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Abstract

This thesis will show work on Orthogonal Polynomials. In mathematics, the type of 
polynomials that are orthogonal to each other under inner product are called orthogonal 

polynomials.
Orthogonal polynomials were developed in the late 19th century by P. L. Cheby­

shev. Furthermore, GAbor Szego, Sergei Bernstein, Naum Akhiezer, Arthur Erdelyi, 
Yakov Geronimus, Wolfgang Hahn, Theodore Seio Chihara, Mourad Ismail, Waleed Al- 
Salam, and Richard Askey were mathematicians who at one point in history have exten­
sively studied and worked on orthogonal polynomials.

Jacobi polynomials, Laguerre polynomials, and Hermite polynomials are exam­
ples of classical orthogonal polynomials that have been invented in the nineteenth century. 
The special cases of classical polynomials are Chebyshev polynomial, Legendre polyno­
mials and Gegenbauer polynomials. These polynomials are different because they have 
different weight functions, w(x). Sometimes they will be classified based on their dimen­
sions such as Gegenbauer polynomials. We will concentrate on Legendre polynomials. 
The applications are not limited only to mathematics and physics. Scientists found ap­
plications for orthogonal polynomials in other subjects, including biology, chemistry, and 
computer science. The theory of rational approximations is one of the most important 
applications of orthogonal polynomials.

As another application of Legendre polynomials, we will consider some special 
values of the Riemann zeta function. The Riemann zeta function is a function of a complex 
variable s. It is expressed as a continuous sum of the infinite series which converges when 
s is greater than one. The Riemann zeta function plays a very important role in analytic 
number theory, in physics, probability theory, and applied statistics.
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Chapter 1

Introduction

In mathematics, the type of polynomials that are orthogonal to each other under 

an inner product are called orthogonal polynomials. Let Pn, and Pm be two polynomials 
such that degPn = n, and degPm = m, then {Pn, Pm) = 0, m 0 n, and (Pn, Pm} 0, for 

m = n.
P.L. Chebyshev founded the field of orthogonal polynomials at the end of the 

19th century. The study of orthogonal polynomials, after Chebyshev, was continued by 

A.A. Markov and T.J. Stieltjes. Furthermore, GAbor Szcgd, Sergei Bernstein, Naum 
Akhiezer, Arthur Erdelyi, Yakov Geronimus, Wolfgang Hahn, Theodore Seio Chihara, 
Mourad Ismail, Waleed Al-Salam, and Richard Askey were mathematicians who at one 

point in history have extensively studied and worked on orthogonal polynomials [Jac04].
The history of orthogonal polynomials and special functions dates back to the 

nineteenth century century. Some mathematicians and physicists used orthogonal polyno­
mials and special functions to solve equations in mathematical physics. The applications 

of orthogonal polynomials are both in mathematics and physics (combinatorics, harmonic 

analysis, statistics, number theory). The applications are not limited only to mathe­

matics and physics. Scientists have also utilized these studies in the fields of biology, 

chemistry and computer science. The theory of rational approximations is one of the 

most important applications of orthogonal polynomials.
Jacobi polynomials, Laguerre polynomials, and Hermite polynomials are ex­

amples of classical orthogonal polynomials. The special cases of classical polynomials 
are Chebyshev polynomial, Legendre polynomials and Gegenbauer polynomials [Jac04].
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These polynomials are different because they have different weight functions, w(x). Some­

times they will be classified based on their dimensions such as Gegenbauer polynomials. 

We will concentrate on Legendre polynomials.
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Chapter 2

Legendre Polynomials

An expression in the form of anxn + aix^1 + a2xn~2 +... + ao> where a>k are real 
numbers, and k is a positive integer or zero is called a polynomial. A set of polynomials 
where the product of any two different ones multiplied by a function w(x) called a weight 

function and integrated over a certain interval will be equal to zero is called a set of 
orthogonal polynomials. Legendre polynomials allow us to break down a function f (&) 
into a sum of different polynomials. Fourier series is similar with the exception that 
they do not represent orthogonal polynomials. They include sin s and cos s but not 
polynomials.

2.1 Fourier Series

Fourier series breaks down periodic functions or periodic signals into the sum of 
oscillating functions, such as sines and cosines. The study of Fourier series is a branch of 

Fourier analysis.
"The Fourier series is named in honour of Joseph Fourier (1768 — 1830), who 

made important contributions to the study of trigonometric series, after investigations 

by Leonhard Euler, Jean le Rond d’Alembert, and Daniel Bernoulli" [Tol76]. Joseph 

Fourier used the Fourier series to solve the heat equation in a metal plate. The idea 

of decomposing periodic functions into oscillating functions was first used by ancient 

astronomers in the third century BC to investigate planetary motions.
The subject of Fourier series was invented in the nineteenth century, a time when 

a precise notion of function and integral was not yet developed. As a result, Fourier’s 
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findings are now viewed as informal. With Fourier as their predecessor, Riemann and 

Dirichlet developed more precise applications of Fourier series.

Even though the intent of the Fourier series was originally to solve the heat 

equation, it was later used to solve a wide range of mathematical and physical problems, 
such as those involving linear differential equations with constant coefficients. The Fourier 

series has many applications in electrical engineering, vibration analysis, acoustics, optics, 

signal processing, image processing, quantum mechanics, econometrics, and thin-walled 

shell theory.

2.2 Expansion of Trigonometric Functions

Special attention will be given to expansion of trigonometric functions, cosine 
and sine. In most cases we will be using complex exponential functions, e10 instead of 

trigonometric functions sin x, and cos x. These trigonometric functions are related by the 
following formula

ew + e~id 1 . eie~e~iecos u =--------- , and sin & =------------ .Zi £
To express e10 by sin0, and cos# we will have

= cos 3 + i sin 0.

The advantages of cosine and sine are that they are real-valued functions, and 
they are even and odd. The advantages of the exponential function etQ are that its 

differentiation formula (e**)'  = ieid and the addition formula are much
simpler than the corresponding formulas for cosine and sine.

Let the function f(x) be integrable in the interval [—tt, %] and for Fourier series
oo

f(x) ~ v+52 cos nx+sin x^ ’ (2-1)
n=l

where,
7T

an — — 1 f(x)cosnxdx (n = 1,2,3,...), 7T 1 (2-2)

and

.j—7T

7T
bn = — I f(x) sinnrrda? (n = 1,2,3,...).7F / (2-3)

* «/ “ 7T
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We will look at some simple orthogonal systems involving trigonometric func­

tions. Let the first system consist of

1, cos a, cos 2x, ...cosna:,...

This system is orthogonal in the interval [0,7r]. First, let’s investigate the orthogonality 

of the cosine function and number 1.
7T

n/
r • “| 7r, sin a; 

cos nxdx = •

0

= 0 (n = l,2,...).
- o

This means that the functions cosna; and 1 are orthogonal. Next, we will look at the 

combination of two cosine functions in the following integral

7T
y*  cos nx cos mxdx 
o

This proves that the system 1, cos a;, cos 2a;,... cosna;,... is orthogonal. The second system 
is the following set of functions

sin a?, sin 2a;,... sinna;,...

We will show that this system is orthogonal also. Lets consider two sine functions 

first, then
7T

/ sin nx sin mxdx 
o

Finally the third system will consist of the following trigonometric functions 

sina:3sm3a:,sm5a;...sin(2n-|- l)a:3...We need to show that it is orthogonal on [03tt/2] .
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For (n / m) and n,rn= 1,2,3, ...we will have

1 sin 2(n — m)x' */2 ! 'sin2(n + m + 1)®’
2 2(n — m) 0 2 2(n + m+l)

2.3 Orthogonal Polynomials

Orthogonal polynomials can be used in specifying basic states in quantum me­

chanics. The orthogonality of polynomials is determined by their inner product formula,
1

(/, 9) — J f(x)g(x)w(x)dx ~ 0. Here w(x) is a nonnegative weight function as illustrated 
-1

in the definition of the inner product.
The Legendre polynomials Pn(x), n = 0,1,2...are orthogonal in the interval from 

—1 to 1 with weight function w(x) = 1 . Here n represents the degree of the polynomial 
Pn(u). These polynomials are expressed by the following integral:

1

JPn(x)Pm(x)dx = 5mn x. (2.4)
-1

The Kronecker delta is zero if n 0 m, and unity if n = m. In most cases with applications, 
x = cos0, where 0 is from 0 to 7r. The derivative is dx = sin0d0. The Legendre 

polynomials are a special case of Jacobi polynomials Pn*'^  (x) that are orthogonal on 
(—1,1). By changing the variable we can change the interval from (—1,1) to (a, b).

p

Q

Figure 2.1: Charge q at Q.

In the figure 2.1 let q be an electric charge at point Q. We want the potential at 
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some point P. The distance PO is considered as unity for convenience. The potential to 
this charge is q/R. We can determine J? as a function of r and also 0 can be found using 

Law of Cosines: R2 = 1+r2 —2rcos0 = 1—2rx4-r2,(x = cos#). Next we can expand 1/R 
in powers of r as 1/R = Pn (x) rn. 1/R is called the generating function of the Legendre 
polynomials. Generating functions are possible for most orthogonal polynomials.

If we make x = 1, it is easy to see that Pn (1) = 1, and Pn (—1) = (—l)n. 

By taking partial derivative of 1/R with respect to x and r, and then considering the 

coefficients of individual powers of r, we can find the number relations between the 

polynomials and their derivatives. We can use this to find the recursion relation:

(n + 1) P(n+i) (x) = (2n 4- 1) xPn (x) - nP^) (x). (2.5)

It also can be used to find the differential equation satisfied by the polynomials:

(1 - x2) P" (x) - 2xP^ (x) + n (n + 1) Pn (x) = 0. (2-6)

The in-detail proofs of (2.5) and (2.6) are as follows. Let the generating function of

Legendre polynomials be

5(r, x) = 1
\/l — 2rx 4- r2

oo
= £Pn(x)r"

n=0
(2-7)

We need to show that Pn(x) satisfies equation (2.5). We will start by generating 
a recurrence relation between Legendre polynomials of different order. First we are going

OO

to differentiate the equation (2.7), g(r,x) = Vi_2raH-rg ~ 22-^>n(a:)rn with respect to r.
n=0

dg(r, x) x — r
dr (1 — 2xr + r2)3/2

oo

= '^nPn(x)rn~1.
n=0

(2.8)

To simplify, we will multiply two sides of this equation by 1 — 2xr + r2 and 

making the equation equal zero we will have
oo

(1 - 2xr + r2) £ nF^r"-1 + —=/=/= = 0, (2.9)
“ VI - 2xr 4- r2

which, using the generation function, equation (2.7) becomes
oo oo

(1 — 2xr + r2) 22 nPn(x')rn~1 4- (r — x) 22 Fn(x)rn = 0.
71=0 71=0

(2-10)
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Therefore, by distributing both summations and simplifying we will get
oo oo oo^2 nPn^r^1 — 2xr y^ nPn(z)rTi-1 + r2 nPn(x)rn'~1

n=0 n=0 n=0
oo co

+r nPn(xyrn - x^pn(x)rn
n=0 n=0

oo oo oo

= nP^x)^1 - 2xnPn(x)rn + nPn(x)rn+1
n=0 n=0 n=0

oo oo+y^ nPn(x)rn+i - y^ apn(a:)rn
n=0 n=0

= 7nPm(a;)rm_1 - 2x nPn(x)rn + £ sPs(x)rs+1
m ns

oo

+ y3 pn(x)rs+1 - xPn(x)rn
s n=0

= 0.

Let m = n -J- 1, and s = n — 1, then this equation will become
OO

Kn + l)Pn+i(z) “ (2n + l)xPn(x) + nPn-i(2c)l rn = 0. (2.11)
n=0'

Since rn 0 0, for n = 1,2,3... we will have the following

(n + l)Pn+1(z) - (2n + l)xPn(x) + nPn_i(x) = 0. (2.12)

This is the recurrence relation between Legendre polynomials of different order.
Using this equation we can generate Legendre polynomials of higher order. In finding 
the recurrence relation we differentiated equation (2.7) with respect to r. Now we will 

differentiate equation (2.7) with respect to x.
dg(r,x) _ r

dx (1 — 2xr + r2)3/2

OO

= 12 "■PnW’’"
71=0

We can write this as
oo

(1 — 2xr + r2) P'n(x)rn —
n=0

r
\/l — 2xr + r2

= 0,

and by using the generating function we will have
oo oo

(1 — 2xr + r2) y^ P'n(x)rn — r y^ Pn(x)rn = 0, for all r.
n=0 n=0
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Then,

oo oo oo oo

22 -2xr 22 pn(xyn+7,2 22 pnWrW ”r 22 p^y1=°>
n=0 n=0 n=0 n=0

and oo22 2nW?-m - zxr^pis(x)rs+r2 y2 Pn(x)rn -r 22 p^y^=°-
m ns n=0

Like in the previous problem we will set m = n 4-1 and s = n — 1, and this 

equation will become

E4i(+
n+l

or,

oo oo

■n+1 - 2xr 22 P^ (a;)rra~x + r2 22 (x)rn - r^Pn(x)rn = 0, 
n—1 s n=0

oo22 [X+lM + Pn^l(x) ~ 2xPn(x) + Pn(®)] = 0,
71=0

and by setting to zero each power of r we will have

j£+l(®) + J’n-lC®) - 2xP^(x) + P„(x) = 0. (2-13)

If we differentiate equation (2.13) we will have

(n + l)P^.i(aO + nPn-^x) = (2n + 1) [pn(z) + olF£(x)] .

We will use equations (2.14) and (2.15) to eliminate Pn(z)

(2-14)

ifnW - = (2" + l)Pn(®). (2-15)

Next we will subtract (2.16) from (2.14)

Pn+l^) + Pn-1& - ‘tePnW + PnW ~ P^z) - P^x) - (2n + l)Pn(x) = 0.

By doing this we will eliminate Pn+i(x') and get

Pn-i(x) = ~nPn(x) + xPn(x)' (2.16)

In the next step instead of subtracting, we will add (2.16) and (2.14). The purpose of 

doing this is to eliminate P^-i(.x)-

= (n + l)Pn(®) + aj£(a:). (2.17)
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In the next step, by replacing n with n — 1 and adding it to x times the equation (18) we 

will get

P„(x) - nPn^(x'i + xPn_i(x) + x(P^_1(x) + nPn(x) + xP„(x)) = 0.

By combining like terms and factoring (1 — x2) we will have

(1 - x2)P^(x) = nPn_i(x) - nxPn(x). (2.18)

Finally, if we differentiate (2.19) we will have

(1 - x2)Pn (x) - 2xP„(x) + nPn(x) + n - (P'_i(s)j = 0.

Notice that, based on (2.17),

xP„(x) - Pi-iTx) = nPn(x),

therefore, the final result is

(1 — x2)Pn (x) - 2xP^(x) 4- n(n + l)Pn(x) = 0. (2.19)

The recurrence relation allows us to find all the polynomials, since it is easy 
to find Po (x) = 1, Pi (x) = x, directly from the generating function. The differential 

equations allows us to apply the polynomials to problems in mathematics and physics, 
among which is the important problem of the solution of Laplace’s equation and spherical 

harmonics.

The recurrence relation shows that the coefficient An of the highest power of x 
satisfies the relation = (2k + 1) / (k + 1) An. Hence from the known coefficients for
n = 0,1 we can find the coefficient of the highest power of x in Pn is 1 - 3 - 5...(2n — 1) /n\.

The polynomials can also be found by solving the differential equation by dif­

ferentiating the coefficients of a power series substituted in the equation. This method 

often used in quantum mechanics texts. It is also important to indicate that this method 

does not allow us to investigate the properties of polynomials. However it describes only 

the individual polynomials themselves. Consider the polynomials

Gn(a:) = ^(a:2_4n-
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When differentiating the equation (2.20) n times, we will get a polynomial of order n. They 
will consist of all odd or all even powers of a?, as n is odd or even. The coefficient of the 

highest power of x is 2n (2n — 1) (2n — 2)... (n 4-1). Therefore, the first two polynomials 

will be 1 and 2x. If G (x) is substituted in the recurrence relation for the Legendre 

polynomials, it is found to satisfy it if we substitute G (x) by the constant 2nn!, then the 

first two polynomials are 1 and x. Because of this,

This formula is called Rodriguez’s formula. The advantage of Rodriguez’s for­
mula is that it is in nth derivative form. The orthogonality of Legendre polynomials 
follows when Rodriguez’s formula is used. The Rodriguez’s formula is used to find the 

recurrence relation, the differential equation, and many other properties.

2.4 Special Cases

We will calculate values of Pn(x) for n = 2, and n = 3.
If n = 2, then

AW

If n — 3, then
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P3W = i^2~1)3

= jz (z6 - 3a;4 + 3a;2 - 1)"'
48

= 7x(6a;5 “ 12a;3 + 6a;)"
48

= tt; (30a;4 — 36ir2 + 6/
4£O

= 4 (120a;3 - 72a;)
48
120 q 72 
“48"^ 

= l(5a:3 —3a:).

2.5 Associated Legendre Functions

For finding solutions to Laplace’s equation in spherical coordinates, Legen­
dre polynomials are sufficient for problems axially symmetric, in which there is no 

dependence. The more general problem requires the introduction of related function 

called the associated Legendre functions that are constructed from Jacobi polynomials, 

and can be expressed in terms of Legendre polynomials [Sze75].
The Jacobi polynomials (a;) are orthogonal on the interval (—1,1) with

respect the weight function w (a;) = (1 — x)ft (1 + , for cr,/3 > —1.
The Rodriguez’s formula for the Jacobi polynomials is[Sze75]:

The ordinary Legendre polynomial Pn (re) = Pn’^ (a;). They will satisfy the 

differential equation:

(1 - a;2) 4- \J3 - a - (a + + 2)a;] P^a,®'> + n(a-|-/? + n + l) P^a^ (a;) = 0.

(2.22)
To solve Laplace’s equation by using method of separating variables we can 

obtain 0 dependence T (x), x = cos 0, the differential equation:



13

The substitution T (x) = (1 — x2)T y (x) will produce the following equation:

(1 — a:2) ytf — 2 (m + 1) xy' + [I (I + 1) — m (m + 1)] y = 0. (2.23)

We recognize this as satisfied by the Jacobi polynomial p}™/^ (z). Hence, 

T (x) = (1 — x2)'7 y (x) (®). This is an associated Legendre function, often de­
noted P}™) (x) in physics texts. It is defined as (—l)m (1 — -j^Pi. Here the sub­
script is not the degree of the polynomial.

The above formulas and expressions are for positive m. Due to the equation con­
taining m2, the solution for negative m is essentially the same, except for a multiplicative 

factor. It is applicable for spherical harmonics, where relative phases matter.
"In mathematics, spherical harmonics are the angular portion of a set of solu­

tions to Laplace’s equation. Represented in a system of spherical coordinates, Laplace’s 
spherical harmonics are a specific set of spherical harmonics that forms an orthogonal 

system, first introduced by Pierre Simon de Laplace in 1782. Spherical harmonics are im­

portant in many theoretical and practical applications, particularly in the computation 
of atomic orbital electron configurations, representation of gravitational fields, geoids, 
and the magnetic fields of planetary bodies and stars, and characterization of the cos­
mic microwave background radiation. In three dimensional computer graphics, spherical 
harmonics play a special role in a wide variety of topics including indirect lighting and 

recognition of three dimensional shapes"[Mac67].

In physics it is as follows: P^m (x) = (—l)m [(1 — m)!/ (1 + m)!] P™ (x), where 

m is always positive on the right. If we work explicitly with the function for +m and — m 
are essentially the same, and differ at most by a factor of —1.

For the same m, P™ (x) are orthogonal, and the integral of the square of P™ (x) 
is the same as for Pi (x), multiplied by (1 — m)!/ (1 + m)l. The functions are not orthog­
onal for different values of m; orthogonality of spherical harmonics in this case depends 

on the <p function.
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Chapter 3

Spherical Coordinates and

Legendre Function

In this section we will work on deriving the formula for the Laplace operator 
in the polar coordinate systems in the plane and in three dimensional space. We will 

also investigate some insights of integration in polar coordinates in n—space. First, the 
relation between polar coordinates (r, 9) in K2 and Cartesian coordinates (a?, y) will be 
expressed as the following:

x — rcosO, 
y = r sin 9.

Let u be a function of class C2 in R2. By differentiating and applying the chain
rule we will have

ur

u0

du _ du dx du dy
dr dx dr dy dr
du du dx du dy
d9 dx d9 dy d9

— ux cos 9 + uy sin (?,

= — uxr sin 9 + uyr cos 9.

(3-1)

Using the equations for ur and uq we can derive an expression for uy

Uy — ur sin 9 + r ^uq cos 9 . (3-2)
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Our next step is to find the derivatives of ur, and u0 by using a chain rule

urr = (uxx cos 9 + uxy sin 9) cos 9 + (uxy cos 9 4- uyy sin 9) 
— uxx cos2 9 4- 2uxy sin 9 cos 9 4- uyy sin2 9,

and

(3-3)

uqq = — sin 9 4- uxyr cos 9)r sin 9 — uxr cos 9 (3-4)

4-(—uxyv sin 9 4- Uyyr cos 9)r cos 9 — UyT sin 9
= r2(uxx sin2 9 — 2uxy sin 9 cos 9 4- uyy cos2 9) — r(ux cos 9 4- uy sin#).

By dividing both sides by r2 and replacing ux cos 9+ uy sin 9 by ur we will have 

the following expression

r~2u0g = uxx sin2 9 — 2uxy sin 6 cos 9 4- uyy cos2 9 — r"1ur. (3.5)

By adding equations (2), and (4) we will have the following

Urr 4~ T 4Ur 4" T UQQ = Uxx 4“ uyy- (3-6)

Therefore, the Laplacian of u, which is v2<u = uxx 4- uyy hi rectangular coordi­
nates, in polar coordinates will be written as

\J2u — Urr 4- r_1ur 4- r~2u00' (3.7)

3.1 The Laplacian in Cylindrical and Spherical Coordinates

Let (p, #, z) in R3 be polar coordinates by using (p, 9) in the xy—plane and 

having z fixed. In Cartesian coordinates (xyz) we will have

x = pcos#, y = psin#, z = z.

In cylindrical and spherical coordinates we will use p for r. Let p and 9 be fixed 
(similar to holding x, and y fixed in Cartesian coordinates) in cylindrical and spherical 
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coordinates and we will find a partial derivative with respect to z using (3.7) . The 

Laplacian in cylindrical coordinates will be

\7 u — uxx -J- uyy -J- uzz ~~ ^pp “b p tip -j- p tiQQ 4~ uzz. (3.8)

Next we will consider spherical coordinates (r, 0, z) in P3 and in Cartesian co­
ordinates (x, y. z) will be by

x = r cos 0 sin 0, y = r sin 0 sin E, z = rcos</>.

Accordingly, for cylindrical coordinates (p, 0. z) we will have

p = r sin </>, 0 = 0, z = r cos </>.

In a sphere 0 is a longitude, and 0 is the angle from the north pole. 0 is in 
radians in the interval of length 2tt, (—7r, tt], or [0, 2tt) . Also, is restricted to [0,7r].

To convert cylindrical coordinates to spherical coordinates longitude 0 will be 

unchanged, and the variables (z, p) are going to be related to spherical variables (r, <p) by 

the following equations
z = r cos p = r sin </>.

In this two equations the variables have different names, although they represent 
the same values. Thus, based on the formulas (3.2) and (3.7) and relabeling the variables 
we will have

Up = ur sin d) 4- cos </>

and

urr + r"1^ 4- = uzz 4- Upp.

By substituting up and uzz + upp in formula (3.8),we will have

V2w = Upp + uzz + p xup 4- p 2uq0

= urr 4- r_1ur + r_2w^ 4- p_1iir sin 4- (rp)-1u^ cos </> 4- P~2uqo.

Finally by considering p = r sin </> we will get 

2 2u = urr 4—ur 4-
111

9 j 9 • 2r2 tan 0 rh rz Slnz (3-9)
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Formula (3.9) can be simplified by using the following to facts

2 h x
7£rr "H ”^7*  — '"(T'IaJpt'r T

1 ( 2 \
= ur)r,

and
-A— + (u^sin^) <£.
tan<p sintj

Therefore the Laplacian in spherical coordinates will be the following:

11 1
V2^ = - (fu)rr 4- 9 . 2 . (u$ sin fa 4- . 2 UQdr r2sm^ Y r2sm2<£

11 1= far2ur)r + 9 . 2 , (^ sin fa 4- 9 . 2 -uee .rz r2sm 0 r2sin

(3.10)

By using the Laplacian in spherical coordinates formula we will solve some 
boundary value problems. First we will consider the Dirichlet problem for the unit ball 
in R3 :

\/2u(r, 0, <£) = 0 for r < 1, w(l, 0, </>) = /(0, </»). (3.11)

To find solutions of y2u = 0 in the form of u = J?(r)0(0)S(0) we will use the 
method of separation of variables. By substituting u = I?(r)0(0)S(0) $ in to \/2u = 0 
we will have the following

r2 sin2 </> R" 2P'
R + rR 4- sin0

(S'sin 0)' _ 0"
S ~ 0 ‘ (3-12)

Both sides of this equation have to be equal to a constant m2, hence

m20" + m20 = O.

Therefore,
0(0) = aeim0 + 6e"^.

In spherical coordinates 0 represents the longitude; therefore, the period of 0 

must be also 27r, and m needs to be a nonnegative integer. Hence we will make the left 

side of the equation (3.12) equal to m2 and separate r and 0 :

r2R" + 2rRf _ m2 _ (S' sm0)'
sin2 (f S sin </>

(3.13)R
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Both sides of the equation (3.13) must be equal to A. Hence $ and R will be

expressed as
(&' sin <ff

$sin</>
m2$ 
sin2 (/)

+ A$ — 0, (3-14)

and
r2R" + 2rR' - XR = 0. (3.15)

Now, we are going to transform the equation (3.15) in to a close relative of the 

Legendre equation. The Legendre equation is

[(1 - x2^]' + Xy = 0. (3.16)

Let s = cos </>,where 0 has a range equal to [0, 2tt] . The transformation (j> —> s 
= cost/) is a one-to-one function between [0,%] and [—1,1]. Let q be dependent on s. By 

differentiating q in respect to <p we will have

dq dq ds . dq 
d<f ds d</> Sin ds ’

or
1 dq dq

sin </> dq) ds
Let s = cos<£, and S(s) = S(cos^) = $(^). Then sin2 = 1 — s2. Substituting 

in to the previous equation we will have

— (sm<£—) = ——((1 - s 2)—).smtpdtp dtp ds ds
Hence, £(0) satisfies the equation (13) if and only if S(s)=$(ar cos s) satisfies

[(1_s2)S']'-~ + AS = 0.

We can see that (3.17) will become the Legendre equation for the values of 

m = 0. Because of this it is called associated Legendre equation of order m. We 

can find solutions for (3.17) if m is a positive integer, and the equation becomes an 

ordinary Legendre equation
[(1-?)»']' +Aw = 0. (3.18)

Let f, and g be functions, and we will apply the product rule for (m-|-l)th order

derivatives,

v + ! — &)!*'  9
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By substituting f(s) = 1 — s2, and g(s)=wf(s) we will get the following

[(1 — s2)w/](m+1'1 = (1 — s2)w^m+2^ — 2(m + l)su/m+1) — m(m + l)u/m\

By differentiating (3.18) m times we will get the following

(1 - s2)u/m+2) - 2(m + l)su/m+1> - m(m + l)w<^ + Xw^ = 0. (3.19)

Let (1 — s2)ml2w^ = S, then we will have

(1 - s2)S' = —ms(l - s2)m^w^ + (1 - s2)m/Mm+1\

By differentiating both sides of this equation we will have

[(l-s2)S']/ = (l-s2)m/2

* (1 - s2)w(™+2) - 2(m + l)sw(m+1) +

(3.20)
m2w(m)
—----- 5---- + l)w1 — sz

It follows from the equations (3.19) and (3.20) that

[(1_s2)5']' = ^--AS.

This shows that if w satisfies the equation [(1 — s2)w/]/ + Xw ~ 0, then S = 
(1 — s2)m/2 satisfies the equation [(1 — s2)^']' — + As = 0.

Let A = n(n+l), and let w be the Legendre polynomial Pn, then the associated 

Legendre function P™ will be

- fi - :^dmp^ - - a2)m/2 fj2 _ n n
■f'nW-U SJ dsm - 2„n, ds„+nAS (3.21)

We can see from the formula (3.21) that P™(s) = 0 when m> n because Pn is a 

polynomial of degree n, therefore P™ is important for n > m. Hence for m = 1,2,3, ...and 

n > m, P™ will be a solution of the boundary problem

[(i - z2)y] + ^2 + n(n+tyv= (3.22)
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Chapter 4

Riemann Zeta Function

As another application of Legendre polynomials, we will consider some special 
values of the Riemann zeta function.

"The Riemann zeta function £(s), is a function of a complex variable s. It is 
expressed as a continuous sum of the infinite series which converges when s is greater 
than one" [Tit 86]. The representations of £(s) for all s will be given later in this section. 
The Riemann zeta function plays a very important role in analytic number theory, in 

physics, probability theory, and applied statistics.
The Riemann zeta function is also called Euler-Riemann zeta function. It was 

introduced and studied by Leonhard Euler in the first half of the eighteenth century. 
In 1859 Bernhard Riemann published "On the Number of Primes Less Than a Given 
Magnitude " where he extended the Euler definition to a complex variable. He established 
a relation between zeros and the distribution of prime numbers [EdwOl].

4.1 History

The zeta function was discovered by Swiss mathematician Leonhard Euler in 

1737, but it was first studied extensively by the German mathematician Bernhard Rie­
mann.

In 1859 Riemann discovered explicit formula for the number of primes up to any 

preassigned limit. Riemann’s formula depended on knowing the values at which the zeta 
function equals zero. The Riemann zeta function is defined for all complex numbers of 

the form a + it, where a and t are real and i = y/(—1). The function equals zero for 
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all negative even integers —2, —4, —6,... which he called trivial zeros. There are infinite 

number of zeros in the interval of cr = 0 and or = 1. Riemann concluded that all of the 

nontrivial zeros are on the critical line t = which later became known as the Riemann 

hypothesis.
According to David Hilbert, a German mathematician, the Riemann hypothesis 

is one of the most important studies in mathematics. Shortly after David Hilberts study 

of the Riemann hypothesis, in 1915 the English mathematician Godfrey Hardy proved 

that an infinite number of zeros occur on the critical line. Inl986 the first 1,500,000,001 

nontrivial zeros were all shown to be on the critical line. Even though this hypothesis 
may or may not be false, the study of the matter has deeply increased the understanding 

of complex numbers [EdwOl].

4.2 Definition

The Riemann zeta function £(s) is a function of a complex variable s — a it 
where, s, a and t are real notations associated with the function. The following infinite 
series converges for all complex numbers s with real part greater than 1, and is defined 

<W as;
oo 1 "1 1

C(s) = 52 n_S = 1 + 2^ + 3? + 4? + 

n=l

The Riemann zeta function is defined as the continuation of the function defined 
for er > 1 by the sum of the series (4.1).

Leonhard Euler discovered the above series in 1740 for positive integer values of 
s, and later Chebyshev extended the definition to real s > 1.

The above series converges for s > 1 and diverges for all other values of s. 
Riemann showed that the function defined by the series on the half-plane of convergence 
can be continued analytically to all complex values s / 1. For s = 1 the series is the 

harmonic series which diverges to +oo.
Thus the Riemann zeta function is a convergent function on the whole complex 

s—plane, which is convergent everywhere except for a simple pole at s = 1.

computed the values of the Riemann zeta function for even positive integers. The first 

of them, £(2), provides a solution to the Basel problem. In 1979 Apery proved the irra­

tionality of £(3). The values at negative integer points, also found by Euler, are rational 
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numbers and play an important role in the theory of modular forms.

4.3 Specific Values

For a positive even number 2n,

C(2n) = (4.2)

In this expression B2n is a Bernoulli number. This formula can be proved by 

several means. We will show it below for n = 2, and n = 3. In mathematics, the Bernoulli 
numbers Bn are a sequence of rational numbers with deep connections to number theory. 

The values of the first few Bernoulli numbers are

Bo = l,Bi = ±1/2, B2 = 1/6, B3 = 0,B4 = -1/30, B5 = 0,B6 = 1/42, B7 = 
0, B8 = —1/30.

If the condition Bi = —1/2 is used, this sequence is also known as the first 
Bernoulli numbers; with the condition Bi = ±1/2 is is known as the second Bernoulli 

numbers. Except for this one difference, the first and second Bernoulli numbers agree. 

Since Bn = 0 for all odd n > 1, and many formulas only involve even-index Bernoulli 
numbers, some authors write Bn instead of B2n[Tit86].

From equation (4.1), if n is a positive integer then

^(-n) = - Bn+l 
n ± 1' (4-3)

We can see that for all n > 1 £ approaches zero at all negative integers since Bm = 0 for 

all odd m^l.
The most commonly used values of zeta function are;

C(0) = -J. (4-4)

C(I) = 1 + ^ + | + ^ + “ = o°-

c(2) = 1 + ^2 + ^2 + + - = y - L645-

C(3) = 1+23 + 33+^ + -- 1-202-

cw = i+i+^+i+-=^’°823-
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4.4 Finding f(2)

In this section we will find £(2) using the Fourier series for f(0) = 02, in the 

interval (—7r < 0 < tt). This series is

e2 = E + 4v(zTC0S^
3 n2 (4-5)

oo

We will show that 22 7? = IF
1

To solve this problem we will choose a specific value for 0. Let 0 = 7r, then

2 7T3 V"' (~l)n
’T -y + 42^“^2“cosn7r-

3
By subtracting 2L. from two sides we will the following,

2 71-3 a (“!)n
-y = 4X^2-cosn7r’

and
37F2 — TT2 (“I)™
-----3----- = 4 X C0S n7r-

OO
Considering the fact that cosnvr = (—l)n, = 4£4^(-ir

1 
oo

Since (—l)n(—l)n = (—l)2n — 1, we will have = 22 7^? or
1

2 oo 1

6 " n2'
(4-6)

4.5 Finding £(4)

(4-5)

To calculate £(4) we will work on some supporting steps. First, by referring to 
oo

we will show that 03 — 7r20 = 12 22 By integrating both two sides of the
i

oo

equation 02 = + 4 22 'cos we will have
1
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02 7T3 ^4 (—l)n .

2 r?=90‘

- = y0 + 4£ —smnfl + a

Notice that C = 0 for 6 = 0, therefore;

(4-7)

and finally
e3-^ = 12y^sinn0. 

" n3 (4-8)

3 _ Z- n2 ’

Next, by using the equation (4.8) we will show that

e4_^g2=48y;(~i)’,-r4^ n4 15

By integrating the equation (4.8) in the first section,

93 - ?r20 = 12 sinn0,1 71,3

and so we get
94-2^ = 48Y;(-1)"+14COSne +C-

4^ n4

Notice that (—l)n+1cosn# = (—l)2ra+1 = —1, since 2n + 1 is an odd number.
To determine the value of C we will use the following integration formula,

(4-9)

ao
T

-7tt4
3

= i/(^-2^M = 15
—7T

and therefore,

^_^=48f(~1)n;osng.-^
4^ n4 151

(4-10)

Finally we will use the information in previous two steps to prove that

oo - 4El 7T
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Considering the formula (4.10),

94-^ = 48g(-l)"^ng

1 n

77T4 
U’

and let 0 = 7F, we will have

4 O 2 2 (_1) COSW0
7i - 27T27T2 = 48 > -----fa.------

1 n

7tt4
15 ’

and
15tt4 - 30?r4 = -720^/ - 7tt4.

Then,
00 f_ -txn+l

15tt4 - 30tt4 = -720—(_1)" _ 7^

and
_°°_ l\n+l

—15?r4 + 7?r4 = -720 V -—4—(-1)”.

Since 2n + 1 is an odd number(—l)2n+1 = —1, therefore;

00 1
_8tt4 = -720V^, 

v™4

and,
4 °° 1

90 ” ^-n4'
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Chapter 5

Some Notes on £(3)

The first historical result obtained on values of £(s) at odd positive integers is 

due to Apery who proved in 1978 that £(3) is irrational (for that reason, £(3) is now 
sometimes called the Apery constant). It is not known if £(3) is transcendental. Apery’s 

proof for £(3) does not generalize for £(5)> C(7), ■ • and it is not known if any of these 
constants are irrational or not [Tit86].

A transcendental number is defined as a number that is not the root of any 
integer polynomial. It is not an algebraic number. Rational numbers are solutions of 
bx + a — 0, where a,b are integers. Algebraic numbers are solutions to an nthdegree 
polynomials in the form of anxn + anxn + ... + ao = 0 where ao, ai, are integers. 

Therefore, by definition, a rational number is an algebraic number of degree one, and 

every real transcendental number must also be irrational.

5.1 Liouville Criterion for Rationality

The following lemmas are exercises for Fourier Analysis by T.W Korner by a 

citation to the bibliography [KOr89].

Lemma 1. Let p and q be integers with no common factor and q > l.Then, if A and B 
are integers either A + = 0 or A+^|> q_1. Then, if x is real we can find An, Bn
integers with 0 < |An + Bnx\ —> 0, as n —> oo, x is irrational.
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To prove the first part of the Iemma we will rewrite A + as

Aq + Bp
9

(Aq + Bp)^.

Since q is an integer with q> 1 it follows that | 0 0. Therefore,

Aq + Bp

Aq + Bp
9

= 0.

For part two, we will assume that x is rational. Then for re = 2, for some
integers p, and q that satisfy part one we will have

IAn + -Bn®I > “ f°r n-q
This is a contradiction, since |An + Bnx\ —> 0, as n —> oo. Therefore, x is irrational.

Lemma 2. Let dn be the lowest common multiple of 1,2, ...,n. We need to show that 
dn — Hp<np^°&n! logpl < and deduce that dn < 3n.

Considering the fact that [x] is the greatest integer function of x, and 7r(n) = number 
of primes< n we will have the following

dn = niJ<np[los,,/log!’1 < np<„P^7.

By applying the logarithm to two sides of this expression we will have

<log dn £iog(P[i°g"/iog^

p<n

E
p<n

logn 
logp

logp

52 logn
p<n

(log n)7r(n).
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By using exponential function we will get

d„ < n^.

Since n^71* & n}°* n we can derive that for logdn —» n, and dn —* en. Since e < 3,

we will have dn < 3n.

Lemma 3. We introduce the polynomial Pn(x) = [&ra(l — ^)n] •
1

Then Pn will be a polynomial of degree n, and JPn(x)Pm(x)dx ~ 0.
0

If n^ m, so the Pn are scalar multiples of the Legendre polynomials for [0,1].
The coefficients of Pn are integers.

To prove that the coefficients of Pn are integers we will consider the kfa term in
the equation (5.1) and have the following

Notice that “1 = 1, and (£), (JJ)(—l)n k are integers.

Lemma 4. Let
1 1

o o
(5.1)

then by using the Rodriguez formula we will have

(5-2)

where and Bn are integers.
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To prove this we will start from the following

1 1 

-fl 
0 0

- log xy 
l~xy

OO OO22 a>kXk 22 ajx^dxdy
k=i j=i

1 1

If -log ay
1 - xy

OO22 akdjxkx^dxdy.
0<k<n

(5-3)

OO

Considering the fact that G R, it follows that 22 a^tij is an integer. In
Q<k<n

the exercises textbook of [KOr93] on page 174 we proved that

1 1

f /= -2£(3) + (5.4)
0 0 T

We can see that — 2£(3) + corresponds to Andn3 + Bn£(3), since An, Bn, 2, and ar are ttr
integers, therefore,

In
1 1

II
0 0

-log ay
1 - xy 22 akUjX^x^dxdy

22 aka3 [ [ ^^^dxdy
0<j,k<n 0 0

52 akaj 2£(3) + jg
0<7.fc<n L r ■

And„3 + ^nC(3).
‘r.

(5-5)

And finally, we need to show that there are integers An, and Cn such that

0 < |An + C„C(3)| = 2f(3)4(/2 - l)4n

< 2<(3)3Sn(/2 - l)4n
< (J)"«3).

(5-6)
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5.2 Problems on £(3)

First we need to show that

11

-J J F=V0S= (n + r + l)(n + s + l) (^T7Ti + ^T7+l51 
0 o n~u

and then we will show that

1 1
logxydxdy = - 2<(3).

o o

To begin we will consider the first equation;

1 1
yy xry8 log xydxdy =
0 0

1 1
= J Jxrys(logx + logy)dxdy

0 0
11 11

= y y8y xr log xdxdy + Jxr Jys log ydxdy.
0 0 0 0

By using the integrating by parts method for u = log x, and dv = xrdx with du = ^dx, 
and v = ^pjxr+1dx we will have

1

—-—xr+1 log X r +1 6
0

-1 1
(r + l)2 (s + 1)

Since -^-xr+1 logx = 0, for both, x = 1, and x = 0. S
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Next, we will prove the second equation;

1 1
P f XfyS

J J TZ^°sxydxdy
0 0

00 } }
I I x(n+r^y(n+faogxydxdy 

n=0JQ {

oo

-*E
71=0

oo

E
n=0

oo

E
n=0

-1________ 1___________ -1________ 1
(n 4- s 4- 1) (n 4- r 4-1)2 (n + s + l)2 (n + r + 1)

1 1 1--------------------------------1---------------- ---------------
_(n4- r 4- l)2(n4- s 4-1) (n 4- s 4- l)2(n 4- r 4-1).

1 1
(n 4- r 4-1) (n 4- s 4-1) [ (n 4- r + 1) (n 4- s 4- 1).

1

Let r = s = 0, then
oo

lim V
N^oo  ̂

72=0

E 1
n=0

oo

1___________________ _________ 4-------- -------(n + r + l)(n4- $ + 1) l_(«4-r4-l) (n4-s + l).

_______ ' 1 1 '
(n4-l)2 .n+l^n+l.

y__?__

2«3),
oo

Since E (n+1? = «3>’
n=0

Theorem 5. £(3) is irrational.

From lemma 4 we can see that for all n —> oo, (|)n —> 0. Hence, based on Lemma 

1 where 0 < |An 4- Cnx) —> 0, x is irrational, we can conclude that £(3) is irrational.

13
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