A Graph-Theoretic Approach to Improved Curriculum Structure and Assessment Placement

Jay M. Lightfoot

University of Northern Colorado

Follow this and additional works at: https://scholarworks.lib.csusb.edu/ciima

Recommended Citation
Available at: https://scholarworks.lib.csusb.edu/ciima/vol10/iss2/5

This Article is brought to you for free and open access by CSUSB ScholarWorks. It has been accepted for inclusion in Communications of the IIMA by an authorized editor of CSUSB ScholarWorks. For more information, please contact scholarworks@csusb.edu.
A Graph-Theoretic Approach to Improved Curriculum Structure and Assessment Placement

Jay M. Lightfoot
University of Northern Colorado
jay.lightfoot@unco.edu

ABSTRACT

Assurance of student learning is an important issue in modern education. Accrediting bodies and government entities alike have begun requiring proof that students actually learn the material taught in the classroom. To comply with this mandate, education programs are actively engaged in incorporating assessment procedures into their curricula. Unfortunately, there are no generally agreed upon methods on how to do this. This paper addresses the issue and answers several key questions concerning where to locate topic coverage, assessment data collection, and corrective action within the curriculum. The approach described and developed in this paper cast the curriculum problem into an abstract graph representation. Graph-theoretic metrics are calculated and visualization software is utilized to create a picture that helps answer the research questions. The result is a systematic, easy to understand approach that produces defensible output which should greatly aid faculty and administrators tasked with creating an assessment scheme.

INTRODUCTION

Assurance of student learning is now required by many accrediting bodies as a key component of initial and reaccreditation requests (AACSB, 2010; SACS, 2010; MSC, 2009; HLC, 2009, Jones, 2007). The United States government has also embraced the practice as evidenced by the final version of the Spellings Report (Spellings, 2006). This report was commissioned by the U.S. Department of Education as a roadmap for the future of higher education in the United States. In this report, the Commission recommended the following:

To meet the challenges of the 21st century, higher education must change from a system primarily based on reputation to one based on performance. We urge the creation of a robust culture of accountability and transparency throughout higher education (Spellings 2006, p. 21).

This aspiration is shared by state governments and school districts across the nation (No Child Left Behind, 2009; Jones, 2007). Clearly, the mood of the tax-paying population and the representatives they elect is one of educational accountability and outcome-based results.

In an attempt to comply with this mandate, colleges and universities are rushing to incorporate direct program assessment processes into their curricula. For some institutions this is a fairly minor task because outcome-based performance measures and assessment were already a part of the academic culture. For others, the required inclusion of assessment is a massive undertaking of program redesign, process creation, data collection, and corrective analysis. In both cases, decisions must be made involving curriculum redesign and assessment structure. For example,
institutions must decide what goals and objectives are appropriate for programs, what topics should be covered to achieve objectives, where the topics should be taught, where objective assessment should be performed, what is the threshold of a “successful” assessment, etc. These questions must be answered and the solutions implemented quickly if the institution is to gain or maintain its accreditation. Unfortunately, program redesign and haste are incompatible concepts even under ideal conditions. Given the current state-of-the-art of program redesign and the paucity of research applicable to assessment inclusion, conditions are far from ideal for most institutions.

The purpose of this research is to address this problem by answering some of the key questions involved in incorporating formal assessment into an existing curriculum. Specifically, this paper will deal with the following questions.

- Where in the curriculum should introductory topic coverage be placed?
- Where should reinforcement of assessment topics take place?
- Where should primary and secondary objective assessment be located?
- Where should changes identified by assessment feedback be implemented?

These are fundamental structural questions that must be answered by the faculty and administrators tasked with assessment inclusion. Currently, there are no generally agreed upon methods to deal with these structural concerns. Without a systematic, repeatable methodology to deal with these issues, the resulting assessment scheme can be arbitrary, inconsistent, and ineffective. Given the public interest in educational accountability and outcome-based learning, this is not good enough.

The approach developed and described by this paper will use graph-theoretic metrics and visualization to analyze an existing curriculum structure. The graph visualizations will show the courses, pre-requisite chains, program memberships, and course types of the curriculum. From these networks, basic graph theory metrics will be calculated and used to indicate the appropriate location for assessment components and modifications within the curriculum. While the locations determined are not proven to be optimal within the curriculum, they are based on a theoretical background that is systematic, defensible, and repeatable. These characteristics make it an excellent choice to establish the initial structural aspects of a new assessment scheme or to fine tune an existing one.

GRAPH-THEORETIC BACKGROUND

Graph theory is a branch of mathematics that studies the connections, structure, and properties of graphs. A graph is merely an abstract construct consisting of nodes (i.e., vertices) and connecting lines (i.e., edges). Each edge connects exactly two vertices. The graph can be undirected or directed. An undirected graph is one where there is no particular ordering to the connected vertices; they are simply connected by an edge. A directed graph is one where the edges imply a specific ordering, or direction, to the edge connection. The implication of this is that one vertex of the pair occurs first and the other second. A weighted graph is one where a value is associated with the edges and/or vertices. Within the graph, the number of vertices is called its order and any graph with an order of 0 or 1 is generally denoted as trivial. The number
of edges directly connecting to a vertex is called its degree and a vertex with a degree of 0 is said to be isolated. Finally, a vertex is incident to an edge if that edge connects it to another vertex; whereas, two vertices are adjacent if they both have the same incident edge in common (Newman, 2007; Diestel, 2000).

The historical origins of graph theory lie in a paper published in 1736 by Leonhard Euler concerning an algorithm to cross all seven bridges in the city of Königsberg in Prussia (Biggs, Lloyd, & Wilson, 1998). The constraint on this problem was that all seven bridges be crossed exactly one time. Euler’s abstract representation of the problem as vertex pairs connected by edges and his algorithmic solution laid the foundations for both graph theory and topology. Since his seminal work, the use of graph theory has expanded to many diverse fields including anthropology, architecture, biology, chemistry, physics, circuit design, disease transmission prediction, and social network analysis (Buckley & Harary, 1990).

Basic Graph Metrics

Graph theory is vast field of study that includes a rich collection of research and applications. Not all of graph theory is applicable to the current research project; consequently, this paper will only consider the relatively small subset related to structural centrality, clustering density, and degree. These concepts have been used for a number of important analysis purposes; the most notable recent application being the analysis of social networks (Smith, Hansen, & Gleave, 2009; Shamma, Kennedy, & Churchill, 2009; Borgatti, 2005a; Brandes, 2001). These metrics are particularly applicable to the curriculum design problem because they capture the key structural elements needed to determine placement of topic introduction, reinforcement, and assessment. The remainder of this section will introduce the basic metrics used in this research. Formal mathematical details are omitted because they would unnecessarily complicate the presentation of the material.

Measures of Degree

The degree of a vertex is simply a count of the number of edges incident to that vertex. In other words, the degree of a vertex is the number of edges connected to it. From an analysis standpoint, vertices with a high degree are an indication of key points of exposure for whatever is flowing through the network and the opportunity to influence or augment this flow (Borgatti, 2005b). It is also considered an important measure of the influence or importance of a vector in the structure (Newman, 2007). There is only one measure of degree in an undirected graph. If the edges in the graph are directed, there are two measures of degree: in-degree and out-degree. As the names imply, in-degree is a count of the number of edges coming into a vertex whereas out-degree is the number of edges going out of a vertex. Analysis of the in-degree measure indicates the destination of the flow while out-degree analysis implies the origin. Figure 1 shows an undirected graph with 10 vertices and 17 edges (Hansen, Shneiderman, & Smith, 2009). The degree of vertex E is 3 and the degree of vertex D is 6.
Measures of Centrality

The notion of graph centrality is very important to the study of graph structure because it implies locations of power, prestige, prominence, and importance (Borgatti, 1995; Freeman, 1979). This is particularly true in organizational graph structures where some sort of flow is implied (Borgatti, 2005a). The key question considered by centrality measures is, “What is the most important vertex in the graph?” The answer to this question depends upon how one defines “important” (Newman, 2007). For the purposes of this research, two fundamental measures of centrality are utilized: betweenness centrality and eigenvector centrality. Both measures provide a slightly different interpretation of what constitutes an “important” vector; consequently, each can be used to deal with a slightly different structural concern.

Betweenness centrality is useful in finding vertices that serve as a bridge from one part of a graph to another. Consequently, betweenness is a rudimentary measure of the control that a specific vertex exerts over the flow throughout the full graph (Newman, 2007). For example, vector H in Figure 1 is the connection between the main part of the graph and vectors I and J. Were vector H to be removed, I and J would be cut off from the rest of the graph. This makes H “important” because it ensures that no nodes are isolated. This is not true for vertex G even though G has a much higher degree. When using betweenness centrality as an analysis measure, it indicates a potential gate keeping or controlling vector.

Eigenvector centrality can best be thought of as an indirect measure of centrality. A key difference between this measure and the less sophisticated centrality metrics is that eigenvector centrality recognizes that some connections are more important (or influential) than others (Newman, 2007; Bonacich, 1972). Consequently, it considers not only the degree of a vector but also the degree of all the vectors that connect to it (Hansen, Shneiderman, & Smith, 2009; Alexander, 1963). The implication is that proximity adjacent to a highly connected vector is an important characteristic to note due to the influence it potentially affords the vector (Borgatti, 1995). Figure 1 illustrates this as follows: vectors H and E have identical degree values; however, vector E is connected to vector D which has the highest degree in the graph. Because of this, E is more likely to be influential and able to affect change within the graph than H. As

![Figure 1: Undirected graph.](image-url)
would be expected, E has the higher eigenvector value.

Clustering Measures

The *clustering coefficient* is useful in determining how tightly adjacent vectors cluster together. In this case, the word “tight” does not imply spatial distance, but rather the density of existing edge connections as compared to the total possible connections. The value of the coefficient ranges from 0 to 1 with 1 being the value of a *complete graph* (Watts & Strogatz, 1998). A complete graph is one where every vertex is connected to every other vertex by an edge (Diestel, 2000). This measure is useful because it helps identify key vertices with enhanced importance or influence within a densely connected group. These vertices would be useful in efficiently implementing change into the cluster. Vertices with a high clustering coefficient also identify the key points of a *clique*—a subgraph of densely connected vertices (Melnikov, Sarvanov, Tyshkevich, Yemelichev, & Zverovich, 1998). To illustrate this metric, vectors B, D, and G in Figure 1 are all connected to one another by the maximum number of edges; which is 3. They form a complete graph and hence would have a high clustering coefficient of 3/3 or 1. On the other hand, vectors F, G, and I are not densely connected (there is 1 connection out of a possible 3); hence, the clustering coefficient is 1/3. This coefficient denotes a lack of dense clustering which, in turn, implies the absence of a central point of influence.

GRAPH THEORY APPLIED TO CURRICULUM DESIGN

The curriculum of an educational program can be represented as a graph. This type of abstraction from real-world problem to graph construct is very common and has been applied to numerous problems including: package delivery, disease propagation, e-mail transmission, money exchange, and communication in social networks (Borgatti, 2005a). For the curriculum context, courses become vectors and the edges correspond to prerequisite requirements. Vectors that are not part of a prerequisite chain would be isolated. Since a prerequisite relationship has a distinct ordering, the graph would need to be a *directed* graph. Finally, assuming that the course is passed, standard curriculum schemes do not require that a course be taken multiple times to satisfy graduation requirements. This means that only one edge would be incident to any two vectors and no self-loops would be present. Thus, the resulting curriculum graph would be classified as *simple* and *acyclic*. From these definitions, it follows that a typical academic curriculum can be represented as a *simple acyclic directed graph*.

To determine the viability and effectiveness of the approach developed by this research, the technique was applied to the actual curriculum of a college of business administration. This college has six emphasis majors that include accounting, computer information systems (CIS), finance, general business, management, and marketing. One Bachelors degree is offered for all six emphasis areas and the entire program is accredited by the Association to Advance Collegiate Schools of Business (AACSB). The college is currently in the process of redesigning its assessment scheme, so it is an ideal test case for the technique.

The initial step to apply the technique was to build models for each of the six emphasis areas within the program. These were then merged into a single model to represent the entire curriculum of the college. Graph models can be converted into a mathematical format that
allows for easy calculation and manipulation. Numerous software packages have been
developed specifically to handle these calculations and provide a visual representation of the
resulting graph. For the purposes of this research, the NodeXL add-in for Microsoft Excel was
utilized. This add-in is freely available for download from the CodePlex Open Source
Community. NodeXL was selected because it is free and uses the familiar interface and
functions built into Microsoft Excel. In addition, the add-in automatically performs the
calculations needed for basic graph analysis and has a visualization component that allows the
user to display the resulting graph as a picture. Components of this picture (e.g., the size of the
vertices, the color of the edges, edge patterns) can be modified automatically by the software to
indicate the values of common graph metric calculations. This is a powerful analytic capability
that allows the user to visually emphasize the key structural elements and important connections
in a curriculum based upon the graph-theoretic metrics of its graph. Figure 2 shows the visual
representation of the full curriculum model after it was entered into the NodeXL add-in. The
remainder of this section uses this model to analyze the curriculum of the college of business
administration with the basic graph metrics described earlier.

![Graph of College of Business Administration Curriculum](image)

Figure 2: Full curriculum graph of the college of business administration.

In Figure 2, the course vertices are represented by labeled circles. The numbering scheme for the
labels indicates the progression from the freshman courses (100-level) to senior courses (400-
level). The nodes are also labeled and color-coded to denote the emphasis area that offers each
course. The directed edges between the vertices represent the prerequisite requirements for
courses. Thus, the course labeled BAAC 221 in the upper center portion of the graph has a
prerequisite of BAAC 220 which in turn has a prerequisite of BA 101. From a graph metric
standpoint, vector BAAC 221 has an in-degree of 1 and an out degree of 7.

Figure 2 is obviously too complicated to interpret easily even when careful vector layout and
emphasis color-coding is employed. To correct this, a NodeXL feature was utilized to
selectively remove vertices and edges that meet user-specified criteria. Figure 3 shows the results of displaying only courses and edges that are required for graduation by the curriculum.

This is a very practical simplification because most assessment schemes concentrate exclusively on the required courses in the curriculum since students taking electives tend to self-select and would consequently skew the assessment results. Figure 3 also simplifies the graph by representing emphasis required courses as circles and core required courses as 3-dimensional spheres. Taken together, these modifications create a workable graph that will be used to demonstrate that graph-theoretic metrics can help determine assessment placement and topic emphasis within the curriculum.

Application of Out-Degree

The out-degree of a vertex is a count of the number of directed incident edges that leave the vertex. The measure indicates the origin of flow within the directed graph and highlights points where that flow can be augmented or influenced (Borgatti, 2005b). When applied to a curriculum context, a vertex with a high out-degree indicates a course that is a prime location to expose students to introductory material or framework concepts. It also identifies a good course to perform baseline assessment to determine a student’s initial knowledge of assessed topics. Figure 4 shows the curriculum graph modified to visually represent the out-degree metric of each course.
In Figure 4, the NodeXL add-in was used to calculate the out-degree metric for all nodes in the graph. These values were then used to automatically scale the size of the vertices so that nodes with a low out-degree are shown very small and nodes with a high out-degree are shown very large. For example, the vertex labeled BACS 285 has an out-degree of 0; consequently, it is shown very small. Vertex BAMK 360 has the largest out-degree of any vertex in the curriculum and is shown as the largest vertex on the graph. Note that the NodeXL metric calculations are performed on the full graph as represented in Figure 2. The simplified graph in Figure 4 only shows required nodes and edges, so it is not immediately obvious from this graph that BAMK 360 has the largest out-degree value. Fortunately, the NodeXL add-in keeps track of these details and shows the vertices scaled to the proper size for the full curriculum. The other nodes vary in size depending upon the metric value. Should the difference in vector size not be as visually dramatic as shown in Figure 4, the user can always look at the actual numeric values calculated by NodeXL for comparison.

Based upon the out-degree values, the interpretation of Figure 4 indicates that courses BAMK 360 and BAMG 350 are the best places to introduce topics and perform baseline assessment. Other potentially good places based on this metric are BAFN 370, BAAC 221, and BACS 287. On the other hand, BACS 285 would be a particularly bad place for this purpose.

Application of In-Degree

The in-degree of a vertex is a count of the number of directed incident edges that come into the vertex. It is an indication of the destination of the network flow and is a key point of exposure for the end result of that flow. Figure 5 shows the curriculum recalculated to emphasize the in-degree metric for each course.
In the curriculum context, the in-degree metric indicates courses where students should be engaged in higher-level learning activities; for example, analysis, synthesis, or evaluation tasks as defined by Bloom’s taxonomy (Bloom, 1956). It also locates courses appropriate for final assessment of the program or a track within the program.

From Figure 5, it appears that courses BAMG 456, BAMK 490, BAFN 370, BAAC 328, and BACS 487 are good prospects for assessment of student learning—BAFN 370 for intermediate topic assessment and BAMG 456 for full program assessment (since both are core required courses for all majors). While course BAMG 456 is an obvious choice, BAFN 370 is less obvious and is the first indication that the method described by this research can provide an analytical basis for more intelligent and effective assessment placement than would be done otherwise.

Application of Betweenness Centrality

The betweenness centrality measure is useful in finding vectors that form a bridge from one part of a graph to another. It indicates a crude measure of the control that a vector has over the flow through a connected graph (Newman, 2007). When used in a curriculum context, the course with the largest betweenness centrality value indicates a key link between program tracks or course clusters within the program. Figure 6 illustrates this for the business curriculum.
Courses BAFN 370 and BAAC 221 have the largest values for betweenness centrality within the curriculum. The implication of this is that these courses bridge the gap between the structural partitions within the program. In the business college curriculum, BAFN 291, BAFN 370, BAMG 456, and BAFN 305 (along with several other non-required courses not shown in the figure) on the left side of the graph form a relatively tightly connected course cluster. Within this cluster, BAFN 370 is the key course that links the group to the remainder of the program. Because of its structural position, it is an excellent candidate for assessment of the topics covered in the cluster. The same can be said for the BAAC 221 course in relation to the full program because it links the left course cluster with accounting/CIS cluster on the right side of the graph. BAFN 370 could also serve as a good location to reinforce assessment topics prior to the capstone assessment performed in BAMG 456.

It is important to note at this time that the graph metrics calculated on a curriculum structure should not be considered in isolation. A quick comparison of Figures 5 and 6 reveals that BAFN 370 has been singled out by both the in-degree metric and the betweenness centrality measure as a good candidate for assessment and reinforcement of topics prior to capstone program assessment. This type of metric reinforcement is a major strength of the graph-theoretic approach described by this paper. When combined with the actual context of the academic program (i.e., knowledge about the actual courses & the material they cover), the approach gives the end-user a powerful tool for systematic curriculum design and assessment placement.

Application of Eigenvector Centrality

The eigenvector centrality measure identifies those vectors that are adjacent to other vectors with high degree values. Consequently, it locates vectors in the structural position to yield influence disproportionate to the number of direct connections present (Borgatti, 1995). This is valuable
information when applied to the curriculum context because it identifies courses that can act as reinforcement points prior to assessment. If the course is located early in the curriculum, it can also serve as a point to introduce topics and perform baseline assessment. Figure 7 shows the curriculum graph after modification to emphasize eigenvector centrality values.

Figure 7: College curriculum, eigenvector centrality emphasized.

Figure 7 shows that courses BAMK 360 and BAFN 370 have the largest eigenvector values followed closely by BAMG 350 and BAMG 456. The first implication of this is that BAMK 360, BAFN 370, and BAMG 350 should be designed to reinforce topics that will be assessed in the BAMG 456 capstone course. This is logical given their proximity directly before BAMG 456 and after the other courses within their local clusters. A second implication that can be drawn from this graph is that BAFN 291 and BAAC 221, which have modest but still significant eigenvector values, should introduce topics that will be assessed later and should also be the site for baseline topic assessments to determine initial student performance levels. This conclusion is reached by considering both the eigenvector value and the structural importance of these courses as measured by the other graph metrics.

Application of Clustering Coefficient

The clustering coefficient is useful in determining the primary vector of influence in a densely connected cluster of vertices. Vectors with a high clustering coefficient are the ones most likely to efficiently enact change to the adjacent vectors (Watts & Strogatz, 1998). Figure 8 shows the curriculum recalculated for clustering coefficient values.
When analyzing a curriculum, the clustering coefficient is useful in finding the course that can most efficiently implement change into adjacent courses. This is relevant because all assessment schemes require a feedback mechanism to modify the curriculum when the assessment data indicate a problem. The quicker this change can be incorporated into the curriculum, the sooner improved results will (hopefully) occur. Those courses with the highest clustering coefficient are the ones best suited for quick, efficient implementation.

In Figure 8, BAMG 353 easily has the highest clustering coefficient in the curriculum. A cursory analysis of this would imply that this course is the best place to incorporate change quickly into the curriculum to correct anomalies indicated by assessment results. This analysis would be incorrect and dramatically highlights the importance of understanding the underlying curriculum structure prior to making major modifications. Two factors make BAMG 353 a poor choice to implement change into the program. First, it is the final course on a prerequisite chain, so there is no guarantee that the student will take it prior to their final semester (when it is too late for the change to have any effect). Second, it is a management required course, not a core required course, so its impact would only affect management students. Were assessments being performed strictly on management students, the course would be a good choice, but for full program assessment, it is deficient.

The correct interpretation of Figure 8 is that BAFN 305 and BAFN 291 are the best prospects to incorporate change into the program. These are appropriate because they have the largest clustering coefficient values (after BAMG 353) and consequently are in key structural positions to introduce change into the curriculum. They are also fixed in the prerequisite chain and are both required core courses that all students must take to graduate. Of the two courses, BAFN 305 is the prime choice because it is a Junior-level course and is taken one year prior to the capstone assessment point in BAMG 456. Were BAFN 291 selected, it would be two years
before the course changes would cause assessment results to improve. Faster turnaround for the assessment feedback loop means that continuous improvement makes quicker progress; so BAFN 305 is the preferred location.

Summary

This section has shown that an academic curriculum can be cast into the abstract representation of a graph. Once this is done, graph-theoretic metrics can be calculated on the structure of the curriculum graph to determine several interesting properties. Specifically, the out-degree can be used to locate those courses best suited to introduce topics and perform baseline assessment. The in-degree is useful in locating courses where exit assessment and higher-level learning activities should take place. The centrality measures of betweenness and eigenvector are valuable in identifying courses appropriate for assessment and topic reinforcement. Finally, the clustering coefficient can be used to find courses best suited to implement changes into a tightly connected clusters of courses. These metrics answer the four questions initially posed by this project and demonstrate that graph-theoretic metrics can indeed be used to improve curriculum structure and determine initial placement of learning assessments. This initial assessment scheme can then serve as a starting point for the fine tuning and customization needed to build a truly effective assurance of learning scheme.

CONCLUSION

The current public mood demands that the money spent on education produce direct, measurable results in the form of improved student learning. This is evidenced by the recent standards required by accreditation bodies, reports published by the United States government, and the policies of school districts across the nation. Educational institutions have responded to this mandate by incorporating assessment of learning into their curricula. This activity is complex and typically produces many questions to which there are currently few answers. To mitigate this situation, this research addressed a facet of the problem concerning the placement of assessments, topic coverage, and corrective action within an existing curriculum.

The approach developed and described in this paper cast the curriculum problem into an abstract mathematical representation called a graph. Once this was done, graph-theoretic metrics were employed to analyze the curriculum structure and identify the appropriate courses to introduce topics, reinforce topics, and introduce topic changes. The metrics also indicated the appropriate placement of primary and secondary assessment within the curriculum. The technique uses Microsoft Excel and a freely available add-in, so little training is necessary and the cost is minimal. Finally, the approach has a flexible visualization component that generates a picture of the curriculum that is easy to understand and explain to non-mathematicians. The system was applied to the curriculum of an actual college and was shown to produce good results that are consistent and rational.
REFERENCES

This Page Left Intentionally Blank