
Communications of the IIMA

Volume 10 | Issue 3 Article 4

2010

Integrating Failure Mode Effect Analysis into the
Medical Device Approval Process
Gerhard Steinke
Seattle Pacific University

Vania Kurniawati
Seattle Pacific University

Jim Nindel-Edwards
Globys Corporation

Follow this and additional works at: http://scholarworks.lib.csusb.edu/ciima

This Article is brought to you for free and open access by CSUSB ScholarWorks. It has been accepted for inclusion in Communications of the IIMA by
an authorized administrator of CSUSB ScholarWorks. For more information, please contact scholarworks@csusb.edu.

Recommended Citation
Steinke, Gerhard; Kurniawati, Vania; and Nindel-Edwards, Jim (2010) "Integrating Failure Mode Effect Analysis into the Medical
Device Approval Process," Communications of the IIMA: Vol. 10: Iss. 3, Article 4.
Available at: http://scholarworks.lib.csusb.edu/ciima/vol10/iss3/4

http://scholarworks.lib.csusb.edu/ciima?utm_source=scholarworks.lib.csusb.edu%2Fciima%2Fvol10%2Fiss3%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/ciima/vol10?utm_source=scholarworks.lib.csusb.edu%2Fciima%2Fvol10%2Fiss3%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/ciima/vol10/iss3?utm_source=scholarworks.lib.csusb.edu%2Fciima%2Fvol10%2Fiss3%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/ciima/vol10/iss3/4?utm_source=scholarworks.lib.csusb.edu%2Fciima%2Fvol10%2Fiss3%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/ciima?utm_source=scholarworks.lib.csusb.edu%2Fciima%2Fvol10%2Fiss3%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/ciima/vol10/iss3/4?utm_source=scholarworks.lib.csusb.edu%2Fciima%2Fvol10%2Fiss3%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

Integrating Failure Mode Effect into Medical Device Approval Steinke, Kurniawati, and Nindel-Edwards

Communications of the IIMA © 2010 49 2010 Volume 10 Issue 3

Integrating Failure Mode Effect Analysis into the
Medical Device Approval Process

Gerhard Steinke

Seattle Pacific University
gsteinke@spu.edu

Vania Kurniawati

Seattle Pacific University
vania@spu.edu

Jim Nindel-Edwards
Globys Corporation

jimne@ieee.org

ABSTRACT

Medical devices that utilize computer software are becoming common place in today’s health
care environment. Device failures can have life threatening consequences. The medical device
approval process issued by the FDA should enhance the software testing requirements. In this
paper we suggest that Failure Mode Effect Analysis (FEMA) should be a standard component in
the testing of software in medical devices that can have life threatening consequences.

INTRODUCTION

There is an increasing trend toward more automation across all domains, from traffic control and
the manufacturing realm to aviation management and medical devices. In a sense, systems are
becoming more intelligent and require less human intervention. Humans are increasingly
becoming more reliant on these intelligent systems to manage both mundane and sophisticated
functions in life. Intelligent systems have helped humans immensely in critical functions such as
in aviation: more embedded systems have been added to automate operations in the cockpit,
which have been proven to be beneficial in many ways such as reducing the stress and fatigue
that pilots have to endure on longer trips. Additionally, auto-pilot functionality has also been
proven to be better than human pilots at making critical decisions under severe circumstances.
Intuitively, computers are better at producing consistent and objective results, whereas humans
may be tempted to trust their “gut feelings” when put under pressure.

Medical devices that utilize computer software are becoming common place in today’s health
care, ranging from insulin pumps, to devices that dispense drugs, and those that monitor heart
rhythms. Many medical devices have been used successfully to provide better patient care, often
with costs savings, and in most situations actually address some areas of human driven errors
(Berman, 2004).

At the same time software to program and/or control medical devices can, and have, introduced
errors that affect patient outcomes. The errors are in part due to the hardware, the software, or a
failure of the interface between the hardware and software in the medical device and the person

mailto:vania@spu.edu�
mailto:jimnefile:///C:\Users\gsteinke\Desktop\jimn@ieee.org�

Integrating Failure Mode Effect into Medical Device Approval Steinke, Kurniawati, and Nindel-Edwards

Communications of the IIMA © 2010 50 2010 Volume 10 Issue 3

using the device. In critical systems like these, where failures may result in substantial losses, a
more rigorous safety standard is expected of the system software. More and better testing
requirements and processes should ensure that more errors are identified before medical device
products are approved and released.

The FDA has an approval process for medical devices with differences depending on the
criticality level of the application of the medical devices. The testing requirements are not clearly
specified in the FDA medical device approval process. In previous research we suggested that
human computer interaction testing can improve device quality and user experience (Nindel-
Edwards & Steinke, 2009). While human computer interaction testing is helpful and necessary, it
is usually conducted late in the development process. Addressing test findings is often resisted
because of the expense and timing concerns for fixing a product so late in the development cycle.
In this paper we suggest Failure Mode Effect Analysis (FMEA) will catch serious errors and
problems earlier on in the system development process—and should be part of the process before
medical devices are approved by the FDA.

MEDICAL DEVICE FAILURES

A few examples of problems with the human computer interface of medical devices will provide
some background for this paper.

The Therac-25 device was developed to provide radiation to cancer patients. The presence of
numerous flaws in the software led to massive radiation overdoses, resulting in the deaths of
three people (Leveson, 1993). It was poor user interface controls that caused prescription and
dose rate information to be entered improperly (McQuaid, 2009).

A problem with a flow control knob is cited by the FDA (Sawyer, 1996): "A physician treating a
patient with oxygen set the flow control knob between 1 and 2 liters per minute, not realizing
that the scale numbers represented discrete rather than continuous, settings. There was no oxygen
flow between the settings, yet the knob rotated smoothly, suggesting that intermediate settings
were possible. The patient, an infant, became hypoxic before the error was discovered. Testing of
this device should have identified this problem."

A volumetric infusion pump is a medical device that delivers intravenous fluids and medicine to
patients. The Baxter Colleague triple channel infusion pump generates fault codes under the
condition of changing a fluid supply at the same time the supply goes to zero (an understandable
& appropriate behavior). Unfortunately this fault also stopped the other two channels from
continuing to operate, causing a life threatening situation for patients. At least 9 patients’ deaths
have been attributed to miscommunication between the care giver and the software that runs
these medical devices (Infusion Pump Recall, 2009).

The Journal of the American Medical Association (Koppel et al., 2005) reported on an
examination of a hospital computer system and suggested that computers increased the error risk.
They said, “…the problem is that hospital computer systems are not designed for the way real-
life hospitals work.” It appears that their recommendation is for more testing.

Integrating Failure Mode Effect into Medical Device Approval Steinke, Kurniawati, and Nindel-Edwards

Communications of the IIMA © 2010 51 2010 Volume 10 Issue 3

Further examples can be found in an article published by Dick Sawyer (1996). The complexity of
technology and software is growing: The deployment of medical devices to the field such that
"Caregivers and clinical engineers ... are becoming lost in a swirl of technology, and [we] face
unanticipated interference between devices." (Lee and Pappas, 2006). It is clear that some
medical devices have failed, at least in part due to the software in the devices.

FDA STANDARDS FOR TESTING MEDICAL DEVICES

The Federal Drug Administration has established standards for medical devices and classifies
these based on criticality levels of the device usage, ranging from Class I (least critical) to Class
III (life support/life sustaining) (FDA, 2006a):

• Class I – Devices used in non-life sustaining tasks, subject only to “General
Controls”.

• Class II – Also non-life sustaining, but subject to both “General Controls” and
“Special Controls” (FDA, 2006b).

• Class III – Devices that sustain or support life, subject to both types of controls and
may not be introduced to market without FDA oversight and pre-approval requiring
in many cases clinical trials.

Class III medical devices require the most scrutiny, and accordingly are the devices that cost the
most to develop, test, and support. It is interesting to note that Class II devices can, and are,
applied in situations where if not used, or tested appropriately, can result in serious injury and
possible patient mortality. And yet the approval process for Class II is significantly reduced from
Class III devices. Also, from the FDA perspective, it seems that the difference between hardware
and computer controls with associated software is not material. The devices are simply classified
as I, II, or III, based on usage. Perhaps the testing could also be based on the complexity of the
device and the associated software—the more complex, the more testing should be required.

FDA RECOMMENDATION FOR SOFTWARE DEVELOPMENT

There are software standards published by the FDA in 2002 that provide guidelines and
requirements for the software used in medical devices, regardless of class (Quality System
Regulation, 2006). Various FDA documents specify that the “general controls” associated with
software in medical devices follow existing standards for requirement driven software projects,
e.g. the classic waterfall model overlaid by a risk based analysis termed “Level of Concern”.
This is summarized in the Guidance for the Content of Premarket Submissions for Software
Contained in Medical Devices documented in the following decision matrix (FDA, 2006a):

The criticality of devices is divided into three classes: Class I, II and III. The software is divided
into three areas as well: Minor Concern, Moderate Concern and Major Concern. There is some
relationship between the two. That is to say that a medical device could be a class III (highest
standards) yet the software associated with the device be only a "minor concern" if the software

Integrating Failure Mode Effect into Medical Device Approval Steinke, Kurniawati, and Nindel-Edwards

Communications of the IIMA © 2010 52 2010 Volume 10 Issue 3

component was actually peripheral to the Class III rating. This in fact was the situation with the
first model of the Therac as the hardware provided the protection and the associated software
was of "moderate concern". When the hardware interlock was removed the software moved from
"moderate" to "major" without the appropriate review of the software component.

Software Documentation Minor Concern Moderate Concern Major Concern

Level of Concern A statement indicating the Level of Concern and a description of the
rationale for that level.

Software Description A summary overview of the features and software operating
environment.

Device Hazard Analysis Tabular description of identified hardware and software hazards,
including severity assessment and mitigations.

Software Requirements
Specification (SRS)

Summary of
functional
requirements from
SRS.

The complete SRS document.

Architecture Design
Chart

No documentation is
necessary in the
submission.

Detailed depiction of functional units and
software modules. May include state
diagrams as well as flow charts.

Software Design
Specification (SDS)

No documentation is
necessary in the
submission.

Software design specification document.

Traceability Analysis Traceability among requirements, specifications, identified hazards
and mitigations, and Verification and Validation testing.

Software Development
Environment Description

No documentation is
necessary in the
submission.

Summary of software
life cycle development
plan, including a
summary of the
configuration
management and
maintenance activities.

Summary of
software life cycle
development plan.
Annotated list of
control documents
generated during
development
process. Include the
configuration
management and
maintenance plan
documents.

Verification and
Validation
Documentation

Software functional
test plan, pass / fail
criteria, and results.

Description of V&V
activities at the unit,
integration, and
system level. System
level test protocol,
including pass/fail

Description of V&V
activities at the unit,
integration, and
system level. Unit,
integration and
system level test

Integrating Failure Mode Effect into Medical Device Approval Steinke, Kurniawati, and Nindel-Edwards

Communications of the IIMA © 2010 53 2010 Volume 10 Issue 3

criteria, and tests
results.

protocols, including
pass/fail criteria, test
report, summary,
and tests results.

Revision Level History Revision history log, including release version number and date.

Unresolved Anomalies
(Bugs or Defects)

No documentation is
necessary in the
submission.

List of remaining software anomalies,
annotated with an explanation of the impact
on safety or effectiveness, including operator
usage and human factors.

The key reports associated with the FDA specifications are listed in the first column above:

• Software Requirements Specification (SRS),
• Architecture Design Chart,
• Software Design Specification (SDS),
• Traceability Analysis,
• Software Development Environment Description,
• Verification and Validation Documentation,
• Revision Level History, and
• Defect Reports.

The key deliverable is the Verification and Validation (aka V&V) documentation. While a
common term in the software industry, we’ll reflect here on the FDA’s definition (FDA, 2002):

• Software verification provides objective evidence that the design outputs of a
particular phase of the software development life cycle meet all of the specified
requirements for that phase. Software verification looks for consistency,
completeness, and correctness of the software and its supporting documentation, as it
is being developed, and provides support for a subsequent conclusion that software is
validated. Software testing is one of many verification activities intended to confirm
that software development output meets its input requirements. Other verification
activities include various static and dynamic analyses, code and document
inspections, walkthroughs, and other techniques.

• Software validation is a part of the design validation for a finished device, but is not
separately defined in the Quality System regulation. The FDA considers software
validation to be "confirmation by examination and provision of objective evidence
that software specifications conform to user needs and intended uses, and that the
particular requirements implemented through software can be consistently fulfilled."
In practice, software validation activities may occur both during, as well as at the end
of the software development life cycle to ensure that all requirements have been
fulfilled. Since software is usually part of a larger hardware system, the validation of
software typically includes evidence that all software requirements have been
implemented correctly and completely, and are traceable to system requirements. A
conclusion that software is validated is highly dependent upon comprehensive
software testing, inspections, analyses, and other verification tasks performed at each

Integrating Failure Mode Effect into Medical Device Approval Steinke, Kurniawati, and Nindel-Edwards

Communications of the IIMA © 2010 54 2010 Volume 10 Issue 3

stage of the software development life cycle. Testing of device software functionality
in a simulated use environment, and user site testing are typically included as
components of an overall design validation program for a software automated device.

An interesting point here is the statement “that software specifications conform to user needs and
intended uses”. This assumes that the Software Requirements Specifications (SRS) in and of
itself is correct, and Verification and Validation (V&V) assures the device software matches the
specifications. What if the SRS itself is flawed in one or more areas? The very best we can say is
that we’ve assured (through the V&V process) that the software perform well to the requirements
(SRS) without highlighting the underlying flaw in the SRS.

So we have two areas to examine that are not included in the FDA requirement:

• Are the requirements indeed accurate and complete?
• Has the system been designed appropriately to achieve the requirements?

The software quality assurance perspective is to “drive quality upstream” by verifying the
correctness of the requirements, in this instance the SRS and Software Design Specification
(SDS). It is especially in answering the second question that FMEA can be very helpful. Then
the Verification and Validation process can assure that the system meets the requirements.

FAILURE MODE EFFECT ANALYSIS (FMEA)

To find design and conceptual software faults, a Quality Engineering methodology called Failure
Mode Effect Analysis (FMEA) can be utilized. We can answer the question: Has the system been
appropriately designed to achieve the requirements? Conceptual software faults, or the inherent
defects in the logic of the software models, are usually not components of standard testing
methodologies. That is why FMEA is so beneficial.

FMEA proactively sets out to find out what exactly can go wrong, the cost of such failures, and
the cost to mitigate these failures. At the heart of FMEA is the process of re-evaluating a
preliminary design with the conscious mind that the design is flawed.

FMEA is a very simple tool, but what makes this tool very powerful is the fact that it
incorporates multiple viewpoints into system design. Fred Brooks (1982) in his best-seller, The
Mythical Man-Month: Essays on Software Engineering, describes an integrity goal as
“[dictating] that the design must proceed from one mind or from a very small number of agreeing
resonant minds.” FMEA provides a framework for more people with different backgrounds, a
design committee, to do exactly that. The goal is that those who are involved in this analysis are
not new to the field – they have probably designed similar systems in the past. Consequently,
they should be able to point out what components of the system are most likely to fail and what
components are most likely to inflict the most damage if they fail. FMEA is successful only if
the design committee is composed of experts from different functional groups that are committed
in the design process and have enough authority to make the decision or outcome stick.

Integrating Failure Mode Effect into Medical Device Approval Steinke, Kurniawati, and Nindel-Edwards

Communications of the IIMA © 2010 55 2010 Volume 10 Issue 3

Unlike other risk management tools that often require statistical savvy, FMEA is relatively
intuitive. It is often described as a design tool, because the idea is to correct the conceptual faults
of the system or product – or in other words, to correct the defects before they are created.

According to Peter L. Goddard there can be two types of software FMEA: system-level software
FMEA and detailed software FMEA. He describes the system-level software FMEA as being
“based on the top level software design: the functional partitioning of the software design into …
modules.” (Goddard, 2000) This system-level software FMEA is an ongoing guideline that
controls the risk of defects through product or process design requirements.

The detailed software FMEA is introduced later in the design process, “once at least pseudo code
for the software modules is available.” (Goddard, 2000) Detailed software FMEA is a testing
tool that checks the validity of the risk mitigation mechanisms introduced earlier in the process
by the system-level software FMEA.

Goddard recommends a process for developing a FMEA. First software hazards or problem areas
must be identified. Being logical entities (as opposed to physical entities), hazards must be
identified and translated into software terms prior to the analysis. After a list of all potential
hazards is created, Goddard suggests performing a fault tree analysis to investigate the potential
causes of hazards. The end results of the fault tree analysis should be a value set associated with
each hazard cause, which is then identified as a software hazard.

The next step in FMEA is to assign a numerical rating of 1 through 10 for the following
variables, which are listed in descending order of importance, to each of the software hazards:

1. Severity. A rating of 1 in severity indicates an insignificant damage and a rating of 10
indicates a catastrophic outcome resulting from the hazard.

2. Occurrence. A rating of 1 in occurrence indicates a hazard that is unlikely to happen
and a rating of 10 indicates a hazard that inevitably will happen.

3. Detection. A rating of 1 in detection indicates that occurrence of a particular hazard is
detectable (i.e. the hazard will be visible before the damage is done) and a rating of
10 indicates that no control exists to detect such occurrence (i.e. the damage will be
visible once damage is done).

These variables are then multiplied together to produce a Risk Priority Number (RPN). Based on
these assigned RPN’s, the FMEA committee is then aided in the decision to select what hazards
to focus their design fixes/mitigation planning on.

Part of what makes FMEA a successful risk mitigation tool is that it is a structured process for
identifying areas of concern. It helps document, plan and track risk reduction activities
proactively – thus reducing costs of fixing defects later. More importantly, FMEA is a group
effort, which means the action plans that result from FMEA reflects the commitment and
ownership of a cross-functional group of people (i.e. “all necks in the noose”).

FMEA ultimately provides the documentation that the design committee has done their due
diligence in re-evaluating the conceptual integrity of their design. Additionally, it can also serve

Integrating Failure Mode Effect into Medical Device Approval Steinke, Kurniawati, and Nindel-Edwards

Communications of the IIMA © 2010 56 2010 Volume 10 Issue 3

as a proof of evidence-based decision making. A well-constructed FMEA worksheet can show
the logical reasoning behind why mitigation plans are focused on a particular area of the
software system.

FMEA has been recommended for evaluating critical systems in various industries and
standards, including: SAE J1739, ARP 5580, ISO 9001:2000, MIL STD 1629A, MIL STD 882,
IEC 61508 (Goddard, 2000). FMEA is not a substitute for rigorous testing mechanisms that
check for completeness and accuracy of the systems, but it can be a powerful tool to improve
quality, reliability and safety of a process or product.

Therefore, the recommendation that FMEA should be a part of the FDA testing requirements for
medical devices that impact lives is important. The use of a cross-functional group to evaluate
the design is especially appropriate. Medical devices put a heavy responsibility on the design
team responsible for the development and implementation of medical devices. The medical
device design teams is not are not licensed care givers but computer hardware, and software
developers. Theirs is the job of both discerning not only the requirements and anticipated uses of
medical devices, but the potential for boundary, outlier, and simply misuse of these devices. It is
worthwhile to repeat Marc Green’s (n.d.) comment: “Faulty design could be construed as
negligence on the part of the designers.”

The goal of FMEA is to verify at the start of the design phase the components of the system that
are most likely to fail and what components are most likely to inflict the most damage.
Concentrating on what, and how, a critical heath care application is intended to respond is
certainly a factor in the design, development and delivery of functionality. FMEA and its
associated testing of medical device design and performance can assure that the device delivers
its critical care under the anticipated circumstances and continues to delivers critical care when
circumstances are less than ideal. Any of us can suggest that if events had only gone as we
expected them to unfold, everything would "be ok". FMEA provides for an evaluation of the
most serious failures and hazards.

CONCLUSION AND FUTURE RESEARCH

FMEA is being successfully used in many commercial settings to develop better products.
Similar to critical software components in the aviation and automotive industry, FMEA can help
in evaluating critical components of medical devices. The FDA should require medical devices
manufacturers to use FMEA during the development of medical devices.

A challenge for the FDA as well as a medical device manufacturer is the question: What is
appropriate and sufficient testing? How much testing is enough? Often it is impossible to test all
possible conditions and situations. Certainly the testing should relate to the FDA’s definition of
Class I, II and III devices. Perhaps there should also be some factor as to the complexity of the
software in a particular device, with more complex software functions calling for more testing.
We would also suggest that an independent organization verify the testing performed by the
manufacturer and provide some level of certification as to the testing that has been performed.
Further research is necessary to determine certification levels and their relationship to the
criticality levels of the medical devices.

Integrating Failure Mode Effect into Medical Device Approval Steinke, Kurniawati, and Nindel-Edwards

Communications of the IIMA © 2010 57 2010 Volume 10 Issue 3

REFERENCES

Berman, A. (2004). Reducing medication errors through naming, labeling, and packaging.

Journal of Medical Systems, 28(1), 9-29.

Brooks, F., Jr. (1982). The mythical man-month: Essays on software engineering. Reading, MA;
Addison-Wesley.

FDA. (2002). General principles of software validation: Final guidance for industry and FDA

staff. Retrieved from
http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/Guidanc
eDocuments/ucm085371.pdf

FDA. (2006a). FDA regulatory requirements and approvals. Retrieved from
http://www.cdaservices.com/fda approval.htm

FDA. (2006b). Device classification panels. Retrieved from

http://www.fda.gov/MedicalDevices/DeviceRegulation
andGuidance/Overview/ClassifyYourDevice/ucm051530.htm#regs

Functional safety and IEC 61508. (2005). Retrieved from

http://www.iec.ch/zone/fsafety/pdf_safe/hld.pdf

Goddard, P. L. (2000). Software FMEA techniques. Proceedings Annual Reliability and

Maintainability Symposium, 118-123, New York.

Green, M. (n.d.). Error and injury in computers and medication devices. Retrieved from

http://www.visualexpert .com/Resources/compneg.html

Infusion pump recall. (2009). Retrieved from

http://www.baxter.com/about_baxter/press_room/documents/2009/
03_11_09_colleague.pdf

Koppel, R., Metlay, J. P., Cohen, A., Abaluck, B., A. Localio, A. R., Kimmel, S. E., & Strom, B.

L. (2005). Role of computerized physician order entry systems in facilitating medication
errors. JAMA, 293(10), 1197-1203. doi:10.1001/jama.293.10.1197.

Lee, I., & Pappas, G. (2006). High-confidence medicate devices software and systems. IEEE
Computer, 39(4), 33-38.

Leveson, N. (1993). An investigation of the Therac-25 accidents. IEEE Computer, 26(7), 18-41.

McQuaid, P. (2009). Software disasters: What have we learned? California Polytechnic State

University SQP, 11(3), ASQ.

http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm085371.pdf�
http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm085371.pdf�
http://www.cdaservices.com/fda%20approval.htm�
http://www.fda.gov/MedicalDevices/DeviceRegulation%20andGuidance/Overview/ClassifyYourDevice/ucm051530.htm#regs�
http://www.fda.gov/MedicalDevices/DeviceRegulation%20andGuidance/Overview/ClassifyYourDevice/ucm051530.htm#regs�
http://www.iec.ch/zone/fsafety/pdf_safe/hld.pdf�
http://www.baxter.com/about_baxter/press_room/documents/2009/%2003_11_09_colleague.pdf�
http://www.baxter.com/about_baxter/press_room/documents/2009/%2003_11_09_colleague.pdf�

Integrating Failure Mode Effect into Medical Device Approval Steinke, Kurniawati, and Nindel-Edwards

Communications of the IIMA © 2010 58 2010 Volume 10 Issue 3

Nindel-Edwards, J., & Steinke, G. (2009). Integrating human computer interaction testing into
the medical device approval process. Paper presented at the 20th Annual Conference for
the International Information Management Association (IIMA), Houston, TX.

Quality System Regulation. (2006). 21 CFR Part 820. Retrieved from

http://www.gmp1st.com/mdreg.htm

Sawyer, D. (1996). Do it by design: An introduction to human factors in medical devices.

Retrieved from
http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/Guidanc
eDocuments/ucm095061.pdf

http://www.gmp1st.com/mdreg.htm�
http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm095061.pdf�
http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm095061.pdf�

	Communications of the IIMA
	2010

	Integrating Failure Mode Effect Analysis into the Medical Device Approval Process
	Gerhard Steinke
	Vania Kurniawati
	Jim Nindel-Edwards
	Recommended Citation

	Integrating Failure Mode Effect Analysis into the
	Medical Device Approval Process

