;
for i := 1 to 4 do
cst[prodim(1, ts, [i])] := [i];
end for;
m:=0;
for i in [1..126] do if cst[i] ne [] then m:=m+1; end if; end for; m;
N1:=Stabiliser(N,1);
Orbits(N1);
#N1;
S:={[1,2]};
SS:=S'N;
SS;
SSS:=Setseq(SS);
for i in [1..#SS] do
for g in IN do if ts[1]*ts[2] eq g*ts[Rep(SSS[i])[1]]
*ts[Rep(SSS[i])[2]] then print SSS[i]; end if; end for;
end for;
N12:=Stabiliser(N,[1,2]);
#N12;
Orbits(N12);
#SSS;
T12:=Transversal(N,N12);
for i in [1..#T12] do
 ss:=[1,2]^T12[i];
 cst[prodim(1, ts, ss)]:=ss;
end for;
m:=0;
for i in [1..126] do if cst[i] ne [] then m:=m+1; end if;
end for; m; for i in [1..#T12] do [1,2]^T12[i]; end for;

Z:={[1,3]};
ZZ:=Z^N;
ZZ;
ZZZ:=Setseq(ZZ);
for i in [1..#ZZ] do
 for g in IN do if ts[1]*ts[3] eq g*ts[Rep(ZZZ[i])][1]
 *ts[Rep(ZZZ[i])][2] then print ZZZ[i]; end if; end for;
 end for;
N13:=Stabiliser(N,[1,3]);
N13;
Orbits(N13);
#N13;
#ZZ;
T13:=Transversal(N,N13);
for i in [1..#T13] do
 ss:=[1,3]^T13[i];
 cst[prodim(1, ts, ss)]:=ss;
end for;
m:=0;
for i in [1..126] do if cst[i] ne [] then m:=m+1; end if;
end for; m;
for i in [1..#T13] do [1,3]^T13[i]; end for;

S:={[1,2,4]};
SS:=S^N;
SS;
SSS:=Setseq(SS);
for i in [1..#SS] do
 for g in IN do if ts[1]*ts[2]*ts[4] eq g*ts[Rep(SSS[i])][1]
 *ts[Rep(SSS[i])][2] *ts[Rep(SSS[i])][3] then print SSS[i];
 end if; end for; end for;
N124:=Stabiliser(N,[1,2,4]);
#N124;
Orbits(N124);
#SSS;
\text{T124 := Transversal\((N, N124) \);}
\text{for } i \text{ in } [1..\#T124] \text{ do}
\text{ss := [1, 2, 4]^T124[i];}
\text{cst[prodim(1, ts, ss)] := ss;}
\text{end for;}
\text{m := 0;}
\text{for } i \text{ in } [1..126] \text{ do if cst[i] ne [] then } m := m+1 \text{; end if; end for; m;}
\text{for } i \text{ in } [1..\#T124] \text{ do } [1, 2, 4]^T124[i]; \text{ end for;}
\text{---}
\text{S := \{[1, 2, 1]\};}
\text{SS := S^N;}
\text{SS;}
\text{SSS := Setseq(SS);}
\text{for } i \text{ in } [1..\#SS] \text{ do}
\text{for } g \text{ in } IN \text{ do if } ts[1]*ts[2]*ts[1] \text{ eq } g*ts[Rep(SSS[i])][1]*ts[Rep(SSS[i])][2]*ts[Rep(SSS[i])][3] \text{ then print } SSS[i];
\text{end if; end for; end for;}
\text{N121 := Stabiliser\((N, [1, 2, 1]) \);}
\text{#N121;}
\text{Orbits(N121);}
\text{#SSS;}
\text{T121 := Transversal\((N, N121) \);}
\text{for } i \text{ in } [1..\#T121] \text{ do}
\text{ss := [1, 2, 1]^T121[i];}
\text{cst[prodim(1, ts, ss)] := ss;}
\text{end for;}
\text{m := 0;}
\text{for } i \text{ in } [1..126] \text{ do if cst[i] ne [] then } m := m+1 \text{; end if; end for; m;}
\text{for } i \text{ in } [1..\#T121] \text{ do } [1, 2, 1]^T121[i]; \text{ end for;}
\text{---}
\text{Z := \{[1, 3, 4]\};}
\text{ZZ := Z^N;}
\text{ZZ;}
\text{ZZZ := Setseq(ZZ);}
\text{for } i \text{ in } [1..\#ZZ] \text{ do}
\text{for } g \text{ in } IN \text{ do if } ts[1]*ts[3]*ts[4] \text{ eq } g*ts[Rep(ZZZ[i])][1]*ts[Rep(ZZZ[i])][2]*ts[Rep(ZZZ[i])][3] \text{ then print } ZZZ[i];
\text{end if; end for; end for;}
\text{N134 := Stabiliser\((N, [1, 3, 4]) \);}
\text{#N134;}
\text{Orbits(N134);}
\text{#ZZZ;}
\text{T134 := Transversal\((N, N134) \);}
\text{for } i \text{ in } [1..\#T134] \text{ do}
ss:=[1,3,4]^T134[i];
cst[prodim(1, ts, ss)]:=ss;
end for;
m:=0;
for i in [1..126] do if cst[i] ne [] then m:=m+1; end if; end for; m;
for i in [1..#T134] do [1,3,4]^T134[i]; end for;

Z:={[1,3,1]};
ZZ:=Z^N;
ZZZ:=Setseq(ZZ);
for i in [1..#ZZ] do
for g in IN do if ts[1]*ts[3]*ts[1] eq g*ts[Rep(ZZZ[i])[1]]
*ts[Rep(ZZZ[i])[2]]*ts[Rep(ZZZ[i])[3]] then print ZZZ[i];
end if; end for; end for;
N131:=Stabiliser(N,[1,3,1]);
N131;
Orbits(N131);
#ZZZ;
T131:=Transversal(N,N131);
for i in [1..#T131] do
ss:=[1,3,1]^T131[i];
cst[prodim(1, ts, ss)]:=ss;
end for;
m:=0;
for i in [1..126] do if cst[i] ne [] then m:=m+1; end if; end for; m;
for i in [1..#T131] do [1,3,1]^T131[i]; end for;

S:={[1,2,4,2]};
SS:=S^N;
SS;
SSS:=Setseq(SS);
for i in [1..#SS] do
for g in IN do if ts[1]*ts[2]*ts[4]*ts[2] eq g*ts[Rep(SSS[i])[1]]
*ts[Rep(SSS[i])[2]]*ts[Rep(SSS[i])[3]]*ts[Rep(SSS[i])[4]]
then print SSS[i]; end if; end for; end for;
N1242:=Stabiliser(N,[1,2,4,2]);
#N1242;
for g in N do if 1^g eq 3 and 2^g eq 4 and 4^g eq 2 and
2^g eq 4 then N1242:=sub<N|N1242,g>; end if; end for;
Orbits(N1242);
[1,2,4,2]^N1242;
#N1242;
T1242:=Transversal(N,N1242);
for i in \[1..\#T1242\] do
ss:=[1,2,4,2]^T1242[i];
cst[prodim(1, ts, ss)]: = ss;
end for;
m:=0;
for i in \[1..126\] do if cst[i] ne [] then m:=m+1; end if; end for; m;
for i in \[1..\#T1242\] do [1,2,4,2]^T1242[i]; end for;
--
S:={[1,2,4,3]};
SS:=S^N;
SS;
SSS:=Setseq(SS);
for i in \[1..\#SS\] do
for g in IN do if ts[1]*ts[2]*ts[4]*ts[3] eq g*ts[Rep(SSS[i])[1]]
*ts[Rep(SSS[i])[2]]*ts[Rep(SSS[i])[3]]*ts[Rep(SSS[i])[4]]
then print SSS[i]; end if; end for; end for;
N1243:=Stabiliser(N,[1,2,4,3]);
#N1243;
Orbits(N1243);
#SSS;
T1243:=Transversal(N,N1243);
for i in \[1..\#T1243\] do
ss:=[1,2,4,3]^T1243[i];
cst[prodim(1, ts, ss)]: = ss;
end for;
m:=0;
for i in \[1..126\] do if cst[i] ne [] then m:=m+1; end if; end for; m;
for i in \[1..\#T1243\] do [1,2,4,3]^T1243[i]; end for;
--
S:={[1,2,1,2]};
SS:=S^N;
SS;
SSS:=Setseq(SS);
for i in \[1..\#SS\] do
for g in IN do if ts[1]*ts[2]*ts[1]*ts[2] eq g*ts[Rep(SSS[i])[1]]
*ts[Rep(SSS[i])[2]]*ts[Rep(SSS[i])[3]]*ts[Rep(SSS[i])[4]]
then print SSS[i]; end if; end for; end for;
N1212:=Stabiliser(N,[1,2,1,2]);
#N1212;
Orbits(N1212);
#SSS;
T1212:=Transversal(N,N1212);
for i in \[1..\#T1212\] do
ss:=[1,2,1,2]^T1212[i];
cst[prodim(1, ts, ss)] := ss;
end for;
m:=0;
for i in [1..126] do if cst[i] ne [] then m:=m+1; end if; end for; m;
for i in [1..#T1212] do [1,2,1,2]^T1212[i]; end for;

S:={[1,2,1,3]};
SS:=S'N;
SS;
SSS:=Setseq(SS);
for i in [1..#SS] do
for g in IN do if ts[1]*ts[2]*ts[1]*ts[3] eq g*ts[Rep(SSS[i])[1]]
*ts[Rep(SSS[i])[2]]*ts[Rep(SSS[i])[3]]*ts[Rep(SSS[i])[4]]
then print SSS[i]; end if; end for; end for;
N1213:=Stabiliser(N,[1,2,1,3]);
#N1213;
Orbits(N1213);
#SSS;
T1213:=Transversal(N,N1213);
for i in [1..#T1213] do
ss:=[1,2,1,3]^T1213[i];
cst[prodim(1, ts, ss)] := ss;
end for;
m:=0;
for i in [1..126] do if cst[i] ne [] then m:=m+1; end if; end for; m;
for i in [1..#T1213] do [1,2,1,3]^T1213[i]; end for;

Z:={[1,3,4,2]};
ZZ:=Z'N;
ZZ;
ZZZ:=Setseq(ZZ);
for i in [1..#ZZ] do
for g in IN do if ts[1]*ts[3]*ts[4]*ts[2] eq g*ts[Rep(ZZZ[i])[1]]
*ts[Rep(ZZZ[i])[2]]*ts[Rep(ZZZ[i])[3]]*ts[Rep(ZZZ[i])[4]]
then print ZZZ[i]; end if; end for; end for;
N1342:=Stabiliser(N,[1,3,4,2]);
N1342;
Orbits(N1342);
#N1342;
#ZZZ;
T1342:=Transversal(N,N1342);
for i in [1..#T1342] do
ss:=[1,3,4,2]^T1342[i];
cst[prodim(1, ts, ss)] := ss;
Z:={[1,3,4,3]};
ZZ:=Z^N;
ZZ;
ZZZ:=Setseq(ZZ);
for i in [1..#ZZ] do
 for g in IN do if ts[1]*ts[3]*ts[4]*ts[3] eq g*ts[Rep(ZZZ[i])[1]]
 *ts[Rep(ZZZ[i])][2]]*ts[Rep(ZZZ[i])][3]]*ts[Rep(ZZZ[i])][4]]
 then print ZZZ[i]; end if; end for;
N1343:=Stabiliser(N,[1,3,4,3]);
N1343;
Orbits(N1343);
#ZZZ;
T1343:=Transversal(N,N1343);
for i in [1..#T1343] do
 ss:=[1,3,4,3]^T1343[i];
 cst[prodim(1, ts, ss)]:=ss;
end for;
for i in [1..126] do if cst[i] ne [] then m:=m+1; end if; end for; m;
for i in [1..#T1343] do [1,3,4,3]^T1343[i]; end for;

Z:={[1,3,1,2]};
ZZ:=Z^N;
ZZ;
ZZZ:=Setseq(ZZ);
for i in [1..#ZZ] do
 for g in IN do if ts[1]*ts[3]*ts[1]*ts[2] eq g*ts[Rep(ZZZ[i])][1]]
 *ts[Rep(ZZZ[i])][2]]*ts[Rep(ZZZ[i])][3]]*ts[Rep(ZZZ[i])][4]]
 then print ZZZ[i]; end if; end for;
N1312:=Stabiliser(N,[1,3,1,2]);
N1312;
for g in N do if 1^g eq 4 and 3^g eq 2 and 1^g eq 4
 and 2^g eq 3 then N1312:=sub<N|N1312,g>; end if; end for;
[1,3,1,2]^N1312;
Orbits(N1312);
#N1312;
T1312:=Transversal(N,N1312);
for i in [1..#T1312] do
 ss:=[1,3,1,2]^T1312[i];
cst[prodim(1, ts, ss)] := ss;
end for;
m:=0;
for i in [1..126] do if cst[i] ne [] then m:=m+1; end if; end for; m;
for i in [1..#T1312] do [1,3,1,2]^T1312[i]; end for;

S:={[1,2,4,3,4]};
SS:=S^N;
SS;
SSS:=Setseq(SS);
for i in [1..#SS] do
for g in IN do if ts[1]*ts[2]*ts[4]*ts[3]*ts[4] eq g
*ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])[2]]*ts[Rep(SSS[i])[3]]
*ts[Rep(SSS[i])[4]]*ts[Rep(SSS[i])[5]]
then print SSS[i]; end if; end for; end for;
#SSS;
N12434:=Stabiliser(N,[1,2,4,3,4]);
Orbits(N12434);
T12434:=Transversal(N,N12434);
for i in [1..#T12434] do
ss:=[1,2,4,3,4]^T12434[i];
cst[prodim(1, ts, ss)] := ss;
end for;

S:={[1,2,4,3,1]};
SS:=S^N;
SS;
SSS:=Setseq(SS);
for i in [1..#SS] do
for g in IN do if ts[1]*ts[2]*ts[4]*ts[3]*ts[1] eq g
*ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])[2]]*ts[Rep(SSS[i])[3]]
*ts[Rep(SSS[i])[4]]*ts[Rep(SSS[i])[5]]
then print SSS[i]; end if; end for; end for;
#SSS;
N12431:=Stabiliser(N,[1,2,4,3,1]);
Orbits(N12431);
T12431:=Transversal(N,N12431);
cst[prodim(1, ts, ss)] := ss;
end for;
m:=0;
for i in [1..126] do if cst[i] ne [] then m:=m+1; end if; end for; m;
for i in [1..#T12431] do [1,2,4,3,1]^T12431[i]; end for;

S:={[1,2,1,2,4]};
SS=S^N;
SS;
SSS:=Setseq(SS);
for i in [1..#SS] do
for g in IN do if ts[1]*ts[2]*ts[1]*ts[2]*ts[4] eq g
*ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])[2]]*ts[Rep(SSS[i])[3]]
*ts[Rep(SSS[i])[4]]*ts[Rep(SSS[i])[5]] then print SSS[i];
end if; end for; end for;
N12124:=Stabiliser(N,[1,2,1,2,4]);
#N12124;
for g in N do if 1^g eq 4 and 2^g eq 3 and 1^g eq 4
and 2^g eq 3 and 4^g eq 1 then N12124:=sub<N|N12124,g>;
end if; end for; [1,2,1,2,4]^N12124;
Orbits(N12124);
#N12124;
T12124:=Transversal(N,N12124);
for i in [1..#T12124] do
ss:=[1,2,1,2,4]^T12124[i];
cst[prodim(1, ts, ss)] := ss;
end for;
m:=0;
for i in [1..126] do if cst[i] ne [] then m:=m+1; end if; end for; m;
for i in [1..#T12124] do [1,2,1,2,4]^T12124[i]; end for;

S:={[1,2,1,3,4]};
SS=S^N;
SS;
SSS:=Setseq(SS);
for i in [1..#SS] do
for g in IN do if ts[1]*ts[2]*ts[1]*ts[3]*ts[4] eq g
*ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])[2]]*ts[Rep(SSS[i])[3]]
*ts[Rep(SSS[i])[4]]*ts[Rep(SSS[i])[5]]
then print SSS[i]; end if; end for; end for;
N12134:=Stabiliser(N,[1,2,1,3,4]);
#N12134;
Orbits(N12134);
#SSS;
\[T_{12134} := \text{Transversal}(N, N_{12134}); \]
for i in [1..#T_{12134}] do
ss := [1,2,1,3,4]^T_{12134}[i];
cst[prodim(1, ts, ss)] := ss;
end for;
m := 0;
for i in [1..126] do if cst[i] ne [] then m := m + 1; end if; end for; m;
for i in [1..#T_{12134}] do [1,2,1,3,4]^T_{12134}[i]; end for;

S := \{[1,2,1,3,1]\};
SS := S^N;
SS;
SSS := \text{Setseq}(SS);
for i in [1..#SS] do
for g in IN do if ts[1]*ts[2]*ts[1]*ts[3]*ts[1] eq g *ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])[2]]*ts[Rep(SSS[i])[3]]
*ts[Rep(SSS[i])[4]]*ts[Rep(SSS[i])[5]]
then print SSS[i]; end if; end for; end for;
N_{12131} := \text{Stabiliser}(N, [1,2,1,3,1]);
#N_{12131};
Orbits(N_{12131});
#SSS;
T_{12131} := \text{Transversal}(N, N_{12131});
for i in [1..#T_{12131}] do
ss := [1,2,1,3,1]^T_{12131}[i];
cst[prodim(1, ts, ss)] := ss;
end for;
m := 0;
for i in [1..126] do if cst[i] ne [] then m := m + 1; end if; end for; m;
for i in [1..#T_{12131}] do [1,2,1,3,1]^T_{12131}[i]; end for;

Z := \{[1,3,4,2,1]\};
ZZ := Z^N;
ZZ;
ZZZ := \text{Setseq}(ZZ);
for i in [1..#ZZ] do
for g in IN do if ts[1]*ts[3]*ts[4]*ts[2]*ts[1] eq g *ts[Rep(ZZZ[i])[1]]*ts[Rep(ZZZ[i])[2]]*ts[Rep(ZZZ[i])[3]]
*ts[Rep(ZZZ[i])[4]]*ts[Rep(ZZZ[i])[5]]
then print ZZZ[i]; end if; end for; end for;
N_{13421} := \text{Stabiliser}(N, [1,3,4,2,1]);
N_{13421};
Orbits(N_{13421});
#N_{13421};
\texttt{#ZZZ;}
\texttt{T13421:=Transversal(N,N13421);}
\texttt{for i in \{1..#T13421\} do}
\texttt{ss:=[1,3,4,2,1]^T13421[i];}
\texttt{cst[prodim(1, ts, ss)] := ss;}
\texttt{end for;}
\texttt{m:=0;}
\texttt{for i in \{1..126\} do if cst[i] ne [] then m:=m+1; end if; end for; m;}
\texttt{for i in \{1..#T13421\} do [1,3,4,2,1]^T13421[i]; end for;}
\texttt{---}
\texttt{Z:=\{[1,3,4,3,4]\};}
\texttt{ZZ:=Z^N;}
\texttt{ZZ;}
\texttt{ZZZ:=Setseq(ZZ);}
\texttt{for i in \{1..#ZZ\} do}
\texttt{for g in IN do if ts[1]*ts[3]*ts[4]*ts[3]*ts[4] eq g}
\texttt{*ts[Rep(ZZZ[i])][1]*ts[Rep(ZZZ[i])][2]*ts[Rep(ZZZ[i])][3]]}
\texttt{*ts[Rep(ZZZ[i])][4]*ts[Rep(ZZZ[i])][5]} then print ZZZ[i];
\texttt{end if; end for; end for;}
\texttt{N13434:=Stabiliser(N,\{1,3,4,3,4\});}
\texttt{N13434;}
\texttt{for g in N do if 1^g eq 2 and 3^g eq 4 and 4^g eq 3}
\texttt{and 3^g eq 4 and 4^g eq 3 then N13434:=sub<N|N13434,g>;}
\texttt{end if; end for; \{1,3,4,3,4\}^N13434;}
\texttt{Orbits(N13434);}
\texttt{#N13434;}
\texttt{T13434:=Transversal(N,N13434);}
\texttt{for i in \{1..#T13434\} do}
\texttt{ss:=[1,3,4,3,4]^T13434[i];}
\texttt{cst[prodim(1, ts, ss)] := ss;}
\texttt{end for;}
\texttt{m:=0;}
\texttt{for i in \{1..126\} do if cst[i] ne [] then m:=m+1; end if; end for; m;}
\texttt{for i in \{1..#T13434\} do [1,3,4,3,4]^T13434[i]; end for;}
\texttt{---}
\texttt{Z:=\{[1,3,4,3,1]\};}
\texttt{ZZ:=Z^N;}
\texttt{ZZ;}
\texttt{ZZZ:=Setseq(ZZ);}
\texttt{for i in \{1..#ZZ\} do}
\texttt{for g in IN do if ts[1]*ts[3]*ts[4]*ts[3]*ts[1] eq g}
\texttt{*ts[Rep(ZZZ[i])][1]*ts[Rep(ZZZ[i])][2]*ts[Rep(ZZZ[i])][3]]}
\texttt{*ts[Rep(ZZZ[i])][4]*ts[Rep(ZZZ[i])][5]} then print ZZZ[i];
\texttt{end if; end for; end for;
N13431 := Stabiliser(N, [1, 3, 4, 3, 1]);
N13431;
Orbits(N13431);
#ZZZ;
T13431 := Transversal(N, N13431);
for i in [1..#T13431] do
 ss := [1, 3, 4, 3, 1] ^ T13431[i];
 cst[prodim(1, ts, ss)] := ss;
end for;

m := 0;
for i in [1..126] do if cst[i] ne [] then m := m + 1; end if; end for;
m;
for i in [1..#T13431] do [1, 3, 4, 3, 1] ^ T13431[i]; end for;

Z :={ [1, 3, 1, 2, 1] };
ZZ := Z ^ N;
ZZ;
ZZZ := Setseq(ZZ);
for i in [1..#ZZ] do
 * ts[Rep(ZZZ[i])[1]] * ts[Rep(ZZZ[i])[2]] * ts[Rep(ZZZ[i])[3]]
 * ts[Rep(ZZZ[i])[4]] * ts[Rep(ZZZ[i])[5]]
 then print ZZZ[i]; end if; end for; end for;
N13121 := Stabiliser(N, [1, 3, 1, 2, 1]);
N13121;
Orbits(N13121);
#N13121;
#ZZZ;
T13121 := Transversal(N, N13121);
for i in [1..#T13121] do
 ss := [1, 3, 1, 2, 1] ^ T13121[i];
 cst[prodim(1, ts, ss)] := ss;
end for;
m := 0;
for i in [1..126] do if cst[i] ne [] then m := m + 1; end if; end for;
m;
for i in [1..#T13121] do [1, 3, 1, 2, 1] ^ T13121[i]; end for;

S :={ [1, 2, 4, 3, 4, 2] };
SS := S ^ N;
SS;
SSS := Setseq(SS);
for i in [1..#SS] do
 * ts[Rep(SSS[i])[1]] * ts[Rep(SSS[i])[2]] * ts[Rep(SSS[i])[3]]
 * ts[Rep(SSS[i])[4]] * ts[Rep(SSS[i])[5]] * ts[Rep(SSS[i])[6]]
 then print SSS[i]; end if; end for; end for;
then print $SSS[i]$; end if; end for; end for;
$N_{124342}:=\text{Stabiliser}(N, [1,2,4,3,4,2])$;
#N_{124342};
Orbits(N_{124342});
#SSS;
$T_{124342}:=\text{Transversal}(N, N_{124342})$;
for i in $[1..#T_{124342}]$ do
 $ss:=[1,2,4,3,4,2]^{T_{124342}[i]}$;
 $cst[\text{prodim}(1, ts, ss)] := ss$;
end for;
m:=0;
for i in $[1..126]$ do if $cst[i]$ ne $[]$ then $m:=m+1$; end if; end for; m;
for i in $[1..#T_{124342}]$ do $[1,2,4,3,4,2]^{T_{124342}[i]}$; end for;

$S:=[[1,2,4,3,4,3]]$;
$SS:=S^{N}$;
SS;
$SSS:=\text{Setseq}(SS)$;
for i in $[1..#SS]$ do
 $*ts[\text{Rep}(SSS[i])[1]]*ts[\text{Rep}(SSS[i])[2]]*ts[\text{Rep}(SSS[i])[3]]$
 $*ts[\text{Rep}(SSS[i])[4]]*ts[\text{Rep}(SSS[i])[5]]*ts[\text{Rep}(SSS[i])[6]]$
 then print $SSS[i]$; end if; end for; end for;
$N_{124343}:=\text{Stabiliser}(N, [1,2,4,3,4,3])$;
#N_{124343};
Orbits(N_{124343});
#SSS;
$T_{124343}:=\text{Transversal}(N, N_{124343})$;
for i in $[1..#T_{124343}]$ do
 $ss:=[1,2,4,3,4,3]^{T_{124343}[i]}$;
 $cst[\text{prodim}(1, ts, ss)] := ss$;
end for;
m:=0;
for i in $[1..126]$ do if $cst[i]$ ne $[]$ then $m:=m+1$; end if; end for; m;
for i in $[1..#T_{124343}]$ do $[1,2,4,3,4,3]^{T_{124343}[i]}$; end for;

$S:=[[1,2,4,3,1,2]]$;
$SS:=S^{N}$;
SS;
$SSS:=\text{Setseq}(SS)$;
for i in $[1..#SS]$ do
 for g in IN do if $ts[1]*ts[2]*ts[4]*ts[3]*ts[1]*ts[2]$ eq g
 $*ts[\text{Rep}(SSS[i])[1]]*ts[\text{Rep}(SSS[i])[2]]*ts[\text{Rep}(SSS[i])[3]]$
 $*ts[\text{Rep}(SSS[i])[4]]*ts[\text{Rep}(SSS[i])[5]]*ts[\text{Rep}(SSS[i])[6]]$
then print $SSS[i]$; end if; end for; end for;
$N_{124312}:=\text{Stabiliser}(N,\{1,2,4,3,1,2\});$
#N_{124312};
Orbits(N_{124312});
#SSS;
$T_{124312}:=\text{Transversal}(N,N_{124312});$
for i in $[1..#T_{124312}]$ do
$ss:=[1,2,4,3,1,2]^T_{124312}[i]$;
cst[prodim(1, ts, ss)]:=ss;
end for;
m:=0;
for i in $[1..126]$ do if cst$[i]$ ne [] then $m:=m+1$; end if; end for; m;
for i in $[1..#T_{124312}]$ do $[1,2,4,3,1,2]^T_{124312}[i]$; end for;

$S:=\{[1,2,4,3,1,3]\};$
SS:=SN;
SS;
SSS:=Setseq(SS);
for i in $[1..#SS]$ do
for g in IN do if ts$[1]*ts[2]*ts[4]*ts[3]*ts[1]*ts[3]$ eq g
*ts[Rep(SSS$[i]$)$[1]]*ts[Rep(SSS$[i]$)$[2]]*ts[Rep(SSS$[i]$)$[3]]
*ts[Rep(SSS$[i]$)$[4]]*ts[Rep(SSS$[i]$)$[5]]*ts[Rep(SSS$[i]$)$[6]]$
then print $SSS[i]$; end if; end for; end for;
$N_{124313}:=\text{Stabiliser}(N,\{1,2,4,3,1,3\});$
#N_{124313};
Orbits(N_{124313});
#SSS;
$T_{124313}:=\text{Transversal}(N,N_{124313});$
for i in $[1..#T_{124313}]$ do
$ss:=[1,2,4,3,1,3]^T_{124313}[i]$;
cst[prodim(1, ts, ss)]:=ss;
end for;
m:=0;
for i in $[1..126]$ do if cst$[i]$ ne [] then $m:=m+1$; end if; end for; m;
for i in $[1..#T_{124313}]$ do $[1,2,4,3,1,3]^T_{124313}[i]$; end for;

$S:=\{[1,2,1,3,4,2]\};$
SS:=SN;
SS;
SSS:=Setseq(SS);
for i in $[1..#SS]$ do
for g in IN do if ts$[1]*ts[2]*ts[1]*ts[3]*ts[4]*ts[2]$ eq g
*ts[Rep(SSS$[i]$)$[1]]*ts[Rep(SSS$[i]$)$[2]]*ts[Rep(SSS$[i]$)$[3]]
*ts[Rep(SSS$[i]$)$[4]]*ts[Rep(SSS$[i]$)$[5]]*ts[Rep(SSS$[i]$)$[6]]$
then print \(SSS[i] \); end if; end for; end for;

\(N121342 := \text{Stabiliser}(N, [1, 2, 1, 3, 4, 2]); \)

\(\#N121342; \)

for \(g \in N \) do if \(1^g \text{ eq } 3 \) and \(2^g \text{ eq } 4 \) and \(1^g \text{ eq } 3 \) and \(3^g \text{ eq } 1 \) and \(4^g \text{ eq } 2 \) and \(2^g \text{ eq } 4 \) then \(N121342 := \text{sub}<N|N121342,g>; \)
end if; end for;

\([1,2,1,3,4,2]^N121342;\)

Orbits\((N121342); \)

\(\#N121342; \)

\(T121342 := \text{Transversal}(N,N121342); \)

for \(i \) in \([1..\#T121342]\) do

\(ss := [1,2,1,3,4,2]^T121342[i]; \)

\(\text{cst}[\text{prodim}(1, ts, ss)] := ss; \)
end for;

\(m := 0; \)

for \(i \) in \([1..126]\) do if \(\text{cst}[i] \) ne [] then \(m := m + 1; \) end if; end for; \(m; \)

for \(i \) in \([1..\#T121342]\) do \([1,2,1,3,4,2]^T121342[i]; \) end for;

\(S := \{[1,2,1,3,4,3]\}; \)

\(SS := S^N; \)

\(SS; \)

\(SSS := \text{Setseq}(SS); \)

for \(i \) in \([1..\#SS]\) do

* \(ts[\text{Rep}(SSS[i])[1]] \ast ts[\text{Rep}(SSS[i])[2]] \ast ts[\text{Rep}(SSS[i])[3]] \)
* \(ts[\text{Rep}(SSS[i])[4]] \ast ts[\text{Rep}(SSS[i])[5]] \ast ts[\text{Rep}(SSS[i])[6]] \)
then print \(SSS[i]; \) end if; end for; end for;

\(\#N121343; \)

\(T121343 := \text{Transversal}(N,N121343); \)

for \(i \) in \([1..\#T121343]\) do

\(ss := [1,2,1,3,4,3]^T121343[i]; \)

\(\text{cst}[\text{prodim}(1, ts, ss)] := ss; \)
end for;

\(m := 0; \)

for \(i \) in \([1..126]\) do if \(\text{cst}[i] \) ne [] then \(m := m + 1; \) end if; end for; \(m; \)

for \(i \) in \([1..\#T121343]\) do \([1,2,1,3,4,3]^T121343[i]; \) end for;

$S:=\{[1,3,4,2,1,2]\};$

$SS:=S^N;$

$SSS:=\text{Setseq}(SS);$ for i in [1..#SS] do
for g in IN do if $t_1 t_3 t_4 t_2 t_1 t_2$ eq g
$t_1 t_3 t_4 t_2 t_1 t_2$ then print $SSS[i];$ end if; end for; end for;

$N_{134212}:=\text{Stabiliser}(N,[1,3,4,2,1,2]);$

$\#N_{134212};$

for g in N do if $1^g = 2$ and $3^g = 4$ and $4^g = 3$ and
$2^g = 1$ and $1^g = 2$ and $2^g = 1$ then
$N_{134212}:=\text{sub}\langle N \rangle; end if; end for;

$[1,3,4,2,1,2]^N_{134212};$

$\#N_{134212};$

$\text{Set}(SSS);$ $T_{134212}:=\text{Transversal}(N,N_{134212});$
for i in [1..#T_{134212}] do
$ss:=[1,3,4,2,1,2]^T_{134212}[i];$
$cst[\text{prodim}(1, ts, ss)] := ss; end for;

$m:=0;$ for i in [1..126] do if $cst[i]$ ne [] then $m:=m+1;$ end if; end for; $m;$ for i in [1..#T_{134212}] do $[1,3,4,2,1,2]^T_{134212}[i];$ end for;

|---|

$S:=\{[1,3,4,2,1,3]\};$

$SS:=S^N;$

$SSS:=\text{Setseq}(SS);$ for i in [1..#SS] do
for g in IN do if $t_1 t_3 t_4 t_2 t_1 t_3$ eq g
$t_1 t_3 t_4 t_2 t_1 t_3$ then print $SSS[i];$ end if; end for; end for;

$N_{134213}:=\text{Stabiliser}(N,[1,3,4,2,1,3]);$

$\#N_{134213};$

$\text{Orbits}(N_{134213});$

$\#SSS;$

$T_{134213}:=\text{Transversal}(N,N_{134213});$
for i in [1..#T_{134213}] do
$ss:=[1,3,4,2,1,3]^T_{134213}[i];$
$cst[\text{prodim}(1, ts, ss)] := ss;
end for;
m:=0;
for i in [1..126] do if cst[i] ne [] then m:=m+1; end if; end for; m;
for i in [1..#T134213] do [1,3,4,2,1,3]^T134213[i]; end for;

S:={(1,3,4,3,1,2)};
SS:=S^N;
SS;
SSS:=Setseq(SS);
for i in [1..#SS] do
for g in IN do if ts[1]*ts[3]*ts[4]*ts[3]*ts[1]*ts[2] eq g
*ts[Rep(SS[i]) [1]]*ts[Rep(SS[i]) [2]]*ts[Rep(SS[i]) [3]]
*ts[Rep(SS[i]) [4]]*ts[Rep(SS[i]) [5]]*ts[Rep(SS[i]) [6]]
then print SS[i]; end if; end for; end for;
N134312:=Stabiliser(N,[1,3,4,3,1,2]);
#N134312;
Orbits(N134312);

SS;
T134312:=Transversal(N,N134312);
for i in [1..#T134312] do
ss:=[1,3,4,3,1,2]^T134312[i];
cst[prodim(1, ts, ss)]:= ss;
end for;
m:=0;
for i in [1..126] do if cst[i] ne [] then m:=m+1; end if; end for; m;
for i in [1..#T134312] do [1,3,4,3,1,2]^T134312[i]; end for;

S:={(1,2,4,3,4,3,1)};
SS:=S^N;
SS;
SSS:=Setseq(SS);
for i in [1..#SS] do
for g in IN do if ts[1]*ts[2]*ts[4]*ts[4]*ts[3]*ts[1] eq g
*ts[Rep(SS[i]) [1]]*ts[Rep(SS[i]) [2]]*ts[Rep(SS[i]) [3]]
*ts[Rep(SS[i]) [4]]*ts[Rep(SS[i]) [5]]*ts[Rep(SS[i]) [6]]
*ts[Rep(SS[i]) [7]] then print SS[i]; end if; end for; end for;
N1243431:=Stabiliser(N,[1,2,4,3,4,3,1]);
#N1243431;
Orbits(N1243431);

SS;
T1243431:=Transversal(N,N1243431);
for i in [1..#T1243431] do
ss:=[1,2,4,3,4,3,1]^T1243431[i];
cst[prodim(1, ts, ss)]:= ss;
end for;
m:=0;
for i in [1..126] do if cst[i] ne [] then m:=m+1; end if; end for; m;
for i in [1..#T1243431] do [1,2,4,3,4,3,1]~T1243431[i]; end for;

S:={[1,2,4,3,4,2,1]};
SS:="N; SS;
SSS:=Setseq(SS);
g*ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])][2]]*ts[Rep(SSS[i])][3]]
*ts[Rep(SSS[i])][4]]*ts[Rep(SSS[i])][5]]*ts[Rep(SSS[i])][6]]
*ts[Rep(SSS[i])][7]] then print SSS[i]; end if; end for; end for;
N1243421:=Stabiliser(N,[1,2,4,3,4,2,1]);
#N1243421;
for g in N do if 1^g eq 2 and 2^g eq 1 and 4^g eq 3 and
3^g eq 4 and 4^g eq 3 and 2^g eq 1 and 1^g eq 2 then
N1243421:=sub<N|N1243421,g>; end if; end for;
for g in N do if 1^g eq 3 and 2^g eq 2 and 4^g eq 2 and
3^g eq 4 and 4^g eq 2 and 2^g eq 4 and 1^g eq 3 then
N1243421:=sub<N|N1243421,g>; end if; end for;
for g in N do if 1^g eq 4 and 2^g eq 3 and 4^g eq 1 and
3^g eq 2 and 4^g eq 1 and 2^g eq 3 and 1^g eq 4 then
N1243421:=sub<N|N1243421,g>; end if; end for;
[1,2,4,3,4,2,1]~N1243421;
Orbits(N1243421);
#N1243421;
T1243421:=Transversal(N,N1243421);
for i in [1..#T1243421] do ss:=[1,2,4,3,4,2,1]~T1243421[i];
cst[prodim(1, ts, ss)] := ss;
end for;
m:=0;
for i in [1..126] do if cst[i] ne [] then m:=m+1; end if; end for; m;
for i in [1..#T1243421] do [1,2,4,3,4,2,1]~T1243421[i]; end for;

S:={[1,2,4,3,1,2,4]};
SS:="N; SS;
SSS:=Setseq(SS);
g*ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])[2]]*ts[Rep(SSS[i])[3]]
*ts[Rep(SSS[i])[4]]*ts[Rep(SSS[i])[5]]*ts[Rep(SSS[i])[6]]
*ts[Rep(SSS[i])[7]] then print SSS[i]; end if; end for; end for;
N1243124:=Stabiliser(N,[1,2,4,3,1,2,4]);
#N1243124;
Orbits(N1243124);
#SSS;
T1243124:=Transversal(N,N1243124);
for i in [1..#T1243124] do
ss:=[1,2,4,3,1,2,4]~T1243124[i];
cst[prodim(1, ts, ss)] := ss;
end for;
m:=0;
for i in [1..126] do if cst[i] ne [] then m:=m+1; end if; end for; m;
for i in [1..#T1243124] do [1,2,4,3,1,2,4]~T1243124[i]; end for;
Appendix B

MAGMA Code for DCE of $L_2(13)$ Over M and N

/*First, we want to factor the group by the Maximal Subgroup to find simple group*/
S:=Sym(4);
xx:=S!(1,2)(3,4);
yy:=S!(1,3)(2,4);
N:=sub<S|xx,yy>;
G<x,y,t>:=Group<x,y,t|x^2,y^2,(x,y),t^2,(x*y*x*t)^7,(x*t)^3,(x*y*t)^13>;
f,G1,k:=CosetAction(G,sub<G|x,y>);
#G1, #k;
CompositionFactors(G1);
IsSimple(G1);
N:=MaximalSubgroups(G1);
N;
/*We look after f(x) and f(y) in one Maximal Subgroup*/
for j in [1..4] do
C:=Conjugates(G1,M[j]'subgroup);
CC:=SetToSequence(C);
for i in [1..#CC] do if f(x) in CC[i] and f(y) in CC[i] then j,i;
end if; end for;
CompositionFactors(M[2]'subgroup);
CompositionFactors(M[3]'subgroup);
C:=Conjugates(G1,M[2]'subgroup);
CC:=SetToSequence(C);
for i in [1..#CC] do if f(x) in CC[i] and f(y) in CC[i] then i;
end if; end for;
$H := \text{sub<G1|CC[32]>}$;

$\#H$;

c := \text{Classes(G1)};

c[2][1];

c[3][1];

for g in \text{Class(G1,c[2][3])} do if sub<G1|f(x),f(y),g> eq H then $gg := g$; end if; end for;

gg;

/* After we find the $f(x)$, $f(y)$, and the new relation which factor the group from the Maximal subgroup, we will use the Background in Magma to know which is this element call */

IN := sub<G1|f(x), f(y)>;

for i, j, k, l, m, n, o, p, q, r, a, b, c, d, e, s, w, z in [0, 1] do
 if gg eq f(x^i*y^j*z^k*(t^x)^l*(t^y)^m*(t^x)^n*t^o*(t^x)^p
 (t^y)^q((t^x)^r*t^a*(t^x)^b*(t^y)^c*((t^x)^d*t^e
 (t^x)^s(t^y)^w*(((t^x)^y)*z) then i, j, k, l, m, n, o, p, q, r, a, b,
 c, d, e, s, w, z; end if; end for;
\[gg \text{ eq } f(y^x*(t^y)\cdot(t^x)*(t^y)*t*((t^x)^y)*t*(t^y)); \]

\[
M:=\text{sub}<G|x,y,y^x*(t^y)\cdot(t^x)*(t^y)*t*((t^x)^y)*t*(t^y);\
\]
#M;
\[f,M1,k:=\text{CosetAction}(G,M);\]
#M1; #k;
#DoubleCosets(G,M,\text{sub}<G|x,y>);
IsSimple(G1);
IsTransitive(G1);
IsPrimitive(G1);
CompositionFactors(M1);

/*We will state to prove the DCE*/
(DCE of (G,M,\text{sub}<G|x,y>))

\[S:=\text{Sym}(4);\]
\[xx:=S!(1,2)\cdot(3,4);\]
\[yy:=S!(1,3)\cdot(2,4);\]
\[N:=\text{sub}<S|xx,yy> ;\]
\[G<x,y,t>:=\text{Group}<x,y,t|x^2,y^2,(x,y),t^2,(x*y*x*t)^7,(x*t)^3,\]
\[(x*y^t)^13> ;\]
\[f,G1,k:=\text{CosetAction}(G,\text{sub}<G|x,y>);\]
#G1; #k;
CompositionFactors(G1);
\[ts:=\{f(t),f(t^x),f(t^y),f(t^x*y)\};\]
\[IN:=\text{sub}<G1|f(x),f(y)> ;\]
\[M:=\text{sub}<G1|x,y,y^x*(t^y)\cdot(t^x)*(t^y)*t*((t^x)^y)*t*(t^y);\
\]
#M;
\[IM:=\text{sub}<G1|f(x),f(y),f(y^x*(t^y)\cdot(t^x)*(t^y)*t*((t^x)^y)*t*(t^y));\]
\[f,G1,k:=\text{CosetAction}(G,M);\]
#G1; #k;
#DoubleCosets(G,M,\text{sub}<G|x,y>);
IsSimple(G1);
IsTransitive(G1);
IsPrimitive(G1);
AllPartitions(G1);

Sch:=\text{SchreierSystem}(G,\text{sub}<G|\text{Id}(G)>);
ArrayP:=\{\text{Id}(N): i \text{ in } [1..1092]\};
for i in [2..1092] do
P:=[\text{Id}(N): l \text{ in } [1..\#Sch[i]]];
for j in [1..\#Sch[i]] do
if Eltseq(Sch[i])[j] eq 1 then P[j]:=xx; end if;
if Eltseq(Sch[i])[j] eq 2 then P[j]:=yy; end if;
end for;
PP:=Id(N);
for k in [1..#P] do
 PP:=PP*P[k]; end for;
ArrayP[i]:=PP;
end for;
ts:=[f(t),f(x^t),f(t^y),f(t^(x*y))];
IN:=sub<G1|f(x),f(y)>;
IM:=sub<G1|f(x),f(y),f(y*t*(t^y)*(t^x)*(t^y)*t*(t^y))>
 prodim := function(pt, Q, I)
 /*
 Return the image of pt under permutations Q[I] applied sequentially.
 */
 v := pt;
 for i in I do
 v := v^(Q[i]);
 end for;
 return v;
 end function;

per2sym := function(G1,N, p)
 ww := cst[1^p];
 tt := p * &*[G1|ts[ww[#ww - l + 1]]: l in [1 .. #ww]];
 zz := N![rep{j: j in [1..4] | (1^ts[i])^tt eq 1^ts[j]}: i in [1..4]];
 return <zz, ww>;
end function;
cst := [null : i in [1 ..91]] where null is [Integers() |];
for i := 1 to 4 do
 cst[prodim(1, ts, [i])] := [i];
end for;
m:=0;
for i in [1..91] do if cst[i] ne [] then m:=m+1; end if; end for; m;
N1:=Stabiliser(N,1);
Orbits(N1);
#N1;

S:={[1,3]};
SS:=S^N;
SS;
SSS:=Setseq(SS);
for i in [1..#SS] do
 for g in IM do if ts[1]*ts[3] eq g*ts[Rep(SSS[i])[1]]*
 ts[Rep(SSS[i])[2]] then print SSS[i]; end if; end for;
end for;
N13:=Stabiliser(N,[1,3]);
#N13;
Orbits(N13);
#SSS;
T13:=Transversal(N,N13);
for i in [1..#T13] do
ss:=[1,3]^T13[i];
cst[prodim(1, ts, ss)]: = ss;
end for;
m:=0;
for i in [1..91] do if cst[i] ne [] then m:=m+1; end if;
end for; m;
for i in [1..#T13] do [1,3]^T13[i]; end for;

S:={[1,4]};
SS:=S^N;
SS;
SSS:=Setseq(SS);
for i in [1..#SS] do
for g in IM do if ts[1]*ts[4] eq g*ts[Rep(SSS[i])[1]]*
 ts[Rep(SSS[i])[2]] then print SSS[i]; end if; end for;
end for;
N14:=Stabiliser(N,[1,4]);
#N14;
Orbits(N14);
#SSS;
T14:=Transversal(N,N14);
for i in [1..#T14] do
ss:=[1,4]^T14[i];
cst[prodim(1, ts, ss)]: = ss;
end for;
m:=0;
for i in [1..91] do if cst[i] ne [] then m:=m+1; end if;
end for; m;
for i in [1..#T14] do [1,4]^T14[i]; end for;

S:={[1,3,1]};
SS:=S^N;
SS;
SSS:=Setseq(SS);
for i in [1..#SS] do
for g in IM do if ts[1]*ts[3]*ts[1] eq g*ts[Rep(SSS[i])[1]]*
 ts[Rep(SSS[i])[2]]*ts[Rep(SSS[i])[3]]
then print SSS[i]; end if; end for; end for;
N131:=Stabiliser(N,[1,3,1]);
#N131;
Orbits(N131);
#SSS;
T131:=Transversal(N,N131);
for i in [1..#T131] do
ss:=[1,3,1]^T131[i];
cst[prodim(1, ts, ss)]:= ss;
end for;
m:=0;
for i in [1..91] do if cst[i] ne [] then m:=m+1; end if;
end for; m;
for i in [1..#T131] do [1,3,1]^T131[i]; end for;

S:={[1,3,2]};
SS:=S'N;
SS;
SSS:=Setseq(SS);
for i in [1..#SS] do
for g in IM do if ts[1]*ts[3]*ts[2] eq g*ts[Rep(SSS[i])[1]]* ts[Rep(SSS[i])[2]]*ts[Rep(SSS[i])[3]]
then print SSS[i]; end if; end for; end for;
N132:=Stabiliser(N,[1,3,2]);
#N132;
Orbits(N132);
#SSS;
T132:=Transversal(N,N132);
for i in [1..#T132] do
ss:=[1,3,2]^T132[i];
cst[prodim(1, ts, ss)]:= ss;
end for;
m:=0;
for i in [1..91] do if cst[i] ne [] then m:=m+1; end if;
end for; m;
for i in [1..#T132] do [1,3,2]^T132[i]; end for;

S:={[1,4,1]};
SS:=S'N;
SS;
SSS:=Setseq(SS);
for i in [1..#SS] do
for g in IM do if ts[1]*ts[4]*ts[1] eq g*ts[Rep(SSS[i])[1]]* ts[Rep(SSS[i])[2]]*ts[Rep(SSS[i])[3]]
then print SSS[i]; end if; end for; end for;
N141:=Stabiliser(N,[1,4,1]);
#N141;
Orbits(N141);
#SSS;
T141:=Transversal(N,N141);
for i in [1..#T141] do
 ss:=[1,4,1]^-T141[i];
cst[prodim(1, ts, ss)]:=ss;
end for;
m:=0;
for i in [1..91] do if cst[i] ne [] then m:=m+1; end if;
end for; m; for i in [1..#T141] do [1,4,1]^T141[i]; end for;

S:={[1,4,2]};
SS:=S^N;
SS;
SSS:=Setseq(SS);
for i in [1..#SS] do
 for g in IM do if ts[1]*ts[4]*ts[2] eq g*ts[Rep(SSS[i])[1]]*
 ts[Rep(SSS[i])[2]]*ts[Rep(SSS[i])[3]]
 then print SSS[i]; end if; end for; end for;
N142:=Stabiliser(N,[1,4,2]);
#N142;
Orbits(N142);

S:={[1,3,1,4]};
SS:=S^N;
SS;
SSS:=Setseq(SS);
for i in [1..#SS] do
 for g in IM do if ts[1]*ts[3]*ts[1]*ts[4] eq g*ts[Rep(SSS[i])[1]]*
 ts[Rep(SSS[i])[2]]*ts[Rep(SSS[i])[3]]*ts[Rep(SSS[i])[4]]
 then print SSS[i]; end if; end for; end for;
N1314:=Stabiliser(N,[1,3,1,4]);
#N1314;
for g in N do if 1^g eq 2 and 3^g eq 4 and 1^g eq 2 and
 4^g eq 3 then N1314:=sub<N|N1314,g>; end if; end for;
[1,3,1,4]^N1314;
Orbits(N1314);
#N1314;
T1314:=Transversal(N,N1314);
for i in [1..#T1314] do
 ss:=[1,3,1,4]^T1314[i];
 cst[prodim(1, ts, ss)] := ss;
end for;
m:=0;
for i in [1..91] do if cst[i] ne [] then m:=m+1; end if;
end for; m;
for i in [1..#T1314] do [1,3,1,4]^T1314[i];
end for;
/*
for i in [1..4] do for g in IM do for h in IM do if ts[1]*ts[3]*ts[1]*ts[4]*ts[i] eq g*(ts[1]*ts[4]*ts[1]*ts[4])^h then i,g,h; break; end if; end for; end for; end for;
*/

S:={[1,3,2,3]};
SS:=S^N;
SS;
SSS:=Setseq(SS);
for i in [1..#SS] do
 for g in IM do if ts[1]*ts[3]*ts[2]*ts[3] eq g*ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])[2]]*ts[Rep(SSS[i])[3]]*ts[Rep(SSS[i])[4]] then print SSS[i]; end if; end for; end for;
N1323:=Stabiliser(N,[1,3,2,3]);
#N1323;
for g in N do if 1^g eq 3 and 3^g eq 1 and 2^g eq 4 and 3^g eq 1 then N1323:=sub<N|N1323,g>; end if; end for;
[1,3,2,3]^N1323;
Orbits(N1323);
#N1323;
T1323:=Transversal(N,N1323);
for i in [1..#T1323] do
 ss:=[1,3,2,3]^T1323[i];
 cst[prodim(1, ts, ss)] := ss;
end for;
m:=0;
for i in [1..91] do if cst[i] ne [] then m:=m+1; end if;
end for; m;
for i in [1..#T1323] do [1,3,2,3]^T1323[i];
end for;

S:={[1,3,2,4]};
SS:=S^N;
SS;
SSS := Setseq(SS);
for i in [1..#SS] do
for g in IM do if ts[1]*ts[3]*ts[2]*ts[4] eq g*ts[Rep(SSS[i])[1]]
*ts[Rep(SSS[i])[2]]*ts[Rep(SSS[i])[3]]*ts[Rep(SSS[i])[4]]
then print SSS[i]; end if; end for; end for;
N1324 := Stabiliser(N, [1, 3, 2, 4]);
#N1324;
Orbits(N1324);
#SSS;
T1324 := Transversal(N, N1324);
for i in [1..#T1324] do
ss := [1, 3, 2, 4]^T1324[i];
cst[prodim(1, ts, ss)] := ss;
end for;
m := 0;
for i in [1..91] do if cst[i] ne [] then m := m + 1; end if;
end for; m; for i in [1..#T1324] do [1, 3, 2, 4]^T1324[i];
end for;

S := {[1, 4, 1, 3]};
SS := S^N;
SS;
SSS := Setseq(SS);
for i in [1..#SS] do
for g in IM do if ts[1]*ts[4]*ts[1]*ts[3] eq g*ts[Rep(SSS[i])[1]]
*ts[Rep(SSS[i])[2]]*ts[Rep(SSS[i])[3]]*ts[Rep(SSS[i])[4]]
then print SSS[i]; end if; end for; end for;
N1413 := Stabiliser(N, [1, 4, 1, 3]);
#N1413;
Orbits(N1413);
#SSS;
T1413 := Transversal(N, N1413);
for i in [1..#T1413] do
ss := [1, 4, 1, 3]^T1413[i];
cst[prodim(1, ts, ss)] := ss;
end for;
m := 0;
for i in [1..91] do if cst[i] ne [] then m := m + 1; end if;
end for; m; for i in [1..#T1413] do [1, 4, 1, 3]^T1413[i];
end for;
for i in [1..4] do for g in IM do for h in IM do if ts[1]*ts[4]
then i, g, h; break; end if; end for; end for; end for;
S:={[1,4,1,4]};
SS:=S^N;
SSS:=Setseq(SS);
for i in [1..#SS] do
for g in IM do if ts[1]*ts[4]*ts[1]*ts[4] eq g*ts[Rep(SSS[i])[1]]
*ts[Rep(SSS[i])[2]]*ts[Rep(SSS[i])[3]]*ts[Rep(SSS[i])[4]]
then print SSS[i]; end if; end for; end for;
N1414:=Stabiliser(N,[1,4,1,4]);
#N1414;
Orbits(N1414);
#SSS;
T1414:=Transversal(N,N1414);
for i in [1..#T1414] do
ss:=[1,4,1,4]^T1414[i];
cst[prodim(1, ts, ss)]:=ss;
end for;
m:=0;
for i in [1..91] do if cst[i] ne [] then m:=m+1; end if;
end for; m;
for i in [1..#T1414] do
[1,4,1,4]^T1414[i];
end for;

S:={[1,4,2,3]};
SS:=S^N;
SSS:=Setseq(SS);
for i in [1..#SS] do
for g in IM do if ts[1]*ts[4]*ts[2]*ts[3] eq g*ts[Rep(SSS[i])[1]]
*ts[Rep(SSS[i])[2]]*ts[Rep(SSS[i])[3]]*ts[Rep(SSS[i])[4]]
then print SSS[i]; end if; end for; end for;
N1423:=Stabiliser(N,[1,4,2,3]);
#N1423;
Orbits(N1423);
#SSS;
T1423:=Transversal(N,N1423);
for i in [1..#T1423] do
ss:=[1,4,2,3]^T1423[i];
cst[prodim(1, ts, ss)]:=ss;
end for;
m:=0;
for i in [1..91] do if cst[i] ne [] then m:=m+1; end if;
end for; m;
for i in [1..#T1423] do
[1,4,2,3]^T1423[i];
end for;

\[S := \{[1,4,2,4]\}; \]
\[SS := S^N; \]
\[SSS := \text{Setseq}(SS); \]
\[\text{for } i \text{ in } [1..\#SS] \text{ do} \]
\[\text{for } g \text{ in } IM \text{ do if } ts[1]*ts[4]*ts[2]*ts[4] \text{ eq } g*ts[\text{Rep}(SSS[i])[1]]*ts[\text{Rep}(SSS[i])[2]]*ts[\text{Rep}(SSS[i])[3]]*ts[\text{Rep}(SSS[i])[4]] \]
\[\text{then print } SSS[i]; \text{ end if; end for; end for;} \]
\[N1424 := \text{Stabiliser}(N,[1,4,2,4]); \]
\[\#N1424; \]
\[\text{for } g \text{ in } N \text{ do if } 1^g \text{ eq 3 and } 4^g \text{ eq 2 and } 2^g \text{ eq 4 and } 4^g \text{ eq 2 then } N1424 := \text{sub}<N|N1424,g>; \text{ end if; end for;} \]
\[[1,4,2,4]^N1424; \]
\[\text{Orbits}(N1424); \]
\[\#N1424; \]
\[T1424 := \text{Transversal}(N,N1424); \]
\[\text{for } i \text{ in } [1..\#T1424] \text{ do} \]
\[ss := [1,4,2,4]^T1424[i]; \]
\[\text{cst[prodim(1, ts, ss)] := ss; end for;} \]
\[m := 0; \]
\[\text{for } i \text{ in } [1..91] \text{ do if cst[i] ne [] then } m := m+1; \text{ end if; end for;} \]
\[\text{for } i \text{ in } [1..\#T1424] \text{ do } [1,4,2,4]^T1424[i]; \]
\[\text{end for;} \]

\[S := \{[1,3,2,4,1]\}; \]
\[SS := S^N; \]
\[SSS := \text{Setseq}(SS); \]
\[\text{for } i \text{ in } [1..\#SS] \text{ do} \]
\[\text{for } g \text{ in } IM \text{ do if } ts[1]*ts[3]*ts[2]*ts[4]*ts[1] \text{ eq } g*ts[\text{Rep}(SSS[i])[1]]*ts[\text{Rep}(SSS[i])[2]]*ts[\text{Rep}(SSS[i])[3]]*ts[\text{Rep}(SSS[i])[4]]*ts[\text{Rep}(SSS[i])[5]] \text{ then print } SSS[i]; \text{ end if; end for; end for;} \]
\[N13241 := \text{Stabiliser}(N,[1,3,2,4,1]); \]
\[\#N13241; \]
\[\text{Orbits}(N13241); \]
\[\#SSS; \]
\[T13241 := \text{Transversal}(N,N13241); \]
\[\text{for } i \text{ in } [1..\#T13241] \text{ do} \]
\[ss := [1,3,2,4,1]^T13241[i]; \]
\[\text{cst[prodim(1, ts, ss)] := ss; end for;} \]
\[m := 0; \]
for i in [1..91] do if cst[i] ne [] then m:=m+1; end if; end for; m; for i in [1..#T[13241]] do [1,3,2,4,1]^(T[13241][i]); end for;

S:={[1,3,2,4,2]}; SS:=S^N; SS;
SSS:=Setseq(SS);
for i in [1..#SS] do
for g in IM do if ts[1]*ts[2]*ts[3]*ts[4] eq g then print SSS[i]; end if; end for;
N[13242]:=Stabiliser(N,[1,3,2,4,2]); #N[13242];
Orbits(N[13242]); #SSS;
T[13242]:=Transversal(N,N[13242]);
for i in [1..#T[13242]] do ss:=[1,3,2,4,2]^(T[13242][i]);
cst[prodim(1, ts, ss)]:=ss; end for;
m:=0;
for i in [1..91] do if cst[i] ne [] then m:=m+1; end if; end for; m; for i in [1..#T[13242]] do [1,3,2,4,2]^(T[13242][i]); end for;

S:={[1,4,1,3,2]}; SS:=S^N; SS;
SSS:=Setseq(SS);
for i in [1..#SS] do
for g in IM do if ts[1]*ts[4]*ts[3]*ts[2] eq g then print SSS[i]; end if; end for;
N[14132]:=Stabiliser(N,[1,4,1,3,2]); #N[14132];
for g in N do if 1^g eq 4 and 4^g eq 1 and 1^g eq 4 and 3^g eq 2 and 2^g eq 3 then N[14132]:=sub<N|N[14132],g>; end if; end for;
[1,4,1,3,2]^(N[14132];
Orbits(N[14132]); #N[14132];
T[14132]:=Transversal(N,N[14132]);
for i in $[1..#T_{14132}]$ do
$ss := [1,4,1,3,2]^{T_{14132}[i]}$;
cst[prodim(1, ts, ss)] := ss;
end for;
$m := 0$;
for i in $[1..91]$ do if $cst[i] \neq []$ then $m := m + 1$; end if;
end for;
m; for i in $[1..#T_{14132}]$ do $[1,4,1,3,2]^{T_{14132}[i]}$;
end for;

$S := \{(1,4,1,4,1)\}$;
SS := S^N;
SS;
SSS := Setseq(SS);
for i in $[1..#SS]$ do
for g in IM do if ts[1]*ts[4]*ts[1]*ts[4]*ts[1] eq g
*ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])[2]]*ts[Rep(SSS[i])[3]]
*ts[Rep(SSS[i])[4]]*ts[Rep(SSS[i])[5]]$ then print SSS[i];
end if; end for; end for;
N14141 := Stabiliser($N, [1,4,1,4,1]$);
#N14141;
Orbits(N14141);
#SSS;
T14141 := Transversal($N, N14141$);
for i in $[1..#T14141]$ do
$ss := [1,4,1,4,1]^{T_{14141}[i]}$;
cst[prodim(1, ts, ss)] := ss;
end for;
$m := 0$;
for i in $[1..91]$ do if $cst[i] \neq []$ then $m := m + 1$; end if;
end for;
m; for i in $[1..#T_{14141}]$ do $[1,4,1,4,1]^{T_{14141}[i]}$;
end for;

$S := \{(1,4,1,4,2)\}$;
SS := S^N;
SS;
SSS := Setseq(SS);
for i in $[1..#SS]$ do
for g in IM do if ts[1]*ts[4]*ts[1]*ts[4]*ts[2] eq g
*ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])[2]]*ts[Rep(SSS[i])[3]]
*ts[Rep(SSS[i])[4]]*ts[Rep(SSS[i])[5]]$ then print SSS[i];
end if; end for; end for;
N14142 := Stabiliser($N, [1,4,1,4,2]$);
#N14142;
Orbits(N14142);
SSS;
T14142:=Transversal(N,N14142);
for i in [1..#T14142] do
 ss:=[1,4,1,4,2]^T14142[i];
 cst[prodim(1, ts, ss)]:=ss;
end for;
m:=0;
for i in [1..91] do if cst[i] ne [] then m:=m+1; end if;
 end for; m; for i in [1..#T14142] do [1,4,1,4,2]^T14142[i];
end for;

S:={[1,4,2,3,1]};
SS:=S^N;
SS;
SSS:=Setseq(SS);
for i in [1..#SS] do
 for g in IM do if ts[1]*ts[4]*ts[2]*ts[3]*ts[1] eq g
 *ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])[2]]*ts[Rep(SSS[i])[3]]
 *ts[Rep(SSS[i])[4]]*ts[Rep(SSS[i])[5]] then print SSS[i];
 end if; end for; end for;
N14231:=Stabiliser(N,[1,4,2,3,1]);
#N14231;
Orbits(N14231);
SSS;
T14231:=Transversal(N,N14231);
for i in [1..#T14231] do
 ss:=[1,4,2,3,1]^T14231[i];
 cst[prodim(1, ts, ss)]:=ss;
end for;
m:=0;
for i in [1..91] do if cst[i] ne [] then m:=m+1; end if;
 end for; m; for i in [1..#T14231] do [1,4,2,3,1]^T14231[i];
end for;

S:={[1,4,2,3,2]};
SS:=S^N;
SS;
SSS:=Setseq(SS);
for i in [1..#SS] do
 for g in IM do if ts[1]*ts[4]*ts[2]*ts[3]*ts[2] eq g
 *ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])[2]]*ts[Rep(SSS[i])[3]]
 *ts[Rep(SSS[i])[4]]*ts[Rep(SSS[i])[5]] then print SSS[i];
 end if; end for; end for;
N14232:=Stabiliser(N,[1,4,2,3,2]);
#N14232;
for g in N do if 1^g eq 4 and 4^g eq 1 and 2^g eq 3 and 3^g eq 2 and 2^g eq 3 then N14232:=sub<N/N14232,g>; end if; end for;
[1,4,2,3,2]"N14232;
Orbits(N14232);
#N14232;
T14232:=Transversal(N,N14232);
for i in [1..#T14232] do
ss:=[1,4,2,3,2]"T14232[i];
cst[prodim(1, ts, ss)]:=ss;
end for;
m:=0;
for i in [1..91] do if cst[i] ne [] then m:=m+1; end if;
end for; m;
for i in [1..#T14232] do [1,4,2,3,2]"T14232[i];
end for;

S:={[1,3,2,4,1,3]};
SS:=S*N;
SS;
SSS:=Setseq(SS);
for i in [1..#SS] do
then print SSS[i]; end if; end for; end for;
N132413:=Stabiliser(N,[1,3,2,4,1,3]);
#N132413;
Orbits(N132413);
#SSS;
T132413:=Transversal(N,N132413);
for i in [1..#T132413] do
ss:=[1,3,2,4,1,3]"T132413[i];
cst[prodim(1, ts, ss)]:=ss;
end for;
m:=0;
for i in [1..91] do if cst[i] ne [] then m:=m+1; end if;
end for; m;
for i in [1..#T132413] do [1,3,2,4,1,3]"T132413[i];
end for;

S:={[1,3,2,4,1,4]};
SS:=S*N;
SS;
SSS:=Setseq(SS);
for i in [1..#SS] do
for g in IM do
 * ts[Rep(SSS[i])[1]] * ts[Rep(SSS[i])[2]] * ts[Rep(SSS[i])[3]]
 * ts[Rep(SSS[i])[4]] * ts[Rep(SSS[i])[5]] * ts[Rep(SSS[i])[6]]
 then print SSS[i]; end if; end for; end for;
N132414:=Stabiliser(N,[1,3,2,4,1,4]);
#N132414;
Orbits(N132414);
#SSS;
T132414:=Transversal(N,N132414);
for i in [1..#T132414] do
 ss:=[1,3,2,4,1,4]~T132414[i];
 cst[prodim(1, ts, ss)]:=ss;
 end for;
m:=0;
for i in [1..91] do
 if cst[i] ne [] then m:=m+1; end if;
end for; m;
for i in [1..#T132414] do
 [1,3,2,4,1,4]~T132414[i];
end for;

S:={[1,4,1,4,1,4]};
SS:=S~N;
SS;
SSS:=Setseq(SS);
for i in [1..#SS] do
 for g in IM do
 * ts[Rep(SSS[i])[1]] * ts[Rep(SSS[i])[2]] * ts[Rep(SSS[i])[3]]
 * ts[Rep(SSS[i])[4]] * ts[Rep(SSS[i])[5]] * ts[Rep(SSS[i])[6]]
 then print SSS[i]; end if; end for; end for;
N141414:=Stabiliser(N,[1,4,1,4,1,4]);
#N141414;
Orbits(N141414);
#SSS;
T141414:=Transversal(N,N141414);
for i in [1..#T141414] do
 ss:=[1,4,1,4,1,4]~T141414[i];
 cst[prodim(1, ts, ss)]:=ss;
 end for;
m:=0;
for i in [1..91] do
 if cst[i] ne [] then m:=m+1; end if;
end for; m;
for i in [1..#T141414] do
 [1,4,1,4,1,4]~T141414[i];
end for;

S:={[1,4,1,4,2,4]};
SS:=S~N;
SS;
SSS:=Setseq(SS);
SSS:=Setseq(SS);
for i in [1..#SS] do
 *ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])[2]]*ts[Rep(SSS[i])[3]]
 *ts[Rep(SSS[i])[4]]*ts[Rep(SSS[i])[5]]*ts[Rep(SSS[i])[6]]
 then print SSS[i]; end if; end for; end for;
N141424:=Stabiliser(N,[1,4,1,4,2,4]);
#N141424;
for g in N do if 1^g eq 2 and 4^g eq 3 and 1^g eq 2 and 4^g eq 3
 and 2^g eq 1 and 4^g eq 3 then N141424:=sub<N|N141424,g>;
 end if; end for;
[1,4,1,4,2,4]^N141424;
Orbits(N141424);
#N141424;
T141424:=Transversal(N,N141424);
for i in [1..#T141424] do
 ss:=[1,4,1,4,2,4]^T141424[i];
 cst[prodim(1, ts, ss)]:=ss;
 end for;
m:=0;
for i in [1..91] do if cst[i] ne [] then m:=m+1; end if;
end for; m; for i in [1..#T141424] do [1,4,1,4,2,4]^T141424[i];
end for;

S:={[1,3,2,4,1,3,2]};
SS:=S^N;
SS;
SSS:=Setseq(SS);
for i in [1..#SS] do
 *ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])[2]]*ts[Rep(SSS[i])[3]]
 *ts[Rep(SSS[i])[4]]*ts[Rep(SSS[i])[5]]*ts[Rep(SSS[i])[6]]
 *ts[Rep(SSS[i])[7]]
 then print SSS[i]; end if; end for; end for;
N1324132:=Stabiliser(N,[1,3,2,4,1,3,2]);
#N1324132;
for g in N do if 1^g eq 2 and 3^g eq 4 and 2^g eq 1 and 4^g eq 3
 and 1^g eq 2 and 3^g eq 4 and 2^g eq 1 then
 N1324132:=sub<N|N1324132,g>;
 end if; end for;
for g in N do if 1^g eq 3 and 3^g eq 1 and 2^g eq 4 and 4^g eq 2
 and 1^g eq 3 and 3^g eq 1 and 2^g eq 4 then
 N1324132:=sub<N|N1324132,g>;
 end if; end for;
for g in N do if 1^g eq 4 and 3^g eq 2 and 2^g eq 3 and 4^g eq 1
 and 1^g eq 4 and 3^g eq 2 and 2^g eq 3 then
N1324132:=sub<N|N1324132,g>; end if; end for;
[1,3,2,4,1,3,2]`^N1324132;
Orbits(N1324132);
#N1324132;
N1324132;
T1324132:=Transversal(N,N1324132);
for i in [1..#T1324132] do
ss:=[1,3,2,4,1,3,2]`^T1324132[i];
cst[prodim(1, ts, ss)]:=ss;
end for;
m:=0;
for i in [1..91] do if cst[i] ne [] then m:=m+1; end if; end for; m;
for i in [1..#T1324132] do [1,3,2,4,1,3,2]`^T1324132[i]; end for;

S:={[1,4,1,4,1,4,2]};
SS:=S`^N;
SS;
SSS:=Setseq(SS);
for i in [1..#SS] do
then print SSS[i]; end if; end for; end for;
N1414142:=Stabiliser(N,[1,4,1,4,1,4,2]);
#N1414142;
for g in N do if 1^g eq 2 and 4^g eq 3 and 1^g eq 2 and 4^g eq 3 and 1^g eq 2 and 4^g eq 3 and 2^g eq 1 then
N1414142:=sub<N|N1414142,g>; end if; end for;
for g in N do if 1^g eq 3 and 4^g eq 2 and 1^g eq 3 and 4^g eq 2 and 1^g eq 3 and 4^g eq 2 and 2^g eq 4 then
N1414142:=sub<N|N1414142,g>; end if; end for;
for g in N do if 1^g eq 4 and 4^g eq 1 and 1^g eq 4 and 4^g eq 1 and 1^g eq 4 and 4^g eq 1 and 2^g eq 3 then
N1414142:=sub<N|N1414142,g>; end if; end for;
[1,4,1,4,1,4,2]`^N1414142;
Orbits(N1414142);
#N1414142;
T1414142:=Transversal(N,N1414142);
for i in [1..#T1414142] do
ss:=[1,4,1,4,1,4,2]`^T1414142[i];
cst[prodim(1, ts, ss)]:=ss;
end for;
m:=0;
for i in [1..91] do if cst[i] ne [] then m:=m+1; end if; end for; m;

/*We will find some relations from the single cosets*/
for i in [1..#T1414142] do [1,4,1,4,1,4,2]^T1414142[i]; end for;
for i in [1..4] do for g in IM do for h in IN do if
ts[1]*ts[3]*ts[i] eq g*(ts[1]*ts[4])^h then i,g,h; break;
end if; end for; end for;
for i in [1..4] do for g in IM do for h in IN do if
ts[1]*ts[3]*ts[1]*ts[4]*ts[i] eq g*(ts[1]*ts[3]*ts[2])^h then i,g,h; break;
end if; end for; end for;
for i in [1..4] do for g in IM do for h in IN do if
ts[1]*ts[3]*ts[1]*ts[4]*ts[i] eq g*(ts[1]*ts[3]*ts[1]*ts[4])^h then i,g,h; break;
end if; end for; end for;
for i in [1..4] do for g in IM do for h in IN do if
ts[1]*ts[4]*ts[1]*ts[3]*ts[i] eq g*(ts[1]*ts[3]*ts[2]*ts[4]*ts[2])^h then i,g,h; break;
end if; end for; end for;
for i in [1..4] do for g in IM do for h in IN do if
ts[1]*ts[4]*ts[1]*ts[4]*ts[1]*ts[3]*ts[i] eq g*(ts[1]*ts[4]*ts[1]*ts[3])^h then i,g,h; break;
end if; end for; end for;
for i in [1..4] do for g in IM do for h in IN do if
end if; end for; end for;
for i in [1..4] do for g in IM do for h in IN do if
ts[1]*ts[4]*ts[1]*ts[4]*ts[2]*ts[i] eq g*(ts[1]*ts[3]*ts[2]*ts[4]*ts[1]*ts[4])^h then i,g,h; break;
end if; end for; end for;
for i in [1..4] do for g in IM do for h in IN do if
end if; end for; end for;
for i in [1..4] do for g in IM do for h in IN do if
end if; end for; end for;
for i in [1..4] do for g in IM do for h in IN do if
end if; end for; end for;
for i in [1..4] do for g in IM do for h in IN do if
end if; end for; end for;
for i in [1..4] do for g in IM do for h in IN do if
end if; end for; end for;
for i in [1..4] do for g in IM do for h in IN do if
end if; end for; end for;
\[g^* (t[s[1]] t[s[4]] t[s[2]] t[s[3]] t[s[1]])^h \]
then \(i, g, h\); break; end if; end for; end for; end for;

for \(i\) in \([1..4]\) do for \(g\) in \(IM\) do for \(h\) in \(IN\) do if
\[t[s[1]] t[s[3]] t[s[2]] t[s[4]] t[s[1]] t[s[4]] t[s[i]] \]
eq \[g^* (t[s[1]] t[s[4]] t[s[1]] t[s[4]] t[s[1]])^h \]
then \(i, g, h\); break; end if; end for; end for; end for;

for \(i\) in \([1..4]\) do for \(g\) in \(IM\) do for \(h\) in \(IN\) do if
\[t[s[1]] t[s[3]] t[s[2]] t[s[4]] t[s[1]] t[s[4]] t[s[i]] \]
eq \[g^* (t[s[1]] t[s[4]] t[s[1]] t[s[4]] t[s[1]] t[s[4]])^h \]
then \(i, g, h\); break; end if; end for; end for; end for;

// We use SchreierSystem to give name for that permutations from \(G^*\)
\[N := G1; \]
\[Sch := SchreierSystem(G, sub <G|Id(G)>); \]
\[ArrayP := [Id(N): i in [1..1092]]; \]
for \(i\) in \([2..1092]\) do
\[P := [Id(N): l in [1..#Sch[i]]]; \]
for \(j\) in \([1..#Sch[i]]\) do
if \(Eltseq(Sch[i])[j] eq 1\) then \(P[j] := f(x)\); end if;
if \(Eltseq(Sch[i])[j] eq 2\) then \(P[j] := f(y)\); end if;
if \(Eltseq(Sch[i])[j] eq 3\) then \(P[j] := f(t)\); end if;
end for;
\[PP := Id(N); \]
for \(k\) in \([1..#P]\) do
\[PP := PP * P[k]; \]
end for;
\[ArrayP[i] := PP; \]
end for;
for \(i\) in \([1..1092]\) do if \(ArrayP[i] eq N! (2, 32, 56, 5, 19, 40)
(3, 48, 25, 4, 49, 26) (6, 64, 70, 12, 63, 53) (7, 90, 65, 14, 85,
(60, 69, 91) then; Sch[i]; end if; end for;
Appendix C

MAGMA Code for DCE of $S_6 \times 2$ Over S_5

```magma
S:=Sym(5);
xz:=S!(1,2,3,4,5);
yy:=S!(1,2);
N:=sub<S|xz,yy>;
G<x,y>:=Group<x,y|x^5,y^2,(x^-1*y)^4,(x*y*x^-2*y*x)^2>;
f,G1,k:=CosetAction(G,sub<G|x,y>);
#G1, #k;
CompositionFactors(G1);
#sub<G|x,y>;
#DoubleCosets(G,sub<G|x,y>,sub<G|x,y>);
IsSimple(G1);
IsTransitive(N);
DoubleCosets(G,sub<G|x,y>,sub<G|x,y>);

Sch:=SchreierSystem(G,sub<G|Id(G)>);
ArrayP:=[Id(N): i in [1..120]];
for i in [2..120] do
  P:=[Id(N): l in [1..#Sch[i]]];
  for j in [1..#Sch[i]] do
    if Eltseq(Sch[i])[j] eq 1 then P[j]:=xz; end if;
    if Eltseq(Sch[i])[j] eq -1 then P[j]:=xz^-1; end if;
    if Eltseq(Sch[i])[j] eq 2 then P[j]:=yy; end if;
  end for;
  PP:=Id(N);
  for k in [1..P] do
    PP:=PP*P[k]; end for;
```
ArrayP[i]:=PP;
end for;
N5:=Stabiliser(N,5);
N5;
for i in [1..120] do if ArrayP[i] eq N!(2, 3) then Sch[i]; end if; end for;

G<x,y,t>:=Group<x,y,t|x^5,y^2,(x^-1*y)^4,(x*y*x^-2*y*x)^2,
t^-2,(t,y),(t,y*x^2*y*x*y*x^-1),(t,x^-2*y*x^-2),(t,y*x*y*x^-2*y*x)
,((y*x*y*x^-1)=t*t^((x)*t^-((x^-2)*t))>;
f,G1,k:=CosetAction(G,sub<G|x,y>);
#G1, #k;
CompositionFactors(G1);
#sub<G|x,y>;
#DoubleCosets(G,sub<G|x,y>,sub<G|x,y>);
IsTransitive(N);
DoubleCosets(G,sub<G|x,y>,sub<G|x,y>);
for n in N do [5,1,2,5,2,5,1]^n; end for;
ts:=[f(t),f(t^x),f(t^(x^2)),f(t^(x^3)),f(t^(x^4))];
IN:=sub<G1|f(x),f(y)>;
prodim := function(pt, Q, I)
/*
Return the image of pt under permutations Q[I] applied sequentially.
*/
v := pt;
for i in I do
v := v^(Q[i]);
end for;
return v;
end function;

per2sym := function(G1,N, p)
ww := cst[1^p];
 tt := p * &*[G1|ts[ww[#ww - l + 1]]: l in [1 .. #ww]];
 zz := N![rep{j: j in [1..5] | (1^ts[i])^tt eq 1^ts[j]}: i in [1..5]]; return <zz, ww>;
end function;
cst := [null : i in [1 ..12]] where null is [Integers() |];
for i := 1 to 5 do
cst[prodim(1, ts, [i])] := [i];
end for;
m:=0;
for i in [1..12] do if cst[i] ne [] then m:=m+1; end if;
N5 := Stabiliser(N, 5);
Orbits(N5);
#N5;

S := {[5, 1]};
SS := S^N;
SS;
SSS := Setseq(SS);
for i in [1 .. #SS] do
for g in IN do if ts[5] * ts[1] eq g * ts[Rep(SSS[i])[1]] * ts[Rep(SSS[i])[2]] then print SSS[i]; end if; end for;
end for;
N51 := Stabiliser(N, [5, 1]);
#N51;
for g in N do if 5^g eq 5 and 1^g eq 2 then N51 := sub<N\mid N51, g>; end if; end for;
for g in N do if 5^g eq 5 and 1^g eq 4 then N51 := sub<N\mid N51, g>; end if; end for;
for g in N do if 5^g eq 5 and 1^g eq 3 then N51 := sub<N\mid N51, g>; end if; end for;
[5, 1]^N51;
Orbits(N51);
#N51;
T51 := Transversal(N, N51);
for i in [1 .. #T51] do
ss := [5, 1]^T51[i];
cst[prodim(1, ts, ss)] := ss;
end for;
m := 0;
for i in [1 .. 12] do if cst[i] ne [] then m := m + 1; end if; end for;
for i in [1 .. #T51] do [5, 1]^T51[i]; end for;

S := {[5, 1, 5]};
SS := S^N;
SS;
SSS := Setseq(SS);
for i in [1 .. #SS] do
for g in IN do if ts[5] * ts[1] * ts[5] eq g * ts[Rep(SSS[i])[1]] * ts[Rep(SSS[i])[2]] * ts[Rep(SSS[i])[3]] then print SSS[i]; end if; end for;
end for;
N515 := Stabiliser(N, [5, 1, 5]);
#N515;
for g in N do if 5^g eq 1 and 1^g eq 2 and 5^g eq 1 then
for g in N do if 5^g eq 5 and 1^g eq 2 and 5^g eq 5 then
 N515:=sub<N|N515,g>; end if; end for;
for g in N do if 5^g eq 2 and 1^g eq 3 and 5^g eq 2 then
 N515:=sub<N|N515,g>; end if; end for;
for g in N do if 5^g eq 2 and 1^g eq 1 and 5^g eq 2 then
 N515:=sub<N|N515,g>; end if; end for;
for g in N do if 5^g eq 1 and 1^g eq 3 and 5^g eq 1 then
 N515:=sub<N|N515,g>; end if; end for;
for g in N do if 5^g eq 3 and 1^g eq 4 and 5^g eq 3 then
 N515:=sub<N|N515,g>; end if; end for;
for g in N do if 5^g eq 3 and 1^g eq 2 and 5^g eq 3 then
 N515:=sub<N|N515,g>; end if; end for;
for g in N do if 5^g eq 2 and 1^g eq 4 and 5^g eq 2 then
 N515:=sub<N|N515,g>; end if; end for;
for g in N do if 5^g eq 4 and 1^g eq 5 and 5^g eq 4 then
 N515:=sub<N|N515,g>; end if; end for;
for g in N do if 5^g eq 4 and 1^g eq 3 and 5^g eq 4 then
 N515:=sub<N|N515,g>; end if; end for;
for g in N do if 5^g eq 3 and 1^g eq 1 and 5^g eq 3 then
 N515:=sub<N|N515,g>; end if; end for;
for g in N do if 5^g eq 3 and 1^g eq 5 and 5^g eq 3 then
 N515:=sub<N|N515,g>; end if; end for;
for g in N do if 5^g eq 1 and 1^g eq 5 and 5^g eq 1 then
 N515:=sub<N|N515,g>; end if; end for;
for g in N do if 5^g eq 5 and 1^g eq 4 and 5^g eq 5 then
 N515:=sub<N|N515,g>; end if; end for;
for g in N do if 5^g eq 4 and 1^g eq 1 and 5^g eq 4 then
 N515:=sub<N|N515,g>; end if; end for;
for g in N do if 5^g eq 4 and 1^g eq 3 and 5^g eq 4 then
 N515:=sub<N|N515,g>; end if; end for;
for g in N do if 5^g eq 1 and 1^g eq 4 and 5^g eq 1 then
 N515:=sub<N|N515,g>; end if; end for;
for g in N do if 5^g eq 5 and 1^g eq 3 and 5^g eq 5 then
 N515:=sub<N|N515,g>; end if; end for;
for i in [1..#T515] do
 ss:=[5,1,5] `^` T515[i];
 cst[prodim(1, ts, ss)]:=ss;
end for;
m:=0;
for i in [1..12] do if cst[i] ne [] then m:=m+1; end if;
end for; m; for i in [1..#T515] do [5,1,5]^T515[i];
end for;
Appendix D

MAGMA Code for DCE of $M_{22} \times 2$ Over S_6

$S := \text{Sym}(30);$

$xx := S!(1, 2, 4, 8)(3, 6, 11, 18, 26, 20, 29, 22)$

$(5, 10, 17, 12, 19, 28, 30, 25)(7, 13, 21, 27, 15, 24, 23, 14)(9, 16);$

$yy := S!(1, 3, 7, 14, 23, 29, 4, 9)(2, 5, 10, 6, 12, 20, 28, 30)(8, 15, 25, 21)(11, 16, 26, 19, 13, 22, 24, 17)(18, 27);$

$N := \text{sub}<S|xx, yy>;$

$G<x, y, t> := \text{Group}<x, y, t|x^8, y^8, (x*y^-2*x)^2, (x^-1*y^-1)^2, (x*y^-1)^4, (y^-1*x^-1*y*x^-3*y*x^-1*y^-1*x), (y*x*y*x^-3*y*x*y^-2), t^2, (t, x^4), (t, x*y*x^-1*y^-2*x), (t, x*y*x*y*x^-1*y^-1), (x^-3)*t^3*(y^-3))^5, (x^-3)*t^7*(y^-7))^4>;$

$f, G1, k := \text{CosetAction}(G, \text{sub}<G|x, y>);$ #G1; #k;

$\text{CompositionFactors}(G1);$ $\text{Center}(G1);$

$\text{DoubleCosets}(G, \text{sub}<G|x, y>, \text{sub}<G|x, y>);$ #sub<G|x, y>;

$\text{Sch} := \text{SchreierSystem}(G, \text{sub}<G|\text{Id}(G)>);$ $\text{ArrayP} := [\text{Id}(N): i \in [1..887040]];$

$\text{for } i \in [2..887040] \text{ do}$

$P := [\text{Id}(N): l \in [1..\text{#Sch}[i]]];$

$\text{for } j \in [1..\text{#Sch}[i]] \text{ do}$

$\text{if Eltseq(Sch[i][j]) eq 1 then } P[j] := xx; \text{ end if; }$

$\text{if Eltseq(Sch[i][j]) eq -1 then } P[j] := xx^-1; \text{ end if; }$

$\text{if Eltseq(Sch[i][j]) eq 2 then } P[j] := yy; \text{ end if; }$
if Eltseq(Sch[i])[j] eq -2 then P[j]:=yy^-1; end if;
end for;
PP:=Id(N);
for k in [1..#P] do
PP:=PP*P[k]; end for;
ArrayP[i]:=PP;
end for;
/*
for n in N do [1, 2, 4, 8, 3, 6, 11, 18, 26, 20, 29, 22, 5, 10, 17,
12, 19, 28, 30, 25, 7, 13, 21, 27, 15, 24, 23, 14, 9, 16, 27, 23, 13,
15, 14]"n; end for;
for n in N do [3, 26, 2, 19, 6, 20, 7, 15, 10, 28, 11, 29, 12, 25,
13, 24, 14, 27, 17, 30, 18, 22, 21, 23, 16, 9, 16, 9]"n; end for;
*/
ts:=[f(t),f(t^x),f(t^y),f(t^(x^2)),f(t^(x*y)),f(t^(y*x)),f(t^(y^2)),f(t^(x^3)),f(t^(y^7)),f(t^(x*(y^2))),f(t^(y*(x^2)))
,f(t^(y^4)),f(t^((y^2)*x)),f(t^(y^3)),f(t^((y^2)*(x^2))),
,f(t^((y^7)*x)),f(t^((x^2)*y)),f(t^((y^2)*x^2)),f(t^((y^3)*x)),f(t^((y^2)*(x^2)))
,f(t^((y^7)*x)),f(t^((x^2)*y)),f(t^((y^2)*x^2)),f(t^((y^3)*x)),f(t^((y^2)*(x^2)))
];
IN:=sub<G1|f(x),f(y)>
Index(G,sub<G|x,y>);
prodim := function(pt, Q, I)
/*
Return the image of pt under permutations Q[I] applied sequentially.
*/
v := pt;
for i in I do
v := v^(Q[i]);
end for;
return v;
end function;
cst := [null : i in [1 ..1232]] where null is [Integers() |];
for i := 1 to 30 do
cst[prodim(1, ts, [i])] := [i];
end for;
m:=0;
for i in [1 ..1232] do if cst[i] ne [] then m:=m+1; end if;
end for; m;
N1:=Stabiliser(N,1);
Orbits(N1);
#N1;
\[S := \{[1,2]\}; \]
\[SS := S^N; \]
\[SSS := \text{Setseq}(SS); \]
\[\text{for } i \text{ in } [1..\#SS] \text{ do} \]
\[\text{for } g \text{ in } \text{IN} \text{ do if } ts[1] \times ts[2] \equiv g \times ts[\text{Rep}(SSS[i])[1]] \]
\[\times ts[\text{Rep}(SSS[i])[2]] \text{ then print } SSS[i]; \text{ end if; end for; end for; N12 := Stabiliser}(N, [1, 2]); \]
\[\#N12; \]
\[\text{Orbits}(N12); \]
\[\#SSS; \]
\[T12 := \text{Transversal}(N, N12); \]
\[\text{for } i \text{ in } [1..\#T12] \text{ do} \]
\[ss := [1,2]^T12[i]; \]
\[\text{cst}[\text{prodim}(1, ts, ss)] := ss; \]
\[\text{end for; m := 0; for } i \text{ in } [1..1232] \text{ do if } \text{cst}[i] \neq [] \text{ then } m := m+1; \text{ end if; end for; m; \} \]
\[S := \{[1,3]\}; \]
\[SS := S^N; \]
\[SSS := \text{Setseq}(SS); \]
\[\text{for } i \text{ in } [1..\#SS] \text{ do} \]
\[\text{for } g \text{ in } \text{IN} \text{ do if } ts[1] \times ts[3] \equiv g \times ts[\text{Rep}(SSS[i])[1]] \]
\[\times ts[\text{Rep}(SSS[i])[2]] \text{ then print } SSS[i]; \text{ end if; end for; end for; N13 := Stabiliser}(N, [1, 3]); \]
\[\#N13; \]
\[\text{for } g \text{ in } \text{N} \text{ do if } 1^g \equiv 3 \text{ and } 3^g \equiv 1 \text{ then } N13 := \text{sub}<N|N13, g>; \]
\[\text{end if; end for; [1,3]^N13; \} \]
\[\#N13; \]
\[\text{Orbits}(N13); \]
\[T13 := \text{Transversal}(N, N13); \]
\[\text{for } i \text{ in } [1..\#T13] \text{ do} \]
\[ss := [1,3]^T13[i]; \]
\[\text{cst}[\text{prodim}(1, ts, ss)] := ss; \]
\[\text{end for; m := 0; for } i \text{ in } [1..1232] \text{ do if } \text{cst}[i] \neq [] \text{ then } m := m+1; \text{ end if; \} \]
end for; m;

S:={[1,4]};
SS:=S^N;
SS;
SSS:=Setseq(SS);
for i in [1..#SS] do
for g in IN do if ts[1]*ts[4] eq g*ts[Rep(SSS[i])[1]]
*ts[Rep(SSS[i])[2]] then print SSS[i]; end if; end for;
end for;
N14:=Stabiliser(N,[1,4]);
#N14;
for g in N do if 1^g eq 4 and 4^g eq 1 then
N14:=sub<N|N14,g>; end if; end for;
for g in N do if 1^g eq 18 and 4^g eq 22 then
N14:=sub<N|N14,g>; end if; end for;
for g in N do if 1^g eq 20 and 4^g eq 6 then
N14:=sub<N|N14,g>; end if; end for;
for g in N do if 1^g eq 22 and 4^g eq 8 then
N14:=sub<N|N14,g>; end if; end for;
for g in N do if 1^g eq 6 and 4^g eq 20 then
N14:=sub<N|N14,g>; end if; end for;
[1,4]^-N14;
#N14;
Orbits(N14);
T14:=Transversal(N,N14);
for i in [1..#T14] do
ss:=[1,4]^T14[i];
cst[prodim(1, ts, ss)]:=ss;
end for;
m:=0;
for i in [1..1232] do if cst[i] ne [] then m:=m+1; end if;
end for; m;

S:={[1,2,3]};
SS:=S^N;
SS;
SSS:=Setseq(SS);
for i in [1..#SS] do
for g in IN do if ts[1]*ts[2]*ts[3] eq g*ts[Rep(SSS[i])[1]]
*ts[Rep(SSS[i])[2]]*ts[Rep(SSS[i])[3]] then print SSS[i]; end if; end for;
end for;
N123:=Stabiliser(N,[1,2,3]);
#N123;
for g in N do if 1^g eq 1 and 2^g eq 8 and 3^g eq 26 then $N_{123}:=\text{sub}<N|N_{123},g>$; end if; end for;
$[1,2,3]^N_{123}$;
#N_{123};
Orbits(N_{123});
T_{123}:=\text{Transversal}(N,N_{123});
for i in [1..#T_{123}] do
ss:=$[1,2,3]^T_{123}[i]$;
cst[\text{prodim}(1, ts, ss)]:= ss;
end for;
m:=0;
for i in [1..1232] do if c[i] ne [] then m:=m+1; end if;
end for; m;

S:={$[1,2,4]$};
SS:=S^N;
SS;
SSS:=\text{Setseq}(SS);
for i in [1..#SS] do
for g in IN do if ts[1]*ts[2]*ts[4] eq g*ts[\text{Rep}(SSS[i])[1]]*ts[\text{Rep}(SSS[i])[2]]*ts[\text{Rep}(SSS[i])[3]] then print SSS[i];
end if; end for; end for;
N_{124}:=\text{Stabiliser}(N,[1,2,4]);
#N_{124};
for g in N do if 1^g eq 2 and 2^g eq 1 and 4^g eq 8 then $N_{124}:=\text{sub}<N|N_{124},g>$; end if; end for;
$[1,2,4]^N_{124}$;
#N_{124};
Orbits(N_{124});
T_{124}:=\text{Transversal}(N,N_{124});
for i in [1..#T_{124}] do
ss:=$[1,2,4]^T_{124}[i]$;
cst[\text{prodim}(1, ts, ss)]:= ss;
end for;
m:=0;
for i in [1..1232] do if c[i] ne [] then m:=m+1; end if;
end for; m;

S:={$[1,2,8]$};
SS:=S^N;
SS;
SSS:=\text{Setseq}(SS);
for i in [1..#SS] do
for g in IN do if ts[1]*ts[2]*ts[8] eq g*ts[\text{Rep}(SSS[i])[1]]
*ts[Rep(SSS[i])[2]]*ts[Rep(SSS[i])[3]] then print SSS[i];
end if; end for; end for;
N128:=Stabiliser(N,[1,2,8]);
#N128;
for g in N do if 1^g eq 9 and 2^g eq 15 and 8^g eq 5 then
N128:=sub<N|N128,g>; end if; end for;
for g in N do if 1^g eq 1 and 2^g eq 29 and 8^g eq 11 then
N128:=sub<N|N128,g>; end if; end for;
for g in N do if 1^g eq 9 and 2^g eq 7 and 8^g eq 19 then
N128:=sub<N|N128,g>; end if; end for;
for g in N do if 1^g eq 9 and 2^g eq 19 and 8^g eq 7 then
N128:=sub<N|N128,g>; end if; end for;
for g in N do if 1^g eq 1 and 2^g eq 11 and 8^g eq 29 then
N128:=sub<N|N128,g>; end if; end for;
for g in N do if 1^g eq 9 and 2^g eq 5 and 8^g eq 15 then
N128:=sub<N|N128,g>; end if; end for;
for g in N do if 1^g eq 1 and 2^g eq 8 and 8^g eq 2 then
N128:=sub<N|N128,g>; end if; end for;
[1,2,8]^N128;
#N128;
Orbits(N128);
T128:=Transversal(N,N128);
for i in [1..#T128] do
ss:=[1,2,8]^T128[i];
cst[prodim(1, ts, ss)]:=ss;
end for;
m:=0;
for i in [1..1232] do if cst[i] ne [] then m:=m+1; end if;
end for; m;
--
S:={[1,2,17]};
SS:={5\N};
SSS:=Setseq(SS);
for i in [1..#SS] do
for g in N do if ts[1]*ts[2]*ts[17] eq g*ts[Rep(SSS[i])[1]]
*ts[Rep(SSS[i])[2]]*ts[Rep(SSS[i])[3]] then print SSS[i];
end if; end for; end for;
N1217:=Stabiliser(N,[1,2,17]);
#N1217;
for g in N do if 1^g eq 28 and 2^g eq 16 and 17^g eq 11 then
N1217:=sub<N|N1217,g>; end if; end for;
for g in N do if 1^g eq 4 and 2^g eq 2 and 17^g eq 7 then
N1217:=sub<N|N1217,g>; end if; end for;
for \(g \in N \) do if \(1^g \equiv 13 \) and \(2^g \equiv 16 \) and \(17^g \equiv 26 \) then
\[N_{1217} := \text{sub}\langle N \mid g \rangle ; \] end if; end for;

\[[1,2,17]^N_{1217} \]

#\(N_{1217} \);

Orbits\((N_{1217}) \);

\(T_{1217} := \text{Transversal}(N,N_{1217}) \);

for \(i \) in \([1..\#T_{1217}]\) do

\(ss:= [1,2,17]^T_{1217}[i] ; \)

\(\text{cst}[\text{projdim}(1, ts, ss)] := ss ; \)

end for;

\(m:=0 ; \)

for \(i \) in \([1..1232]\) do if \(\text{cst}[i] \neq [] \) then \(m:=m+1 \); end if;

end for;

\(S:=\{[1,4,16]\} ; \)

\(SS:=S^N ; \)

\(SS ; \)

\(\text{SSS}:=\text{Setseq}(SS) ; \)

for \(i \) in \([1..\#SS]\) do

for \(g \) in \(N \) do if \(ts[1]*ts[4]*ts[16] \equiv g \)

*ts[\text{Rep}(SSS[i])[1]]*ts[\text{Rep}(SSS[i])[2]]*ts[\text{Rep}(SSS[i])[3]]

then print \(SSS[i] \); end if; end for; end for;

\(N_{1416} := \text{Stabilizer}(N,[1,4,16]) ; \)

#\(N_{1416} ; \)

for \(g \) in \(N \) do if \(1^g \equiv 15 \) and \(4^g \equiv 5 \) and \(16^g \equiv 1 \) then

\[N_{1416} := \text{sub}\langle N \mid N_{1416},g \rangle ; \] end if; end for;

for \(g \) in \(N \) do if \(1^g \equiv 16 \) and \(4^g \equiv 6 \) and \(16^g \equiv 20 \) then

\[N_{1416} := \text{sub}\langle N \mid N_{1416},g \rangle ; \] end if; end for;

for \(g \) in \(N \) do if \(1^g \equiv 1 \) and \(4^g \equiv 7 \) and \(16^g \equiv 19 \) then

\[N_{1416} := \text{sub}\langle N \mid N_{1416},g \rangle ; \] end if; end for;

for \(g \) in \(N \) do if \(1^g \equiv 17 \) and \(4^g \equiv 23 \) and \(16^g \equiv 4 \) then

\[N_{1416} := \text{sub}\langle N \mid N_{1416},g \rangle ; \] end if; end for;

for \(g \) in \(N \) do if \(1^g \equiv 6 \) and \(4^g \equiv 17 \) and \(16^g \equiv 5 \) then

\[N_{1416} := \text{sub}\langle N \mid N_{1416},g \rangle ; \] end if; end for;

for \(g \) in \(N \) do if \(1^g \equiv 18 \) and \(4^g \equiv 21 \) and \(16^g \equiv 7 \) then

\[N_{1416} := \text{sub}\langle N \mid N_{1416},g \rangle ; \] end if; end for;

for \(g \) in \(N \) do if \(1^g \equiv 19 \) and \(4^g \equiv 20 \) and \(16^g \equiv 30 \) then

\[N_{1416} := \text{sub}\langle N \mid N_{1416},g \rangle ; \] end if; end for;
for g in N do if $1^g \equiv 20$ and $4^g \equiv 19$ and $16^g \equiv 30$ then $N_{1416} := \text{sub}(N|N_{1416}, g)$; end if; end for;
for g in N do if $1^g \equiv 21$ and $4^g \equiv 4$ and $16^g \equiv 30$ then $N_{1416} := \text{sub}(N|N_{1416}, g)$; end if; end for;
for g in N do if $1^g \equiv 22$ and $4^g \equiv 5$ and $16^g \equiv 30$ then $N_{1416} := \text{sub}(N|N_{1416}, g)$; end if; end for;
for g in N do if $1^g \equiv 7$ and $4^g \equiv 6$ and $16^g \equiv 21$ then $N_{1416} := \text{sub}(N|N_{1416}, g)$; end if; end for;
for g in N do if $1^g \equiv 23$ and $4^g \equiv 7$ and $16^g \equiv 22$ then $N_{1416} := \text{sub}(N|N_{1416}, g)$; end if; end for;
for g in N do if $1^g \equiv 24$ and $4^g \equiv 10$ and $16^g \equiv 2$ then $N_{1416} := \text{sub}(N|N_{1416}, g)$; end if; end for;
for g in N do if $1^g \equiv 25$ and $4^g \equiv 10$ and $16^g \equiv 3$ then $N_{1416} := \text{sub}(N|N_{1416}, g)$; end if; end for;
for g in N do if $1^g \equiv 9$ and $4^g \equiv 11$ and $16^g \equiv 29$ then $N_{1416} := \text{sub}(N|N_{1416}, g)$; end if; end for;
for g in N do if $1^g \equiv 26$ and $4^g \equiv 12$ and $16^g \equiv 28$ then $N_{1416} := \text{sub}(N|N_{1416}, g)$; end if; end for;
for g in N do if $1^g \equiv 2$ and $4^g \equiv 13$ and $16^g \equiv 28$ then $N_{1416} := \text{sub}(N|N_{1416}, g)$; end if; end for;
for g in N do if $1^g \equiv 3$ and $4^g \equiv 14$ and $16^g \equiv 13$ then $N_{1416} := \text{sub}(N|N_{1416}, g)$; end if; end for;
for g in N do if $1^g \equiv 12$ and $4^g \equiv 14$ and $16^g \equiv 8$ then $N_{1416} := \text{sub}(N|N_{1416}, g)$; end if; end for;
for g in N do if $1^g \equiv 11$ and $4^g \equiv 12$ and $16^g \equiv 3$ then $N_{1416} := \text{sub}(N|N_{1416}, g)$; end if; end for;
for g in N do if $1^g \equiv 12$ and $4^g \equiv 11$ and $16^g \equiv 10$ then $N_{1416} := \text{sub}(N|N_{1416}, g)$; end if; end for;
for g in N do if $1^g \equiv 11$ and $4^g \equiv 27$ and $16^g \equiv 24$ then $N_{1416} := \text{sub}(N|N_{1416}, g)$; end if; end for;
for g in N do if 1^g eq 26 and 4^g eq 3 and 16^g eq 9 then
\[N_{1416} := \text{sub}<N|N_{1416}, g> \] end if; end for;
for g in N do if 1^g eq 28 and 4^g eq 29 and 16^g eq 25 then
\[N_{1416} := \text{sub}<N|N_{1416}, g> \] end if; end for;
for g in N do if 1^g eq 13 and 4^g eq 28 and 16^g eq 2 then
\[N_{1416} := \text{sub}<N|N_{1416}, g> \] end if; end for;
for g in N do if 1^g eq 29 and 4^g eq 28 and 16^g eq 25 then
\[N_{1416} := \text{sub}<N|N_{1416}, g> \] end if; end for;
for g in N do if 1^g eq 28 and 4^g eq 13 and 16^g eq 2 then
\[N_{1416} := \text{sub}<N|N_{1416}, g> \] end if; end for;
for g in N do if 1^g eq 27 and 4^g eq 8 and 16^g eq 25 then
\[N_{1416} := \text{sub}<N|N_{1416}, g> \] end if; end for;
for g in N do if 1^g eq 3 and 4^g eq 10 and 16^g eq 25 then
\[N_{1416} := \text{sub}<N|N_{1416}, g> \] end if; end for;
for g in N do if 1^g eq 13 and 4^g eq 11 and 16^g eq 27 then
\[N_{1416} := \text{sub}<N|N_{1416}, g> \] end if; end for;
for g in N do if 1^g eq 14 and 4^g eq 12 and 16^g eq 8 then
\[N_{1416} := \text{sub}<N|N_{1416}, g> \] end if; end for;
for g in N do if 1^g eq 14 and 4^g eq 13 and 16^g eq 3 then
\[N_{1416} := \text{sub}<N|N_{1416}, g> \] end if; end for;
for g in N do if 1^g eq 29 and 4^g eq 14 and 16^g eq 24 then
\[N_{1416} := \text{sub}<N|N_{1416}, g> \] end if; end for;
for g in N do if 1^g eq 23 and 4^g eq 17 and 16^g eq 4 then
\[N_{1416} := \text{sub}<N|N_{1416}, g> \] end if; end for;
for g in N do if 1^g eq 17 and 4^g eq 6 and 16^g eq 5 then
\[N_{1416} := \text{sub}<N|N_{1416}, g> \] end if; end for;
for g in N do if 1^g eq 5 and 4^g eq 17 and 16^g eq 6 then
\[N_{1416} := \text{sub}<N|N_{1416}, g> \] end if; end for;
for g in N do if 1^g eq 21 and 4^g eq 6 and 16^g eq 7 then
\[N_{1416} := \text{sub}<N|N_{1416}, g> \] end if; end for;
for g in N do if 1^g eq 16 and 4^g eq 18 and 16^g eq 22 then
\[N_{1416} := \text{sub}<N|N_{1416}, g> \] end if; end for;
for g in N do if 1^g eq 1 and 4^g eq 16 and 16^g eq 4 then
\[N_{1416} := \text{sub}<N|N_{1416}, g> \] end if; end for;
for g in N do if 1^g eq 4 and 4^g eq 21 and 16^g eq 30 then
\[N_{1416} := \text{sub}<N|N_{1416}, g> \] end if; end for;
for g in N do if 1^g eq 5 and 4^g eq 22 and 16^g eq 30 then
\[N_{1416} := \text{sub}<N|N_{1416}, g> \] end if; end for;
for g in N do if 1^g eq 6 and 4^g eq 7 and 16^g eq 21 then
\[N_{1416} := \text{sub}<N|N_{1416}, g> \] end if; end for;
for g in N do if 1^g eq 7 and 4^g eq 23 and 16^g eq 22 then
\[N_{1416} := \text{sub}<N|N_{1416}, g> \] end if; end for;
for g in N do if \(1^g \equiv 19\) and \(4^g \equiv 7\) and \(16^g \equiv 1\) then
 \(N_{1416} := \text{sub}(N, N_{1416}, g)\); end if; end for;
for g in N do if \(1^g \equiv 20\) and \(4^g \equiv 23\) and \(16^g \equiv 15\) then
 \(N_{1416} := \text{sub}(N, N_{1416}, g)\); end if; end for;
for g in N do if \(1^g \equiv 18\) and \(4^g \equiv 22\) and \(16^g \equiv 16\) then
 \(N_{1416} := \text{sub}(N, N_{1416}, g)\); end if; end for;
for g in N do if \(1^g \equiv 16\) and \(4^g \equiv 4\) and \(16^g \equiv 1\) then
 \(N_{1416} := \text{sub}(N, N_{1416}, g)\); end if; end for;
for g in N do if \(1^g \equiv 18\) and \(4^g \equiv 19\) and \(16^g \equiv 17\) then
 \(N_{1416} := \text{sub}(N, N_{1416}, g)\); end if; end for;
for g in N do if \(1^g \equiv 16\) and \(4^g \equiv 20\) and \(16^g \equiv 6\) then
 \(N_{1416} := \text{sub}(N, N_{1416}, g)\); end if; end for;
for g in N do if \(1^g \equiv 15\) and \(4^g \equiv 1\) and \(16^g \equiv 5\) then
 \(N_{1416} := \text{sub}(N, N_{1416}, g)\); end if; end for;
for g in N do if \(1^g \equiv 21\) and \(4^g \equiv 18\) and \(16^g \equiv 15\) then
 \(N_{1416} := \text{sub}(N, N_{1416}, g)\); end if; end for;
\([1,4,16]^N_{1416}\);
\(#N_{1416}\);
Orbits\(N_{1416}\);
\(T_{1416} := \text{Transversal}(N, N_{1416})\);
for i in \([1..#T_{1416}]\) do
 \(ss := [1,4,16]^T_{1416}[i]\);
 \(\text{cst}[\text{prodim}(1, ts, ss)] := ss\);
end for;
\(m := 0\);
for i in \([1..1232]\) do if \(\text{cst}[i] \neq \[]\) then \(m := m + 1\); end if;
end for; \(m\);
Appendix E

MAGMA Code for DCE of M_{22} Over S_6

\[S := \text{Sym}(30); \]
\[xx := S!(1, 2, 4, 8)(3, 6, 11, 18, 26, 20, 29, 22) \]
\[(5, 10, 17, 12, 19, 28, 30, 25)(7, 13, 21, 27, 15, 24, 23, 14)(9, 16); \]
\[yy := S!(1, 3, 7, 14, 23, 29, 4, 9)(2, 5, 10, 6, 12, 20, 28, 30)(8, 15, 25, 21)(11, 16, 26, 19, 13, 22, 24, 17)(18, 27); \]
\[N := \text{sub}<S|xx, yy>; \]
\[G<x, y, t> := \text{Group}<x, y, t|x^8, y^8, (x*y^-2*x)^2, (x^-1*y^-1-1)^4, \]
\[(x*y^-1)^4, (y^-1*x^-1*y*x^-3*y*x^-1*y^-1*x), \]
\[(y*x*y*x^-3*y*x*y^-2), t^2, (t, x^-4), (t, x*y*x^-1*y^-2*x), \]
\[(t, x*y*x^-1*y^-1), ((x^-3)*t^-1*(y^-3))^-5, ((x^-3)*t^-1*(y^-7))^-4, \]
\[x^2 * t * x^{-1} * y * t * y^{-1} * x^{-1} * t>; \]
\[f, G1, k := \text{CosetAction}(G, \text{sub}<G|x, y>); \]
\[#G1; #k; \]
\[\text{CompositionFactors}(G1); \]
\[\text{Center}(G1); \]
\[\text{DoubleCosets}(G, \text{sub}<G|x, y>, \text{sub}<G|x, y>); \]
\[\text{#sub}<G|x, y>; \]
\[\text{Sch} := \text{SchreierSystem}(G, \text{sub}<G|Id(G)>); \]
\[\text{ArrayP} := [\text{Id}(N): i \text{ in } [1..443520]]; \]
\[\text{for } i \text{ in } [2..443520] \text{ do} \]
\[\text{P} := [\text{Id}(N): l \text{ in } [1..\#\text{Sch}[i]]]; \]
\[\text{for } j \text{ in } [1..\#\text{Sch}[i]] \text{ do} \]
\[\text{if Eltseq(Sch[i])[j] eq 1 then P[j] := xx; end if;} \]
\[\text{if Eltseq(Sch[i])[j] eq -1 then P[j] := xx^{-1}; end if;} \]
if Eltseq(Sch[i][j]) eq 2 then P[j]:=yy; end if;
if Eltseq(Sch[i][j]) eq -2 then P[j]:=yy^-1; end if;
end for;
PP:=Id(N);
for k in [1..#P] do
PP:=PP*P[k]; end for;
ArrayP[i]:=PP;
end for;
Index(G,sub<G|x,y>);
ts:=[f(t),f(t^(x)),f(t^(y)),f(t^(x^2)),f(t^(x*y)),f(t^(y*x)),
f(t^(y^2)),f(t^(x*y^2)),f(t^(y*(x^2))),f(t^(y*(y^2))),
f(t^(x*y^4)),f(t^((y^2)*x2)),f(t^((y^2)*x3)),f(t^((y^2)*(x^4))),
f(t^((y^7)*x2)),f(t^((y^7)*x3)),f(t^((y^7)*x4)),f(t^((y^7)*(x^4))),
f(t^((y^7)*(x^5))),f(t^((y^3)*(y^3))),f(t^((y^5)*(y^3))),f(t^((y^4))),
f(t^((y^2)*(y^5))),f(t^((y^2)*(y^3))),f(t^((y^2)*(y^2))),f(t^((y^2)*x3)),f(t^((y^2)*(y^6))),f(t^((y^2)*(y^5))),f(t^((y^2)*(y^7)))];
IN:=sub<G1|f(x),f(y)>;
prodim := function(pt, Q, I)
 /*
 Return the image of pt under permutations Q[I] applied sequentially.
 */
 v := pt;
 for i in I do
 v := v^(Q[i]);
 end for;
 return v;
end function;
cst := [null : i in [1 ..616]] where null is [Integers() |];
for i := 1 to 30 do
 cst[prodim(1, ts, [i])] := [i];
end for;
m:=0;
for i in [1..616] do if cst[i] ne [] then m:=m+1; end if; end for; m;
N1:=Stabiliser(N,1);
Orbits(N1);
#N1;

S:={[1,2]};
SS:=S';
SS;
SSS:=Setseq(SS);
for i in [1..#SS] do
 for g in IN do if ts[1]*ts[2] eq g*ts[Rep(SSS[i])[1]]*
\text{if } \text{ts[Rep(SSS[i])][2]} \text{ then print } SSS[i]; \text{ end if; end for;}

\text{N12:=Stabiliser(N,[1,2]);}
#N12;
\text{Orbits(N12);}
#SSS;
\text{T12:=Transversal(N,N12);}
for \text{i in [1..#T12] do}
\text{ss:=[1,2]^T12[i];}
\text{cst[prodim(1, ts, ss)] := ss;}
\text{end for;}
\text{m:=0;}
\text{for i in [1..616] do if cst[i] ne [] then m:=m+1; end if; end for; m;}

\text{---}
\text{S:={[1,3];}
SS:=S\cdot N;
SS;
SSS:=Setseq(SS);
for \text{i in [1..#SS] do}
\text{for g in IN do if ts[1]*ts[3] eq g*ts[Rep(SSS[i])[1]]}
\text{*ts[Rep(SSS[i])[2]] then print SSS[i]; end if; end for;}
\text{end for;}
\text{N13:=Stabiliser(N,[1,3]);}
#N13;
\text{for g in N do if 1^g eq 3 and 3^g eq 1 then}
\text{N13:=sub<N|N13,g>; end if; end for;}
[1,3]\cdot N13;
#N13;
\text{Orbits(N13);}
\text{T13:=Transversal(N,N13);}
for \text{i in [1..#T13] do}
\text{ss:=[1,3]^T13[i];}
\text{cst[prodim(1, ts, ss)] := ss;}
\text{end for;}
\text{m:=0;}
\text{for i in [1..616] do if cst[i] ne [] then m:=m+1; end if; end for; m;}

\text{---}
\text{S:={[1,2,4];}
SS:=S\cdot N;
SS;
SSS:=Setseq(SS);
for \text{i in [1..#SS] do}
\text{for g in IN do if ts[1]*ts[2]*ts[4] eq g*ts[Rep(SSS[i])[1]]
\text{eq g*ts[Rep(SSS[i])[2]] then print SSS[i]; end if; end for;}
\text{end for;}

\begin{verbatim}
*ts[Rep(SSS[i])[2]]*ts[Rep(SSS[i])[3]] then print SSS[i];
end if; end for; end for;
N124:=Stabiliser(N,[1,2,4]);
#N124;
for g in N do if 1^g eq 2 and 2^g eq 1 and 4^g eq 8 then
 N124:=sub<N\mid N124\rangle,g>; end if; end for;
[1,2,4]^N124;
#N124;
Orbits(N124);
T124:=Transversal(N,N124);
for i in [1..#T124] do
 ss:=[1,2,4]^{T124[i]};
 cst[prodim(1, ts, ss)] := ss;
end for;

m:=0;
for i in [1..616] do if cst[i] ne [] then m:=m+1; end if;
end for; m;
\end{verbatim}
Appendix F

MAGMA Code for The
Progenitor $2^8 \times (2^3 : 2^2)$

/ * to find the permutation */
NumberOfTransitiveGroups(8);
N:=TransitiveGroup(8,22);
D:=SmallGroupDatabase();
G:=SmallGroup(D,IdentifyGroup(N)[1],IdentifyGroup(N)[2]);
f,G1,k:=CosetAction(G,sub<G|Id(G)>);
SL:=Subgroups(G1);
T:= {X'subgroup: X in SL};
TrivCore:={H:H in T| #Core(G1,H) eq 1};
mdeg:=Min({Index(G1,H):H in TrivCore});
Good:={H: H in TrivCore/ Index(G1,H) eq mdeg};
H:=Rep(Good);
f,G1,K := CosetAction(G1,H);
G1;
FPGroup(G);

G<a,b,c,d,e>:=Group<a,b,c,d,e|a^2,b^2,c^2,d^2,e^2,b^a=b*e,
c^a=c*c*b=c*e*d^a=d*e,d^b=d,d^c=d,e^a=e,e^b=e,e^c=e,e^d=e>;
#G;
/* Write a presentation for the progenitor 2*8: N */

S:=Sym(8);
aa:=S! (2, 5)(6, 7);
bb:=S! (1, 2)(3, 7)(4, 5)(6, 8);
cc:=S! (1, 3)(2, 6)(4, 8)(5, 7);
dd:=S! (1, 2)(3, 6)(4, 5)(7, 8);
\[ee:=S! (1, 4)(2, 5)(3, 8)(6, 7); \]

\[N:=\langle aa, bb, cc, dd, ee \rangle; \]

\[G:=\langle a, b, c, d, e | a^2, b^2, c^2, d^2, e^2, b^2, c^2, d^2, e^2, b^a=b*e, c^a=c, c^b=c*e, d^a=d*e, d^b=d, d^c=d, e^a=e, e^b=e, e^c=e, e^d=e \rangle; \]

\[\#G; \]

\[Sch:=\text{SchreierSystem}(G, \langle Id(G) \rangle); \]

\[\text{ArrayP}:=\{ \langle Id(N) \rangle : i \in \{1..32\} \}; \]

\[\text{for } i \in \{2..32\} \text{ do} \]

\[P:=\{ \langle Id(N) \rangle : l \in \{1..\#Sch[i]\} \}; \]

\[\text{for } j \in \{1..\#Sch[i]\} \text{ do} \]

\[\text{if } \text{Eltseq}(Sch[i])[j] = 1 \text{ then } P[j]:=aa; \text{ end if}; \]

\[\text{if } \text{Eltseq}(Sch[i])[j] = 2 \text{ then } P[j]:=bb; \text{ end if}; \]

\[\text{if } \text{Eltseq}(Sch[i])[j] = 3 \text{ then } P[j]:=cc; \text{ end if}; \]

\[\text{if } \text{Eltseq}(Sch[i])[j] = 4 \text{ then } P[j]:=dd; \text{ end if}; \]

\[\text{if } \text{Eltseq}(Sch[i])[j] = 5 \text{ then } P[j]:=ee; \text{ end if}; \]

\[\text{end for}; \]

\[PP:=\langle Id(N) \rangle; \]

\[\text{for } k \in \{1..\#P\} \text{ do} \]

\[PP:=PP*P[k]; \text{ end for}; \]

\[\text{ArrayP[i]}:=PP; \]

\[\text{end for}; \]

\[\text{for } i \in \{1..32\} \text{ do} \text{Sch[i]}, \text{ArrayP[i]}; \text{ end for}; \]

\[N1:=\text{Stabiliser}(N, 1); \]

\[N1; \]

\[N12:=\text{Stabiliser}(N, \{1, 2\}); \]

\[N12; \]

\[C:=\text{Centraliser}(N, N12); \]

\[C; \]

\[G:=\langle a, b, c, d, e, t | a^2, b^2, c^2, d^2, e^2, b^a=b*e, c^a=c, c^b=c*e, d^a=d*e, d^b=d, d^c=d, e^a=e, e^b=e, e^c=e, e^d=e, t^2, (t, a), (t, b*d) \rangle; \]

\[\#G; \]

\[/* \text{To find the first order relations and add them to the} \]
\[\text{presentation to find the Homomorphic Images}*/ \]

\[C:=\text{Classes}(N); \]

\[C; \]

\[C2:=\text{Centraliser}(N, N!(1, 4)(2, 5)(3, 8)(6, 7)); \]

\[C3:=\text{Centraliser}(N, N!(1, 2)(3, 7)(4, 5)(6, 8)); \]

\[C4:=\text{Centraliser}(N, N!(1, 3)(2, 6)(4, 8)(5, 7)); \]

\[C5:=\text{Centraliser}(N, N!(2, 5)(6, 7)); \]

\[C6:=\text{Centraliser}(N, N!(1, 3)(2, 7)(4, 8)(5, 6)); \]

\[C7:=\text{Centraliser}(N, N!(1, 6)(2, 8)(3, 5)(4, 7)); \]
C8:=Centraliser(N,N!(3, 8)(6, 7));
C9:=Centraliser(N,N!(1, 2)(3, 6)(4, 5)(7, 8));
C10:=Centraliser(N,N!(1, 6)(2, 3)(4, 7)(5, 8));
C11:=Centraliser(N,N!(2, 5)(3, 8));
C12:=Centraliser(N,N!(1, 5, 4, 2)(3, 6, 8, 7));
C13:=Centraliser(N,N!(1, 3, 4, 8)(2, 6, 5, 7));
C14:=Centraliser(N,N!(1, 6, 4, 7)(2, 3, 5, 8));
C15:=Centraliser(N,N!(1, 3, 4, 8)(2, 7, 5, 6));
C16:=Centraliser(N,N!(1, 6, 4, 7)(2, 8, 5, 3));

Set(C2); Orbits(C2);
Set(C3); Orbits(C3);
Set(C4); Orbits(C4);
Set(C5); Orbits(C5);
Set(C6); Orbits(C6);
Set(C7); Orbits(C7);
Set(C8); Orbits(C8);
Set(C9); Orbits(C9);
Set(C10); Orbits(C10);
Set(C11); Orbits(C11);
Set(C12); Orbits(C12);
Set(C13); Orbits(C13);
Set(C14); Orbits(C14);
Set(C15); Orbits(C15);
Set(C16); Orbits(C16);
Set(C17); Orbits(C17);

/*
t ~ t_1
Class[2]
(Orbits (C2) = GSet[@ 1, 2, 3, 4, 5, 6, 7, 8 @]
(e*t)^w

Class[3]
(Orbits of C3) = GSet[@ 1, 2, 5, 3, 4, 7, 6, 8 @]
(b*t)^f

Class[4]
(Orbits of C4) = GSet[@ 1, 3, 8, 2, 4, 6, 7, 5 @]
(c*t)^j

Class[5]
(Orbits of C5) = GSet[@ 1, 4, 3, 8, 2, 5, 6, 7 @]
\[(a*t)^n, (a*t^b)^o\]

Class[6]

(Orbits of C6) = GSet\{1, 3, 8, 2, 4, 7, 6, 5\}

\[(a*c*t)^s\]

Class[7]

(Orbits of C7) = GSet\{1, 6, 7, 2, 4, 8, 3, 5\}

\[(a*b*c*t)^k\]

Class[8]

(Orbits of C8) = GSet\{1 \}, GSet\{2, 3, 4, 8, 5, 7, 9, 6\}

\[(b*d*t)^l, (b*d*t^b)^p\]

Class[9]

(Orbits of C9) = \{1, 2, 5, 3, 4, 6, 7, 8\}

\[(d*t)^y\]

Class[10]

(Orbits of C10) = GSet\{1, 6, 7, 2, 4, 3, 8, 5\}

\[(c*d*t)^z\]

Class[11]

(Orbits of C11) = GSet\{1, 4, 7, 6\}, GSet\{2, 5, 3, 8\}

\[(a*b*d*t)^u\]

\[(a*b*d*t^b)^v\]

Class[12]

(Orbits of C12) = GSet\{1, 5, 3, 4, 6, 8, 2, 7\}

\[(a*b*e*t)^j\]

Class[13]

(Orbits of C13) = GSet\{1, 6, 2, 4, 3, 5, 7, 8\}

\[(b*c*t)^n\]

Class[14]

(Orbits of C14) = GSet\{1, 3, 2, 4, 6, 5, 8, 7\}

\[(b*c*d*t)^o\]

Class[15]

(Orbits of C15) = GSet\{1, 5, 3, 4, 7, 8, 2, 6\}

\[(a*d*e*t)^k\]

Class[16]
(Orbits of C_{16}) = \text{GSet}[@ 1, 3, 2, 4, 7, 5, 8, 6 @]
(a*b*c*d*t)^l

Class[17]
(Orbits of C_{17}) = \text{GSet}[@ 1, 6, 2, 4, 8, 5, 7, 3 @]
(a*c*d*t)^s

*/
for f,j,h,i,l,S,n,o,p,q,x,y,z,v,s,g,I,u,r in [0..10] do
G<a,b,c,d,e,t>:=\text{Group}(a,b,c,d,e,t|a^2,b^2,c^2,d^2,e^2,b^a=b*e,
c^a=c,c^b=c,e^a=d*e,d^a=d*e,d^b=d,d^c=d,e^a=e,e^b=e,e^c=e,e^d=e,t^2,
(t,a),(t,b*d),(e*t)^f,(b*t)^j,(c*t)^h,(a*t)^i,(a*t^b)^l,(a*c*t)^S,
(a*b*c*t)^n,(b*d*t)^o,(b*d*t^b)^p,(d*t)^q,(c*d*t)^x,(a*b*d*t)^y,
(a*b*d*t^b)^z,(a*b*e*t)^v,(b*c*t)^s,(b*c*d*t)^g,(a*d*e*t)^I,
(a*b*c*d*t)^u,(a*c*d*t)^r>;
if #G gt 32 then f,j,h,i,l,S,n,o,p,q,x,y,z,v,s,g,I,u,r,
\text{Index}(G,\text{sub}\langle G|a,b,c,d,e>), \text{#G}; \text{end if}; \text{end for};

/* Relations by use the lemma: */
N12:=\text{Stabiliser}(N,\{1,2\});
N12;
b * d = (3, 8)(6, 7) => (t*t^b)^k=b * d
b (1, 2)(3, 7)(4, 5)(6, 8) => (b*t)^m=1
Appendix G

MAGMA Code for The Progenitor $2^9 \cdot (3^2 : 2^4)$

/*Find the permutations to write the progenitor*/
N:=TransitiveGroup(9,19);
D:=SmallGroupDatabase ();
G:=SmallGroup(D,IdentifyGroup(N)[1],IdentifyGroup(N)[2]);
f,G1,k:=CosetAction(G,sub<G|Id(G)>);
SL:=Subgroups(G1);
T:= {X'subgroup: X in SL};
TrivCore:={H:H in T/ #Core(G1,H) eq 1};
mdag:=Min({Index(G1,H):H in TrivCore});
Good:={H: H in TrivCore/ Index(G1,H) eq mdeg};
H:=Rep(Good);
f,G1,K := CosetAction(G1,H);
G1;
FPGroup(G);
G<a,b,c,d,e,f>:=Group<a,b,c,d,e,f|a^8,b^-2,c^-4,d^-2,
e^-3,f^-3,(e,f),a^-2=c,c^-2=d,b^-a*b*c*d,c^-a=c,c^-b=c*d,
d^a=d,d^b=d,d^c=d,e^-a=f,e^-b=e*(f^-2),e^-c=e*(f^-2),
e^-d=e^-2,f^-a=e*(f^-2),f^-b=f^-2,f^-c=(e^-2)*(f^-2),f^-d=f^-2,
f^-e=f>;
#G;
S:=Sym(9);
aa:=S!(2, 3, 4, 8, 5, 7, 9, 6);
bb:=S!(2, 4) (3, 7) (5, 9);
cc:=S!(2, 4, 5, 9)(3, 8, 7, 6);
dd:=S!(2, 5) (3, 7)(4, 9)(6, 8);
ee:=S!(1, 2, 5)(3, 6, 9)(4, 8, 7);
ff:=S!(1, 3, 7)(2, 6, 4)(5, 9, 8);
N:=sub<S|aa,bb,cc,dd,ee,ff>;
/*Write the progenitor 2^*9 :N */
G<a,b,c,d,e,f>:=Group<a,b,c,d,e,f|a^8,b^2,c^4,d^2,e^3,
f^3,(e,f),a^2=c,c^2=d,b^a=b*c*d,c^a=c,c^b=c*d,d^a=d,
d^b=d,a^c=d,e^a=f,e^b=e^*(f^2),e^c=e^*(f^2),e^d=e^2,
f^a=e^*(f^2),f^b=f^2,f^c=(e^2)*(f^2),f^d=f^2,f^e=f>;

/*Write the presentation of the progenitor 2^*9 :N */
Sch:=SchreierSystem(G,sub<G|Id(G)>);
ArrayP:=[Id(N): i in [1..144]];
for i in [2..144] do
 P:=[Id(N): l in [1..#Sch[i]]];
 for j in [1..#Sch[i]] do
 if Eltseq(Sch[i])[j] eq 1 then P[j]:=aa; end if;
 if Eltseq(Sch[i])[j] eq -1 then P[j]:=aa^-1; end if;
 if Eltseq(Sch[i])[j] eq 2 then P[j]:=bb; end if;
 if Eltseq(Sch[i])[j] eq 3 then P[j]:=cc; end if;
 if Eltseq(Sch[i])[j] eq -3 then P[j]:=cc^-1; end if;
 if Eltseq(Sch[i])[j] eq 4 then P[j]:=dd; end if;
 if Eltseq(Sch[i])[j] eq 5 then P[j]:=ee; end if;
 if Eltseq(Sch[i])[j] eq 6 then P[j]:=ff; end if;
 end for;
 PP:=Id(N);
 for k in [1..#P] do
 PP:=PP*P[k];
 end for;
 ArrayP[i]:=PP;
end for;
for i in [1..144] do Sch[i], ArrayP[i]; end for;
N1:=Stabiliser(N,1);
N1;
G<a,b,c,d,e,f,t>:=Group<a,b,c,d,e,f,t|a^8,b^2,c^4,
d^2,e^3,f^3,(e,f),a^2=c,c^2=d,b^a=b*c*d,c^a=c,c^b=c*d,
d^a=d,d^b=d,d^c=d,e^a=f,e^b=e^*(f^2),e^c=e^*(f^2),e^d=e^2,
f^a=e^*(f^2),f^b=f^2,f^c=(e^2)*(f^2),f^d=f^2,f^e=f>;

/*Find the first order relation and the lemma's relations
 to add them in our presentation.*/
C:=Classes(N);
C;
C2:=Centraliser(N,N!(1, 6)(2, 3)(4, 7)(5, 9));
C3:=Centraliser(N,N!(1, 3)(4, 6)(5, 8));
C4:=Centraliser(N,N!(1, 2, 5)(3, 6, 9)(4, 8, 7));
C5:=Centraliser(N,N!(1, 9, 6, 5)(2, 4, 3, 7));
C6:=Centraliser(N,N!(1, 4, 3, 8)(2, 6, 9, 5));
C7:=Centraliser(N,N!(1, 4, 8, 3, 6, 5)(2, 9, 7));
C8:=Centraliser(N,N!(2, 3, 4, 8, 5, 7, 9, 6));
C9:=Centraliser(N,N!(2, 7, 4, 6, 5, 3, 9, 8));
Set(C2); Orbits(C2);
Set(C3); Orbits(C3);
Set(C4); Orbits(C4);
Set(C5); Orbits(C5);
Set(C6); Orbits(C6);
Set(C7); Orbits(C7);
Set(C8); Orbits(C8);
Set(C9); Orbits(C9);

/*
 t ~ t_1
 for i in [1..144] do
 if ArrayP[i] eq N!(2, 7, 4, 6, 5, 3, 9, 8) then Sch[i];
 end if; end for;
 Orbits(C2)= GSet{@ 8 @}, GSet{@ 1, 6, 5, 3, 9, 2, 4, 7 @}
 (c * f^-1 * c*t)^E
 (c * f^-1 * c*t*(f*c))\w
 Orbits(C3)= GSet{@ 2, 9, 7 @}, GSet{@ 1, 3, 4, 6, 5, 8 @}
 (b * f*t)^f
 (b * f*t^e)^q
 Orbits(C4)= GSet{@ 1, 2, 3, 5, 6, 8, 9, 7, 4 @}
 (e*t)^j
 Orbits(C5)= GSet{@ 8 @}, GSet{@ 1, 9, 2, 6, 4, 5, 3, 7 @}
 (e * c^-1*t)^n
 (e * c^-1*t*(f*c))^o
 Orbits(C6)= GSet{@ 7 @}, GSet{@ 1, 4, 3, 8 @}, GSet{@ 2, 6, 9, 5 @}
 (a * e * b*t)^r
 (a * e * b*t*(f^-1))^u
 (a * e * b*t^e)^i
 Orbits(C7)= GSet{@ 2, 9, 7 @}, GSet{@ 1, 3, 4, 6, 8, 5 @}
 (e * b*t)^y
 (e * b*t^e)^h
 Orbits(C8)= GSet{@ 1 @}, GSet{@ 2, 3, 4, 8, 5, 7, 9, 6 @}
 (a*t)^l
 (a*t^e)^s
*/
Orbits(G9) = GSet{1 @}, GSet{2, 7, 4, 6, 5, 3, 9, 8 @}
(a * d^t)^{x}
(a * d^t^e)^{z}

*/

for E, w, F, q, j, n, o, r, u, i, y, h, l, s, x, z in [0..10] do
G<a, b, c, d, e, f, t, o> := Group<a, b, c, d, e, f, t | a^8, b^2, c^4, d^2, e^3, f^3, (e, f), a^2*c=c, c^2*d=d, b^a=b*c*d, c^a=c, c^b=c*d, d^a=d, d^b=d, d^c=d, e^a=f, e^b*e*(f^2), e^c=e*(f^2), e^d=e^2, f^a=e*(f^2), f^b=f^2, f^c=e*(e^2)*(f^2), f^d=f^2, f^e=f, t^2, (t, a), (t, b), (t, c), (t, d), (c*f^-1*c*t)^E, (c*f^-1*c*t*(f*c))^w, (b*f*t)^F, (b*f*t)^q, (e*t)^j, (a*e*b*t)^r, (a*e*b*t^e)^s, (a*e*b*t^e)^t, (a*e*b*t^e)^u, (a*e*b*t^e)^v, (a*e*b*t^e)^w, (a*e*b*t^e)^x, (a*e*b*t^e)^y, (a*e*b*t^e)^z, if #G > 144 then E, w, F, q, j, n, o, r, u, i, y, h, l, s, x, z, Index(G, sub<G|a, b, c, d, e, f>), #G; end if; end for;

/*
Find relation by using the lemma,
N12 := Stabiliser(N, {1, 2});
N12;
b * c^-1 = (3, 8)(4, 9)(6, 7)
b * c * e = (1, 2)(3, 9)(4, 8)
the first relation will be (t*t^f)^k=b * c^-1
the second relation will be (b * c * e*t)^m=1
*/

for z, k, m in [0..10] do
G<a, b, c, d, e, f, t, o> := Group<a, b, c, d, e, f, t | a^8, b^2, c^4, d^2, e^3, f^3, (e, f), a^2*c=c, c^2*d=d, b^a=b*c*d, c^a=c, c^b=c*d, d^a=d, d^b=d, d^c=d, e^a=f, e^b*e*(f^2), e^c=e*(f^2), e^d=e^2, f^a=e*(f^2), f^b=f^2, f^c=e*(e^2)*(f^2), f^d=f^2, f^e=f, t^2, (t, a), (t, b), (t, c), (t, d), (a*d*t^e)^z, (t*t^f)^k=b*c^-1, (b*c*e*t)^m=1;
if #G > 144 then z, k, m, Index(G, sub<G|a, b, c, d, e, f>), #G; end if; end for;
Appendix H

MAGMA Code for The Progenitor $2^{10} : (2^4 : (2 \times 5))$

```magma
N:=TransitiveGroup(10,16); D:=SmallGroupDatabase (); G:=SmallGroup(D,IdentifyGroup(N)[1],IdentifyGroup(N)[2]); f,G1,k:=CosetAction(G,sub<G|Id(G)>); SL:=Subgroups(G1); T:= {X'subgroup: X in SL}; TrivCore:={H:H in T| #Core(G1,H) eq 1}; mdeg:=Min({Index(G1,H):H in TrivCore}); Good:={H: H in TrivCore| Index(G1,H) eq mdeg}; H:=Rep(Good); f,G1,K := CosetAction(G1,H); G1; FPGroup(G);
```

```magma
G<a,b,c,d,e,n>:=Group<a,b,c,d,e,n|a^2,b^5,c^2,d^2,e^2,n^2, b~a=b~d,c~a=c*d,d~b=c*d,e~a=c*d*e, d~e=c*e,n~a=c*e,n~b=c,n~c=n,n~d=n,n~e=n>; #G;
```

```magma
S:=Sym(10); aa:=S! (1, 2)(3, 5)(4, 7)(6, 9)(8, 10); bb:=S! (1, 3, 6, 10, 7)(2, 4, 8, 9, 5); cc:=S! (1, 2)(5, 7); dd:=S! (3, 4)(5, 7); ee:=S! (1, 2)(3, 4)(5, 7)(6, 8); nn:=S! (5, 7)(9, 10);
```
\[N:=\text{sub}<S|aa, bb, cc, dd, mm>;;
\]
\[\#N;\]
/*Find the presentation of the progenitor \(2^{\bullet}10\) : \(N^*/
\]
\[\text{Sch.:=}\text{SchreierSystem}(G, \text{sub}<G|\text{Id}(G)>);\]
\[\text{ArrayP.:=}[\text{Id}(N): i \in [1..160]];\]
\[\text{for } i \text{ in [2..160] do }\]
\[P.:= [\text{Id}(N): l \in [1..\#\text{Sch}[i]]];\]
\[\text{for } j \text{ in [1..}\#\text{Sch}[i]\text{] do} \]
\[\text{if Eltseq(Sch}[i])[j] = \text{eq 1 then } P[j]\:=aa; \text{ end if};\]
\[\text{if Eltseq(Sch}[i])[j] = \text{eq 2 then } P[j]\:=bb; \text{ end if};\]
\[\text{if Eltseq(Sch}[i])[j] = \text{eq -2 then } P[j]\:=bb^-1; \text{ end if};\]
\[\text{if Eltseq(Sch}[i])[j] = \text{eq 3 then } P[j]\:=cc; \text{ end if};\]
\[\text{if Eltseq(Sch}[i])[j] = \text{eq 4 then } P[j]\:=dd; \text{ end if};\]
\[\text{if Eltseq(Sch}[i])[j] = \text{eq 5 then } P[j]\:=ee; \text{ end if};\]
\[\text{if Eltseq(Sch}[i])[j] = \text{eq 6 then } P[j]\:=nn; \text{ end if};\]
\[\text{end for};\]
\[\text{PP.:=}\text{Id}(N);\]
\[\text{for } k \text{ in [1..}\#\text{P} \text{] do }\]
\[\text{PP.:=PP}\ast P[k]; \text{ end for};\]
\[\text{ArrayP}[i].:=\text{PP};\]
\[\text{end for};\]
\[N1.:=\text{Stabiliser}(N, 1);\]
\[N1;\]
\[G<a,b,c,d,e,n,t>:=\text{Group}<a,b,c,d,e,n,t|a^2, b^5, c^2, d^2, e^2, n^2, b^a=b^4, c^a=c\ast d, c^b=c\ast d, d^a=d, d^b=d\ast e, d^c=d, e^a=c\ast d\ast n, e^b\ast e\ast n, e^c\ast e, e^d\ast e, n^a=c\ast e, n^b=c, n^c\ast n, n^d\ast n, n^e\ast n, t^2, (t,d), (t,n), (t, (a\ast c\ast n))>>;\]
\[\#G;\]
Appendix I

MAGMA Code for The Progenitor $2^{18}_\ast (2. (3^2 : 2))$

Write a progenitor for a transitive group on 18 points.

\begin{verbatim}
NumberOfTransitiveGroups(18);
983

N:=TransitiveGroup(18,12);
D:=SmallGroupDatabase ();
G:=SmallGroup(D,IdentifyGroup(N)[1],IdentifyGroup(N)[2]);
f,G1,k:=CosetAction(G,sub<G|Id(G)>>);
SL:=Subgroups(G1);
T:= {X'subgroup: X in SL};
TrivCore:= {H:H in T| #Core(G1,H) eq 1};
mdeg:=Min({Index(G1,H):H in TrivCore});
Good:= {H: H in TrivCore| Index(G1,H) eq mdeg};
H:=Rep(Good);
f,G1,K := CosetAction(G1,H);
G1;
FPGroup(G);
G<a,b,c,d>:=Group<a,b,c,d|a^2,b^2,c^3,d^3,b^a=b,c^a=c^2,
c^b=c,d^a=d^2,d^b=d,d^c=d>;
#G;
/* Write a presentation for the progenitor $2^{18}_\ast: N */

S:=Sym(18);
aa:=S! (3, 7)(4, 9)(5, 10)(6, 12)(8, 14)(11, 17)(13, 15)(16, 18);
\end{verbatim}
\[bb := \langle 1, 2 \rangle \langle 3, 5 \rangle \langle 4, 6 \rangle \langle 7, 10 \rangle \langle 8, 11 \rangle \langle 9, 12 \rangle \langle 13, 16 \rangle \langle 14, 17 \rangle \langle 15, 18 \rangle; \]
\[cc := \langle 1, 3, 7 \rangle \langle 2, 5, 10 \rangle \langle 4, 8, 13 \rangle \langle 6, 11, 16 \rangle \langle 9, 15, 14 \rangle \langle 12, 18, 17 \rangle; \]
\[dd := \langle 1, 4, 9 \rangle \langle 2, 6, 12 \rangle \langle 3, 8, 15 \rangle \langle 5, 11, 18 \rangle \langle 7, 13, 14 \rangle \langle 10, 16, 17 \rangle; \]
\[N := \text{sub} < S | aa, bb, cc, dd>; \]
\[G < a, b, c, d > := \text{Group} < a, b, c, d | a^2, b^2, c^3, d^3, b^a = b, c^a = c^2, \]
\[c^b = c, d^a = d^2, d^b = d, d^c = d >; \]
\[# G; \]
\[\text{Sch} := \text{SchreierSystem}(G, \text{sub} < G | \text{Id}(G)>); \]
\[\text{ArrayP} := [\text{Id}(N); \ i \ in \ [1..36]]; \]
\[\text{for} \ i \ in \ [2..36] \ \text{do} \]
\[P := [\text{Id}(N); \ l \ in \ [1..\#\text{Sch}[i]]]; \]
\[\text{for} \ j \ in \ [1..\#\text{Sch}[i]] \ \text{do} \]
\[\text{if} \ \text{Eltsseq}(\text{Sch}[i])[j] \ eq \ 1 \ \text{then} \ \text{P}[j] := \text{aa}; \ \text{end if}; \]
\[\text{if} \ \text{Eltsseq}(\text{Sch}[i])[j] \ eq \ 2 \ \text{then} \ \text{P}[j] := \text{bb}; \ \text{end if}; \]
\[\text{if} \ \text{Eltsseq}(\text{Sch}[i])[j] \ eq \ 3 \ \text{then} \ \text{P}[j] := \text{cc}; \ \text{end if}; \]
\[\text{if} \ \text{Eltsseq}(\text{Sch}[i])[j] \ eq \ -3 \ \text{then} \ \text{P}[j] := \text{cc}^{-1}; \ \text{end if}; \]
\[\text{if} \ \text{Eltsseq}(\text{Sch}[i])[j] \ eq \ 4 \ \text{then} \ \text{P}[j] := \text{dd}; \ \text{end if}; \]
\[\text{if} \ \text{Eltsseq}(\text{Sch}[i])[j] \ eq \ -4 \ \text{then} \ \text{P}[j] := \text{dd}^{-1}; \ \text{end if}; \]
\[\text{end for}; \]
\[\text{PP} := \text{Id}(N); \]
\[\text{for} \ k \ in \ [1..\#P] \ \text{do} \]
\[\text{PP} := \text{PP} * \text{P}[k]; \ \text{end for}; \]
\[\text{ArrayP}[i] := \text{PP}; \]
\[\text{end for}; \]
\[\text{for} \ i \ in \ [1..36] \ \text{do} \ \text{Sch}[i], \ \text{ArrayP}[i]; \ \text{end for}; \]
\[\text{N1} := \text{Stabiliser}(N, 1); \]
\[\text{N1}; \]
\[\text{N12} := \text{Stabiliser}(N, \{1, 2\}); \]
\[\text{N12}; \]
\[\text{C} := \text{Centraliser}(N, \text{N12}); \]
\[\text{C}; \]
\[G < a, b, c, d, t > := \text{Group} < a, b, c, d, t | a^2, b^2, c^3, d^3, b^a = b, \]
\[c^a = c^2, c^b = c, d^a = d^2, d^b = d, d^c = d, t^2, (t, a)>; \]
\[# G; \]

/* To find the First order relations */
\[\text{C} := \text{Classes}(N); \]
\[\text{C}; \]
\[\text{C2} := \text{Centraliser}(N, N! \{1, 2\} \{3, 5\} \{4, 6\} \{7, 10\} \{8, 11\} \{9, 12\} \{13, 16\} \{14, 17\} \{15, 18\}); \]
\[\text{C3} := \text{Centraliser}(N, N! \{3, 7\} \{4, 9\} \{5, 10\} \{6, 12\} \{8, 14\}); \]
Centraliser(N,N!(1, 2)(3, 10)(4, 12)(5, 7)(6, 9)
(8, 17)(11, 14)(13, 18)(15, 16));
C5:=Centraliser(N,N!(1, 3, 7)(2, 5, 10)(4, 8, 13)
(6, 11, 16)(9, 15, 14)(12, 18, 17));
C6:=Centraliser(N,N!(1, 4, 9)(2, 6, 12)(3, 8, 15)
(5, 11, 18)(7, 13, 14)(10, 16, 17));
C7:=Centraliser(N,N!(1, 8, 14)(2, 11, 17)(3, 13, 9)
(4, 15, 7)(5, 16, 12)(6, 18, 10));
C8:=Centraliser(N,N!(1, 15, 13)(2, 18, 16)(3, 14, 4)
(5, 17, 6)(7, 9, 8)(10, 12, 11));
C9:=Centraliser(N,N!(1, 5, 7, 2, 3, 10)(4, 11, 13,
6, 8, 16)(9, 18, 14, 12, 15, 17));
C10:=Centraliser(N,N!(1, 6, 9, 2, 4, 12)(3, 11, 15,
5, 8, 18)(7, 16, 14, 10, 13, 17));
C11:=Centraliser(N,N!(1, 11, 14, 2, 8, 17)(3, 16, 9,
5, 13, 12)(4, 18, 7, 6, 15, 10));
C12:=Centraliser(N,N!(1, 18, 13, 2, 15, 16)(3, 17, 4,
5, 14, 6)(7, 12, 8, 10, 9, 11));

Set(C2); Orbits(C2);
Set(C3); Orbits(C3);
Set(C4); Orbits(C4);
Set(C5); Orbits(C5);
Set(C6); Orbits(C6);
Set(C7); Orbits(C7);
Set(C8); Orbits(C8);
Set(C9); Orbits(C9);
Set(C10); Orbits(C10);
Set(C11); Orbits(C11);
Set(C12); Orbits(C12);

/*
 t ~ t_1
 Class[2]
 (Orbits of C2) = GSet{@ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
 12, 13, 14, 15, 16, 17, 18 @}
 (b*t)^e
 Class[3]
 (Orbits of C3) = GSet{@ 1, 2 @}, GSet{@ 3, 7, 10, 5 @},
 GSet{@ 4, 9, 12, 6 @}, GSet{@ 8, 14, 17, 11 @}, GSet{@ 13,
 15, 18, 16 @}
 (a*t)^f,(a*t^c)^g,(a*t^-d)^h,(a*t^(-c*d))^i,(a*t^(-d*c^-1))^j
 Class[4]
 */
(Orbits of C4) = GSet[@ 1, 2 @], GSet[@ 3, 7, 10, 5 @],
GSet[@ 4, 9, 12, 6 @], GSet[@ 8, 14, 17, 11 @], GSet[@ 13,
15, 18, 16 @]
(a*b*t)^l, (a*b*t^-1)^m, (a*b*t^-d)^n, (a*b*t^-c)^o,
(a*b*t^-d)^p, (a*b*t^-c^-1)^q
Class[5]
(Orbits of C5) = GSet[@ 1, 3, 18, 7, 17, 13, 12, 4, 2,
8, 5, 15, 10, 14, 16, 9, 6, 11 @]
(c*t)^r
Class[6]
(Orbits of C6) = GSet[@ 1, 4, 18, 9, 5, 13, 11, 14,
2, 7, 6, 15, 12, 3, 16, 8, 17, 10 @]
(d*t)^s
Class[7]
(Orbits of C7) = GSet[@ 1, 8, 18, 14, 10, 13, 6, 9,
2, 3, 11, 15, 17, 7, 16, 4, 12, 5 @]
(c*d*t)^w
Class[8]
(Orbits of C8) = GSet[@ 1, 15, 18, 17, 13, 16, 6, 4,
8, 2, 5, 3, 7, 10, 14, 9, 12, 11 @]
(c*d^-1*t)^x
Class[9]
(Orbits of C9) = GSet[@ 1, 5, 18, 14, 7, 13, 2, 12,
6, 3, 15, 8, 10, 17, 16, 9, 4, 11 @]
(b*c*t)^y
Class[10]
(Orbits of C10) = GSet[@ 1, 6, 18, 19, 3, 13, 2, 11, 17,
4, 15, 7, 12, 5, 16, 8, 14, 10 @]
(b*d*t)^z
Class[11]
(Orbits of C11) = GSet[@ 1, 11, 18, 14, 7, 13, 2, 6,
12, 8, 15, 3, 17, 10, 16, 4, 9, 5 @]
(b*c*d*t)^v
Class[12]
(Orbits of C12) = GSet[@ 1, 18, 17, 13, 4, 8, 2, 5,
10, 15, 14, 9, 16, 6, 11, 3, 7, 12 @]
(b*c*d^-1*t)^w
*/

for e,f,g,h,i,j,l,n,o,p,q,r,s,w,x,y,z,v,u in [0..10] do
G<a,b,c,d,t>:=Group<a,b,c,d,t|a^2,b^2,c^3,d^3,b^a=b,c^a=c^2,
c^b=c,d^a=d^2, b*d=d*c=t^2, (t,a), (b*t)^e, (a*t)^f, (a*t^-c)^g,
(a*t^-d)^h, (a*t^-c^-1)^i, (a*t^-d*c^-1)^j, (a*b*t)^l, (a*b*t^-c)^n,
(a*b*t^-d)^o, (a*b*t^-c*d)^p, (a*b*t^-d*c^-1)^q, (c*t)^r, (d*t)^s,
(c*d*t)^w,((c*d^-1)*t)^x,(b*c*t)^y,(b*d*t)^z,(b*c*d*t)^v,>((b*c*d^-1)*t)^u);
if #G gt 36 then e,f,g,h,i,j,l,n,o,p,q,r,s,w,x,y,z,u,
 Index(G,sub<G|a,b,c,d>, #G); end if; end for;

* By use the lemma: */
N12:=Stabiliser(N,{1,2});
N12;
/*
 a => (t*t^b)^k=a
 b => (b*t)^m=1
* /
 for k,e,f in [0..10] do
 G<a,b,c,d,t>:=Group<a,b,c,d,t|a^2,b^2,c^3,d^3,b^a=b,c^a=c^2,c^b=c,
 d^a=d^2,d^b=d,d^c=d,t^2,(t,a),(t*t^b)^k=a,(a*c*t*t^c)^e,
 (c^2*d*t*t^d)^f>;
 k,e,f#G; end for;
Appendix J

MAGMA Code for Monomial Progenitor $5^4 : m (2^3 : 2^2)$

\begin{verbatim}
S := Sym(8);
aa := S!(2, 5)(6, 7);
bb := S!(1, 2)(3, 7)(4, 5)(6, 8);
cc := S!(1, 3)(2, 6)(4, 8)(5, 7);
dd := S!(1, 2)(3, 6)(4, 5)(7, 8);
e := S!(1, 4)(2, 5)(3, 8)(6, 7);
N := sub<S|aa, bb, cc, dd, ee>;
CH := CharacterTable(N);
/* We will look for subgroup of \textit{N} which have a Faithful induce character of \textit{N} */
S := Subgroups(N);
/* for i in [1..#S] do if #S[i]'subgroup eq 8 then i; end if; end for; */
H := S[33]'subgroup;
#H;
ch := CharacterTable(H);
/* I := Induction(ch[2], N);
I;
(4, 4, 0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 4, -4, 0, 0)
Norm(I);
4
wrong */
I := Induction(ch[3], N);
\end{verbatim}
I;
IsFaithful(I);
Norm(I);
CH[I7] eq I;
T:=Transversal(N,H);
T;
C:=Classes(H);
C;
H:=sub<N|(1, 3, 4, 8)(2, 6, 5, 7),(1, 6)(2, 8)(3, 5)(4, 7),
(1, 4)(2, 5)(3, 8)(6, 7)>;
/*We will find all the Matrices*/
F:=H;
C:=CyclotomicField(4);
A:=[0: i in [1..16]];
for i in [1..4] do if aa*T[i]^~1 in F then if
ch[3](aa*T[i]^~1) eq C.1
then A[i]:=2; else if ch[3](aa*T[i]^~1) eq C.1^3 then A[i]:=3;
else A[i]:= ch[3](aa*T[i]^~1); end if; end if; end if; end for;
for i in [1..4] do if T[2]*aa*T[i]^~1 in F then if
ch[3](T[2]*aa*T[i]^~1) eq C.1
then A[4+i]:=2; else if ch[3](T[2]*aa*T[i]^~1) eq C.1^3 then
A[4+i]:=3; else A[4+i]:= ch[3](T[2]*aa*T[i]^~1); end if; end if; end if; end for;
for i in [1..4] do if T[3]*aa*T[i]^~1 in F then if
ch[3](T[3]*aa*T[i]^~1) eq C.1
then A[8+i]:=2; else if ch[3](T[3]*aa*T[i]^~1) eq C.1^3 then
A[8+i]:=3; else A[8+i]:= ch[3](T[3]*aa*T[i]^~1); end if; end if; end if; end for;
for i in [1..4] do if T[4]*aa*T[i]^~1 in F then if
ch[3](T[4]*aa*T[i]^~1) eq C.1
then A[12+i]:=2; else if ch[3](T[4]*aa*T[i]^~1) eq C.1^3 then
A[12+i]:=3; else A[12+i]:= ch[3](T[4]*aa*T[i]^~1); end if; end if; end if; end for;
A;

C:=CyclotomicField(4);
B:=[0: i in [1..16]];
for i in [1..4] do if \(bb \cdot T[i]^{-1} \) in \(F \) then if
\(ch[3](bb \cdot T[i]^{-1}) \) eq \(C.1 \)
then \(B[i] := 2 \); else if \(ch[3](bb \cdot T[i]^{-1}) \) eq \(C.1^3 \) then
\(B[i] := 3 \); else
\(B[i] := ch[3](bb \cdot T[i]^{-1}) \); end if; end if; end if; end for;

for i in [1..4] do if \(T[2] \cdot bb \cdot T[i]^{-1} \) in \(F \) then if
\(ch[3](T[2] \cdot bb \cdot T[i]^{-1}) \) eq \(C.1 \)
then \(B[4+i] := 2 \); else if \(ch[3](T[2] \cdot bb \cdot T[i]^{-1}) \) eq \(C.1^3 \) then
\(B[4+i] := 3 \); else
\(B[4+i] := ch[3](T[2] \cdot bb \cdot T[i]^{-1}) \); end if; end if; end if; end for;

for i in [1..4] do if \(T[3] \cdot bb \cdot T[i]^{-1} \) in \(F \) then if
\(ch[3](T[3] \cdot bb \cdot T[i]^{-1}) \) eq \(C.1 \)
then \(B[8+i] := 2 \); else if \(ch[3](T[3] \cdot bb \cdot T[i]^{-1}) \) eq \(C.1^3 \) then
\(B[8+i] := 3 \); else
\(B[8+i] := ch[3](T[3] \cdot bb \cdot T[i]^{-1}) \); end if; end if; end if; end for;

for i in [1..4] do if \(T[4] \cdot bb \cdot T[i]^{-1} \) in \(F \) then if
\(ch[3](T[4] \cdot bb \cdot T[i]^{-1}) \) eq \(C.1 \)
then \(B[12+i] := 2 \); else if \(ch[3](T[4] \cdot bb \cdot T[i]^{-1}) \) eq \(C.1^3 \) then
\(B[12+i] := 3 \); else
\(B[12+i] := ch[3](T[4] \cdot bb \cdot T[i]^{-1}) \); end if; end if; end if; end for;

\(B; \)

\(C := \text{CyclotomicField}(4); \)
\(CC := [0 \ i \ in \ [1..16]] ; \)

for i in [1..4] do if \(cc \cdot T[i]^{-1} \) in \(F \) then if
\(ch[3](cc \cdot T[i]^{-1}) \) eq \(C.1 \)
then \(CC[i] := 2 \); else if \(ch[3](cc \cdot T[i]^{-1}) \) eq \(C.1^3 \) then
\(CC[i] := 3 \); else
\(CC[i] := ch[3](cc \cdot T[i]^{-1}) \); end if; end if; end if; end for;

for i in [1..4] do if \(T[2] \cdot cc \cdot T[i]^{-1} \) in \(F \) then if
\(ch[3](T[2] \cdot cc \cdot T[i]^{-1}) \) eq \(C.1 \)
then \(CC[4+i] := 2 \); else if \(ch[3](T[2] \cdot cc \cdot T[i]^{-1}) \) eq \(C.1^3 \) then
\(CC[4+i] := 3 \); else
\(CC[4+i] := ch[3](T[2] \cdot cc \cdot T[i]^{-1}) \); end if; end if; end if; end for;

for i in [1..4] do if \(T[3] \cdot cc \cdot T[i]^{-1} \) in \(F \) then if
\(ch[3](T[3] \cdot cc \cdot T[i]^{-1}) \) eq \(C.1 \)
then \(CC[8+i] := 2 \); else if \(ch[3](T[3] \cdot cc \cdot T[i]^{-1}) \) eq \(C.1^3 \) then
\(CC[8+i] := 3 \); else
\(CC[8+i] := ch[3](T[3] \cdot cc \cdot T[i]^{-1}) \); end if; end if; end if; end for;
for i in [1..4] do if T[4]*cc*T[i]^-1 in F then if
ch[3](T[4]*cc*T[i]^-1) eq C.1
then CC[12+i]:=2; else if ch[3](T[4]*cc*T[i]^-1) eq C.1^3 then
CC[12+i]:=3; else CC[12+i]:= ch[3](T[4]*cc*T[i]^-1); end if;
end if; end if; end for;

end for;

CC;

C:=CyclotomicField(4);
D:=\[0: i in [1..16]\];

for i in [1..4] do if dd*T[i]^-1 in F then if
ch[3](dd*T[i]^-1) eq C.1
then D[i]:=2; else if ch[3](dd*T[i]^-1) eq C.1^3 then D[i]:=3;
else D[i]:= ch[3](dd*T[i]^-1); end if; end if; end if; end for;

for i in [1..4] do if T[2]*dd*T[i]^-1 in F then if
ch[3](T[2]*dd*T[i]^-1) eq C.1
then D[4+i]:=2; else if ch[3](T[2]*dd*T[i]^-1) eq C.1^3 then
D[4+i]:=3; else D[4+i]:= ch[3](T[2]*dd*T[i]^-1); end if;
end if; end if; end for;

for i in [1..4] do if T[3]*dd*T[i]^-1 in F then if
ch[3](T[3]*dd*T[i]^-1) eq C.1
then D[8+i]:=2; else if ch[3](T[3]*dd*T[i]^-1) eq C.1^3 then
D[8+i]:=3; else D[8+i]:= ch[3](T[3]*dd*T[i]^-1); end if; end if; end if; end for;

for i in [1..4] do if T[4]*dd*T[i]^-1 in F then if
ch[3](T[4]*dd*T[i]^-1) eq C.1
then D[12+i]:=2; else if ch[3](T[4]*dd*T[i]^-1) eq C.1^3 then
D[12+i]:=3; else D[12+i]:= ch[3](T[4]*dd*T[i]^-1); end if;
end if; end if; end for;

D;

C:=CyclotomicField(4);
E:=\[0: i in [1..16]\];
for i in [1..4] do if ee*T[i]^-1 in F then if
ch[3](ee*T[i]^-1) eq C.1
then E[i]:=2; else if ch[3](ee*T[i]^-1) eq C.1^3 then E[i]:=3;
else E[i]:= ch[3](ee*T[i]^-1); end if; end if; end if; end for;
for i in [1..4] do if T[2]*ee*T[i]^-1 in F then if
ch[3](T[2]*ee*T[i]^-1) eq C.1
then E[4+i]:=2; else if ch[3](T[2]*ee*T[i]^-1) eq C.1^3 then
E[4+i]:=3; else E[4+i]:= ch[3](T[2]*ee*T[i]^-1); end if;
end if; end if; end if; end for;
for i in [1..4] do if T[3]*ee*T[i]^-1 in F then if
ch[3](T[3]*ee*T[i]^-1) eq C.1
then E[8+i]:=2; else if ch[3](T[3]*ee*T[i]^-1) eq C.1^3 then
E[8+i]:=3; else E[8+i]:= ch[3](T[3]*ee*T[i]^-1); end if; end if;
end if; end if; end if; end for;
for i in [1..4] do if T[4]*ee*T[i]^-1 in F then if
ch[3](T[4]*ee*T[i]^-1) eq C.1
then E[12+i]:=2; else if ch[3](T[4]*ee*T[i]^-1) eq C.1^3 then
E[12+i]:=3; else E[12+i]:= ch[3](T[4]*ee*T[i]^-1); end if;
end if; end if; end if; end for;
E;

\[G:=GL(4,5);\]
\[M:=\text{sub}<G|A,B,CC,D,E>;\]
\[\#M;\]
\[s:=\text{IsIsomorphic}(M,N);\]
\[s;\]
/* I label the ti's by (t1,t2,t3,t4,t1^2,t2^2,t3^2,t4^2,...,
t1^4,t2^4,t3^4,t4^4) start with 1 to 16 to find
the Monomial Permatations*/
\[S:=\text{Sym}(16);\]
\[aa:=S!(1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12)(13, 14)(15, 16);\]
\[bb:=S!(1, 3)(2, 16)(5, 7)(6, 12)(9, 11)(10, 8)(13, 15)(14, 4);\]
\[cc:=S!(1, 4)(2, 3)(5, 8)(6, 7)(9, 12)(10, 11)(13, 16)(14, 15);\]
\[dd:=S!(1, 6)(5, 14)(9, 2)(13, 10)(3, 12)(7, 4)(11, 16)(15, 8);\]
\[ee:=S!(1, 13)(5, 9)(2, 14)(6, 10)(3, 15)(7, 11)(4, 16)(8, 12);\]
\[N:=\text{sub}<S|aa,bb,cc,dd,ee>;\]
/* Other way to write the matrix */

A:=[0: i in [1..16]];
for i in [1..4] do if aa*T[i]^-1 in H then i, ch[3](aa*T[i]^-1); end if; end for;
for i in [1..4] do if T[2]*aa*T[i]^-1 in H then i, ch[3](T[2]*aa*T[i]^-1); end if; end for;
for i in [1..4] do if T[3]*aa*T[i]^-1 in H then i, ch[3](T[3]*aa*T[i]^-1); end if; end for;
for i in [1..4] do if T[4]*aa*T[i]^-1 in H then i, ch[3](T[4]*aa*T[i]^-1); end if; end for;

A:=[0: i in [1..16]];
A[2]:=1; A[5]:=1; A[12]:=1; A[15]:=1;

G:=GL(4,5);
Order(G!A);

aa;

B:=[0: i in [1..16]];
for i in [1..4] do if bb*T[i]^-1 in H then i, ch[3](bb*T[i]^-1); end if; end for;
for i in [1..4] do if T[2]*bb*T[i]^-1 in H then i, ch[3](T[2]*bb*T[i]^-1); end if; end for;
for i in [1..4] do if T[3]*bb*T[i]^-1 in H then i, ch[3](T[3]*bb*T[i]^-1); end if; end for;
for i in [1..4] do if T[4]*bb*T[i]^-1 in H then i, ch[3](T[4]*bb*T[i]^-1); end if; end for;

B:=[0: i in [1..16]];
B[3]:=1; B[8]:=-1; B[9]:=1; B[14]:=-1;

G:=GL(4,5);
Order(G!B);

bb;

C:=[0: i in [1..16]];
for i in [1..4] do if cc*T[i]^-1 in H then i, ch[3](cc*T[i]^-1); end if; end for;
for i in [1..4] do if T[2]*cc*T[i]^-1 in H then i, ch[3](T[2]*cc*T[i]^-1); end if; end for;
for i in [1..4] do if T[3]*cc*T[i]^-1 in H then i, ch[3](T[3]*cc*T[i]^-1); end if; end for;
for i in [1..4] do if T[4]*cc*T[i]^-1 in H then i, ch[3](T[4]*cc*T[i]^-1); end if; end for;

C:=0: i in [1..16];
C[4]:=1; C[7]:=1; C[10]:=1; C[13]:=1;

G:=GL(4,5);
Order(G!C);
cc;

D:=0: i in [1..16];
for i in [1..4] do if dd*T[i]^-1 in H then i, ch[3](dd*T[i]^-1); end if; end for;
for i in [1..4] do if T[2]*dd*T[i]^-1 in H then i, ch[3](T[2]*dd*T[i]^-1); end if; end for;
for i in [1..4] do if T[3]*dd*T[i]^-1 in H then i, ch[3](T[3]*dd*T[i]^-1); end if; end for;
for i in [1..4] do if T[4]*dd*T[i]^-1 in H then i, ch[3](T[4]*dd*T[i]^-1); end if; end for;
D:=0: i in [1..16];
D[2]:=2; D[5]:=3; D[12]:=3; D[15]:=2;
G:=GL(4,5);
Order(G!D);
dd;

E:=0: i in [1..16];
for i in [1..4] do if ee*T[i]^-1 in H then i, ch[3](ee*T[i]^-1); end if; end for;
for i in [1..4] do if T[2]*ee*T[i]^-1 in H then i, ch[3](T[2]*ee*T[i]^-1); end if; end for;
for i in [1..4] do if T[3]*ee*T[i]^-1 in H then i, ch[3](T[3]*ee*T[i]^-1); end if; end for;
for i in [1..4] do if T[4]*ee*T[i]^-1 in H then i, ch[3](T[4]*ee*T[i]^-1); end if; end for;
E:=0: i in [1..16];
E[1]:=-1; E[6]:=-1; E[11]:=-1; E[16]:=-1;
G:=GL(4,5);
Order(G!E);
ee;
A;B;C;D;E;

M:=sub<G|A,B,C,D,E>;}
I label the tis by \((t_1, t_2, t_3, t_4, t_1^2, t_2^2, t_3^2, t_4^2, \ldots, t_1^4, t_2^4, t_3^4, t_4^4)\), start with 1 to 16 to find the Monomial Permutations*

\[S := \text{Sym}(16); \]
\[aa := S! (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12)(13, 14)(15, 16); \]
\[bb := S! (1, 3)(2, 16)(5, 7)(6, 12)(9, 11)(10, 8)(13, 15)(14, 4); \]
\[cc := S! (1, 4)(2, 3)(5, 8)(6, 7)(9, 12)(10, 11)(13, 16)(14, 5); \]
\[dd := S! (1, 6)(5, 14)(9, 2)(13, 10)(3, 12)(7, 4)(11, 16)(15, 8); \]
\[ee := S! (1, 13)(5, 9)(2, 14)(6, 10)(3, 15)(7, 11)(4, 16)(8, 12); \]
\[N := \text{sub}<S|aa, bb, cc, dd, ee>; \]
\[G<a, b, c, d, e> := \text{Group}<a, b, c, d, e|a^2 = b^2 = c^2 = d^2 = e^2 = 1, b^a = b*e, c^a = c, e^b = c*e, d^a = d*e, d^b = d, d^c = d, e^a = e, e^b = e, e^c = e, e^d = e>; \]
\[f, G1, k := \text{CosetAction}(G, \text{sub}<G|Id(G)>); \]
\[s := \text{IsIsomorphic}(G1, N); \]
\[s := \text{IsIsomorphic}(M, N); \]
\[s; \]

/* The set stabilizer in \(S(5)\) of the set \(\{t_1, t_1^2, t_1^3, t_1^4\} = 1, 5, 9, 13.\) Now continue and write a presentation for the progenitor \(5^{\star 4}:N.\) */

\[Sch := \text{SchreierSystem}(G, \text{sub}<G|Id(G)>); \]
\[ArrayP := [Id(N): i in [1..12]]; \]
\[for i in [2..32] do \]
\[P := [Id(N): l in [1..#Sch[i]]]; \]
\[for j in [1..#Sch[i]] do \]
\[if Eltseq(Sch[i])[j] eq 1 then P[j] := aa; end if; \]
\[if Eltseq(Sch[i])[j] eq 2 then P[j] := bb; end if; \]
\[if Eltseq(Sch[i])[j] eq 3 then P[j] := cc; end if; \]
\[if Eltseq(Sch[i])[j] eq 4 then P[j] := dd; end if; \]
\[if Eltseq(Sch[i])[j] eq 5 then P[j] := ee; end if; \]
\[end for; \]
\[PP := Id(N); \]
\[for k in [1..#P] do \]
\[PP := PP * P[k]; end for; \]
\[ArrayP[i] := PP; \]
\[end for; \]
\[for i in [1..32] do \]
\[Sch[i], ArrayP[i]; \]
\[end for; \]
N15913:=Stabiliser(N,\{1,5,9,13\});
N15913;
/*
Permutation group N15913 acting on a set of cardinality 16
Order = 8 = 2^3
 (2, 14)(4, 16)(6, 10)(8, 12)
 (1, 13)(2, 14)(3, 15)(4, 16)(5, 9)(6, 10)(7, 11)(8, 12)
 (1, 5, 13, 9)(2, 10, 14, 6)(3, 11, 15, 7)(4, 8, 16, 12)
*/
/* So the presentation for the monomial progenitor5^{\star 4}:N
is giving by*/
G<a,b,c,d,e,t>:=Group<a,b,c,d,e,t|a^2=b^2=c^2=d^2=e^2=1,b^-a=b*e,
c^-a=e,c^-b=c*e,d^-a=d*e,d^-b=d,d^-c=d,e^-a=e,e^-b=e,e^-c=e,e^-d=e,t^-5,
t^-a*c*b)=t,t^-a(c*b*d)=t^-2>;
/*By adding some relations we got the following*/
for h,i in \[0..10\] do
 G<a,b,c,d,e,t>:=Group<a,b,c,d,e,t|a^2=b^2=c^2=d^2=e^2=1,b^-a=b*e,
c^-a=e,c^-b=c*e,d^-a=d*e,d^-b=d,d^-c=d,e^-a=e,e^-b=e,e^-c=e,e^-d=e,t^-5,
t^-a*c*b)=t,t^-a(c*b*d)=t^-2,(e*t*t^-a(c*e))^h,(b*e)*t*t^-a(d)^i>;
 if #G gt 32 then h,i, Index(G,sub<G|a,b,c,d,e>), #G; end if;
end for;
/*
2 3 900 28800
*/
/* To Verify that our progenitor is correct:*/
G<a,b,c,d,e,t>:=Group<a,b,c,d,e,t|a^2=b^2=c^2=d^2=e^2=1,b^-a=b*e,
c^-a=e,c^-b=c*e,d^-a=d*e,d^-b=d,d^-c=d,e^-a=e,e^-b=e,e^-c=e,e^-d=e,t^-5,
t^-a*c*b)=t,t^-a(c*b*d)=t^-2,(e*t*t^-a(c*e))^2,(b*e)*t*t^-a(d)^3>;#
G;
f,G1,k:=CosetAction(G,sub<G|a,b,c,d,e>);
#G1;
#k;
IN:=sub<G1|f(a),f(b),f(c),f(d),f(e)>;
T:=sub<G1|f(t)>;
Normalizer(IN,T);
/* add more relations*/
for g,h,u,r in \[0..10\] do
 G<a,b,c,d,e,t>:=Group<a,b,c,d,e,t|a^2=b^2=c^2=d^2=e^2=1,b^-a=b*e,
c^-a=e,c^-b=c*e,d^-a=d*e,d^-b=d,d^-c=d,e^-a=e,e^-b=e,e^-c=e,e^-d=e,t^-5,
t^-a*c*b)=t,t^-a(c*b*d)=t^-2,(b*c*d*e)^g,(a*d*e*t)^h,(a*b*c*d*t)^u,
\[(a*c*d*t)^r>\];
if \#G gt 32 then g,h,u,r, Index(G,sub\langle G|a,b,c,d,e\rangle), \#G; end if;
end for;

/* add other relations*/
for g,h,u,r in [0..10] do
G\langle a,b,c,d,e,t\rangle:=Group\langle a,b,c,d,e,t|a^2=b^2=c^2=d^2=e^2=1,b^a=b*e, c^a=c,c^b=c*e,d^a=d*e,d^b=d,d^c=d,e^a=e,e^b=e,e^c=e,e^d=e,t^5,
t^(a*c*b)=t,t^(c*b*d)=t^2,(c*d*t)^g,(a*b*d*t)^u,(a*b*e*t)^r>;
if \#G gt 32 then g,h,u,r, Index(G,sub\langle G|a,b,c,d,e\rangle), \#G; end if;
end for;
0 0 3 4 900 28800
Appendix K

MAGMA Code for Monomial Progenitor \(7^8 : m (3^2 : 2^4) \)

\begin{verbatim}
S:=Sym(9);
aa:=S!(2, 3, 4, 8, 5, 7, 9, 6);
bb:=S!(2, 4)(3, 7)(5, 9);
cc:=S!(2, 4, 5, 9)(3, 8, 7, 6);
dd:=S!(2, 5)(3, 7)(4, 9)(6, 8);
ee:=S!(1, 2, 5)(3, 6, 9)(4, 8, 7);
ff:=S!(1, 3, 7)(2, 6, 4)(5, 9, 8);
N:=sub<S|aa,bb,cc,dd,ee,ff>;
CH:=CharacterTable(N);
CH;
/* To feger the order of the subgroup we will see the CH table and we sow 2,8 the order of
the subgroup has devide the ordre of the group so (144 / 2 desn’t give me integer #) but 144/8=18
so the subgroup has to be of ordr 18*/

/* S:=Subgroups(N);
for i in [1..#S] do if #S[i]‘subgroup eq 18 then i; end if;
end for;
H:=S[22]‘subgroup;
#H;
ch:=CharacterTable(H);
ch;
I:=Induction(ch[4],N);
I;
IsFaithful(I);
\end{verbatim}
Because the (I) not Faithful we will try other subgroup with other order */

S:=Subgroups(N);
for i in [1..#S] do if #S[i] 'subgroup eq 18 then i; end if;
end for;
H:=S[17]'subgroup;
#H;
ch:=CharacterTable(H);
ch;
I:=Induction(ch[3],N);
I;
isFaithful(I);
Norm(I);
CH[9] eq I;
T:=Transversal(N,H);
T;

/* G=He U H(2, 3, 4, 8, 5, 7, 9, 6) U H(2, 4, 5, 9)
 (3, 8, 7, 6) U H(2, 5)(3, 7)(4, 9)(6, 8) U
H(2, 7, 5, 3)(4, 8, 9, 6) U H(2, 7, 4, 6, 5, 3
, 9, 8) U H(2, 9, 5, 4)(3, 6, 7, 8) U
H(2, 6, 9, 7, 5, 8, 4, 3)
So there are 8 tis and each one has 6 degrees */

A:=[0: i in [1..64]];
for i in [1..8] do if aa*T[i]^-1 in H then
A[i]:= ch[3](aa*T[i]^-1); end if; end for;
for i in [1..8] do if T[2]*aa*T[i]^-1 in H then
A[8+i]:= ch[3](T[2]*aa*T[i]^-1); end if; end for;
for i in [1..8] do if T[3]*aa*T[i]^-1 in H then
A[16+i]:= ch[3](T[3]*aa*T[i]^-1); end if; end for;
for i in [1..8] do if T[4]*aa*T[i]^-1 in H then
A[24+i]:= ch[3](T[4]*aa*T[i]^-1); end if; end for;
for i in [1..8] do if T[5]*aa*T[i]^-1 in H then
A[32+i]:= ch[3](T[5]*aa*T[i]^-1); end if; end for;
for i in [1..8] do if T[6]*aa*T[i]^-1 in H then
A[40+i]:= ch[3](T[6]*aa*T[i]^-1); end if; end for;
for i in [1..8] do if T[7]*aa*T[i]^-1 in H then
A[48+i]:= ch[3](T[7]*aa*T[i]^-1); end if; end for;
for i in [1..8] do if T[8]*aa*T[i]^-1 in H then
A[56+i]:= ch[3](T[8]*aa*T[i]^-1); end if; end for;
A;
A:=[0: i in [1..64]];
\[A[2]:=1; A[11]:=1; A[21]:=1; A[30]:=1; A[36]:=1;\]
\[A[47]:=1; A[56]:=1; A[57]:=1;\]
\[G:=GL(8,7);\]
\[\text{Order}(G!A);\]

\[\begin{array}{l}
B:=[0: i in [1..64]];\\
\text{for } i \text{ in } [1..8] \text{ do if } \text{bb}\ast T[i]^{-1} \text{ in } H \text{ then }\\
B[i]:= \text{ch}[3](\text{bb}\ast T[i]^{-1}); \text{ end if}; \text{ end for};\\
\text{for } i \text{ in } [1..8] \text{ do if } T[2]\ast \text{bb}\ast T[i]^{-1} \text{ in } H \text{ then }\\
B[8+i]:= \text{ch}[3](T[2]\ast \text{bb}\ast T[i]^{-1}); \text{ end if}; \text{ end for};\\
\text{for } i \text{ in } [1..8] \text{ do if } T[3]\ast \text{bb}\ast T[i]^{-1} \text{ in } H \text{ then }\\
B[16+i]:= \text{ch}[3](T[3]\ast \text{bb}\ast T[i]^{-1}); \text{ end if}; \text{ end for};\\
\text{for } i \text{ in } [1..8] \text{ do if } T[4]\ast \text{bb}\ast T[i]^{-1} \text{ in } H \text{ then }\\
B[24+i]:= \text{ch}[3](T[4]\ast \text{bb}\ast T[i]^{-1}); \text{ end if}; \text{ end for};\\
\text{for } i \text{ in } [1..8] \text{ do if } T[5]\ast \text{bb}\ast T[i]^{-1} \text{ in } H \text{ then }\\
B[32+i]:= \text{ch}[3](T[5]\ast \text{bb}\ast T[i]^{-1}); \text{ end if}; \text{ end for};\\
\text{for } i \text{ in } [1..8] \text{ do if } T[6]\ast \text{bb}\ast T[i]^{-1} \text{ in } H \text{ then }\\
B[40+i]:= \text{ch}[3](T[6]\ast \text{bb}\ast T[i]^{-1}); \text{ end if}; \text{ end for};\\
\text{for } i \text{ in } [1..8] \text{ do if } T[7]\ast \text{bb}\ast T[i]^{-1} \text{ in } H \text{ then }\\
B[48+i]:= \text{ch}[3](T[7]\ast \text{bb}\ast T[i]^{-1}); \text{ end if}; \text{ end for};\\
\text{for } i \text{ in } [1..8] \text{ do if } T[8]\ast \text{bb}\ast T[i]^{-1} \text{ in } H \text{ then }\\
B[56+i]:= \text{ch}[3](T[8]\ast \text{bb}\ast T[i]^{-1}); \text{ end if}; \text{ end for};\\
B:=[0: i in [1..64]];\\
B[1]:=1; B[13]:=1; B[23]:=1; B[28]:=1; B[34]:=1; B[48]:=1; B[51]:=1; B[62]:=1;\\
G:=GL(8,7);\\
\text{Order}(G!B);\\
\text{bb};\end{array}\]
for i in [1..8] do if T[7]*cc*T[i]^-1 in H then
C[8+i]:= ch[3](T[7]*cc*T[i]^-1); end if; end for;
for i in [1..8] do if T[8]*cc*T[i]^-1 in H then
C[56+i]:= ch[3](T[8]*cc*T[i]^-1); end if; end for;

C;
for i in [1..8] do if T[8]*cc*T[i]^-1 in H then
C[48+i]:= ch[3](T[8]*cc*T[i]^-1); end if; end for;

C:=\{0: i in [1..64]\};
C[3]:=1; C[13]:=1; C[20]:=1; C[31]:=1; C[38]:=1;
C[48]:=1; C[49]:=1; C[58]:=1;
G:=GL(8,7);
Order(G!C);

cc;

D:=\{0: i in [1..64]\};
for i in [1..8] do if dd*T[i]^-1 in H then
D[i]:= ch[3](dd*T[i]^-1); end if; end for;
for i in [1..8] do if T[2]*dd*T[i]^-1 in H then
D[8+i]:= ch[3](T[2]*dd*T[i]^-1); end if; end for;
for i in [1..8] do if T[3]*dd*T[i]^-1 in H then
D[16+i]:= ch[3](T[3]*dd*T[i]^-1); end if; end for;
for i in [1..8] do if T[4]*dd*T[i]^-1 in H then
D[24+i]:= ch[3](T[4]*dd*T[i]^-1); end if; end for;
for i in [1..8] do if T[5]*dd*T[i]^-1 in H then
D[32+i]:= ch[3](T[5]*dd*T[i]^-1); end if; end for;
for i in [1..8] do if T[6]*dd*T[i]^-1 in H then
D[40+i]:= ch[3](T[6]*dd*T[i]^-1); end if; end for;
for i in [1..8] do if T[7]*dd*T[i]^-1 in H then
D[48+i]:= ch[3](T[7]*dd*T[i]^-1); end if; end for;
for i in [1..8] do if T[8]*dd*T[i]^-1 in H then
D[56+i]:= ch[3](T[8]*dd*T[i]^-1); end if; end for;

D:=\{0: i in [1..64]\};
D[4]:=1; D[14]:=1; D[23]:=1; D[25]:=1; D[40]:=1;
D[42]:=1; D[51]:=1; D[61]:=1;
G:=GL(8,7);
Order(G!D);

dd;

E:=\{0: i in [1..64]\};
for i in [1..8] do if ee*T[i]^-1 in H then i,
ch[3](ee*T[i]^-1); end if; end for;
for i in [1..8] do if T[2]*ee*T[i]^-1 in H then i,
ch[3](T[2]*ee*T[i]^-1); end if; end for;
for i in [1..8] do if T[3]*ee*T[i]^-1 in H then i,
ch[3](T[3]*ee*T[i]^-1); end if; end for;
for i in [1..8] do if T[4]*ee*T[i]^{-1} in H then i,
 ch[3](T[4]*ee*T[i]^{-1}); end if; end for;
for i in [1..8] do if T[5]*ee*T[i]^{-1} in H then i,
 ch[3](T[5]*ee*T[i]^{-1}); end if; end for;
for i in [1..8] do if T[6]*ee*T[i]^{-1} in H then i,
 ch[3](T[6]*ee*T[i]^{-1}); end if; end for;
for i in [1..8] do if T[7]*ee*T[i]^{-1} in H then i,
 ch[3](T[7]*ee*T[i]^{-1}); end if; end for;
for i in [1..8] do if T[8]*ee*T[i]^{-1} in H then i,
 ch[3](T[8]*ee*T[i]^{-1}); end if; end for;
E:=[0: i in [1..64]]; E[1]:=4; E[10]:=4; E[19]:=2; E[28]:=2; E[37]:=1;
E[46]:=2; E[55]:=4; E[64]:=1;
G:=GL(8,7);
Order(G!E);

for i in [1..8] do if ff*T[i]^{-1} in H then i,
 ch[3](ff*T[i]^{-1}); end if; end for;
for i in [1..8] do if T[2]*ff*T[i]^{-1} in H then i,
 ch[3](T[2]*ff*T[i]^{-1}); end if; end for;
for i in [1..8] do if T[3]*ff*T[i]^{-1} in H then i,
 ch[3](T[3]*ff*T[i]^{-1}); end if; end for;
for i in [1..8] do if T[4]*ff*T[i]^{-1} in H then i,
 ch[3](T[4]*ff*T[i]^{-1}); end if; end for;
for i in [1..8] do if T[5]*ff*T[i]^{-1} in H then i,
 ch[3](T[5]*ff*T[i]^{-1}); end if; end for;
for i in [1..8] do if T[6]*ff*T[i]^{-1} in H then i,
 ch[3](T[6]*ff*T[i]^{-1}); end if; end for;
for i in [1..8] do if T[7]*ff*T[i]^{-1} in H then i,
 ch[3](T[7]*ff*T[i]^{-1}); end if; end for;
for i in [1..8] do if T[8]*ff*T[i]^{-1} in H then i,
 ch[3](T[8]*ff*T[i]^{-1}); end if; end for;
F:=[0: i in [1..64]]; F[1]:=1; F[10]:=4; F[19]:=4; F[28]:=1; F[37]:=2; F[46]:=2;
F[55]:=2; F[64]:=4;
G:=GL(8,7);
Order(G!F);
ff;

A;B;C;D;E;F;
M:=sub<G|A,B,C,D,F>;
#M;
/* I label the tis by (t1,t2,t3,t4,t5,t6,t7,t8,t1^2,t2^2,...,
t1^6,t2^6,t3^6,t4^6,t5^6,t6^6,t7^6,t8^6) start with 1 to 64 */
S:=Sym(48);
aa:=S!(1,2,3,5,4,6,7,8)(9,10,11,13,12,14,15,16)(17,18,19,21,20,22,23,24)(25,26,27,29,28,30,31,32)(33,34,35,37,36,38,39,40)(41,42,43,45,44,46,47,48);
cc:=S!(1,3,4,7)(2,5,6,8)(9,11,12,15)(10,13,14,16)(17,19,20,23)(18,21,22,24)(25,27,28,31)(26,29,30,32)(33,35,36,39)(34,37,38,40)(41,43,44,47)(42,45,46,48);
N:=sub<S|aa,bb,cc,dd,ee,ff>;
G<a,b,c,d,e,f>:=Group<a,b,c,d,e,f|a^8,b^2,c^4,d^2,e^3,f^3,(e,f),
a^2=c,c^2=d,b^a=b*c*d,c^a=c*d,a^d=d^c=d,e^a=f,
e^b=e*(f^2),e^c=e*(f^2),e^d=e^2,f^a=e*(f^2),f^b=f^2,
f^c=(e^2)*(f^2),f^d=f^2,f^e=f>;
G;
f,G1,k:=CosetAction(G,sub<G|Id(G)>);
s:=IsIsomorphic(G1,N);
s;
s:=IsIsomorphic(M,N);
s;
/* the set stabilizer in S(7) of the set
{t1,t1^2,t1^3,t1^4,t1^5,t1^6}=1,9,17,25,33,41,49,57
Now continue and write a presentation for
the progenitor 7^\star 8:N.*/
Sch:=SchreierSystem(G,sub<G|Id(G)>>)
ArrayP:=[Id(N): i in [1..144]];
for i in [2..144] do
P:=[Id(N): l in [1..#Sch[i]]];
for j in [1..#Sch[i]] do
if Eltseq(Sch[i])[j] eq 1 then P[j]:=aa; end if;
if Eltseq(Sch[i])[j] eq -1 then P[j]:=aa^-1; end if;
if Eltseq(Sch[i])[j] eq 2 then P[j]:=bb; end if;
if Eltseq(Sch[i])[j] eq 3 then P[j]:=cc; end if;
if Eltseq(Sch[i])[j] eq -3 then P[j]:=cc^-1; end if;
if Eltseq(Sch[i])[j] eq 4 then P[j]:=dd; end if;
if Eltseq(Sch[i])[j] eq 5 then P[j]:=ee; end if;
if Eltseq(Sch[i])[j] eq -5 then P[j]:=ee^-1; end if;
if Eltseq(Sch[i])[j] eq 6 then P[j]:=ff; end if;
if Eltseq(Sch[i])[j] eq -6 then P[j]:=ff^-1; end if;
end for;
PP:=Id(N);
for k in [1..#P] do
PP:=PP*P[k]; end for;
ArrayP[i]:=PP;
end for;
for i in [1..144] do Sch[i], ArrayP[i]; end for;
N1917253341:=Stabiliser(N,{1,9,17,25,33,41});
Orbits(Stabiliser(N,{1,9,17,25,33,41}));
for g in N do if 2^g eq 29 then g; end if; end for;

/* So the presentation for the monomial progenitor 7^{\star 8}:N is giving by*/
G<a,b,c,d,e,f,t>:=Group<a,b,c,d,e,f,t|a^8,b^2,c^4,d^2,
e^3,f^3,e=c,d,b^a=b*c*d,c^a=c,c^b=c*d,d^a=d,
d^b=d,d=c,d^c=d^a=f,e^b=e*(f^2),e^c=e*(f^2),e^d=e^2,
f^a=e*(f^2),f^b=f^2,f^c=(e^2)*(f^2),f^d=f^2,f^e=f,t^7,
t^b=t,t^b*(f^2)=t^4>;

/* To Verify that your progenitor is correct:*/
G<a,b,c,d,e,f,t>:=Group<a,b,c,d,e,f,t|a^8,b^2,c^4,d^2,
e^3,f^3,e=c,d,b^a=b*c*d,c^a=c,c^b=c*d,d^a=d,
d^b=d,d^c=d,e^a=f,e^b=e*(f^2),e^c=e*(f^2),e^d=e^2,
f^a=e*(f^2),f^b=f^2,f^c=(e^2)*(f^2),f^d=f^2,f^e=f,t^7,
t^b=t,t^b*(f^2)=t^4>;
#G;
V:=CosetSpace(G,sub<G|a,b,c,d,e,f>: CosetLimit:=10000000, Hard:=true, Print:=1);
G:=CosetImage(V);
print Index(G,sub<G|a,b,c,d,e,f>: CosetLimit:=5^10, Hard:=true, Print:=2);
f,G1,k:=CosetAction(G,sub<G|a,b,c,d,e,f>);
#G1;
#k;
IN:=sub<G1|f(a),f(b),f(c),f(d),f(e),f(f)>;
T:=sub<G1|f(t)>;
Normalizer(IN,T);

/* Add relation to G */
for k,g,m in [0..10] do
G<a,b,c,d,e,f,t>:=Group<a,b,c,d,e,f,t|a^8,b^2,c^4,d^2,
e^3,f^3,(e,f),a^2=c,c^2=d,b^a=b*c*d,c^a=c,c^b=c*d,
d^a=d,d^b=d,d^c=d,e^a=f,e^b=e*(f^2),e^c=e*(f^2),e^d=e^2,
f^a=e*(f^2),f^b=f^2,f^c=(e^2)*(f^2),f^d=f^2,f^e=f,t^7,
t^a(t)=t,t^b(t)=t^a*t^4,(t,t^a),(t,t^c),(t,t^d),
(t,t^(a*d)),(e+b*t*e)^k,(a*t)^g,(a*d*t^e)^m>;
if #G gt 144 then k,g,m, Index(G,sub<G|a,b,c,d,e,f>), #G; end if; end for;

/* Add relation to G */
for k,g,m in [0..10] do
G<a,b,c,d,e,f,t>:=Group<a,b,c,d,e,f,t|a^8,b^2,c^4,d^2,
e^3,f^3,(e,f),a^2=c,c^2=d,b^a=b*c*d,c^a=c,c^b=c*d,d^a=d,
d^b=d,d^c=d,e^a=f,e^b=e*(f^2),e^c=e*(f^2),e^d=e^2,
f^a=e*(f^2),f^b=f^2,f^c=(e^2)*(f^2),f^d=f^2,f^e=f,t^7,
t^a(t)=t,t^b(t)=t^a*t^4,(t,t^a),(t,t^c),(t,t^d),
(t,t^(a*d)),(e+b*t*e)^k,(a*t)^g,(a*d*t^e)^m>;
if #G gt 144 then k,g,m, Index(G,sub<G|a,b,c,d,e,f>), #G; end if; end for;
Appendix L

MAGMA Code for Monomial Progenitor $3^5 : m (2^4 : (2 \times 5))$

```
S:=Sym(10);
aa:=S!(1, 2)(3, 5)(4, 7)(6, 9)(8, 10);
bb:=S!(1, 3, 6, 10, 7)(2, 4, 8, 9, 5);
cc:=S!(1, 2)(5, 7);
dd:=S!(3, 4)(5, 7);
ee:=S!(1, 2)(3, 4)(5, 7)(6, 8);
ff:=S!(5, 7)(9, 10);
N:=sub<S|aa, bb, cc, dd, ff>;
#N;

CH:=CharacterTable(N);
CH;

S:=Subgroups(N);
for i in [1..#S] do if #S[i]'subgroup eq 32 then i; end if; end for; H:=S[41]'subgroup;
#H;
ch:=CharacterTable(H);
ch;
I:=Induction(ch[2],N);
I;
IsFaithful(I);
Norm(I);
CH[6] eq I;
T:=Transversal(N,H);
T;
```
/* G = H(1, 3, 6, 10, 7)(2, 4, 8, 9, 5) U H(1, 7, 10, 6, 3)(2, 5, 9, 8, 4) U H(1, 10, 3, 7, 6)(2, 9, 4, 5, 8)
So there are 5 tis and each one has 3 powrs */

A := [0: i in [1..25]];
for i in [1..5] do if aa*T[i]^-1 in H then i, ch[2](aa*T[i]^-1); end if; end for;
for i in [1..5] do if T[2]*aa*T[i]^-1 in H then i, ch[2](T[2]*aa*T[i]^-1); end if; end for;
for i in [1..5] do if T[3]*aa*T[i]^-1 in H then i, ch[2](T[3]*aa*T[i]^-1); end if; end for;
for i in [1..5] do if T[4]*aa*T[i]^-1 in H then i, ch[2](T[4]*aa*T[i]^-1); end if; end for;
for i in [1..5] do if T[5]*aa*T[i]^-1 in H then i, ch[2](T[5]*aa*T[i]^-1); end if; end for;
A := [0: i in [1..25]];
G := GL(5,3);
Order(G!A); aa

B := [0: i in [1..25]];
for i in [1..5] do if bb*T[i]^-1 in H then i, ch[2](bb*T[i]^-1); end if; end for;
for i in [1..5] do if T[2]*bb*T[i]^-1 in H then i, ch[2](T[2]*bb*T[i]^-1); end if; end for;
for i in [1..5] do if T[3]*bb*T[i]^-1 in H then i, ch[2](T[3]*bb*T[i]^-1); end if; end for;
for i in [1..5] do if T[4]*bb*T[i]^-1 in H then i, ch[2](T[4]*bb*T[i]^-1); end if; end for;
for i in [1..5] do if T[5]*bb*T[i]^-1 in H then i, ch[2](T[5]*bb*T[i]^-1); end if; end for;
B := [0: i in [1..25]];
G := GL(5,3);
Order(G!B); bb

C := [0: i in [1..25]];
for i in [1..5] do if cc*T[i]^-1 in H then i, ch[2](cc*T[i]^-1); end if; end for;
for i in [1..5] do if T[2]*cc*T[i]^-1 in H then i,
\(ch(2)(T[2]*cc*T[i]**-1); \) end if; end for;
for \(i \) in \([1..5]\) do if \(T[3]*cc*T[i]**-1 \) in \(H \) then \(i \),
\(ch(2)(T[3]*cc*T[i]**-1); \) end if; end for;
for \(i \) in \([1..5]\) do if \(T[4]*cc*T[i]**-1 \) in \(H \) then \(i \),
\(ch(2)(T[4]*cc*T[i]**-1); \) end if; end for;
for \(i \) in \([1..5]\) do if \(T[5]*cc*T[i]**-1 \) in \(H \) then \(i \),
\(ch(2)(T[5]*cc*T[i]**-1); \) end if; end for;
\(C:=[0: i \) in \([1..25]\)];
\(C[1]:=1; C[7]:=-1; C[13]:=-1; C[19]:=-1; C[25]:=-1; \)
\(G:=\text{GL}(5,3); \)
Order\((G!*C); \)
\(cc; \)

\(D:=[0: i \) in \([1..25]\)];
for \(i \) in \([1..5]\) do if \(dd*T[i]**-1 \) in \(H \) then \(i \),
\(ch(2)(dd*T[i]**-1); \) end if; end for;
for \(i \) in \([1..5]\) do if \(T[2]*dd*T[i]**-1 \) in \(H \) then \(i \),
\(ch(2)(T[2]*dd*T[i]**-1); \) end if; end for;
for \(i \) in \([1..5]\) do if \(T[3]*dd*T[i]**-1 \) in \(H \) then \(i \),
\(ch(2)(T[3]*dd*T[i]**-1); \) end if; end for;
for \(i \) in \([1..5]\) do if \(T[4]*dd*T[i]**-1 \) in \(H \) then \(i \),
\(ch(2)(T[4]*dd*T[i]**-1); \) end if; end for;
for \(i \) in \([1..5]\) do if \(T[5]*dd*T[i]**-1 \) in \(H \) then \(i \),
\(ch(2)(T[5]*dd*T[i]**-1); \) end if; end for;
\(D:=[0: i \) in \([1..25]\)];
\(D[1]:=-1; D[7]:=-1; D[13]:=1; D[19]:=1; D[25]:=1; \)
\(G:=\text{GL}(5,3); \)
Order\((G!*D); \)
\(dd; \)

\(E:=[0: i \) in \([1..25]\)];
for \(i \) in \([1..5]\) do if \(ee*T[i]**-1 \) in \(H \) then \(i \),
\(ch(2)(ee*T[i]**-1); \) end if; end for;
for \(i \) in \([1..5]\) do if \(T[2]*ee*T[i]**-1 \) in \(H \) then \(i \),
\(ch(2)(T[2]*ee*T[i]**-1); \) end if; end for;
for \(i \) in \([1..5]\) do if \(T[3]*ee*T[i]**-1 \) in \(H \) then \(i \),
\(ch(2)(T[3]*ee*T[i]**-1); \) end if; end for;
for \(i \) in \([1..5]\) do if \(T[4]*ee*T[i]**-1 \) in \(H \) then \(i \),
\(ch(2)(T[4]*ee*T[i]**-1); \) end if; end for;
for \(i \) in \([1..5]\) do if \(T[5]*ee*T[i]**-1 \) in \(H \) then \(i \),
\(ch(2)(T[5]*ee*T[i]**-1); \) end if; end for;
\(E:=[0: i \) in \([1..25]\)];
\(E[1]:=-1; E[7]:=1; E[13]:=-1; E[19]:=1; E[25]:=1; \)
\(G:=\text{GL}(5,3); \)
\begin{verbatim}
Order(G!E);

F:=[0: i in [1..25]];
for i in [1..5] do if ff*T[i]^-1 in H then i, ch[2](ff*T[i]^-1); end if; end for;
for i in [1..5] do if T[2]*ff*T[i]^-1 in H then i, ch[2](T[2]*ff*T[i]^-1); end if; end for;
for i in [1..5] do if T[3]*ff*T[i]^-1 in H then i, ch[2](T[3]*ff*T[i]^-1); end if; end for;
for i in [1..5] do if T[4]*ff*T[i]^-1 in H then i, ch[2](T[4]*ff*T[i]^-1); end if; end for;
for i in [1..5] do if T[5]*ff*T[i]^-1 in H then i, ch[2](T[5]*ff*T[i]^-1); end if; end for;
F:=[0: i in [1..25]];
F[1]:=-1; F[7]:=-1; F[13]:=-1; F[19]:=1; F[25]:=-1;
G:=GL(5,3);
Order(G!F);
ff;

A;B;C;D;E;F;
M:=sub<G|A,B,C,D,E,F>;
#M;
/* I label the tis by (t1,t2,t3,t4,t5,t1^2,t2^2,t3^2,
t4^2,t5^2,t1^3,t2^3,t3^3,t4^3,t5^3) start with 1 to 15 */
S:=Sym(15);
aa:=S! (1, 2)(3, 4)(6, 7)(8, 9);
bb:=S! (1, 2, 3, 5, 4)(6, 7, 8, 10, 9);
cc:=S! (2, 7)(3, 8)(4, 9)(5, 10);
dd:=S! (1, 6)(2, 7);
ee:=S! (1, 6)(3, 8);
nn:=S! (1, 6)(2, 7)(3, 8)(5, 10);
N:=sub<S|aa,bb,cc,dd,ee,nn>;
G<a,b,c,d,e,n>:=Group<a,b,c,d,e,n|a^2,b^5,c^2,d^2,e^2,
 n^2,b^-a=b^-4,c^-a=c*d,c^-b=c*d,d^-a=d,d^-b=d*e,d^-c=d,e^-a=c*d*n,
 e^-b=e*n,e^-c=e,e^-d=e,n^-a=c*e,n^-b=c,n^-c=n,n^-d=n,n^-e=n>;
#G;
f,G1,k:=CosetAction(G,sub<G|Id(G)>);
s:=IsIsomorphic(G1,N);
s;
s:=IsIsomorphic(M,N);
s;
/* the set stabilizer in S(3) of the set \{t1,t1^2\}=1,6 */
\end{verbatim}
Now continue and write a presentation for
the progenitor $3^\star5:N$.*/

Sch:=SchreierSystem(G,sub<G|Id(G)>)
ArrayP:=[Id(N): i in [1..160]]
for i in [2..160] do
 P:=[Id(N): l in [1..#Sch[i]]]
 for j in [1..#Sch[i]] do
 if Eltseq(Sch[i])[j] eq 1 then P[j]:=aa; end if;
 if Eltseq(Sch[i])[j] eq 2 then P[j]:=bb; end if;
 if Eltseq(Sch[i])[j] eq -2 then P[j]:=bb^(-1); end if;
 if Eltseq(Sch[i])[j] eq 3 then P[j]:=cc; end if;
 if Eltseq(Sch[i])[j] eq 4 then P[j]:=dd; end if;
 if Eltseq(Sch[i])[j] eq 5 then P[j]:=ee; end if;
 if Eltseq(Sch[i])[j] eq 6 then P[j]:=nn; end if;
 end for;
 PP:=Id(N);
 for k in [1..#P] do
 PP:=PP*P[k]; end for;
 ArrayP[i]:=PP;
 end for;
for i in [1..160] do Sch[i], ArrayP[i]; end for;
N16:=Stabiliser(N,{1,6});
N16;
/*
Permutation group N16 acting on a set of cardinality 15
Order = 32 = 2^5
 (3, 8)(5, 10)
 (2, 7)(5, 10)
 (4, 9)(5, 10)
 (2, 4)(3, 10)(5, 8)(7, 9)
 (1, 6)(5, 10)
*/
for i in [1..160] do
 if ArrayP[i] eq N16 then Sch[i]; end if; end for;
/* So the presentation for the monomial
progenitor3^\star5:N is giving by */
G<a,b,c,d,e,f,t>:=Group<a,b,c,d,e,f,t|a^2,b^5,c^2,d^2,e^2,
f^2,b^a=b^4,c^a=c*d,d^a=d,d^b=d*e,d^c=d,e^a=c*d*f,
e^b=e*f,e^c=e,d^e=e,f^a=c*e,f^b=c,f^c=f,f^d=f,f^e=f,t^3,
t^c(c*d*e)=t,t^(d*f)=t,t^(e*f)=t,t^(a*c*(b^(-1))*d)=t,
t^(d*e*f)=t^(2)>;
/* To Verify that your progenitor is correct:*/*
Orbits(Stabiliser(N,\{1,6\}));

G\langle a, b, c, d, e, n, t \rangle := \text{Group}\langle a, b, c, d, e, n, t \rangle|a^2, b^5, c^2, d^2, e^2, n^2, b^a = b^4, c^a = c*d, c^b = c*d, d^a = d*e, d^c = d, e^a = c*d*n, e^b = e*n, e^c = e, e^d = e, n^a = c*e, n^b = c, n^c = n, n^d = n, n^e = n, t^3, t^{c*d*e} = t, t^{d*n} = t, t^{e*n} = t, t^{a*c*b^{-1}*d} = t, t^{d*e*n} = t^2, (t, t^a), (t, t^{a*b})>;

#G;

f, G1, k := CosetAction(G, sub\langle G | a, b, c, d, e, n \rangle);

#G1;

#k;

IN := sub\langle G1 | f(a), f(b), f(c), f(d), f(e), f(n) \rangle;

#IN;

T := sub\langle G1 | f(t) \rangle;

#T;

Normalizer(IN, T);
Appendix M

MAGMA Code for Isomorphism

Type of $2^8 : \circ L_2(8)$

/* Consider the subgroup G1 of S_8 below. We will show that N is isomorphic to the mixed extension of 2^8 by $L_2(8)$ */

S:=Sym(8);
aa:=S!(2, 5)(6, 7);
bb:=S!(1, 2)(3, 7)(4, 5)(6, 8);
cc:=S!(1, 3)(2, 6)(4, 8)(5, 7);
dd:=S!(1, 2)(3, 6)(4, 5)(7, 8);
ee:=S!(1, 4)(2, 5)(3, 8)(6, 7);
N:=sub<S|aa, bb, cc, dd, ee>;
G<a, b, c, d, e, t>:=Group<a, b, c, d, e, t|a^2, b^2, c^2, d^2, e^2, b^a=b*e, c^a=c, b=c*e, d^a=d, e^b=d, d^c=d, e^a=e, e^b=e, e^c=e, e^d=e, t^2, (t, a), (t, b*d), (a*d*e*t)^3, (a*b*c*d*e*t)^7, (a*c*d*e*t)^9>;
f, G1, k:=CosetAction(G, sub<G|a, b, c, d, e>);
#G1, #k;
CompositionFactors(G1);
/* We will find the Isomorphism type of G1 = 129024 */
Center(G1);
NL:=NormalLattice(G1);
NL;
/* We will search for the largest Abelian subgroup of G1, NL[i], using the normal subgroup lattice NL */
for i in [1..11] do if IsAbelian(NL[i]) then i; end if; end for;
/* Thus, $NL[6]$ is the largest Abelian subgroup of $G1$. We factor $G1$ by $NL[6]$, and call it q. Since $Center(G1) < NL[6]$, $G1$ is a mixed extension of $NL[6]$ by q, the factor group $G1/NL[6]$. We now find isomorphism types and presentations of $NL[6]$ and q. */
/* We show below that $NL[6]$ is isomorphic to 2^8 */

m := AbelianGroup(GrpPerm, [2, 2, 2, 2, 2, 2, 2, 2]);
s := IsIsomorphic(m, NL[6]);
s;
/* true */
/* $NL[6]=2^8$ is generated by x, y, z, w, u, v, k and r given below. */

x := G1!NL[6].1;
y := G1!NL[6].2;
z := G1!NL[6].3;
w := G1!NL[6].4;
u := G1!NL[6].5;
v := G1!NL[6].6;
k := G1!NL[6].7;
r := G1!NL[6].8;
/* A presentation of $NL[6]$ is \{x, y, z, w, u, v, k, r | x^2, y^2, z^2, w^2, u^2, v^2, k^2, r^2, (x, y), (x, z), (x, w), (x, u), (x, v), (x, k), (x, r), (y, z), (y, w), (y, u), (y, v), (y, k), (y, r), (z, w), (z, u), (z, k), (z, r), (w, u), (w, v), (w, k), (w, r), (u, v), (u, k), (u, r), (v, k), (v, r), (k, r)\}. */

H<x, y, z, w, u, v, k, r> := Group<x, y, z, w, u, v, k, r | x^2, y^2, z^2, w^2, u^2, v^2, k^2, r^2, (x, y), (x, z), (x, w), (x, u), (x, v), (x, k), (x, r), (y, z), (y, w), (y, u), (y, v), (y, k), (y, r), (z, w), (z, u), (z, k), (z, r), (w, u), (w, v), (w, k), (w, r), (u, v), (u, k), (u, r), (v, k), (v, r), (k, r)>;
#H;
f, H1, k := CosetAction(H, sub<H|Id(H)>);
s := IsIsomorphic(H1, NL[6]);
s;
q, ff := quo<G1!/NL[6]>;
q;
q eq sub<q|q.2, q.3, q.6>;
Order(sub<q|q.2, q.3, q.6>);
/* q eq sub<q|q.2, q.3, q.6>; */
We show below that q is isomorphic to $(2^3 \times 3^2 \times 7)$.

```haskell
HH<a,b,c>:=Group<a,b,c|a^2,b^2,c^2,(a*b)^2,(a*c)^3,(b*c)^7,(a*b*c)^9>;
#HH;
f,h2,k:=CosetAction(HH,sub<HH|Id(HH)>);
s:=IsIsomorphic(h2,q);s;
/*true */
IsIsomorphic(PSL(2,8),q);
/* true Homomorphism of GrpPerm: , Degree 9, Order 2^3 * 3^2 * 7 into GrpPerm: q, Degree 36, Order 2^3 * 3^2 * 7 induced by
(3, 5, 6, 7, 9, 8, 4) |--> (1, 28, 23, 6, 22, 32, 16)
(2, 34, 18, 11, 7, 29, 15)(3, 24, 14, 36, 12, 30, 20)
(5, 33, 19, 35, 17, 25, 10)(8, 27, 9, 13, 26, 31, 21),
(1, 3, 2)(4, 7, 8)(5, 6, 9) |--> (1, 19, 11)(2, 8, 30)
(3, 29, 9)(4, 12, 13)(5, 6, 18)(7, 34, 33)(10, 27, 36)
(14, 28, 21)(15, 22, 16)(17, 25, 32)(20, 35, 26)
(23, 31, 24) */

We now see if the generators and relations of $q$ can be expressed in terms of nonidentity elements of $NL[6]$. */
T:=Transversal(G1,NL[6]);
q,ff:= quo<G1|NL[6]>;
ff(T[2]) eq q.2;
ff(T[3]) eq q.3;
ff(T[4]) eq q.6;
A:=T[2];
B:=T[3];
C:=T[4];

ff(A*B) eq q.2*q.3;
ff(A*C) eq q.2*q.6;
ff(B*C) eq q.3*q.6;

Order(A) eq Order(q.2);
Order(B) eq Order(q.3);
Order(C) eq Order(q.6);

Order(A*B) eq Order(q.2*q.3);
Order(A*C) eq Order(q.2*q.6);
Order(B*C) eq Order(q.3*q.6);
/*
Order(A) eq Order(q.2);true
Order(B) eq Order(q.3);true
Order(C) eq Order(q.6);true
Order(A*B) eq Order(q.2*q.3);false
Order(A*C) eq Order(q.2*q.6);false
Order(B*C) eq Order(q.3*q.6);false */

/* The computation above demonstrates, it is possible.
Thus G1 is a Semi-direct product of Nl[6] by q; that is,
2^8 by (L_2(8)). Thus G1 is isomorphic to
(2^8: L_2(8)). */

/* we now determine the action of q on NL[6],
and using Transversal of NL[6] */
for i,j,l,m,n,o,p,s in [1..2] do if x^A eq x^i*y^j*z^l*
w^m*u^n*v^o*k^p*r^s then i,j,l,m,n,o,p,s; end if; end for;
for i,j,l,m,n,o,p,s in [1..2] do if x^B eq x^i*y^j*z^l*
w^m*u^n*v^o*k^p*r^s then i,j,l,m,n,o,p,s; end if; end for;
for i,j,l,m,n,o,p,s in [1..2] do if x^C eq x^i*y^j*z^l*
w^m*u^n*v^o*k^p*r^s then i,j,l,m,n,o,p,s; end if; end for;
for i,j,l,m,n,o,p,s in [1..2] do if y^A eq x^i*y^j*z^l*
w^m*u^n*v^o*k^p*r^s then i,j,l,m,n,o,p,s; end if; end for;
for i,j,l,m,n,o,p,s in [1..2] do if y^B eq x^i*y^j*z^l*
w^m*u^n*v^o*k^p*r^s then i,j,l,m,n,o,p,s; end if; end for;
for i,j,l,m,n,o,p,s in [1..2] do if y^C eq x^i*y^j*z^l*
w^m*u^n*v^o*k^p*r^s then i,j,l,m,n,o,p,s; end if; end for;
for i,j,l,m,n,o,p,s in [1..2] do if z^A eq x^i*y^j*z^l*
w^m*u^n*v^o*k^p*r^s then i,j,l,m,n,o,p,s; end if; end for;
for i,j,l,m,n,o,p,s in [1..2] do if z^B eq x^i*y^j*z^l*
w^m*u^n*v^o*k^p*r^s then i,j,l,m,n,o,p,s; end if; end for;
for i,j,l,m,n,o,p,s in [1..2] do if z^C eq x^i*y^j*z^l*
w^m*u^n*v^o*k^p*r^s then i,j,l,m,n,o,p,s; end if; end for;
for i,j,l,m,n,o,p,s in [1..2] do if w^A eq x^i*y^j*z^l*
w^m*u^n*v^o*k^p*r^s then i,j,l,m,n,o,p,s; end if; end for;
for i,j,l,m,n,o,p,s in [1..2] do if w^B eq x^i*y^j*z^l*
w^m*u^n*v^o*k^p*r^s then i,j,l,m,n,o,p,s; end if; end for;
for i,j,l,m,n,o,p,s in [1..2] do if w^C eq x^i*y^j*z^l*
w^m*u^n*v^o*k^p*r^s then i,j,l,m,n,o,p,s; end if; end for;
for i,j,l,m,n,o,p,s in [1..2] do if u^A eq x^i*y^j*z^l*
w^m*u^n*v^o*k^p*r^s then i,j,l,m,n,o,p,s; end if; end for;
for i,j,l,m,n,o,p,s in [1..2] do if u^B eq x^i*y^j*z^l*
w^m*u^n*v^o*k^p*r^s then i,j,l,m,n,o,p,s; end if; end for;
for i,j,l,m,n,o,p,s in [1..2] do if u^n eq x^i*y^j*z^l*w^m*u^n*v^o*k^p*r^s then i,j,l,m,n,o,p,s; end if; end for;

for i,j,l,m,n,o,p,s in [1..2] do if v^A eq x^i*y^j*z^l*w^m*u^n*v^o*k^p*r^s then i,j,l,m,n,o,p,s; end if; end for;

for i,j,l,m,n,o,p,s in [1..2] do if v^B eq x^i*y^j*z^l*w^m*u^n*v^o*k^p*r^s then i,j,l,m,n,o,p,s; end if; end for;

for i,j,l,m,n,o,p,s in [1..2] do if v^C eq x^i*y^j*z^l*w^m*u^n*v^o*k^p*r^s then i,j,l,m,n,o,p,s; end if; end for;

for i,j,l,m,n,o,p,s in [1..2] do if k^A eq x^i*y^j*z^l*w^m*u^n*v^o*k^p*r^s then i,j,l,m,n,o,p,s; end if; end for;

for i,j,l,m,n,o,p,s in [1..2] do if k^B eq x^i*y^j*z^l*w^m*u^n*v^o*k^p*r^s then i,j,l,m,n,o,p,s; end if; end for;

for i,j,l,m,n,o,p,s in [1..2] do if k^C eq x^i*y^j*z^l*w^m*u^n*v^o*k^p*r^s then i,j,l,m,n,o,p,s; end if; end for;

for i,j,l,m,n,o,p,s in [1..2] do if r^A eq x^i*y^j*z^l*w^m*u^n*v^o*k^p*r^s then i,j,l,m,n,o,p,s; end if; end for;

for i,j,l,m,n,o,p,s in [1..2] do if r^B eq x^i*y^j*z^l*w^m*u^n*v^o*k^p*r^s then i,j,l,m,n,o,p,s; end if; end for;

for i,j,l,m,n,o,p,s in [1..2] do if r^C eq x^i*y^j*z^l*w^m*u^n*v^o*k^p*r^s then i,j,l,m,n,o,p,s; end if; end for;

for i,j,l,m,n,o,p,s in [1..2] do if A^2 eq x^i*y^j*z^l*w^m*u^n*v^o*k^p*r^s then i,j,l,m,n,o,p,s; end if; end for;

for i,j,l,m,n,o,p,s in [1..2] do if B^2 eq x^i*y^j*z^l*w^m*u^n*v^o*k^p*r^s then i,j,l,m,n,o,p,s; end if; end for;

for i,j,l,m,n,o,p,s in [1..2] do if C^2 eq x^i*y^j*z^l*w^m*u^n*v^o*k^p*r^s then i,j,l,m,n,o,p,s; end if; end for;

for i,j,l,m,n,o,p,s in [1..2] do if (A*B)^2 eq x^i*y^j*z^l*w^m*u^n*v^o*k^p*r^s then i,j,l,m,n,o,p,s; end if; end for;

for i,j,l,m,n,o,p,s in [1..2] do if (A*C)^3 eq x^i*y^j*z^l*w^m*u^n*v^o*k^p*r^s then i,j,l,m,n,o,p,s; end if; end for;

for i,j,l,m,n,o,p,s in [1..2] do if (B*C)^7 eq x^i*y^j*z^l*w^m*u^n*v^o*k^p*r^s then i,j,l,m,n,o,p,s; end if; end for;

for i,j,l,m,n,o,p,s in [1..2] do if (A*B*C)^9 eq x^i*y^j*z^l*w^m*u^n*v^o*k^p*r^s then i,j,l,m,n,o,p,s; end if; end for;

x^A eq x*w;

x^B eq x;

x^C eq x;

y^A eq y;

y^B eq y*w;
y^C eq y;
z^A eq z*r;
z^B eq z*w*r;
z^C eq z;
w^A eq w;
w^B eq w;
w^C eq z*w;
u^A eq w*u*r;
u^B eq w*u*v*r;
u^C eq z*w;
v^A eq v;
v^B eq v;
v^C eq k;
k^A eq v*k;
k^B eq k*r;
k^C eq v;
r^A eq r;
r^B eq r;
r^C eq z*r;

/* Here is a presentation for the mixed extension of 2^8 by L_2(8). */
M<x,y,z,w,u,v,k,r,a,b,c>:=Group<x,y,z,w,u,v,k,r,a,b,c|x^2,y^2,
z^2,w^2,u^2,v^2,k^2,r^2,(x,y),(x,z),(x,w),(x,u),(x,v),
(x,k), (x,r), (y,z), (y,w), (y,u), (y,v), (y,k), (y,r), (z,w), (z,u), (z,v),
(z,k), (z,r), (w,u), (w,v), (w,k), (w,r), (u,v), (u,k), (u,r), (v,k),
(v,r), (k,r), a^2, b^2, c^2, (a*b)^2=w, (a*c)^3=x*y*z*w*u,
(b*c)^7=x*y*z*u*k, (a*b*c)^9=x*y, x~a=x*w, x~b=x, x~c=x,
y~a=y, y~b=y*u, y~c=x, z~a=z*r, z~b=z*w*r, z~c=x,
w~a=w, w~b=w*u, w~c=z*u, u~a=w*u*r, u~b=w*u*v*r, u~c=z*w,
v~a=v, v~b=v*u, v~c=k, k~a=u*k, k~b=k*r, k~c=v,
r~a=r, r~b=r, r~c=z*r>;
#M;

f1,M1,k1:=CosetAction(M,sub<M|Id(M)>);
s:=IsIsomorphic(M1,G1);
s;
/*true */
/* G isomorphic to the mixed extension of 2^8 by L_2(8)*/
Appendix N

MAGMA Code for Isomorphism

Type of $2^7 : \cdot A_5$

/* Consider the subgroup $G_1$ of $S_8$ below. We will show that $N$ is isomorphic to the mixed extension of $2^7$ by $A_5$. */

S:=Sym(8);
aa:=S! (2, 5)(6, 7);
bb:=S! (1, 2)(3, 7)(4, 5)(6, 8);
cc:=S! (1, 3)(2, 6)(4, 8)(5, 7);
dd:=S! (1, 2)(3, 6)(4, 5)(7, 8);
ee:=S! (1, 4)(2, 5)(3, 8)(6, 7);
N:=sub<S|aa, bb, cc, dd, ee>;
G<a, b, c, d, e, t>:=Group<a, b, c, d, e, t | a^2, b^2, c^2, d^2, e^2, b^a=b*e, c^a=c*e, d^a=d*e, d^b=d*e, d^c=d*e, e^a=e*d, e^b=e*d, e^c=e*d, e^d=e*d^t, (a*d*e*t)^3, (a*b*c*d*t)^5, (a*c*d*t)^10>;
#G;
f, G1, k := CosetAction(G, sub<G | a, b, c, d, e>);
#G1, #k;
/* We will find the Isomorphism type of $G_1 = 7680$ */
Center(G1);
CompositionFactors(G1);
NL := NormalLattice(G1);
NL;
/* We will search for the largest Abelian subgroup of $G_1$, $NL[i]$, using the normal subgroup lattice $NL$ */
for i in [1..34] do if IsAbelian(NL[i]) then i; end if; end for;

/* Thus, NL[18] is the largest Abelian subgroup of G1. We factor G1 by NL[18], and call it q. Since Center(G1) < NL[18], G1 is a mixed extension of NL[18] by q, the factor group G1/NL[18].
   We now find isomorphism types and presentations of NL[18] and q. */
/* We show below that NL[18] is isomorphic to 2^7 */
NL[18];
m:=AbelianGroup(GrpPerm,[2,2,2,2,2,2,2]);
IsIsomorphic(m,NL[18]);
/* true Mapping from: GrpPerm: m to GrpPerm: Degree 240,
   Order 2^7 Composition of Mapping from: GrpPerm: m to GrpPC
   and Mapping from: GrpPC to GrpPC and
   Mapping from: GrpPC to GrpPerm: , Degree 240, Order 2^7 */
/* NL[18] is generated by x,y,z,w,u,v and k given below. */
NL[18] eq sub<NL[18]|NL[18].1,NL[18].2,NL[18].3,
NL[18].4,NL[18].5,NL[18].6,NL[18].7>;
x:=G1!NL[18].1;
y:=G1!NL[18].2;
z:=G1!NL[18].3;
w:=G1!NL[18].4;
u:=G1!NL[18].5;
v:=G1!NL[18].6;
k:=G1!NL[18].7;
x*y eq y*x;
/* A presentation of NL[18] is {x,y,z,w,u,v,k|x^2,y^2,z^2,w^2,
u^2,v^2,k^2,(x,y),(x,z),(x,w),(x,u),(x,v),(x,k),(y,z),(y,w),
(y,w),(y,v),(y,k),(z,w),(z,u),(z,v),(z,k),(w,u),(w,v),(w,k),
(u,v),(u,k),(v,k)}. */
/* We factor G1 by N[18] and find the generators of q a presentation for q. */
H<x,y,z,w,u,v,k>:=Group<x,y,z,w,u,v,k|x^2,y^2,z^2,w^2,u^2,v^2,
k^2,(x,y),(x,z),(x,w),(x,u),(x,v),(x,k),(y,z),(y,w),(y,v),
(y,w),(y,v),(y,k),(z,w),(z,u),(z,v),(z,k),(k,u),(k,v),(k,u),
(k,v)>;#H;
q,ff:=quo<G1|NL[18]>;
q;
q eq sub<q,q.2,q.3,q.6>;
Order( sub<q,q.2,q.3,q.6>);
/* q eq sub<q,q.2,q.3,q.6>; */
/* We show below that q is isomorphic to (2^2 x 3 x 5). */
\[ HH\langle a, b, c\rangle := \text{Group}\langle a, b, c | a^2, b^2, c^2, (a*b)^2, (a*c)^3, (b*c)^5, (a*b*c)^5 \rangle; \]

\#HH;

\[ f, h2, k := \text{CosetAction}(HH, \text{sub}<HH|\text{Id}(HH)>); \]

\[ \text{IsIsomorphic}(h2, q); \]

\[ \text{IsIsomorphic}(h2, \text{Alt}(5)); \]

/* We now see if the generators and relations of q can be expressed in terms of nonidentity elements of NL[18]. */

\[ T := \text{Transversal}(G1, \text{NL}[18]); \]

\[ q, ff := \text{quo}<G1|\text{NL}[18]>; \]

\[ ff(T[2]) \text{ eq } q.2; \]

\[ ff(T[3]) \text{ eq } q.3; \]

\[ ff(T[4]) \text{ eq } q.6; \]

\[ A := G1!T[2]; \]

\[ B := G1!T[3]; \]

\[ C := G1!T[4]; \]

\[ ff(A*B) \text{ eq } q.2*q.3; \]

\[ ff(A*C) \text{ eq } q.2*q.6; \]

\[ ff(B*C) \text{ eq } q.3*q.6; \]

\[ \text{Order}(A) \text{ eq } \text{Order}(q.2); \]

\[ \text{Order}(B) \text{ eq } \text{Order}(q.3); \]

\[ \text{Order}(C) \text{ eq } \text{Order}(q.6); \]

\[ \text{Order}(A*B) \text{ eq } \text{Order}(q.2*q.3); \]

\[ \text{Order}(A*C) \text{ eq } \text{Order}(q.2*q.6); \]

\[ \text{Order}(B*C) \text{ eq } \text{Order}(q.3*q.6); \]

/*

\[ \text{Order}(A) \text{ eq } \text{Order}(q.2); \text{true} \]

\[ \text{Order}(B) \text{ eq } \text{Order}(q.3); \text{true} \]

\[ \text{Order}(C) \text{ eq } \text{Order}(q.6); \text{true} \]

\[ \text{Order}(A*B) \text{ eq } \text{Order}(q.2*q.3); \text{false} \]

\[ \text{Order}(A*C) \text{ eq } \text{Order}(q.2*q.6); \text{false} \]

\[ \text{Order}(B*C) \text{ eq } \text{Order}(q.3*q.6); \text{false} */

/* The computation above demonstrates, it is possible. Thus G1 is a mixed extension product of NL[18] by q; that is, 2^7 by A_5. Thus G1 is isomorphic to (2^7:(A_5)). */

/* we now determine the action of q on NL[18],
and using Transversal of NL[18] instead of the elements of q and write the generators elements of (A_5) in terms of 2^7. */

for i,j,l,m,n,o,p in [1..2] do if x^A eq x^i*y^j*z^l
* w^m*u^m*v^o*k^p then i,j,l,m,n,o,p; end if; end for;
for i,j,l,m,n,o,p in [1..2] do if x^B eq x^i*y^j*z^l
* w^m*u^m*v^o*k^p then i,j,l,m,n,o,p; end if; end for;
for i,j,l,m,n,o,p in [1..2] do if x^C eq x^i*y^j*z^l
* w^m*u^m*v^o*k^p then i,j,l,m,n,o,p; end if; end for;
for i,j,l,m,n,o,p in [1..2] do if y^A eq x^i*y^j*z^l
* w^m*u^m*v^o*k^p then i,j,l,m,n,o,p; end if; end for;
for i,j,l,m,n,o,p in [1..2] do if y^B eq x^i*y^j*z^l
* w^m*u^m*v^o*k^p then i,j,l,m,n,o,p; end if; end for;
for i,j,l,m,n,o,p in [1..2] do if y^C eq x^i*y^j*z^l
* w^m*u^m*v^o*k^p then i,j,l,m,n,o,p; end if; end for;
for i,j,l,m,n,o,p in [1..2] do if z^A eq x^i*y^j*z^l
* w^m*u^m*v^o*k^p then i,j,l,m,n,o,p; end if; end for;
for i,j,l,m,n,o,p in [1..2] do if z^B eq x^i*y^j*z^l
* w^m*u^m*v^o*k^p then i,j,l,m,n,o,p; end if; end for;
for i,j,l,m,n,o,p in [1..2] do if z^C eq x^i*y^j*z^l
* w^m*u^m*v^o*k^p then i,j,l,m,n,o,p; end if; end for;
for i,j,l,m,n,o,p in [1..2] do if u^A eq x^i*y^j*z^l
* w^m*u^m*v^o*k^p then i,j,l,m,n,o,p; end if; end for;
for i,j,l,m,n,o,p in [1..2] do if u^B eq x^i*y^j*z^l
* w^m*u^m*v^o*k^p then i,j,l,m,n,o,p; end if; end for;
for i,j,l,m,n,o,p in [1..2] do if u^C eq x^i*y^j*z^l
* w^m*u^m*v^o*k^p then i,j,l,m,n,o,p; end if; end for;
for i,j,l,m,n,o,p in [1..2] do if v^A eq x^i*y^j*z^l
* w^m*u^m*v^o*k^p then i,j,l,m,n,o,p; end if; end for;
for i,j,l,m,n,o,p in [1..2] do if v^B eq x^i*y^j*z^l
* w^m*u^m*v^o*k^p then i,j,l,m,n,o,p; end if; end for;
for i,j,l,m,n,o,p in [1..2] do if v^C eq x^i*y^j*z^l
* w^m*u^m*v^o*k^p then i,j,l,m,n,o,p; end if; end for;
for \( i,j,l,m,n,o,p \) in \([1..2]\) do if \( k^C = x^i*y^j*z^l*w^m*u^n*v^o*k^p \) then \( i,j,l,m,n,o,p \); end if; end for;

for \( i,j,l,m,n,o,p \) in \([1..2]\) do if \((A*B)^2 = x^i*y^j*z^l*w^m*u^n*v^o*k^p \) then \( i,j,l,m,n,o,p \); end if; end for;

for \( i,j,l,m,n,o,p \) in \([1..2]\) do if \((A*C)^3 = x^i*y^j*z^l*w^m*u^n*v^o*k^p \) then \( i,j,l,m,n,o,p \); end if; end for;

for \( i,j,l,m,n,o,p \) in \([1..2]\) do if \((B*C)^5 = x^i*y^j*z^l*w^m*u^n*v^o*k^p \) then \( i,j,l,m,n,o,p \); end if; end for;

for \( i,j,l,m,n,o,p \) in \([1..2]\) do if \((A*B*C)^5 = x^i*y^j*z^l*w^m*u^n*v^o*k^p \) then \( i,j,l,m,n,o,p \); end if; end for;

\[
x^A \text{ eq } x;
\]
\[
x^B \text{ eq } x*w;
\]
\[
x^C \text{ eq } x;
\]
\[
y^A \text{ eq } y;
\]
\[
y^B \text{ eq } y;
\]
\[
y^C \text{ eq } y;
\]
\[
z^A \text{ eq } z;
\]
\[
z^B \text{ eq } z;
\]
\[
z^C \text{ eq } v;
\]
\[
w^A \text{ eq } w;
\]
\[
w^B \text{ eq } w;
\]
\[
w^C \text{ eq } z*u;
\]
\[
u^A \text{ eq } w*u;
\]
\[
u^B \text{ eq } z*w;
\]
\[
u^C \text{ eq } z;
\]
\[
k^A \text{ eq } w*k;
\]
\[
k^B \text{ eq } k;
\]
\[
k^C \text{ eq } k;
\]

/* Here is a presentation for the mixed extension of 
\(^2\mathbb{7}\) by \(A_5(5).\) */

\[
G<x,y,z,w,u,v,k,a,b,c>:=\text{Group}<x,y,z,w,u,v,k,a,b,c|x^2,y^2,z^2,w^2,u^2,v^2,k^2,(x,y),(x,z),(x,w),(x,u),(x,v),(x,k),
(y,z),(y,w),(y,u),(y,v),(z,w),(z,u),(z,v),(z,k),(w,u),
(w,v),(w,k),(u,v),(u,k),(v,k),a^2,b^2,c^2,(a*b)^2=w,
(a*c)^3=2*x*w*u*k,(b*c)^5=x*w*u*v*k,(a*b*c)^5=y,x^a=x,
z^b=x*w,u^c=x,y^a=y,y^b=y,y^c=y,z^a=z,z^b=z,z^c=z,v^a=w,
w^b=w^c=x*u,u^a=x*u,u^b=x*u,u^c=x*v,u^a=x*v,u^b=x*w*v,
\]
\[
v^c=x,k^a=x*k,k^b=x,k^c=x>;
\]
#G;
/* now we show that $G_1$ is isomorphic to the mixed extension of $2^7$ by $A_5$ given above. */
f1,g1,k1:=CosetAction(G,sub<G|Id(G)>);
IsIsomorphic(g1,G1);
/*true Mapping from: GrpPerm: g1 to GrpPerm: G1
Composition of Mapping from: GrpPerm: g1 to GrpPC and
Mapping from: GrpPC to GrpPC and
Mapping from: GrpPC to GrpPerm: G1*/

/* Thus, $G_1$ is isomorphic $(2^7 : A_5)$ */
Appendix  O

MAGMA Code for Isomorphism

Type of 3 : \((PSL(2,19) \times 2)\)

/* Consider the subgroup \(G1\) of \(S_8\) below. We will show that \(N\) is isomorphic to the Semidirect Product of 3 by \((PSL(2,19) \times 2)\).* /

\(S:=\text{Sym}(8);\)
\(aa:=S! (2, 5)(6, 7);\)
\(bb:=S! (1, 2)(3, 7)(4, 5)(6, 8);\)
\(cc:=S! (1, 3)(2, 6)(4, 8)(5, 7);\)
\(dd:=S! (1, 2)(3, 6)(4, 5)(7, 8);\)
\(ee:=S! (1, 4)(2, 5)(3, 8)(6, 7);\)
\(N:=\text{sub}\langle S|aa,bb,cc,dd,ee\rangle;\)
\(G\langle a,b,c,d,e,t\rangle:=\text{Group}\langle a,b,c,d,e,t|a^2,b^2,c^2,d^2,e^2,\)
\(a^b=e,c^a=c,c^b=c,e^d=e,e^b=e,\)
\(e^c=e,\rangle \text{ for } i \in [1..6] \text{ do } \text{if } \text{IsAbelian}(\text{NL}[i]) \text{ then } i; \text{ end if}; \text{ end for};\)

/* Thus, \(\text{NL}[2]\) is the largest Abelian subgroup of \(G1\).
We factor $G_1$ by $NL[2]$, and call it $q$. Since $Center(G_1) < NL[2]$, $G_1$ is a mixed extension of $NL[2]$ by $q$, the factor group $G_1/NL[2]$.

We now find isomorphism types and presentations of $NL[2]$ and $q$. */

/* We show below that $NL[2]$ is isomorphic to $3$ */

$m$:=$AbelianGroup(GrpPerm,[3]);$

IsIsomorphic($m,NL[2]);$

/* $NL[2]$ is generated by $x$ given below. */


$x$:=$G_1!NL[2]$.2;$

/* A presentation of $NL[2]$ is $\{x|x^3\}$. */

/* We factor $G_1$ by $N[2]$ and find the generators of $q$ a presentation for $q$. */

$q,ff:=quo<G1|NL[2]>$;

$q;$

/* We show below that $q$ is isomorphic to $(2^3 \times 3^2 \times 5 \times 19)$. */

$H$a,b,c$:=Group$<a,b,c|a^2,b^2,c^2,(a*b)^2,(c*b)^3,(a*c)^10,$
$c*b*a*c*b*a*c*b*a*c*b*a*c*b*c*a*b*c*a*b*c*a*b,c*a*c*a*b*c*a*b*c*a*b,c*a*c*a*b* c*a*c*a*b*c*a*b*c*a*b*c>a,b,c,c,a*b*c,a*b*c,a*b*c,a*b*c,a*b,c);$#H;$

$D$:=$DirectProduct(PSL(2,19),CyclicGroup(2));$

IsIsomorphic($D,q);$;

$T$:=$Transversal(G1,NL[2]);$

$q,ff:=quo<G1|NL[2]>$;

$ff(T[2])$ eq $q.2;$

$ff(T[3])$ eq $q.3;$

$ff(T[4])$ eq $q.6;$

$A$:=$G1!T[2];$

$B$:=$G1!T[3];$

$C$:=$G1!T[4];$

for $i$ in $[1..3]$ do if $x^A$ eq $x^i$ then $i$; end if;

end for;

for $i$ in $[1..3]$ do if $x^B$ eq $x^i$ then $i$; end if;

end for;

for $i$ in $[1..3]$ do if $x^C$ eq $x^i$ then $i$; end if;

end for;

$G<x,a,b,c>:=Group<x,a,b,c|x^3,a^2,b^2,c^2,(a*b)^2,(c*b)^3,$
$(a*c)^10,(c*b*a*c*b*a*c*b*a*c*b*a*c*b*a*c*b*a*c*b*a*c*b*c*a*b*c*a*b*c*a*b* c*a*c*a*b*c*a*c*a*b*c,a^x=x,b^x=2,c^x=x^2>$;
#G;
f1,g1,k1:=CosetAction(G, sub<G|Id(G)>);
IsIsomorphic(g1,G1);

/* Thus, G1 is isomorphic (3 : (PSL(2,19) x 2) */
Appendix P

**MAGMA Code for Isomorphism Type of** $2^3 : \bullet (L_3(4) \times 2)$

/* Consider the subgroup $G_1$ of $S_9$ below. We will show that $N$ is isomorphic to the mixed extension of $2^3$ by $(L_3(4) \times 2)$. */
S:=Sym(9);
aa:=S!(2, 3, 4, 8, 5, 7, 9, 6);
bb:=S!(2, 4)(3, 7)(5, 9);
cc:=S!(2, 4, 5, 9)(3, 8, 7, 6);
dd:=S!(2, 5)(3, 7)(4, 9)(6, 8);
ee:=S!(1, 2, 5)(3, 6, 9)(4, 8, 7);
ff:=S!(1, 3, 7)(2, 6, 4)(5, 9, 8);
N:=sub<S|aa,bb,cc,dd,ee,ff>;
G<a,b,c,d,e,f,t>=Group<a,b,c,d,e,f,t|a^8,b^2,
c^4,d^2,e^3,f^3,(e,f),a^2=c,c^2=d,b^a=b*c*d,c^a=c,
c^b=c*d,d^a=d,d^c=d,e^a=f,e^b=e*f^2,
e^c=e*(f^2),e^d=e^2,f^a=f^2,f^b=f^2,f^c=(e^2)*(f^2)
,f^d=f^2,f^e=f,t^2,(t,a),(t,b),(t,c),(t,d),(a*d*t*e)^6>;
f,G1,k:=CosetAction(G,sub<G|a,b,c,d,e,f>);
#G1; #k;
/* We will find the Isomorphism type of $G_1 = 645120$ */
Center(G1);
CompositionFactors(G1);
NL:=NormalLattice(G1);
NL;
/* We will search for the largest Abelian subgroup of $G_1$, $NL[i]$, using the normal subgroup lattice $NL$ */
for i in [1..25] do if IsAbelian(NL[i]) then i; end if;
end for;

/* Thus, NL[8] is the largest Abelian subgroup of G1.

We factor G1 by NL[8], and call it q. Since Center(G1) < NL[8],
G1 is a mixed extension of NL[8] by q, the factor group G1/NL[8].

We now find isomorphism types and presentations of NL[8] and q. */
/* We show below that NL[8] is isomorphic to 2^-3 */

m := AbelianGroup(GrpPerm,[8]);
IsIsomorphic(m,NL[8]);

/* NL[8] is generated by x and k given below. */
NL[8] := <x|x^8>;
x := NL[8].1;

/* A presentation of NL[8]{x|x^8}. */

/* We factor G1 by N[8] and find the generators
of q a presentation for q */

q, ff := quo<G1|NL[8]>;

/* q eq sub<q|q.1,q.2,q.3,q.4,q.5,q.6,q.7>; */

D := DirectProduct(PSL(3,4),CyclicGroup(2));
IsIsomorphic(D,q);
FPGroup(q);

/* q eq sub<q|q.1,q.2,q.3,q.4,q.5,q.6,q.7>; */

H<a,b,c,d,e,f,z> := Group<a,b,c,d,e,f,z|a^8,b^2,c^4,d^2,
e^3,f^3,z^2,(a^-2*c),(c*a^-2*d),(b*c^-1)^2,(a^-1*e^-1*a*f)
 , (d*e^-1)^2,(b*f^-1)^2,(e,f),(a^-1*z*a*z)>(b*f)^2,
(a^-1*z*a^-1*b*d)>(e^-1*a^-1*e*f),(e*z*e^-1*z*e^-1*z
*b^-2*d*e^-1*z*z*e*z),(z*e^-1*z*c^-1*z*f*z*e*c*z*f
*z*e^-1*z*f^-1)>(z*b^-1*e^-1*z*f*z*e^-1*c*z*e*z*f*a*z*e)>;

#H;

f,h1,k := CosetAction(H,sub<H|Id(H)>);
IsIsomorphic(h1,q);

/*true Mapping from: GrpPerm: h1 to GrpPerm: q
Composition of Mapping from: GrpPerm: h1 to GrpPC and
Mapping from: GrpPC to GrpPerm and
Mapping from: GrpPC to GrpPerm: q */

/* We now see if the generators and relations
of q can be expressed in terms of nonidentity
elements of $\text{NL}[8]$. */

T := Transversal(G1, NL[8]);
q, ff := quo<G1|NL[8]>;
ff(T[2]) eq q.1;
ff(T[3]) eq q.2;
ff(T[4]) eq q.3;
ff(T[5]) eq q.4;
ff(T[6]) eq q.5;
ff(T[7]) eq q.6;
ff(T[8]) eq q.7;

A := T[2];
B := T[3];
C := T[4];
D := T[5];
E := T[6];
F := T[7];
Z := T[8];
ff(A*B) eq q.1*q.2;
ff(A*C) eq q.1*q.3;
ff(A*D) eq q.1*q.4;
ff(A*E) eq q.1*q.5;
ff(A*F) eq q.1*q.6;
ff(A*Z) eq q.1*q.7;
Order(A) eq Order(q.1);
Order(B) eq Order(q.2);
Order(C) eq Order(q.3);
Order(D) eq Order(q.4);
Order(E) eq Order(q.5);
Order(F) eq Order(q.6);
Order(Z) eq Order(q.7);
Order(A*B) eq Order(q.1*q.2);
Order(A*C) eq Order(q.1*q.3);
Order(A*D) eq Order(q.1*q.4);
Order(A*E) eq Order(q.1*q.5);
Order(A*F) eq Order(q.1*q.6);
Order(A*Z) eq Order(q.1*q.7);

/* The computation above demonstrates, it is possible.
Thus $G_1$ is a mixed extension product of $\text{NL}[8]$ by $\mathfrak{q}$;
that is, $2^3$ by $(L_3(4) \times 2)$. Thus $G_1$ is isomorphic
to $(2^3:.(L_3(4) \times 2))$. */
A := G1!T[2];
B := G1!T[3];
C := G1!T[4];
D:=G1!T[5];
E:=G1!T[6];
F:=G1!T[7];
Z:=G1!T[8];

/* we now determine the action of q on NL[8],
and using Transversal of NL[8] instead of the elements
of q and write the generators elements of ((L_3(4) X 2))
in terms of 2^3. */

for i in [1..8] do if x^A eq x^i then i; end if; end for;
for i in [1..8] do if x^B eq x^i then i; end if; end for;
for i in [1..8] do if x^C eq x^i then i; end if; end for;
for i in [1..8] do if x^D eq x^i then i; end if; end for;
for i in [1..8] do if x^E eq x^i then i; end if; end for;
for i in [1..8] do if x^F eq x^i then i; end if; end for;
for i in [1..8] do if x^Z eq x^i then i; end if; end for;

for i in [1..8] do if (A^-2*C) eq x^i then i; end if; end for;
for i in [1..8] do if (C*A^2*D) eq x^i then i; end if; end for;
for i in [1..8] do if (B*C^-1)^2 eq x^i then i; end if; end for;
for i in [1..8] do if (A^-1*E^-1*A*F) eq x^i then i; end if; end for;
end for;
for i in [1..8] do if (D*E^-1)^2 eq x^i then i; end if; end for;
for i in [1..8] do if (B*F^-1)^2 eq x^i then i; end if; end for;
for i in [1..8] do if (E,F) eq x^i then i; end if; end for;
end for;
for i in [1..8] do if (A^-1*Z*A*Z) eq x^i then i; end if; end for;
end for;
for i in [1..8] do if (B*F)^2 eq x^i then i; end if; end for;
for i in [1..8] do if (E*Z^-1*Z*C^-1*F*Z+E*Z*F*Z+E*Z^-1*Z*F^-1) eq x^i then i; end if; end for;
end for;
for i in [1..8] do if (Z*F^-1)^2 eq x^i then i; end if; end for;
end for;
for i in [1..8] do if (E*Z*E^-1*Z*E^-1*Z*E^-1*Z*E*Z) eq x^i then i; end if; end for;
end for;
for i in [1..8] do if (E*Z*E^-1*Z*E^-1*Z*E^-1*Z*E*Z) eq x^i then i; end if; end for;
end for;
for i in [1..8] do if (Z*B*F^-1*E^-1*Z*F*Z*E^-1*C*Z*E*Z*F*A*Z*E) eq x^i then i; end if; end for;
end for;

/* Here is a presentation for the mixed extension of 2^3
by ((L_3(4) X 2)). */
G<x,a,b,c,d,e,f,z>:=Group<x,a,b,c,d,e,f,z/x^8,a^8,b^2,c^4,d^2,
e^3,f^3,z^2,(a^-2*c),(c*a^-2*d),(b*c^-1)^2,(a^-1*e^-1*a*f),
(d*e^-1)^2,(b*f^-1)^2,(e,f),(a^-1*z*a*z),(b*f)^2,(a^-1*b*a^-1*b*d)
, (a*e^-1*a^-1*e*f), (e*z*e^-1*z*e^-1*z*b^-2*d*e^-1*z*e^-1*z*e*z)
, (z*e^-1*z*c^-1*f*z*e*c*z*f*z*e*c^-1*z*f^-1),
(z*b*f^-1*e^-1*z*f*z*e^-1*c*z*e*z*f*a*z*e)=x, x^a=x^3, x^b=x^3,
x^c=x, x^d=x, x^e=x, x^f=x, x^z=x^5;
#G;

/* now we show that G1 is isomorphic to the mixed extension
of 2^3 by (L_3(4) X 2) given above. */

f1,g1,k1:=CosetAction(G,sub<G|Id(G)>);
IsIsomorphic(g1,G1);
/* Thus, G1 is isomorphic (2^3 :. (L_3(4) x 2)) */
Appendix Q

MAGMA Code for Isomorphism

Type of $2^2 : M_{12}$

/* Consider the subgroup $G_1$ of $S_6$ below. We will show that $N$ 
is isomorphic to the Semidirect Product of $2^2$ by $M_{12}$. */
S1:=Sym(6);
ff:=S1!(1, 2)(3, 5)(4, 6);
GG:=S1!(1, 2)(3, 4)(5, 6);
HH:=S1!(1, 3, 6)(2, 4, 5);
H:=sub<S1|ff,GG,HH>;
G<a,b,c,t>:=Group<a,b,c,t|a^2,b^2,c^3,(a*b)^2,(a*c^-1)^2,
(b*(c^-1)*b*c),t^2,(t,a*b),(a*t^-c)^5,(a*b*t^-c)^6,(c*t)^8,
(b*c*t^-b*c)^8>;
f,G1,k:=CosetAction(G,sub<G|a,b,c>);
#G1, #k;
/* We will find the Isomorphism type of $G_1 = 380160$ */
Center(G1);
CompositionFactors(G1);
NL:=NormalLattice(G1);
NL;

/* We will search for the largest Abelian subgroup of $G_1$, 
$NL[i]$, using the normal subgroup lattice $NL$. */
for i in [1..10] do if IsAbelian(NL[i]) then i; end if; end for;
/* Thus, $NL[5]$ is the largest Abelian subgroup of $G_1$. 
We factor $G_1$ by $NL[5]$, and call it $q$. Since 
Center($G_1$) < $NL[5]$, $G_1$ is a mixed extension of $NL[5]$ by
q, the factor group G1/NL[5]. We now find isomorphism types and presentations of NL[5] and q. */
/* We show below that NL[5] is isomorphic to 2°2 */
NL[5];
m:=AbelianGroup(GrpPerm,[2,2]); IsIsomorphic(m,NL[5]);

/* NL[5] is generated by x and y given below. */
x:=NL[5].2;
y:=NL[5].3;
x*y eq y*x;
x*y;

/* A presentation of NL[5] is {x,y|x^2,y^2,(x,y)}. */
/* We factor G1 by N[5] and find the generators of q a presentation for q. */
q,ff:=quo<G1|NL[5]>;
q;
q eq sub<q|q.1,q.2,q.3,q.4>;
Order( sub<q|q.1,q.2,q.3,q.4>);
IsIsomorphic(MathieuGroup(12),q);

/* We show below that q is isomorphic to (M12). */
HH<a,b,c,d>:=Group<a,b,c,d|a^2,b^2,c^3,d^2,(a*b)^2,
(a*c^-1)^2,(a*d)^6,(b*c^-1*b*c),(a*d*b)^2,(c^-1*d*c*d)^3,
(c^-1*a*d*c^-1*a*d*a*c*d*a*c*d),(c^-1*d)^8,
(d*a*d*c^-1*d*a*d*c*d*a*d*a*c^-1*d*b),
(d*a*d*c*d^-1*d*a*d*c*d*a*d*a*c^-1*d*c),
(a*d*c*d*a*d*c^-1*d*a*d*c^-1*d*b*d*c^-1*d*c)>;
#HH;
f,h2,k:=CosetAction(HH,sub<HH|Id(HH)>);
IsIsomorphic(h2,q);
/*true Mapping from: GrpPerm: h2 to GrpPerm: q
Composition of Mapping from: GrpPerm: h2 to GrpPC and
Mapping from: GrpPC to GrpPC and
Mapping from: GrpPC to GrpPerm: q */

/ We now see if the generators and relations of q can be expressed in terms of nonidentity elements of NL[6]. */
T:=Transversal(G1,NL[5]);
q,ff:=quo<G1|NL[5]>;
\text{ff(T[2]) eq q.1;}
\text{ff(T[3]) eq q.2;}
\text{ff(T[4]) eq q.3;}
\text{ff(T[5]) eq q.4;}
A:=T[2];
B:=T[3];
C:=T[4];
D:=T[5];
/* The computation above demonstrates, it is possible. Thus G1 is a mixed extension product of NL[5] by q; that is, 2^2 by (M(12)). Thus G1 is isomorphic to (2^2 : (M(12))). */
/* we now determine the action of q on NL[5], and using Transversal of NL[5] instead of the elements of q and write the generators elements of (M(12)) in terms of 2^2. */

for i,j in [1..2] do if x^A eq x^i*y^j then i,j; end if; end for;
for i,j in [1..2] do if x^B eq x^i*y^j then i,j; end if; end for;
for i,j in [1..2] do if x^C eq x^i*y^j then i,j; end if; end for;
for i,j in [1..2] do if x^D eq x^i*y^j then i,j; end if; end for;

for i,j in [1..2] do if y^A eq x^i*y^j then i,j; end if; end for;
for i,j in [1..2] do if y^B eq x^i*y^j then i,j; end if; end for;
for i,j in [1..2] do if y^C eq x^i*y^j then i,j; end if; end for;
for i,j in [1..2] do if y^D eq x^i*y^j then i,j; end if; end for;

/* Here is a presentation for the mixed extension of 2^2 by (M(12)). */
G<x,y,a,b,c,d>:=Group<x,y,a,b,c,d|x^2,y^2,(x,y), a^2,b^2, c^3,d^2, (a*b)^2, (a*c)^-1, (d*a)^3, (b*c)^-1*(b*c)^-1, (a*d^b)^2, (a*d*c)^-1*a*d*c, (c*d^c)^-1*a*d*c, x^a=x*y*z, x^b=x*y*z, x^-c=x*y*z, a^d=x^z, y^a=z, y^-b=x*z, y^-c=x*z, y^d=x*z*u, y^-d=x*z*u,>
#G;

/* now we show that G1 is isomorphic to the mixed extension of 2^2 by (M(12)) given above. */

f1,g1,k1:=CosetAction(G,sub<G|Id(G)>);
IsIsomorphic(g1,G1);

/* Thus, G1 is isomorphic (2^2 : (M(12))) */
Appendix R

MAGMA Code for Isomorphism

Type of $2^6 : \cdot S_4$

/* Consider the subgroup $G_1$ of $S_{16}$ below. We will show that $N$ is isomorphic to the mixed extension of $2^6$ by $S_4$. */

```magma
S1:=Sym(16);
jj:=S1!(1, 5, 2, 6)(3, 7, 4, 8)(9, 14, 10, 13)
 (11, 16, 12, 15);
kk:=S1!(1, 9, 2, 10)(3, 11, 4, 12)(5, 13, 6,
 14)(7, 15, 8, 16);
ll:=S1!(5, 8)(6, 7)(9, 11)(10, 12)(13, 14)
 (15, 16);
mm:=S1!(1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12)
 (13, 14)(15, 16);
nn:=S1!(1, 3)(2, 4)(5, 6)(7, 8)(13, 16)(14, 15);
H:=sub<S1|jj,kk,ll,mm,nn>;
G<a,b,c,d,e,t>:=Group<a,b,c,d,e,t|a^4,b^4,c^2,d^2,e^2,
((a^-2)*d),((b^-1)*(a^2)*(b^-1)),((a^-1)*(b^-1)*a*(b^-1))
 ,((a^-1)*c*(a^-1)*e),((b^-1)*c*b*e),(c*e)^2,t^2,(t,c),
(a*c*e*b^-1*t)^3,(a*t^b)^8,(b*t^a)^3>;
f,G1,k:=CosetAction(G,sub<G|a,b,c,d,e>);
#G1,
#k;

/* We will find the Isomorphism type of $G_1 = 1536$ */
Center(G1);
CompositionFactors(G1);
NL:=NormalLattice(G1);
NL;
```
/* We will search for the largest Abelian subgroup of G1, NL[i], using the normal subgroup lattice NL */

for i in [1..16] do if IsAbelian(NL[i]) then i; end if; end for;

/* Thus, NL[9] is the largest Abelian subgroup of G1. We factor G1 by NL[9], and call it q. Since Center(G1) < NL[9], G1 is a mixed extension of NL[9] by q, the factor group G1/NL[9]. We now find isomorphism types and presentations of NL[9] and q. */
/* We show below that NL[9] is isomorphic to 2^6 */
NL[9];

m:=AbelianGroup(GrpPerm,[2,2,2,2,2,2]);
IsIsomorphic(m,NL[9]);

/* NL[9] is generated by x,y,z,w,u and v given below. */
NL[9].5,NL[9].6>;
x:=NL[9].1;
y:=NL[9].2;
z:=NL[9].3;
w:=NL[9].4;
u:=NL[9].5;
v:=NL[9].6;
x*y eq y*x;

/* A presentation of NL[9] is \{x,y,z,w,u,v|x^2,y^2,
z^2,w^2,u^2,v^2,(x,y),(x,z),(x,w),(x,u),(x,v),(y,z)
,(y,w),(y,u),(y,v),(z,w),(z,u),(z,v),(w,u),(w,v),
(u,v)\}. */
/* We factor G1 by N[9] and find the generators of q a presentation for q. */
q,ff:=quo<G1|NL[9]>
q;
q eq sub<q|q.1,q.2,q.6>;
Order( sub<q|q.1,q.2,q.6>);
IsIsomorphic(Sym(4),q);

true Isomorphism of GrpPerm: , Degree 4,
Order 2^3 * 3 into GrpPerm: q, Degree 4,
Order 2^3 * 3 induced by
(1, 2, 3, 4) \rightarrow (1, 2, 3, 4)
(1, 2) \rightarrow (1, 2)
*/
We show below that \( q \) is isomorphic to \( (S_4) \).

\[
HH<\alpha, \beta, \gamma> := \text{Group}<\alpha, \beta, \gamma | \alpha^2, \beta^2, \gamma^2, (\alpha \beta)^2, (\alpha \gamma)^4, \\
(\gamma \beta)^3, (\beta \alpha \gamma \beta \alpha \gamma \beta)^6>;
\]

\#HH;

\( f, h_2, k := \text{CosetAction}(HH, \text{sub}<HH|\text{Id}(HH)>); \)

\( \text{IsIsomorphic}(h_2, q); \)

We now see if the generators and relations of \( q \) can be expressed in terms of nonidentity elements of \( NL[9] \).

\( T := \text{Transversal}(G1, NL[9]); \)

\( q, ff := \text{quo}<G1|NL[9]>; \)

\( ff(T[2]) \equiv q.1; \)

\( ff(T[3]) \equiv q.2; \)

\( ff(T[4]) \equiv q.6; \)

\( A := T[2]; \)

\( B := T[3]; \)

\( C := T[4]; \)

\( ff(A \ast B) \equiv q.1 \ast q.2; \)

\( ff(A \ast C) \equiv q.1 \ast q.6; \)

\( ff(B \ast C) \equiv q.2 \ast q.6; \)

\( \text{Order}(A) \equiv \text{Order}(q.1); \)

\( \text{Order}(B) \equiv \text{Order}(q.2); \)

\( \text{Order}(C) \equiv \text{Order}(q.6); \)

\( \text{Order}(A \ast B) \equiv \text{Order}(q.1 \ast q.2); \)

\( \text{Order}(A \ast C) \equiv \text{Order}(q.1 \ast q.6); \)

\( \text{Order}(B \ast C) \equiv \text{Order}(q.2 \ast q.6); \)

The computation above demonstrates, it is possible.

Thus \( G1 \) is a mixed extension product of \( NL[9] \) by \( q \); that is, \( 2^6 \times (S_4) \). Thus \( G1 \) is isomorphic to \( (2^6 \times S_4) \).
/ we now determine the action of q on NL[9], and using
Transversal of NL[9] instead of the elements of q
and write the generators elements of S_4 in terms of 2^6. */

for i,j,l,m,n,o in [1..2] do if x^A eq x^i*y^j*z^l
*w^m*u^n*v^o then i,j,l,m,n,o; end if; end for;
for i,j,l,m,n,o in [1..2] do if x^B eq x^i*y^j*z^l
*w^m*u^n*v^o then i,j,l,m,n,o; end if; end for;
for i,j,l,m,n,o in [1..2] do if x^C eq x^i*y^j*z^l
*w^m*u^n*v^o then i,j,l,m,n,o; end if; end for;

for i,j,l,m,n,o in [1..2] do if y^A eq x^i*y^j
*z^l*w^m*u^n*v^o then i,j,l,m,n,o; end if; end for;
for i,j,l,m,n,o in [1..2] do if y^B eq x^i*y^j
*z^l*w^m*u^n*v^o then i,j,l,m,n,o; end if; end for;
for i,j,l,m,n,o in [1..2] do if y^C eq x^i*y^j
*z^l*w^m*u^n*v^o then i,j,l,m,n,o; end if; end for;

for i,j,l,m,n,o in [1..2] do if z^A eq x^i*y^j
*z^l*w^m*u^n*v^o then i,j,l,m,n,o; end if; end for;
for i,j,l,m,n,o in [1..2] do if z^B eq x^i*y^j
*z^l*w^m*u^n*v^o then i,j,l,m,n,o; end if; end for;
for i,j,l,m,n,o in [1..2] do if z^C eq x^i*y^j
*z^l*w^m*u^n*v^o then i,j,l,m,n,o; end if; end for;

for i,j,l,m,n,o in [1..2] do if w^A eq x^i*y^j
*z^l*w^m*u^n*v^o then i,j,l,m,n,o; end if; end for;
for i,j,l,m,n,o in [1..2] do if w^B eq x^i*y^j
*z^l*w^m*u^n*v^o then i,j,l,m,n,o; end if; end for;
for i,j,l,m,n,o in [1..2] do if w^C eq x^i*y^j
*z^l*w^m*u^n*v^o then i,j,l,m,n,o; end if; end for;

for i,j,l,m,n,o in [1..2] do if u^A eq x^i*y^j
*z^l*w^m*u^n*v^o then i,j,l,m,n,o; end if; end for;
for i,j,l,m,n,o in [1..2] do if u^B eq x^i*y^j
*z^l*w^m*u^n*v^o then i,j,l,m,n,o; end if; end for;
for i,j,l,m,n,o in [1..2] do if u^C eq x^i*y^j
*z^l*w^m*u^n*v^o then i,j,l,m,n,o; end if; end for;

for i,j,l,m,n,o in [1..2] do if v^A eq x^i*y^j
*z^l*w^m*u^n*v^o then i,j,l,m,n,o; end if; end for;
for i,j,l,m,n,o in [1..2] do if v^B eq x^i*y^j
*z^l*w^m*u^n*v^o then i,j,l,m,n,o; end if; end for;
for i,j,l,m,n,o in [1..2] do if v^C eq x^i*y^j
*z^l*w^m*u^n*v^o then i,j,l,m,n,o; end if; end for;
for i, j, l, m, n, o in [1..2] do if v\^C eq x\^i*y\^j*z\^l*w\^m*u\^n*v\^o then i, j, l, m, n, o; end if; end for;

for i, j, l, m, n, o in [1..2] do if A\^2 eq x\^i*y\^j*z\^l*w\^m*u\^n*v\^o then i, j, l, m, n, o; end if; end for;
for i, j, l, m, n, o in [1..2] do if B\^2 eq x\^i*y\^j*z\^l*w\^m*u\^n*v\^o then i, j, l, m, n, o; end if; end for;
for i, j, l, m, n, o in [1..2] do if C\^2 eq x\^i*y\^j*z\^l*w\^m*u\^n*v\^o then i, j, l, m, n, o; end if; end for;
for i, j, l, m, n, o in [1..2] do if (A*B)^2 eq x\^i*y\^j*z\^l*w\^m*u\^n*v\^o then i, j, l, m, n, o; end if; end for;
for i, j, l, m, n, o in [1..2] do if (A*C)^4 eq x\^i*y\^j*z\^l*w\^m*u\^n*v\^o then i, j, l, m, n, o; end if; end for;
for i, j, l, m, n, o in [1..2] do if (C*B)^3 eq x\^i*y\^j*z\^l*w\^m*u\^n*v\^o then i, j, l, m, n, o; end if; end for;
for i, j, l, m, n, o in [1..2] do if (B*A*C*B*A*C*A*B*C) eq x\^i*y\^j*z\^l*w\^m*u\^n*v\^o then i, j, l, m, n, o; end if; end for;

/* Here is a presentation for the mixed extension of 2^6 by S_4. */

G<x,y,z,w,u,v,a,b,c>:=Group<x,y,z,w,u,v,a,b,c\mid x^2, y^2, z^2, w^2, u^2, v^2, (x,y),(x,z),(x,w),(x,u),(x,v),(y,z),(y,w),(y,u), (y,v),(z,w),(z,u),(z,v),(w,u),(w,v),a^2=w,b^2=w,c^2, (a*b)^2=w,(a*c)^4=w*u,(c*b)^3,(b*a*c*b*a*c*a*b*c)=u*v,x^a=x*y, z^b=x*y*w,z^c=x,y^a=y,y^b=y,y^c=z,z^a=z*u,z^b=y*z,z^c=y, w^a=w,w^b=w^c*u,u^a=u,u^b=w*u,u^c=w,v^a=v,v^b=u,v^c=u>;

/* now we show that G1 is isomorphic to the mixed extension
of 2^6 by S_4 given above. */

f1,g1,k1:=CosetAction(G,sub<G\mid Id(G)>);
IsIsomorphic(g1,G1);

/* Thus, G1 is isomorphic (2^6 :. S_4) */
Appendix S

MAGMA Code for Isomorphism Type of 2 : $S_7$

\begin{verbatim}
S1:=Sym(6);
ff:=S1!(1, 2)(3, 5)(4, 6);
gg:=S1!(1, 2)(3, 4)(5, 6);
hh:=S1!(1, 3, 6)(2, 4, 5);
H:=sub<S1|ff,gg,hh>;
G<a,b,c,t>:=Group<a,b,c,t|a^2,b^2,c^3,(a*b)^2,
(a*(c^-1))^2,(b*(c^-1)*b*c),t^2,(t,a*b),(a*b*t)^4,
(a*t^c)^6,(c*t)^4,(b*c*t)^7>;
f,G1,k:=CosetAction(G,sub<G|a,b,c>);
#G1, #k;
/* We will find the Isomorphism type of G1 = 10080 */
Center(G1);
CompositionFactors(G1);
NL:=NormalLattice(G1);
/* We will search for the largest Abelian subgroup of G1, NL[i], using the normal subgroup lattice NL */
for i in [1..7] do if IsAbelian(NL[i]) then i; end if; end for;
/* Thus, NL[2] is the largest Abelian subgroup of G1. We factor G1 by NL[2], and call it q. Since Center(G1) < NL[2], G1 is a mixed extension of NL[2] by q, the factor group G1/NL[2]. We now find isomorphism types and presentations of NL[2] and q. */
\end{verbatim}
/* We show below that NL[2] is isomorphic to 2 */
NL[2];
m:=AbelianGroup(GrpPerm,[2]);
IsIsomorphic(m,NL[2]);

/* NL[2] is generated by x given below. */
x:=NL[2].2;
/* A presentation of NL[2] is {x|x^2}. */
/* We factor G1 by N[2] and find the generators of q a presentation for q. */
q,ff:=quo<G1|NL[2]>;
q;
q eq sub<q|q.1,q.2,q.3,q.4>;
Order( sub<q|q.1,q.2,q.3,q.4>);
/* We show below that q is isomorphic to (S_7). */

HH<a,b,c,d>:=Group<a,b,c,d|a^2,b^2,c^-3,d^-2,(a*b)^-2,
(a*c^-1)^2,(b*c^-1*b*c),(a*d*b)^2,(c^-1*d)^4,
(b*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a*d*a>d>; #HH;
f,h2,k:=CosetAction(HH,sub<HH|Id(HH)>);
IsIsomorphic(h2,q);
IsIsomorphic(Sym(7),q);
/* We now see if the generators and relations of q can be expressed in terms of nonidentity elements of NL[2]. */
T:=Transversal(G1,NL[2]);
q,ff:=quo<G1|NL[2]>;
ff(T[2]) eq q.1;
ff(T[3]) eq q.2;
ff(T[4]) eq q.3;
ff(T[5]) eq q.4;
A:=T[2];
B:=T[3];
C:=T[4];
D:=T[5];

/* we now determine the action of q on NL[2], and using Transversal of NL[2] instead of the elements of q and write the generators elements of (S_7) in terms of 2. */
for i in [1..2] do if x^A eq x^i then i; end if; end for;
for i in [1..2] do if x^B eq x^i then i; end if; end for;
for i in [1..2] do if x^C eq x^i then i; end if; end for;
for i in [1..2] do if x^D eq x^i then i; end if; end for;

/* Here is a presentation for the mixed extension of
2 by (S_7). */
G<x,a,b,c,d>:=Group<x,a,b,c,d|x^2,a^2,b^2,c^3,d^2,
(a*b)^2,(a*c^-1)^2,(b*c^-1*b*c),(a*d*b)^2,(c^-1*d)^4
,(d*a*d*a*d*a*d*a*d*b),(c*d*a*d*c^-1*d*a*d)^2,
(a*d*c*a*d*c*a*d*c*a*d*c^-1*d*a*c^-1*d*c),
(c*a*d*c^-1*d*a*d*c^-1*a*d*a*c*d*c^-1*d*c*d*a*d),
(x^a=x,x^b=x,x^c=x,x^d=x>;
#G;

/* now we show that G1 is isomorphic to
the semidirect product of 2 by (S_7) given above. */
f1,g1,k1:=CosetAction(G,sub<G|Id(G)>);
IsIsomorphic(g1,G1);
/* Thus, G1 is isomorphic (2 : S_7) */
Bibliography


