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Abstract

In this paper, we study some basic properties of free modules over a ring. A 
module with a basis is called a free module and a free module over a division ring (or 
field) is called a vector space. We show every vector space has a basis and any two bases 
of a vector space have same cardinality. However, a free module over an arbitrary ring 
(with identity) does not have this property. An example is given of a free /^-module with 
the property that Vn > 0, there exists a basis of cardinality n. That is, as an K-moduIe, 
R = Rn = R ® R © ... © R for any finite number of summands.
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Chapter 1

Introduction

1.1 History and Importance

The vector concept is first introduced by Bolzano in the 19th century. In the 
book, published in 1804, he considers points, lines, and planes as undefined elements and 
defined operations on them. This is an important step for the linear space to arise. After 
several years, Mobius starts to consider directed quantities, which is an early appearance 
of vectors. Then, Bellavitis defines the equipollent sum of line segments and obtains an 
equipollent calculus, which is essentially a vector space. Many years after, Peano defines 
dimension; proves finite dimensional spaces have a basis and gives examples of infinite 
dimensional linear spaces. [OR96]

The notion of vector spaces has wide applications in mathematics, the sciences, 
and engineering. It is used to prove theorems in plane geometry and to analyze the equi­
librium of two-dimensional rigid bodies. [RA77] Euclidean spaces are the most familiar 
vector spaces. In studying the properties and structure of a vector space, we can study 
many other important vector spaces.

1.2 Overview

In Chapter 2, we define modules and linearly independent sets. Then we intro­
duce submodules, homomorphisms, cartesian products, sums of modules, and products of 
modules. Theorem 2.16 and 2.17 characterize when a module is an internal or external di­
rect sum of modules. Finally, Theorem 2.21 shows that for an 17-module A, Homn(A, A) 
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is a ring.
In Chapter 3, we study the notion of a free module. Theorem 3.1 shows that 

a module is free if and only if it has a basis. We then show in Theorem 3.5 that every 
module over a division ring has a basis. We use Zorm’s Lemma to handle the case when 
a module has an infinite basis.

Several results in Chapter 5 require some knowledge of cardinal numbers. In 
Chapter 4, we define cardinal number and develop some of their basic properties. In 
particular, we prove the Schroeder-Bernstein theorem and some properties of addition 
and multiplication of cardinal numbers.

For a vector space, all bases have the same cardinality and their number is called 
the dimension of the vector space. If a module has a basis of infinite cardinality, all bases 
have the same cardinality. However, for modules with finite basis, this is not necessarily 
true. We give an example of a module that has a basis of cardinality n for each n e N.
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Chapter 2

Vector Spaces and Modules

We begin this chapter with the definition of a module and linearly independent 
sets. Then, in Section 2.1, we introduce submodules, homomorphisms, and cartesian 
products. In Section 2.2, we introduce sums and products of modules. Theorems 2.16 
and 2.17 characterize when a module is an external or internal direct sum of modules. 
Finally, Theorem 2.21 shows that for an R-module A, HomR(A, A) is a ring.

Since the notion of a module is closely related to the concept of a vector space, 
we will present a short overview of the general properties of vector spaces that carry over 
to modules in this section.

Definition 2.1. [Gal02] Let R be a ring. Then an R-rrtodule is a set together with two 
binary operations of vector addition and scalar multiplication, satisfying the following 
properties: Under Addition

1. Closure: u 4- v € V, for all u, v G V.

2. Associativity: u 4- (y + w) = (u 4- v) + w, for all u,v,w G V.

3. Commutativity: u + v — v 4- u, for all u, v G V.

4. Identity: There exists 0 G V such that u4-0 = 04-u = u, for all u G V.

5. Inverse: For each uEV. there is an element —u G V such that u 4- (—u) = 0.

Under Scalar Multiplication

1. Closure: cu G V, for all c G F and all u G V.
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2. Distributivity for multiplication over addition: Let c be any element of F. Then, 
c(u + v) = (cu) + (cv), for all u, v G V.

3. Distributivity for multiplication over addition: Let c, dE F.uEV, then (c+d)u = 
(cu) + (du).

4. Associativity: c(du) = (cd)u for all c, d G F and all u G V.

5. Identity: 1 • u = u, for all u G V.

One of the most important ideas in the study of modules is that of linear inde­
pendence.

Definition 2.2. The vectors vi,v2, ...,vn in an R-module M are said to be linearly 
independent if whenever ci^i + C2V2 + ... + CnVn = 0, for some scalars ci,..., c» G R, we 
must have cy = c2 = ...=; Cn = 0.

The next theorem gives a. characterization of linear independence for vector 
spaces.

Theorem 2.3. [KH01] The set of nonzero vectors v±,v2, ...,vn in a vector space V is 
linearly dependent if and only if one of the vectors vki k >2, is a linear combination of 
the preceding vectors v\,v2,

Proof. Suppose vi,v2,...,vn are linearly dependent. Then, C]Vi + C2V2 + ... + CnVn = 0 
such that at least one scalar c$ is not zero. Now, let k be the largest subscript such 
that Cfc 0 0. If k > 0, then vk = -(^)vi - (^)v2 - ... - (^~)vk^. If k = 1, the 
C17J1 = 0, which implies that t>i = 0, a contradiction to hypothesis that none of the 
vectors are the zero vector. Thus one of the vectors vk is a linear combination of the 
preceding vectors vi,v2, ...,vk~i. Conversely, if vk = + c2v2 + ... + Ck-ivk-i, then
ci^i + c2v2 + ... + ck-iVk_i + (-l)wfc + 0^fc+i + 4*  0vn = 0. Since there is at least one
non-zero coefficient, —1, the set of vectors vy,v2, ...,vn are linear dependent. □

If R is a commutative ring, then everything will work as well for (unitary) right 
B-modules, i.e., we can similarly define a function g : A x R —> A satisfying the analogues 
of Definition 2.1 for a right K-module. Since every theorem of left 7?-modules has a right 
analogue, throughout this chapter, an ^-module means a left /^-module.
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Example 2.4. Every abelian group A with additive operation is a 2Lmodule, where for 
all n G Z, a G A, na = a 4- a 4- • ■ • 4" a G A.

2.1 Submodules, and Homomorphisms

Definition 2.5. If A is an R-module over a ring R, then a nonempty subset B of A 
is a submodule if and only if it is an additive subgroup of A, which is closed under 
multiplication by elements of R. That is, for all r G R, b 6 B, rb G B.

If A is a module over a division ring, then a submodule of A is called a subspace.
Note that a submodule B of an R-module A is an additive subgroup with rB C B 

for all r G R.

Example 2.6. The trivial submodule of an R-module is zero module, denoted by (0).

Example 2.7. If {Bi | i G 1} is a family of submodules of a module A, then the 
intersection of Bt, in notation C^iBi, is a submodule of A.

Definition 2.8. If A, B are modules over a ring R, then for all r G R and a, c G A, the 
map f : A —> B is an R-module homomorphism if

1. f(a + c) = f(a) 4- /(c)

2. f(ra) = rf(a) •

Equivalently, for all x,y G A, r, s G R, if f(rx 4- sy) = rf(x) 4- sf(y), then 
/ is an R-module homomorphism as well. If R is a division ring, then an R-module 
homomorphism is called a linear transformation. Indeed, an R-module homomorphism 
f : A —> B is an abelian group homomorphism under addition.

Theorem 2.9. If B is a subset of an R-module A, {B$ | i G 7} is a family of submodules 
of A, a G A, and Ra = {ra | r G R}. Then

1. Ra is a submodule of A and f : R —> Ra given by r ra is an R-module epimor­
phism.

2. D — RX =< X >= {52<Li riO< | Uf 6 X; r; G R} is the submodule generated by X.
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3. The sum of the family {B2 | i 6 J} consisting of all finite sums bq + bi2 4- ... 4- bin 
where bik G Bik is a submodule of A.

Proof.

1. Let ra, sa G Ra. Then, ra + sa = (r + s)a G Ra. So Ra is closed under addition. 
Also, s(ra) — (sr)a G Ra, for all r, s G R, a G A. Thus, Ra is closed under scalar 
multiplication. Therefore, Ra is a submodule of A. Now, define f : R —► Ra by 
J(r) = ra. Let n, r2 G R. Then, f(ri+r2) = (ri+r2)a = ria+r2a = /(n) + /(r2). 
Thus, f preserves addition. Let c, r G R. Then, /(cr) = (cr)a = c(ra) = cf(f). 
Clearly, /(r) = ra G Ra, so f is onto. Therefore, f : R —> Ra is an H-module 
epimorphism.

2. Let ^4=1 riai, mjaj G BX. Then, (riai 4------Frsas) 4- (miai 4------Fmsas) =
(riai 4- miai) 4----- 1- (r3as + msas) = (rj 4- mi)ai 4------ 1- (rs 4- m3)as G RX. Thus,
Rx is closed under addition. To see it is closed under multiplication, we let n, 
t G R, rjOi G RX. Then, i(nai 4------ 1- r3as) = (triai 4------ 1- trsas) G RX.
Therefore, RX is a submodule of A.

3. The sum of {Bj | i G 1} is < Uig/Bj >= {bq4-----Fbin | by G By}. Let b$14-* ■ -~\~bin,
Ci! 4------ F Cin G< Ufc/Bj >, where bik, Cik G Bik. Then, (bq 4------ F bfn) 4- (c^ 4-
• • • + Cin) = (&»1 + Cil) H------1“ (bin 4-Cfn) G< UiG/Bj. So, < UicjBi > is closed under
addition. Now, for each r G R, r(by 4------ F b$n) = rbq 4------ F rbin G< UfG/Bi >.
Hence, < U$GjBi > is closed under scalar multiplication. Thus, the sum of the 
family {B$ | i G /} is a submodule of A.

□

Next, we define Cartesian product and Canonical projection.

Definition 2.10. Let a nonempty set I be an index set and (Af | i G 7} be a family of 
sets. The set of all functions f : I U^/A,- is said to be the Cartesian product provided 
that for all i G I, f(i) G A{. It is denoted Ilier^i-

Definition 2.11. If flieris a cartesian product, then for each k 6 I, a map : 
life/ Ai ~defined by f i-> f(k) is called the Canonical projection of the product onto 
its fcth component.
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Theorem 2.12. Let {Af [ i G 1} be a family of sets indexed by a set I. If there is a set 
C, together with a family of maps {fi-C —> A« | i 6 I}, then for any set B and family 
of maps {gt : B —> A{ | i G I}, there exists a unique map g : B C such that fig = gi 
for all i G I.

2.2 Direct Sums and Basis

This section, we begin with the definition of direct sums and direct products 

in the category of groups.

Definition 2.13. Let G be a group and {JVj | i G 1} be a family of normal subgroups of 
G. If G =< Uiej/Vf > and TV) Cl < U^jNi >=< e > for all j G /, then G is said to be the 
internal direct sum of the family {TV) | i G /}.

Definition 2.14. Let {Gj | i G 1} be a family of groups. The external direct product of 
{Gi | i G 1} is the set of all f : I -+ G^jGi such that /(i) = ej, the identity in Gi. It is 
denoted

The next theorem shows that the direct sum and direct product of modules is 
again a module.

Theorem 2.15. Let R be a ring and {A$ | i G 1} a nonempty family of R-modules. If 
IliG/ Ai i's ^le direct product of the abelian groups Af and A$ is the direct sum of 
the abelian groups A$, then

1. IIiG/ Ai an R-module with the action of R given by r{af} =

5. £3iejA$ is a submodule

3. The canonical projection A^ 7S an R-module epimorphism for each
kel.

4. The canonical projection & : A*,  —> A^ is an R-module monomorphism for each
kel.

Proof.
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1. Let ft}, {di} 6 [Iiei A- Then, ft} 4- ft} = ft + fy} G IAei A- Now, rfti} = 
{raj} G [ft/A, where r G R. Therefore, [JiG/Ais closed under addition and 
scalar multiplication. The other modules properties are proven similarly. Thus, 
riiei Ai is an R-module.

2. Let = {ft} I ai e Ai,ai — 0 for almost all i}. To see is a
submodule of [fti A> we need to check if A is closed under the operations 
of Let ft}, {&i} G A, for some finite a;, bi ^4 0. Then, {aj} +
ft} = fti + M G Ifti i- So, 5fti A is closed under addition. Now, rft} = 
{rof} G Eftz A- Hence, Zfti A closed under multiplication. Thus, A *s 
a submodule of {ft/ A-

3. Define ak : [I A —> A by <ftft}) — a*;,  where ak G Ak. Let ft}, ft} G 
ILer A, then aifc(ft}4-ft}) = (ak + bk) = a*(ft})  + «fc(ft}). Also, afc(rft}) = 
^({ra,}) = rak = ra^ft,}). If ak G A> let x = ft}, where Oi = 0 for i / k. 
Then, ak(x) = ak. So, ak is an -R-module epimorphism.

4. To see flk : Ak —* 52 A is an /^-module monomorphism, we let ak G ker(/3k). 
Then, /3k(ak) — ft}, where ai — 0 for i / k. Since /3k(ak) = 0, ak = 0. Hence, 
ker(J3k) = {0} and 0k is one-to-one.

□

Theorem 2.16 gives a characterization of when a module is an external direct 
sum of modules.

Theorem 2.16. (see p. 174 [Hun80]) Let A, Ai, A2,..., An be R-modules over a ring 
R. Then A S A © A2 © ... © An if and only if there are R-module homomorphisms 
TTi: A Ai and : Ai —> A such that, for each i = 1,2,n, we have

1. m = ft for i = 1,2,

2. TTjCi = 0 for i 0 j;

3. tl7Tl -f- L27V2 4- ... 4" bn7Tn = 1^.

Proof.
(=>) Let the module A = Ai © A2 © ■ • • © A- Define 7F£ : A —► Ai by 

%tft, • • •, an) = ai and : Ai -*  A by tft) = (0,...,a,,..., 0). Then
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1. TTitifa) — 7Tj(0,... ,0i,... ,0) = a, for i = 1,2,... ,n. So, 7r, -= 1a£-

2. Let i / j. Then, TTjbifa) = 7^(0,..., a,,..., 0) = 0 since only sth element is not 0.

3. Let a e A. Then a = (ai,...,an), Ba^ G A^ Now, = ~
• j > d) (®lj • • • ) ®n) ’ So, £17T1 4" • ■ • H- ■ I A*

(<=) Define <p : A -> IJi bY P(°) = (Ti(fl)i • • - > Va G A.
Then, for each a, b G A, r G R

92 (a + b)

= (7ri(a + 6),..., 7Tn(a + b))

= (7Tl(a) +7Tl(b),. .. ,7Tn(a) 4-7Tn(&))

= (?ri(a) +... + %n(a)) + (7Ti(b) + ... + 7Tn(&))

Now

(p(ra)

— (7ri(ra),... ,7rn(ra))

= (r7Ti(a),...,r7rn(a))
= r(7Ti(a),..., 7Fn(a))

= r<p(a).

If a 6 kerp>, then 92(a) = 0. So, (^(a),... ,7rn(a)) — 0. Therefore, 7Tf(a) = 0 for 
i = 1,... ,n. Now, a = biTVi(a) = ^(0) — 0*  So, kerip = 0 and <p is one-to-one. Let
(ai,..., an) G J]” A- Let a = idfa). Now

tp(a)
n n

1 1
~ (^l/lC^l): • • • > ^n^nC^n))

= (aj, . - . , an)

Thus, p is onto. Therefore, A = J]” Ai. □
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Theorem 2.17 shows when a module is an internal direct sum of submodules.

Theorem 2.17. If A is an R-module over a ring R and {Ay | i 6 1} is a collection of 
submodules of A, then there is an isomorphism A = $

1. The R-module A is the sum of the collection of submodules {A*  | i € I}, in notation, 
A =< UjgjAf >.

2. For each k G I, AfcD < U^jAy >= 0.

Proof. Let A =< UiG/Aj > and A^n < U^Aj >= 0. For each a 6. A, a = Yfiaik> 
aik G Aik. Define / : A —> A$ /(°) = {cfhel where

®ifc > 3 — i'ki

3 • • •,

/

By property 2, f is well defined. Now /(a+&) = {cy4-dj}je/ — {c^} + {dy} = f(a) + f(b) 
and similarly, f(ra) = {rcj} = r{c7-} = rf(a). So, f is a preserve addition and scalar 
multiplication. Let a G ker(f). Then, 0 = /(a) = {cj}. So, a — ^0 ~ 0. Thus, 
fcer(J) = 0 and f is one-to-one. Clearly, /(a) = 4------ 1- a$n, so / is onto. Therefore,

is a bijection and A = Aj. □

Definition 2.18. The subset S = {t>i, v2, • • ■, vn} of a vector space V is said to be a basis 
of V provided that

1. S is linearly independent.

2. S spans V.

Theorem 2.19. If S = {vi, v2,..., vn} is a basis of a vector space V, then every element 
of V can be written as a linear combination of the vectors in S in a unique way.

Proof. Let v G V. Suppose v — civ\ 4- c2v2 4------1- CnVn and v = d±vi 4- d2v2 4------F dnvn-
Now, subtracting the two equations above, we obtain 0 = (ci — di)^i 4- (c2 — d2)v2 4------F
(,Cn — dn)vn. Since S is linearly independent, it follows that (ct — dj = 0 for 1 < i <n. 
So, Ci = di and we conclude that there is only one way to express every element of V as 
a linear combination of the vectors in S. □
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Definition 2.20. Let R be a ring and A be a module. A set of all R-module homomor­
phisms A —> A is denoted by Howir(A, A).

The set Hotur^A, A) will provide an example to show that, in general, the idea 
of dimension does not carry over to modules.

Theorem 2.21. Let R be a -ring with identity and A a free R-module with an infinite 
denumerable basis {ei, e2,. ■ -, en}. Then, K = Hottir(A, A) is a ring under the operations 
of pointwise addition and composition.

Proof. To see K is a ring, we need to show that the following properties hold in K. Let 
f,g,h€ K. Then

1- (/ + g)(a 4- b) = (/ 4- g)(a) 4- (/ 4- g)(ty = f(a) 4- g(a) 4- f(b) 4- g(b) = f(a) 4- 
g(a) + /(b) + g(b) = (f + g)(a) 4- (/ + g)(b). Now, (/ 4- g)(ra) = f(ra) 4- g(ra) = 
rf(a) + rg(a) = r(f(a) 4-g(a)) = r(f 4- g)(a). So, K is closed under addition.

2- ((/ + g) + = (/ + g)(a) + h(a) = /(a) 4- g(a) + h(a) = f(a) 4- (g(a) 4- h(a)) =
(/ 4- (g 4- h))(a). Thus, associative property holds in K for addition.

3. The map 0(a) = 0 for a G A is the additive identity of K since (0 4- /)(a) = 
0(a) 4- /(a) = /(a), for all / G K, a G A.

4. The additive inverse of / is —/ where (—/)(a) = —/(a) for all a G A.

5. For all a, b G A, f(g(a + b)) = f(g(g) + g(b)) = /(g(a)) 4- /(g(b)). Also, /(g(ra)) = 
/(rg(a)) = r/(g(a)). Hence, K is closed under multiplication.

6. Since composition of functions is associative, K is associative under multiplication.

7. The identity map Ix is the multiplicative identity for K.

8. Distributive law holds in K since /(g(a) 4- h(a)) = /g(a) 4- fh(a).

Therefore, K = HorriR^A, A) is a ring. □
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Chapter 3

Free Modules

In this chapter we will study the notion of free modules, including a discussion 
of the rank of a free module. Generally speaking, any R-module that has a basis is called 
a free R-module. That is, an R-module A is the free R-module on the subset B if and 
only if B is a basis of A. A subset B of a module A over a ring R is said to be a basis of 
A provided that B is linearly independent and B spans (generates) A. Let bn G B where 
any bi bj and ri G R. If rfy — 0 implies Ti = 0 for every i, then B is linearly 
independent. If every element a G A can be written as a linear combination of elements 
in B by coefficients in R, then we say B spans A. In particular, B spans A if and only if 
a = ri&i -I- r2&2 + + rnbn for all a G A, G R, bi G B.

In Theorem 3.1, we give several characterizations of a free module. Theorem 3.5 
shows every module over a division ring is free. Finally, in Theorem 3.6, we show every 
spanning set in a vector space contains a basis.

3.1 Characterizations of a Free Module

Theorem 3.1. (see p. 181 [Hun80]) Let A be a module over a ring R with identity. The 
following conditions on R-module A are equivalent:

1. The R-module A has a nonempty finite basis X.

2. A is the internal direct sum of a finite family of cyclic R-modules. Each of the 
cyclic R-modules is isomorphic to R.
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3. A is R-module isomorphic to an external direct sum of a finite number of copies of 
the R-module R.

There exists a nonempty set X and a function a : X —> A with the following 
property: given any R-module B and function : X —* B, there exists a unique 
R-module homomorphism 7 : A —+ B such that goa = 6.

Proof.
1 => 2 Let X be a nonempty basis of A and x G X. Let Ci — {R^ | Xi G X}

be a family of cyclic R-modules. Then the map f : R —* Rxi given by f(r) = rxi is an 
R-module epimorphism by Theorem 2.10. If rxi = 0, then r = 0 since X is a basis. So, f 
is a monomorphism and R = Rxi = Ci. Now, we need to verify that A = Rxi is an 
internal direct sum of Let a 6 A. Then a = '/jriXi, ri G R, Xi G X. However,
TiXi G Ci, Yi, so a G< UCi >{€j. Thus, A =< >. Let x G CjQ < Ui^jCi >. Then,
x = TjXj = Hence, rjXj — Y/#jrixt = 0- Since X is linearly independent,

= 0, Vi. So x = 0. Thus, CyD < >= 0. Therefore, A is the internal direct sum
of the family Ci.

2 => 3 Let A be the internal direct sum of Ci and Ci = Rxi = R. For each
a G A, a = Ylrixi f°r unique 77,... ,rn G R. Define a map g : A —> by g(a) =
(nxi,..., rnxn). Let a = E riXi G A, 6 = E six* G A and r G R. Then

g(a + b)

= g(£ SiXi + riXi)

= + xi)xi)

= ((si + ri)xi,..., (sn + rn)xn)

= (sia;i,..., snxn) + (nai,..., rnxn)

= g(a)+g(ty

Similarly, g(ra) = rg(a). So, g is an R=module homomorphism. If a G kerg, then 
g(a) = (rixi,... ,rnxn) = 0. So, r^Xi — 0 for each i. Thus, a = 0. So, g is one-to-one. 
Clearly, g is onto. Therefore, A = E^i-

3 => 1 Let A = Ei# and let a = (0,0,..., lRs..., 0) G E? R. Clearly, 
feJfLi is a basis for E"=i^- Since (ir,r2,... ,r„) = Eir*ei 301(1 E"rie* = ^en 
(ri,r2,...,rn) = 0. So, ri = 0, Vi. Let f : A —> Eibe the isomorphism. Let
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X = {/-1 (e$)}”_i and xi = f-'-fa). Let a G A. Then, Ba' G 52? R, such that =
a. Since a' = ^n^ a — /-1(o') = 52ri/_1(ei) = Y^rixi- Hence, X spans A. If 
52= 0, then J2r»ei G kerf"1 = {0}. So, 52 riei = 0- Thus, n = 0, Vi and X is 
linearly independent. Therefore, X is a basis of A.

1 —> 4 Let X be a non-empty finite basis of A and let a : X —> A be the inclusion 
map. Let X = {an 5...,xn}. If a G A, then Bn,... ,rn G R, such that a = ^n^i since 
X spans A. Suppose we are given a map (3 : X —> B. Now define 7 : A —> B by 7(a) = 
tE"=i ri%i) = 52C=1 riP(xi)- So, 7 O ce(in) = 7(n) = 1 o fl(xj) = fl(xi) for each i. To see 
it’s uniqueness, let 7' : A —■» B be a map such that g o a = fl. Now,' if a = n%i G A.
Then 7 (a) = £?=1 ng (m) = J2"=i ng o ofa) = E"=i = 7(a)- Thus, 7 = 7.
To see 7 : A —* B is an R-module homomorphism, we let a^, 02 G A. Then Bn, sj G R 
such that 01 = ^2nxi and a2 = 52

Now, 7(01+02) = g(£(n+si)xi) - ^2(ri4-Si)fl(xi) = Y,rifl(xi) + Y,Sifl(xi) = 
7(01) + 7(02). Let r G R, then 7(rax) = 7^52^^) = 7(Em^i) = 52rrtZ5(a:i) = 
r^2rifl(xi) = T7(oi). So, 7 is an R-module homomorphism.

4 —> 1 Let X = {a?i,..., a;n} and consider B = 52" H. By the proof of 3 —♦ 1, 
X' = {ei,..., en} has the property that Ba' : X' —* B (by a (efl = ef) and, given an 
R-module C and a function fl’ : X' —> C, then 37*  : B —> C such that g oa (e$) = X(ei), 
Vi. See diagram (3.1):

(3.1)

C

Now, define a bijection f : X' —> X by f(efl = for i = 1,..., n.
Now, a o f : X' —> A. So, 37*  : B —> A such that 7*  o a (ei) = ao f(ei) = a(xi), 

Vi. Also a o f-1 : X —> B by a' o f~r(xi) = n for each i. So, there exists 7 : A —> B 
such that 7 o a(xi) = a 0 f-1(xi) for each i. Then the diagram (3.2) commutes:

X-^A (3-2)
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Thus, the diagram (3.3) commutes:

If 707'

X^~B’

(3-3)

Now, given an identity map Ib • B —> B' with Zs(ei) = ei and 7 o = e,. 
So, by uniqueness, 707' = Ib- Similarly, 7' 07 = IA, Then, A = B and, by 3 —* 1, a(X) 
is a basis of B. □

An .R-module A that satisfies the equivalent conditions of the Theorem above is 
called a free K-module.

Corollary 3.2. Let R be a ring with identity. Then, every finitely generated R-module 
A is the homomorphic image of a free R-module F.

Proof. Let X = {ai,..., an} be a set of generators of A and F the free R-module on the 
set X. Let a : X —> F and define 7 : X —> A by y(ai) = ai for each i. Then, there 
exists a unique fi : F —> A such that /3a(x) — 7(0;) by Theorem 3.1. Now Im(j3) =<

□

Lemma 3.3. Let V be a vector space over a field F. Then X is a basis ofV if X is a 
maximal linearly independent subset of V.

Proof. Let X = {aq,...,:rn} be a maximal linearly independent subset of V. Let S be

X is a basis of S. If S = V, we are done. If S V, then there exists an element x G V 
with x^ S. Consider X U {a:}. If r 0, then rx + riaq +---- 1- rnxn — 0 can be written
as x = — r-1ria?i--------r-1rna:n, which shows that x 6 V. It is contradicts to the choice
of x. So, r = 0. Then, 17 = 0 for all i since X is linearly independent. It follows that the 
set X U {a;} is a linearly independent subset of V. It contradicts to the fact that X is a 
maximal subset of V. Therefore, S = V and X is a basis of V. □

3.2 Free Module over a Division Ring

Our next theorem shows that every vector space has a basis. To handle infinite 
basis we need Zorm’s Lemma.
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Definition 3.4. A non-empty set A and a relation < is said to be partially ordered if for 
each a, b, c G A

1. a < a

2. If a < b and b<c then a < c

3. If a < b and b<a then a = b.

We say (A, <) is linearly ordered if, in addition,

4. for each a, b G A, a < b or b < a

Definition 3.5. Let (A, <) be a partially ordered set and a G A. If every c G A which 
is comparable to a is such that c < a, then a is maximal in A. An upper bound of a 
nonempty subset B of A is an element d G A such that b < d for every b G B. A nonempty 
subset B of A that is linearly ordered by < is called a chain in A.

Lemma 3.6. (Zorn's Lemma) Let A be a nonempty partially ordered set. If every chain 
in A has an upper bound in A, then A contains a maximal element.

Theorem 3.7. Every linearly independent subset X of a vector space V is contained in 
a basis of V. In particular, every vector space V has a basis.

Proof. Since 0 is linearly independent and is contained in every vector space, the second 
statement is an immediate consequence of the first. Let S = {Y | Y C V, Y is linearly 
independent, Y D X} be the set of all linearly independent subsets of V containing X. 
Since X G S, S 0. Now let be a chain in S and let C = We will
show C G S. Let xi,. ,xt G C with Xj G C^. Suppose Y^riX{ = 0, ri G R. Let N be 
such that xi,... ,xt G On- So, since Cn is linearly independent, = 0, Vi. Then, C is 
linearly independent and C G S. Thus C is an upper bound for the chain in S.
By Zorn’s Lemma, there exists a maximal element B G S. Now B is a maximal linearly 
independent subset of V. By Lemma 3.3 B is a basis of V. □

Our final result in this section shows every spanning set in a vector space contains 
a basis.

Theorem 3.8. Let X be a subset of a vector space V over a division ring D. If X spans 
V, then X contains a basis ofV.
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Proof. Let X be a subset of V that spans V. If X is linearly independent, then X is 
a basis of V. If X is linearly dependent, then = 0, where r'y are not all 0. By
Theorem 2.3, some Xj — nzi + ■ • • + rj-iXj-i. Let Xi C X, where Xj Xi. Then, 
X = {rci,..., Zj-i, ajj+i,.. -, 37} spans V. If Xi is linearly independent, then Xi 6 X is 
a basis of V. If Xi is linearly dependent, then we delete one element Xk G Xi and get 
a new set X2 that also spans V. Continuing this process, we will find a subset Xi G X 
that is linearly independent and spans V. Then, X is a basis of V. □
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Chapter 4

Cardinality

In Chapter 5 we will show that if a module has an infinite basis, then all basis are 
infinite of the same cardinality. To do this, we need some results on cardinal numbers. We 
begin by defining a cardinal number of a set as its equivalence class under equipollence. 
We then introduce an order on cardinal numbers and show |A| < |B| and |B| < |A| 
implies |A| = |B|. We conclude with a theorem on the arithmetic properties of cardinal 
numbers.

4.1 Cardinal Number

Definition 4.1. Let A, B be two sets. If there exists a bijective map f : A —> B, then 
we say A and B are equipollent. We use A ~ B to denote that A and B are equipollent.

Theorem 4.2. Given a class C of sets, equipollence is an equivalence relation on C.

Definition 4.3. The cardinal number (or cardinality) of a set A is the representative of 
an equivalence class of the set A under the equivalence relation of equipollence, denoted 
|A|.

If a set A is finite, then |A[ is finite; A is infinite, |A| is infinite. Precisely, the 
cardinal number of a finite set is the number of elements in the set. Cardinal numbers 
possess the following properties:

1. The cardinal number of every set is unique.
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2. Two sets A and B are said to have the same cardinal number provided that they 
are equipollent, written p4| = |B| o A ~ B.

3. The cardinal number of a finite set is the number of elements in the set.

We can also use lower case Greek letters such as a, fl, 7, etc to denote cardinal 
numbers.

Definition 4.4. Let A, B be disjoint sets, where |A| = a and |B] = fl. Then the sum 
a + fl is defined to be the cardinal number |A U B|; the product a fl is defined to be the 
cardinal number |A x B|.

Definition 4.5. Let A, B be sets and a, fl be cardinal numbers, such that |A| = a and 
|B| = /?. If B C A and A~ B (that is, there is a one-to-one map A —> B), then we say a 
is less than or equal to j0, denoted a < fl or fl > a. Moreover, if a < fl and a / fl, then 
we say a is strictly less than fl and denoted a < fl.

4.2 Order of Cardinal Number

The next theorem shows that if a, fl are cardinal numbers with a < fl and 
fl <a, then a — fl.

Theorem 4.6. (Schroeder-Bernstein) Let A and B be sets. If |A| < |B| and |B| < 14, 
then |A] = |B|. This means that if there are injective functions, say, f : A —* B and 
g : B —* A between the sets A and B, then there exists a bijective function hz A—> B.

Proof. We first consider the case where B C A. Let

B' = (A - B) U f(A - B) U f2(A — B)U f3(A - B) U...

B+ = /(A-B)U/2(A-B)U/3(A-B)U/4(A-B)U...

C = B - B+

We know that A= (A-B)LJB = (A—B)UB+UC = B' UC and B = B+UC. Therefore, 
f(B) = f((A — B) U B+) C f(A — B) LI f(B+) C B+. Now, define a function h: A—t B

by

h(x) = 4
/(®)

X

if a; GB'
if x G C
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Since C Cl B' — 0, h is well-defined. Note that h(B') = f(B') C B+ and h(C) = C. To 
see h is one-to-one, let h(x) = h(y) where x,y G A. If x G C, then h(y) = h(x) = x G C. 
Thus, y G C and h(y) = y. Hence, x = y. Similarly, if y G C, then x G C and x = y. 
If x,y G B1, then f(x) — f(y)- Thus, x = y. So, we have proven that h is an injective 
(one-to-one) function. To see h is onto, let y G B = B+ U C. If y G C, then h(y) = y. If 
y G B+ = f(n\A — B), then y G fn(A — B) for some n > 0. Thus, y = f(x) where 
x £ — B). Therefore, h is a surjection (onto). Since h is one-to-one and onto,
we conclude that h is a bijection. Therefore, if f : A —> B and g : B —> A are injective 
functions with B C A, then there exists a bijection h : A —> B.

In the general case, we have an injective function f : A —» B and an injective 
function g : B —► g(B) Q A. By the above argument, there exists a bijection h : A —> 
g(B). Now, since g : B —> g(B) is a bijection, g"1 : g(B) —> B is also a bijection. Hence, 
g_1 o h :_A —> B is a bijection. Thus, |A| = |B|. □

Example 4.7. Let A = Z, B — 2Z C Z. Then, the set (A — B) = {1,3,5,7,9,11,...} = 
{2n+1 | n > 0}. Define a function f : Z —> 2Z by f(n) = 4n. Then, /(A — B) = {4(2n+ 
1) | n > 0} = {4,12,20,28,../2(A — B) = {16(2n + 1) | n > 0} = {16,48,80,...} and 
so on. Thus, B+ = f(A — B) U /2(A — B) U ... = {2kn | n, k G N,n is odd, k is even 
} and C = (B — B+) = {2kn | n, k G N,n is odd, k is odd }. The function h : A —»• B 
defined by

f(x) if x G B'
x if x G.C

sends x in B' to 4x and x outside B' to x. The following diagram shows the preimages 
of the first 10 elements of B = 2Z.

n 2 4 6 8 10 12 14 16 18 20
2 1 6 8 10 3 14 4 18 5

The cardinal number of the natural numbers N is denoted Ko- Any set A is said 
to have a cardinality Ko provided that it is equipollent to N.

Theorem 4.8. Let a, fl be cardinal numbers where a > fl / 0 and a is infinite. Then, 
a fl = a. Particularly, aKo = a and Ko/3 = Ko if fl is finite.

Corollary 4.9. If F(S) is the set of all finite subsets of an infinite set S, then |_F’(S')| = 
|S|.
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Chapter 5

Free Modules Over An Arbitrary 
Ring

Recall that, the property of any two bases of a free module having same cardi­
nality is based on a “well-behaved” ring such as a division ring or a field. In this chapter, 
let us consider the more complicated situation of a free module over an arbitrary ring. 
Theorem 5.6 shows that if a module has a basis of infinite cardinality, then all basis have 
the same cardinality. Proposition 5.8 shows that there exist modules having finite basis 
of different cardinalities. Thus, the idea of dimension cannot be extended to modules in 
general.

5.1 Modules with Infinite Bases

Definition 5.1. Given R-moduIes Mi, M2, ... , Mn. Define a new module M = Mi ® 
M2 © ... ® Mn with the elements (mi,m2, ...,mn), where mi G Mi. Addition and scalar 
multiplication are defined as follows:

(mi,m2,.. .,mn) -I- (?i,p2,■ ■ • ,Pn) = (mi + pi,m2 +P2,+pn), '
r(mi,m2}... ,mn) = (rmi,rm21...,rmn).

Then M is called the external direct sum of the R-modules Mi, 1 < i < n.

The next proposition shows when an internal sum of modules is direct.



22

Proposition 5.2. Let Mi, M2,.. . ,Mn be submodules of an R-module M such that for 
each i, 1 < i < n, we have Mi n (Mi 4- M2 4- ■ •. 4- M$_1 4" Mi+i 4~ • ■ - 4~ Mn) =■ 0. Let 
TV = Mi 4- M2 4-... 4- Mn. Then, TV = Mi © ... ffi Mn.

Proof. We define f : Mi ffi M2 © ... © Mn —> TV by /((mi, m2,...,mJ) = mi 4- m2 4- 
... 4- mn. Let (mi,.m2,...,mn), (pi,p2,... ,pn) G Mi ffi M2 ffi ... ffi Mn. Then

/((mi,m2,... ,mn) 4- (pi,P2, ■ • ■ ,Pn))

= /((mx 4- pi, m2 4- p2,..., mn 4- pn))

= (mi 4-pi) 4- (m2 4-p2) + ... 4- (mn+pn)

— (mi 4- m2 4- ... 4- m„) 4- (pi 4- p2 4- ... 4- pn)

= /((mi,m2,... ,mj) 4- /((pi,P2, ■ - . ,Pn))
Let r e R, then /(r(mi,m2,...,mn)) = /((rmi,rm2,...,rmn)) = rmi 4- rm2 4-... 4- 
rm» = r(m\ + m2 4-... 4- mn) = r/((mi,m21...,mn)). So, / is a linear transformation. 
To see / is one-to-one, let m = (mi,m2,... ,mj G ker(f). Then /(m) = mi4-m24- 
... + mn = 0. For each i, mf = - mj, so rm G Mi n (Mi 4- M2 4-... 4- Mj_i 4- 
Mi+i 4-... 4- Mn) = 0. Thus, m = 0. Hence, ker(f) = {0} and / is one-to-one. Clearly, 
/((mi,m2,...,mn)) = mi 4- m2 4-... 4- mn, so / is onto. Therefore, / is a bijection and 
TV = Mi © ... © Mn. □

If V is a vector space of dimension n over a field K, then V = Kn. The next 
result shows this holds for modules with a finite basis.

Lemma 5.3. Let M be an R-module with a basis of n elements. Then M = Rn = 
7?© 72© ... ffi R.

Proof. Let X = {xi, x2,..., &«} be a finite basis of M and a G M. Then a = nxi 4- 
r2x2 + ... 4- rnxn, n G R. The map / : M Rn given by /E7=i r&i) ~ (ri,r2, ...,rn) 
is well-defined since the coefficients r{ are uniquely determined by x. Further / is a 

module homomorphism since /(IXi7**̂  + = /(SLifa + = (ri +
si,r2 4-s2> -,rn4-Sn) = (n,r2, ...,rn)4- (si,s2,..., s„) = /E?=i w) + /E?=i Stfi) a^d 
/(5Xirri®i) = (rr1,rr2,...,rrn) = r(r1}r2,...,rn) = rf(Y,i=irixi)- If b = ZXi W € 
kerf, then f(b) = /(£X=i epi) = (ci, c2,Cn) = (0,0,..., 0). Thus, Cf = 0, VL Therefore, 
kerf = {0}. So, / is one-to-one. For (n,r2,...,rn) G 7?, /(JXi = (n, r2,...,rn), 
so / is onto. Thus, / is a bijection and we conclude that M = Rn = 72 © 72 ffi... ffi 72. □
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Definition 5.4. Let X be a subset of an -R-module A. Let {Bi|i 6 1} be the family of 
all submodules of A containing X. Then, riie/Bi is called the submodule of A generated 
by the set X and denoted < X >.

The following lemma shows that if a module has a basis of infinite cardinality, 
then all other bases have infinite cardinality.

Lemma 5.5. Let F be a free R-module with an infinite basis X. IfY C F spans F, then
Y is also infinite.

Proof. Suppose Y = {yi,j/2) • • • >Z/n} is finite. Then, for each z, yi — 12^=1 rixi,:h where 
Xitj G X, for all i,j. Let Xi = {in,.. .,xnmn}. Then, F C<Y >C< Xi >. Now, there 
exists x G X — Xx with x G< Xx >, contradicting the linear independence of X. Thus,
Y is infinite. □

In the next theorem, we will strengthen the lemma above to show that if a 
module has a basis of infinite cardinality, then all other basis have the same cardinality.

Theorem 5.6. If F is a free R-module over a ring R with identity and X is an infinite 
basis of F. Then, all of the bases of F has the same cardinality.

Proof. If Y is another basis of F, then Y is infinite by Lemma 5.5.
Let K(Y) be the set of all finite subsets of Y. Define f : X —> K(Y) by 

f(x) = {s/1,2/2) • ■ • )2/n} where x = £)£ riJ/i- Since Y is a basis, f is well defined. Since 
F C< X >C< Imf >, Imf must be infinite by Lemma 5.5.

Next we show for all T G Im(f), |/“1(T)| <00. If x G /_1(T), then x G< T >. 
So /-1(T) C< T >. Let T = {yi,y2, • ■ - ,yn}- For each i, yi G< Xi > where Xi C X is 
finite. Let X? = U^LjXj. Now f~l(T) C< T >C< Xy > DX = X71. Since Xy is finite, 
/-‘(T) is also finite.

For each T G Imf, let xXj X2, • • • ,xn be the elements of and define an
injective map g? : /_1(T) —> Imf x N by gxtxk) = (T, k). Since the sets f-^T) form a 
partition of X, the map X —> Imf x N defined by g(x) = gr(x) is well-defined. To see 
the function g : X —+ Imf x N is an injection, let x,y G X with g(x) — g(y) = (T, k). 
Then, if f_1(T) = {si,X2> - - • >^n}5 x — V — Xk € Therefore, g is one-to-
one. Hence, |X| < \Imf x N|. From Theorem 4.8 and Corollary 4.9, it follows that 
|X| < \Imf x N| = |Im/|R0 = \Imf\ < |K(Y)| = |Y|. Similarly, we wifi have the
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result that |Y| < |X|. Therefore, we conclude |X| = |Y| by the Schroeder-Bernstein 
Theorem. □

For vector spaces, Theorem 5.6 is true for basis of finite cardinality.

5.2 Modules with Finite Bases

Theorem 5.7. If X and Y are both bases of a vector space V over a field D, then 
m = in

Proof. If X is infinite, then Y is also infinite and |X| = | Y| by Lemma 5.5 and Theorem 
5.6. Suppose X = {sq, x2, • • • , im} and Y = {?/i,2/2, • • • , yn} are finite with m < n. Since 
X and Y are bases, 0 yi = rirci + r2x2 -I------F rmxm for some ri G D. Clearly, not all
rfs are 0, say n is the first nonzero. Thus, aq = r^yi — 7\1r2x2 — • • • — ri*r mxm and 
the set X? = {3/1, %2, £3,..., rrm} spans V because X spans V.

Now, consider the set {yi,y25^2, • . • ,®m}- This time, let y2 be the linear com­
bination of yi, x2i. - -, xm, say, y2 = siyi + t2x2 4------F tmxm, where Sj, t^ G D. Then, at
least one of t2, • ■ • ,tm is nonzero, for otherwise it will contradict the linear independence 
of the yn’s. If t2 0, then yi,y2,X3, • • • spans V since X' spans V. Repeating in 
this fashion, at the end we will see a set {yi,y2,y3, • • • ,ym} that spans V. But then ym+i 
is a linear combination of yi, y2, ■ • - , ym, which contradicts the linear independence of Y. 
Therefore, we must have | Y| < |X|. Similarly, we can show that |X| < |Y| by reversing 
the roles of X and Y. Hence, |X| = |Y|. □

The common cardinality of the bases of a vector space is called the dimension 
of the vector space. The following two results show that such a notion is not possible 
for modules in general. Proposition 5.8 illustrates the technique of Theorem 5.9 by 
considering a few special cases.

Proposition 5.8. Let K be a field and let V be a vector space with an infinite basis 
{ei, 62,63,..Let R = Hom/fy, V), which is the set of all K-module homomorphisms 
V->V. Then

1. R = R.

2. R = R®R.
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3. R = R® R® R.

Proof.
\

1. R = R: Assume Bi = {Zy}, where Zy is the identity element of R. In order to 
show that Bi is a basis of R, we need to check that Bi is linearly independent and 
Bi spans R.

Bi is linearly independent: Let a G R. If aZy = 0 implies a = 0, then Bi is linearly 
independent. Now, if aZy = 0, then

aZy(ei) = 0(ef) Vi.

a(ei) = 0(ei) Vi (since Zy is an identity element).

a(ej = 0 Vi

a ~ 0 (since is a basis).

Thus, Bi is linearly independent.

Bi spans R: If every element of R can be written as a linear combination of Bi 
over R, then Bi spans R. Let f G R = V), then f = f • Iy since
f(x) = (/ • Iy)(x),Yx G V. We conclude that Bi spans R.

Since Bi is linearly independent and spans R, Bi is a one-element basis of R. Thus, 
R = Vj = R is an R-module by Lemma 5.3.

2. R = R ® R: Define /i, f2 G R by

en+i if n is odd
2

0 if n is even

es if n is even
2

0 if n is odd

We claim B2 = {/i, f2} is a two-element basis of R. If

ai fi + a2f2 = 0 (5.1)

fl(eTl) = 1

/2(e„) = ]

then, for each n > 1,
aifi(e„) + a2/2(en) = 0(en) (5.2)
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When n is odd, Equation (5.2) will be simplified to

oi/i (en) = 0(e„) (since 02/2 (en) = 0)

oi/i(e„) = 0

ai (en+i) = 0 (by definition /i(en) = e™+i) 

oi = 0, since {e£}gx is a basis

Similarly, when n is even, we will get 02 = 0. Therefore, B2 is linearly independent. 
Now let g G R and define 51,52 £ R by 5i(e$) = g(e2i~i) and 52 (et) = g(e2i) for each
i. We will show g = 51/1 + 52/2. When n is odd, (51/1 + 52/2) (en) = 5i/i(en) = 
5i(en±i) = 5(e2(«±i)_i) = 5(en)- Similarly, when n is even, (51/1 + 52/2) (en) = 
52/2(en) = 5(e2(|j) = 5(e«). Thus, 5 = 51/1 + 52/2 and B2 spans R. We conclude 
that B2 is a two-element basis of R and, by Lemma 5.3, R S R ® R.

3. R = R © R ® R: Define /1, /a, fz E R by

/

/l(eg) —
eAH-1

0

ejk+i

0
/i(e,) = <

efc+i

0

if q = 3fc +1, k G Z
if q 1 mod 3

if q = 3fc + 2, k G Z
if q 2 mod 3

if q = 3k + 3, k G Z
if q 0 mod 3

z

We claim B3 = {/1, /a, /a} is a three-element basis of R = Horn^ty, V). If

ai/1 + 02/2 + 03/3 = 0

Then, for each q > 1,

ai/i(e,) + O2f2(eq) + o,3f3(eq) = 0(e,) (5-4)
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When q = 1, 02/2(69) = <13/3(65) = 0 and Equation(5.4) above will become

ai/i(ei) = Oft)

ai/lft) = 0

ai(e2) = 0 

ai = 0 since is a basis

Similarly, when q = 2, we will have a2 ~ 0; when q = 3, we will have <23 = 0. 
Therefore, B3 is linearly independent.

Let g £ R and define gi,g2,gs E R by

=3(e3i-2) (5-5)

92(ei) = 5fti-i) (5.6)

93 ft) = (e3i) (5.7)

for each i > 1. We will show g = gifi 4- g2f2 + 53/3. Let q > 1. In the case of 
q = 3fc + 1, for some k £ N,g2f2(eq) = 53/3(69) = 0, then

91 fl ft) + 52/2(69) + 53/3(69)

= 51/1 (eg)

= 5i(efc+i)
= 5(e3(fc+l)-2)

= 5(63Jt+l) 

= 5ft)

Similarly, when q = 3fc + 2 and q = 3fc 4- 3, we will also get the result that (51/1 + 
52/2 + 53/3) (eg) = 5ft). Therefore, 5 = 51/1 4- 52/2 4- 53/3 and B3 spans R. 
Therefore, B% is a basis of R with three elements. By Lemma 5.3, R = R® R® R.

□

In Proposition 5.8, we proved several special cases to illustrate the ideas of the 
proof of Theorem 5.9. We now prove our main result.
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Theorem 5.9. Let K be a field and V a vector space with an infinite denumerable basis 
{ei,e2,e3,...}. If n is any positive number, then R = HomK(V,V) has a basis of n 
elements. In particular, R = Rn for each n G N.

Proof. We will show R = Rn — R®R®-'®Ras jR-modules. Let q G N. Define 
G 1? by

if q = nk + 1

if q 1 mod n

if q = nk 4- 2

if q 2 mod n

fi(eq) = <
if q = nk 4- i 

if q^i mod n
X

Cfc+l

0

if q = nk 4- n

if q 0 mod n

We claim Bn = {/j, f2,..., fi,..., fn} is an n-element basis of R. If ai/i 4- a2f2 4----- F
o>ifi 4------ F Onfn = 0 and q = i mod n. Let q = nk 4- i for k > 0, 1 < i < n. Then

ai/i(e9) 4- a2f2(eq) 4- ■ ■ • 4- Oi/t(eg) 4---- 4- anfn(eq) = 0(eg) (5.8)

Since fj(eq) = 0 for j 0 i, Equation (5.8) above will become

^ifi^g) = 0

3 '

Oi(efc+1) = 0 for all k > 0

<H = 0 since {e5 }^, is a basis.

Thus, when q = nk + i, we will have af = 0, 1 < i < n. Therefore, Bn is linearly
independent.
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Let g E R. Define 51, g2,..., gn 6 R by

51 (Cj) =g(fnj-(n—1))

52ft) =p(enj-(n-2))

5i(ej) ~g{enj—(n— i))

5n(ej) =5(enj)

for each j > 1. We will show 5 = 51/1 + 52/2 + — + Oifi + — 4- 5n/n- When q = nk + 1, 
for some k E N, 52/2(69) = 53/3(69) = • • • = gift — • • ■ = gnfn — 0, then

(51/1 + 92/2 4------ 1- 9ifi 4------ 1- 5n/n)(eg)

= 51/1 (eg)

= 51/l(enfc+l)

= 5i(efc+i)

g(fn(k+l)—(n—l))

= g(pnk+n—n+1))
= g(pnk+l)

=sM

Now, when q = nk 4- i,k,i G N with 1 < i < n, we have (51/1 4- 52/2 4- ... 4- gifi 4- 
••• 4-5n/n)(6g) = 5i/i(eg) — 5i/i(enfc+i) = 5i(efc+l) = 5(en(fc+l)—(n—i)) = g(enk+n—n+i) = 
g(enk+i) — g(eq)- Hence, 5 = fi9i anc^ &n spans R. Therefore, Bn is an n-element 
basis of R = Homk(y, V). By Lemma 5.3, R = = □



30

Bibliography

[GaI02] Joseph A. Gallian. Contemporary Abstract Algebra. Houghton Mifflin Company, 
Boston, 2002.

[Hun80] Thomas W. Hungerford. Algebra, volume 73 of Graduate Texts in Mathematics. 
Springer-Verlag, New York, 1980. Reprint of the 1974 original.

[KH01] B. Kolman and David R. Hill. Introductory Linear Algebra with Applications. 
Prentice Hall, New Jersey, 2001.

[OR96] J. J. O’Connor and E. F. Robertson. Abstract linear spaces, 1996. Online; 
accessed 8-June-2007.

[RA77] C. Rorres and H. Anton. Applications of Linear Algebra. John Wiley and Sons, 
Inc., New York, 1977.


	Studies in free module and it's basis
	Recommended Citation


