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Abstract

We have investigated finite homomorphic images of several progenitors, includ
ing 2* 5 : S$, 2* 6 : Ag, and 3* 5 : C5. The original symmetric presentation for several 

important groups such as A7, £2(11), PGL2(39'), and FGZ2(13) are discovered. The 
technique of manual of double coset enumeration is used to construct several groups by 

hand and computer-based proofs are given for the isomorphism types of the groups that 

are not constructed.
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Chapter 1

Group Preliminaries

1.1 Groups and Homomorphism

Generalizations of the quadratic formula for cubic and quartic polynomials were 

discovered in the sixteenth century, and one of the major mathematical problems there

after was to find analogous formulas for the roots of polynomials of higher degree; all 

attempts failed. By the middle of the eighteenth century , it was realized that permuta

tions of the roots of a polynomial /(a;) were important; for example, it was known that the 

coefficients of f(x) are ’’‘symmetric functions’” of its roots. In 1770, J.-L Lagrange used 

permutations to analyze the formulas giving the roots of cubics and quartics, but he could 

not fully develop this insight because he viewed permutations only as rearrangements, 

and not as bijections that can be composed (see below). Composition of permutations 

does appear in work of P. Ruffini and of P. Abbati about 1800, in 1815, A.L. Cauchy 

established the calculus pf permutations, and this viewpoint was used by N.H. Abel in 

his proof (1824) that there exist quintic polynomials for which there is no generalization 

of the quadratic formula. In 1830, E. Galois (only 19 years old at the time) invested 

groups, associated to each polynomial a group of permutations of its roots, and proved 

that there is a formula for the roots if and only if the group of permutations has a special 

property. In one great theorem, Galois founded group theory and used it to solve one of 

the outstanding problems of his day.

Definition 1. Let G be a nonempty set together with a binary operation( usually called 

multiplication) that assigns to each ordered pair (a,b) of elements of G an element in G 
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denoted by ab. We say G is a group under this operation if the following three properties 

are satisfied.

1. Associativity. The operation is associative; that is,

(ab)c = a(bc) for all a, b, c in G.

2. Identity. There is an element e is an element e ( called the identity) in G such that 

ae = ea = a.

3. Inverses. For each element a in G, there is an element b in G ( called an inverse 

of a) such that ab = ba = e.

Example : The set of integers Z, the set of rational numbers Q and the set of real 

numbers 1R axe all groups under ordinary addition. In each case, the identity is 0 and the 
inverse of a is —a. '

Example : The set of integers under ordinary multiplication is not a group. Since the 

number 1 is the identity, property 3 fails. For example, there is no integer b such that 

55 = 1.

1.1.1 Finite Groups; Subgroups

Definition 2. Order of a Group: The number of elements of a group ( finite or 

infinite) is called its order. We will use |G| to denote the order ofG.

Example : The group Z of integers under addition has infinite order, where as the group 

17(10) = {1,3,7,9} under multiplication modulo 10 has order 4.

Definition 3. Order of an Element : The order of an element g in a group G is the 

smallest positive integer n such that gn = e. If no such integer exits, we say that g has 

infinite order. The order of an element g is denoted by |p|.

Example : Consider 17(15) = {1,2,4,7,8,11,13,14} under multiplication modulo 15. 

This group has order 8. To find the order of the element 7, we compute the sequence 

71 = 7, 72 = 4, 73 = 13, 74 = 1, so |7| = 4. ,

Definition 4. Symmetric Group: Let X = {1,2, ...,n}, Sx is a group with composition 

as operation. It is called symmetric group on X, denoted by Sn.
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Definition 5. Let G will be a group. A subset HCG is said to be a subgroup if for all 

h,ke ILhk^ € H. We write H <G.

A subgroup H is said to be proper if H is a proper subset of G (i.e. I I F)

and we write H < G.

1.2 Permutations

Definition 6. A Permutation of a set A is a function from A to A that is both one-to-one 

and onto. A permutation group of a set A is a set of permutations of A that forms a 

group under function composition.

Although groups of permutations of any nonempty set A of objects exist, we will 

focus on the case where A is finite. Furthermore, it is customary, as well as convenient, to 

take A to be a set of the form 1,2,3, ...n for sonie positive integer n. Unlike in calculus, 

where most functions are defined on infinite sets and are given by formulas, in algebra, 

permutations of finite sets are usually given by an explicit listing of each element of the 

domain and its corresponding functional value.

Example : we define a permutation a of the set 1,2,3,4 by specifying 
a(l) = 2, a(2) = 3, a(3) = 1, a(4) = 4. '

A more convenient way to express this correspondence is to write a in array form as

a =
12 3 4

2 3 14

Here afy) is placed directly below j for each j. Similarly, the permutation /3 of the set

1,2,3,4,5,6 given by

0(1) = 5, 0(2) = 3, 0(3) = 1, 0(4) = 6, 0(5) = 2, 0(6) = 4

is expressed in array form as:

1 2 3 4 5 6

5 3 1 6 2 4

1.2.1 Cycle Notation

There is another notation commonly used to specify permutations. It is called 

cycle notation and was first introduced by the great French mathematician Cauchy in 
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1815. Cycle Notation has theoretical advantages in that certain important properties of 

the permutation can be readily determined when cycle notation is used.

Definition 7. If x G X and a G Sx, then ct fixes x if a(x) = x and x moves x if 

a(x) 0 x.

Example : In the above example, a(4) = 4. We say a fixes 4 and a(l) = 2 then a moves

1.

Definition 8. Abelian Group: A pair of elements a and b in a semi group commutes if 

a*b  = b*a  A group (or a semi group) is abelian if every pair of its elements commutes.

Example : is abelian under addition because for a, b G Zn then a + b = b + a.

Definition 9. Homomorphisms: let (G, *)  and (H, o). be groups. A function f : G —> 

H is a homomorphism if, for all a, b, G G,

f(a * ft) = /(a)'o/(&)

An isomorphism is a homomorphism that is also a bijection. We say that G is iso

morphic to H, denoted by G = H, if there exists an isomorphism f : G —> H

1.2.2 Subgroups

Definition 10. A nonempty subset S of a group G is a subgroup of G if s G G implies 
s-1 G G and s,t G G imply st G G.

If X is a subset of a group G, we write X C G; if X is a subgroup of G, we 

write X <G.

Theorem 11. If S < G (i.e. if S is a subgroup of G), then S is a group in its own right.

Proof. The hypothesis ”s, t G S imply st E S” shows that S is equipped with an operation 

(if p : G x G —> G is the given multiplication in G, then its restriction p\S x S has its 

image contained in S'). Since S in nonempty, it contains an element say, s, and the 

definition of subgroup says that s-1 G S; hence, 1 = ss-l G S. Finally the operation 

on S is associative because a(bc) — (ab')c for every a, b, c G G implies, in particular that 

a(6c) = (ab)c for every a, b, c G S □
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1.2.3 Lagrange’s Theorem

Definition 12. If S is a subgroup of G and if t G G, then a right coset of S in G is 

the subset of G

st = {st: s 6 S}.

a left coset is

ts = {ts : s G S}.

One calls t a representative of st (and also ofts)

Example : right coset of G in S3.

Given S3 = {e, (12), (13), (23), (123), (132)} and t = {(12)}

Let G = {e, (12)}.

Then (7(123) = {^(123)1^ G (7} = {e(123), (12)(123)} = {(123), (13)}.

Definition 13. If S <G, then the index of S in G, denoted by [G, 5], is the number of 

right cosets of S in G.

Theorem 14. (Lagrange’s theorem) Let G be a group and H a subgroup of G. Then 

|G| = |ff||G:ff|.

Example : In the above example

G(123) = {S(123)|S e G} = {e(123), (12)(123)} = {(123), (13)}.

also,

G(132) = {e(132), (12)(132)} = {(132), (23)}.

<2(23) = {e(23), (12)(23)} = {(12), (13)}.

Therefore, the number of right cosets of S3 in G is 3. Thus, [S3 : G] = 3, and IS3I = 6, 

|G| = 2, then |S3|/|G| = 3.

Definition 15. A subgroup K G G is a normal subgroup, denoted by K < G, if gKg~l 

for every g G G.

Definition 16. Direct Products: if H and K are groups, then their direct products, 

denoted by H x K, is the group with elements all ordered pairs (h,k) where h G H and 

k G K, and with operation
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It is easy to check that H x K is a group: the identity is (1,1); the inverse (h,k)~l is 
(fi-1, fc-1). Notice that neither H nor K is a subgroup of HxK, butHxK does contain 

isomorphic replicas of each, namely, H x 1 = (A, 1) : h € H and lx K = n(l,K) :ktK

Definition 17. Symmetric Groups. Two permutations a, fl € Sn have the same cycle 

structure if their complete factorizations into disjoint cycles have the same number of 

r- cycles for each r.

Lemma 18. If a, fl G Sn then afla-1 is the permutation with the same cycle structure 

as fl which is obtained by applying a to the symbols in fl.
I

Example : If /? = (1 3)(2 4 7) and a = (2 5 6)(1 4 3), then

afla-1 = (al a3)(a2 a4 a7) = (4 1)(5 3 7)

Proof. Let tt be the permutation defined in the lemma. If fl fixes a symbol i, then 7r fixes 

a(i), for a(i) resides in a 1-cycle; but a/3a_1(a(i)) = afl(i) = a(i), and so a^a"1 as well. 

Assume that fl moves i; say, fl(i) = j. Let the complete factorization of fl be

fl = 7i72-(-^'-)---7t-

□

If a(«) = K and a(j) = 1, then tf : k i-> I. But afloT1 : k i i-> j I, and so 

afloT1 = 7r(fc). Therefore, tv and afloT1 agree on all symbols of the form k = a(if, since 

a is a surjection, it follows that 7r = afloT1.

Corollary 19. A subgroup H ofSn is a normal subgroup if and only if, wherever a G H, 

then every fl having the same cycle structure as a also lies in H.

Definition 20. A G-set X is transitive if it has only one orbit; that is, for every x,y,E X, 

there exists a E G with y = ax.

• If X is a G-set, then each of its orbits is a transitive G-set.

• If H <G, then G acts transitively on the set of all conjugates of H .

• 1. If X = xi,...,xn is transitive G-set and H = Gxi, then there are elements

91,..., gn in G with gtxi = such that giH, ...,gnH are the distinct left cosets 

of H in G.
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2. The stabilizer H acts on X, and the number of H-orbits of X is the number 

of (H-H)-double cosets in G.

• Let X be a G-set with action a : G x X —> X, and let a : G —> Sx send g G G into 

the permutation x i-> gx.

1. If K = kera, then X is a (GfK)-set'if one defines

(gK)x = gx

2. If X is a transitive G-set, then X is a transitive (G(K)-set.

3. If X is a transitive G-set, then |fcercu| < |G|/|X|. (Hint. If x € X, then

I

1.3 Automorphism Groups

Definition 21. The automorphism group of a group G; denoted by Aut(G), is the set
i

of all the automorphisms of G under the operation of composition.

Example : The identity e maps G —> G is an automorphism.

Definition 22. An automorphism </» of G is inner if it is conjugation by some element
I

ofG; otherwise it is outer. Denote the set of all inner automorphisms of G by Inn(G).

Definition 23. Let G be a group and let X be. a set of generators of G. The Cayley 

graph T = 7(6?, X) is the directed graph with verticies the elements of G and with a 

directed edge from g to h if h = gx for some x G X

If coset enumeration of a presentation (X|A) of a group G yields complete re

lation tables, then one can record the information in. these tables as the Cayley graph 

7(G,X). See next chapters for more examples.

Definition 24. Let G and H be groups. A group homomorphism from G to H is a 

function f : GH such that f(gig2) = /(0i)/(0a) for all gi,gze G.
1

Note that it follows immediately from the definition that /(e) = e and /(<7-1) = f C?)”1 

The kernel of a homomorphism f : G —> H is the set
1

Kerf dif {g G G\f(g) = en]
I
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The image of f is the set

Imf {h & € G such that f(g) = h}.

A (group) homomorphism is called a (group) isomorphism if it is objective. So, a homo

morphism f : G —> H is an isomorphism of groups.

Definition 25. (First Isomorphism Theorem) Let G and H be groups and let f : G —> H 

be a homomorphism. Then

1. the kernel of f,Kerf, is a normal subgroup ofG,

2. the image of f, Imf, is a subgroup of H and

3. the quotient group G/Kerf is isomorphic to Imf.

Theorem 26. (Second Isomorphism Theorem) Let G be a group, H a subgroup of G and 
defK a normal subgroup ofG. Then HK = G H,k e K } is a subgroup of G and K

is a normal subgroup of UK. Furthermore, HnK are isomorphic.

Theorem 27. (Third Isomorphism Theorem) Let G be a group and let H and K be 

normal subgroups such that H C K. Then the quotients (G/H}/(K/H} and (G/K) are 

isomorphism.
i

Definition 28. Assume that G acts on a set Q.
The orbit of an element cj € Q is the set

Orb(iu)d~f {iv.g\geG}CCl.

The stabilizer of an element tv G ° is

Stabftv) =f {g G G\tv.g = w}QG.

The stabilizer is a subgroup of G.

An action of a group G on a set Q is said to be transitive if for any distinct elements 

a,/3 E Cl, there exists g G G such that a.g = ft'. Note that the action of G restricted to 

an orbit is transitive.

Definition 29. Let G be a group and H a subgroup of G. We define the normalizer of 

H to be Nq{H) = {5 G G\Hg = gll} (so H is normal in its normalizer).
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Definition 30. Let G be a group. The centralizer of the element h G G is defined to 
be Ca(h) =} {g e G\hg = gh}.

Both the normalizer and centralizer can be obtained via group actions.

i

1.4 The (Involuntary) Progenitor

Definition 31. A progenitor is a semi-direct product of the following form:

P 2* n : N = {7rw|7r E N, w a reduced word in the ti},

where 2*"  denotes a free product of n copies of the cyclic group of order 2 generated by 

involutions ti for i = l,...,n; and N is transitive permutation group of degree n which 

acts on the free product by permuting the involutory generators.

1.4.1 Free Products of Cyclic Groups of Order 2

We shall be considering a group generated by two elements of order 2, with no 

further relation holding between them. Thus,

G = (a, b | a2 = b2 = 1).

Note that the element x — ab has infinite order and, since {ab, a) =}a, &(, we have
I

G = {x,a | a2 = l,o:a — a?-1).

For this reason, we often refer to G as an infinite dihedral group-, we may write its elements 

as follows:

G = {l,a,b,ab,ba,aba,

where elements of odd length in a and b are involutions, whilst elements of even length 

have infinite order. Multiplication of elements of G is achieved by juxtaposition followed 

by cancellation of any adjacent repetitions, and inversion by reversing the word in a and 

b. It is intuitively clear from the symmetrical manner in which the group G was defined 

that interchanging a and b gives rise to an automorphism of G, and we shall verify this 

assertion in a more general context. We call G, which is generated by two cyclic subgroups 

of order 2 with no relation between them, a free product of these groups, and write
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G = (a) * (6) = C2 * Ci.

2
For convenience, we denote this free product by 2*  .

We can readily extend these ideas to n generators and define a free product if n copies

of the cyclic group of order 2 as follows:

P = 2* n = {Ti,TS,...,Tn I T? = T% = ... =r2 = 1)

= (n) * (t2) *...  * (rn} = Cz + Ca* ...
v -v ■

n times

So, E consists of all finite products of the elements 7r, without adjacent repetitions.
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Table 1.1: Examples of groups
Group Description
Cn cyclic group of order n, Cn = {e, x, x2, x3,xn~1}
v4 group of symmetries of a rectangle (Klein’s Vierergruppe)

Sn{n 2) symmetric group of degree n.
— group of permutations of n symbols

An(n > 4) alternating group of degree n 
group of even permutations of n symbols

A/
group of even unitary permutations of N
(<r is finitary if it moves only finitely many points)

£>2n dihedral group of order 2 n
= group of symmetries of a regular n-gon

Dqq infinite dihedral group
^00 = 2+ infinite cyclic group = group of integers under addition
C2xC3 direct product of C2an.dC3
C^xCoo direct product of C2 and Cqq
Cqq X Cqq direct product of Coo with itself
Q quaternion group (or order 8)
GL (n,fc), 
k infinite field

group of n x n matrices with non-zero determinant, 
with entries in k

SL (n,jfe), 
k infinite field

group of 7i x n matrices with determinant 1, 
with entries in k

{isometries 
of cube }
Q+ group of rational numbers under addition
Q* group of non-zero real rational numbers under multiplication

IF group of real numbers under addition
r* group of non-zero real numbers under multiplication
c+ group of complex numbers under addition
c* group of non-zero complex numbers under multiplication
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Chapter 2

Construction of 33 : S3

2.1 Introduction. I

We take the progenitor G — 3* 3 : S3, where G is the free product of three copies 

of the cyclic groups of order 3, and is the group of automorphisms of 33 which permutes
1

the three symmetric generators by conjugation and factored it by toil = tito-

The double coset enumeration partitions the image of the group G as a union 

double coset NgN where g E 33 : IV.

Thus, we can find the set {51, <?2) •■•} of elements of G such that G = NgiN(JNg2N |J..., 

and for each i, we have gi = piWi, where pi G N, and W{ is a word in the tj’s. Hence, the 

double coset decomposition is given by

G = IVwilV |JNw2N J Nw3N (J.....

Where — e (identity).
We perform a double coset enumeration on the group 33 : S3. Note that the order of each 

of 3t;’s is 3. So, t3 = e and hence t2 = . The symmetric group representation is given

by

p ~ 3* 3:S3

and the symmetric presentation of the progenitor 33 : S3 is given by:

33 : S3 = (x, y,= y2 = (rry)2 = t3, (t,y),ttx - txt).

Where,

x - (0,1,2)(0,l, 2);
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y-(0, l)(O,l). 

a;y = (1,2)(1,2);

The control subgroup is IV , is S3 which is the symmetric group of 3 on three letters 

and their inverses. =$► |7V| = 3! = 6,

S3 =< x, y >= <(0,1,2)(0,1,2), (0,1)(0,1)).

Hence, the set

Using computer-based program - Magma :

1. the order of the group, |G] is at the most equal to 162.

2. there should be 10 double coset in this double coset enumeration of G over N.

I
2.2 Relations 1

The factored relation above is ttx = txt where x (0,l,2)(0,l,2).

t ~ to ,
^>tot'w’2)(BJ’5)=t<0’1'2)(SX5)t0.

Therefore, our basic relation will be:

toil = tito

The above relation can be conjugated by each element of the set N,

=> we obtain additional and they are :

to^i = tito toil = tito-

toi2 = ^2^0 tit2 = i2ti-
iif2 = t2ti t2to = iot2-

Also note, to add more relations, we have toil = titoj so post multiplying both sides by 

ii we get :

toil • ii = tito • ii-
=> toil “ titoil = titiio — t2io-

=£> toil = tito-

=> we have 01 = 10. ( for simplicity, we omit t sometimes)

Again, we conjugate by the elements of S3, we get :

toil = tito-
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^0^2 = ^2^0-

tjto = <Wi-
£1^2 — ^2^1*

^2^0 = ^0^2-

i2^1 — £1^2*

2.3 Double Coset Enumeration of G over S3

2.3.1 Double Coset [*]:

Note that NeN represents words of length zero, this denote the double coset [*]  

and it can be represented as:

NeN = {lVen :< n G IV} 

= {IVe}

= W

We take a representative coset TV from [★] and a representative from {0,1,2,0,1,2}, 

then we need to determine to which double coset Nto and Nto belong.

Hence, [0] and [0] will be new double cosets that will extend Cayley’s graph.

2.3.2 Double Coset [0] and [0]

The point stabilizer and coset stabilizer for Nt^ and Nto, 7Vt(°) are :

• A7° = [Id, (1,2)(1,2)}, and N® =< (1,2)(1,2) > , then TV0 = M°).

• 7V° = {ld,(l,2)(l,2)}, and N’t0) =< (1,2)(1,2) >, then .

Therefore, each double coset [0] and [0] will have 3 distinct equal sets of single cosets as

The orbit of N^ on {0,1,2,0,1,2} are {0},{l,2}, {0}, {1,2}.
The orbit of N@> on {0,1,2,0,1,2} are {0}, {1,2}, {O}, {1,2}.

Now, we take a representative from each orbit of N (0):
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1. Ntoto = Nto2 = Nto G [0]. 1

Only to will take [0] to [0]

2. Ntotx G [0,1]. (

New double coset that will extend the Cayley’s graph and hence 

two i/s will take [0] to [01].

3. Ntoto = Ne G [*].

One t will take [0] to [*].

4. WT e [o,I].

New double coset that will extend Cayley’s graph and hence two t/s will take [0] 

to [0,1]

For [0], we take a representative from each orbit of N (0) :
i

1. Ntoto = Ne G [*].  (

One t will take [0] to [*]  1

2. Wi € [0,1] G [0,1].

New double coset that will extend the Cayley’s graph and hence two t/s 

will take [0] to [01].

3. TVtoto = Nto2 = TVto G [0].

One t will take [0] to [0]

4. Ntoti G [0,1]. 1

New double coset that will extend Cayley’s graph, hence two t/s will take [0] to 

[01].

See figure 1
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Figure 2.1: Cayley’s graph for the double cosets [0] and [0]

2.3.3 Double Coset [0,1]

Now at the double coset IVtoiiAT, [0,1], we have IV01 =< Id > and since our relation is 

toil — tiio
=> lVtoii(Ol)(Ol) = Nt-jto = Ntoti .

(01) (01) G Art01),

=4> >< Id(N), (01)(01) >= S2.

nence, t 2
Orbits of ATt01) On [0,1,2,0,1,2} are {0,1} , {2}(, {0,1} , {2}. Again, we take a repre

sentative from each orbit, '

• ATtotiti = Ntot[ G [0,1].

Since this orbit has two elements, then two t^s will take [01] to [01]

® Ntot]t2 G [0,1,2].

New double coset will extend [01] to [012],

• Ntotti = Nto G [0].

Since this orbit has two elements, then two tfs will take [01] to [0].

• Ntot^e [0,1,2].

New double coset will extend [01] to [012].
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2.3.4 Double Coset [0,1]

The double coset [0, T], Wtot-fN, fixing 0 and 1 implies 0 and 1 are fixed.

Now, we have TV0* — < Id >,

• Ntotiti 6 [0,1].
One t will take [01] to [01].

• Ntotiti G [0,1,2].

New double coset, one t will take [01] to [012].

2.3.5 Double Coset [6,1]

Since, we have 0 and 1 being fixed and permute only 2.

At the same time this means that 0 and 1 also fixed and only 2 can permute,

=<Id> .

However, we use our basic relation to find more relations that can be added to the 

stabilising group, we have to^i ~ hio, and hence, toh — iito, ( see previous pages) 

=> Ntoti(Ol)(Ol) = = Ntoti (from above).
=J. JVC01) >< Id, (0, l)(0,1) >= s2.

=> = |S2|.

note: = TV0*
Hence ■ 1^1 = = 6

Orbits of on {0,1,2,0,1,2} are {0}, {1}, {2} , {0} , {1} , {2}.

We take a representative from each orbit,

• ArioMo 6 [61]

(Because 010 = 100 = 10).So io will take [01] to [61].

• Ntntiti G [0].

ti will take [01] to [0].

• Nt0t[t2 G [0,1,2).

One t will take [01] to [012].

• Ntotito G [6].

One t will take [0T] to [6].
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Hence, number of single cosets in [0,1] is | = 3.

Orbits of Aft01) on {0,1,2,0,1,2} are {0,1} , {2} , {0,1} , {2}.

We take a representative from each orbit,

• Motiti G [0],

(because 010 = 100 = 10).

Two tiS will take [0,1] to [0].

• Ntfatz G [0,1,2].

One ti will take [0,1] to [0,1,2].

• wtHW e [o,i].

Two ti's will take [0,1] to [0,1].

• [0,1,2].

One ti will take [0,1] to [0,1,2] which is new double coset.

So far we have the following new double cosets th!at can be seen in below figure: 

[0,1,2], [0,1,2], [0,1,2], [0,1,2].

Figure 2.2: Cayley’s graph for the extension of double cosets [0] and [0]
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2.3.6 Double Coset [0,1,2]

We stabilise three elements, 0,1, and 2 in N, hence TV012 =< e >. 

Now to add more relations to the stabilising set {e} we use our defined relation 

toil = tito- By post multiply both sides by t2.

=£■ toti ■ t2 = tito • t2.
Thus,

Wtotit2 = lVtitot2 
=> Wtotitj?’1^’^ = lVtitot2 = Nrtoiit2-

^(012) > (id, (0, l)(0,l)).

=4> (0,1) (0,1) e^012).

Note: we can search for more relations using 012 = 102
=> 012 = 021 = 201 => (0,2,1) (0,2,1) gJV<012>.

=. > {Id, (0, l)(0,l), (0,2, l)(0,2,1)) = S3.

Hence, the number of single equal cosets are :
-I2YL--e _i
|jy(012)| _ 6 “

The Orbits of TV^012) on {0,1,2,0,1,2} are {0,1,2} , {0,1,2}.

Thus, by taking a representative from each orbit of A^012) and multiply it by 

lVtotit2 :

• Ntotit2 • i2 G [0,1,2],

This is a new double coset that will extend Cayley’s graph, and in fact 

three t^’s will extend [012] to [012].

• JVtoiit2 • t2 G [0,1].

This orbit representative will make Cayley’s graph collapse and

hence three it’s will take it back to [01],

2.3.7 Double Coset [0,1,2]

At the double coset Ntotit^N, three elements axe stabilised 0,1, and 2. 

Consequently, 0,1, and 2 are also stabilised,
=> TV012 =< e >, we use our basic relation 01 = 10, by post multiply both sides by 2 

=> 012 = 102,

i,e  Nttf-fa = Ntitoh.
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Then, IVtoiii2(O, l)(0,1) = ARRo^ = lVtotit2-
=> (01) (01) G1V<°12>.

=> Ar(012) >< e, (01)(01) >= S2.

Thus, the number of single cosets in the double cosets[0,1,2] is = f = 3.

The orbits of Art012) on {0,1,2,0,1,2} axe {0,1} , {2} , {0,1} , {2}.We take a representa

tive from each orbit

• Wi&i e [0,1,2].

Two ti’s will take [0,1,2] to [0,1,2].

• Ntotit2t2 G [0,1].

One will make Cayley’s graph collapse, and hence take [0,1,2] to [0,1].

• Wiiiiii G [01].

Two ti’s will take [0,1,2] to [0,1].

• Xtotit2t2 G [012].
One ti will take [0,1,2] to [0,1,2].

2.3.8 Double Coset [0,1,2]

At this double coset,IVfrjti^IV, we stabilise 0,1 and 2 thenO, 1 and 2 are also 
stabilised.
=> ^012 =<e>

We use our basic relation that is which is 01 = 10

by post multiply both sides by 2 then

012 = 102.

=> 012 = 102.

=> 021 = 102 = 012.

=> IVtot2ti(l>2)(1,2) = NtQtit2 = W2ti.
=> (12) (12) G IV(^).

Hence, lV(0l2> >< e, (12)(12) >= S2.

=> number of single cosets are in the double coset [0,1,2] is | = 3.

The orbits of M012) on {0,1,2,0,1,2} are {1,2}l, {0} , {1,2} , {0}. We take a represen

tative from each orbit:
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• Nt0t1t2t2 G [01].

Two ti will take [0,1,2] to [0,1].

• Ntotitztz G [012].

Two ti will take [0,1,2] to [0,1,2].
i

• Nt0Woe [0,1,2].

One ti will take [0,1,2] to [0,1].

• Ntotit2to 'G [0,1].

One ti will take [0,1,2] to [0,1,2].

2.3.9 Double Coset [0,1,2]

In the double coset Nt(jtit2N, we fix 0,1 and 2. This implies that 1,2 and 3 are 

fixed.

=> JV012 =< e >,

Since our basic relation is 01 = 10 => 012 = 102 i

=> Ntotit2(Ol)(Ol) = Ntitot2 = Nt0tit2.
=> (01)(01) EAT®.

=> N(^) >< e, (01) (01) >.

Also note,

012 = 102 = 120.
=> 7\r(oi2) >< 6) (01)(01), (012) (012) >= S3.
=> Number of single cosets exit in the double coset [0,1,2] = |J(m2)| — | =

The orbits of on {0,1,2,0,1,2} are {0,1,2} , [0,1,2}. We take a representative

from each orbit and multiply it by Ntotit2, the result is:

• Nt0t1t2t2 G [01].

Three t$’s will make the Cayley’s graph collapse.

Ntotit2t2 G [012].

Three t/s will make the Cayley’s graph collapse.
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Figure 2.3: Cayley’s graph for 33 : S3



23

2.3.10 Permutation Labeling

From the above table, we have the following permutations:

xx - (2,3,4)(5,6,7)(8,10,9)(11,14,15)(13,16,12)(17,19,18)(21,22,23)(24,26,25). 

yy ~ (2,3)(5,6)(9,10)(11,13)(12,14)(15,16)((18,19)(22,23)(24,26).

tto

(1,2,5) (3,8,13) (4,9,15)(6,11,17) (7,12,18)(10,20,22) (14,21,25)(16,23,26)(19,24,27). 

xy^ (3,4)(6,7)(8,9)(11,12)(13,15)(14,16)(17,18)(21,23)(25,26).

We define a such that a : G S27-

Hence,

a(a;) = (2,3,4) (5,6,7) (8,10,9) (11,14,15) (13,16,12) (17,19,18) (21,22,23) (24,26,25). 

= (2,3) (5,6) (9,10) (11,13) (12,14) (15,16) ((18,19) (22,23) (24,26).

a(t0) = (1,2,5) (3,8,13) (4,9,15) (6,11,17) (7,12,18) (10,20,22) (14,21,25)

(16,23,26) (19,24,27).

To check for homomorphism, we verify the following conditions:

1. From above

jrrrr] - 3, \yy\ = 2, |a;y| = 2,

G = {xx, yy) = {x, y\x3, y2, {xy)2) S3

2. conjugation of t by < xx, yy > would produce the other {to, ti, h}- 

tto = (1,2,5) (3,8,13) (4,9,15) (6,11,17) (7,12,18) (10,20,22)

(14.21.25) (16,23,26) (19,24,27).

tt§x = (1,3,6)(4,10,16) (2,8,11)(7,14,19)(5,13,17) (9,20,23)(15,22,24)

(12.21.25) (18,26,27) = tti-

ttfx = (1,4,7) (2,9, .12) (3,10,14)(5,15,18) (6,16,19) (8,20,21) (11,23,26)

(13.22.24) (17,25,27) =

3. conjugation of tto,tti,tt2 by xx produces tto,tti,tt2 , 

and conjugation of tto, tti,ii2 by yy produces tto, tii, tt2.

tig® = (1,3,6) (4,10,16) (2,8,11) (7,14,19)(5,13,17) (9,20,23) (15,22,24)

(12.21.25) (18,26,27) =tti.

ttfx = (1,4,7) (2,9,12)(3,10,14) (5,15,18) (6,16,19) (8,20,21) (11,23,26)

(13,22,24) (17,25,27) — it2.
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Table 2.1: Labeling table

Cosets x = (0,l,2)(0,l,2) V = (0,l)(0,l) to
(1) JV (1) If (1) Nta (2) Nto
(2) Nt0 (3) Art! (3) Art! (5)
(3) Aft! (4) m2 (2) Ntg (8) ATtito
(4) ATt2 (2) Nt0 (4) Nt2 (9) Nt2t0
(5) J«o (6) Nty (6) Nto (1) If
(6) JVtT (7) Nt? (5) Ntj! (11) Wo
(7) JVt5 (5) Ntg (7) Nt (12) ATtito
(8) ATtoti (10) Nt]t2 (1) N (13) Ntitg
(9) ATtot2 (8) ATtoti (10) ATt!t2 (15) Wo
(10) ATtit2 (9) Nt2to (9) 2Voi2 (20) ATtit2to
(11) NtQt^ (14) Nt-fa (13) Wo (17) Wt
(12) NtQt? (13) Ntitg (14) ATtltg (18) Ws
(13) Wj (16) ATt2tT (1.1) WT (3) Nt,
(14) Nt^t? (15) Nt2to (12) Ntot? (21) Ntoht?
(15) Nt2t? (11) Ntot[ (16) Nt2t^ (4) Nt2
(16) Nt2t^ (12) Ntot? (15) W (23) ATtot2tT
(17) WT (19) JWjfc (1,7) Nifty (6) ATtT
(18) ATigt^ (17) Wo (19) Nifty (7) Nt?
(19) Wl (18) Wo (18) Nt?t? (24) ATtotjta
(20) Artotit2 (20) ATtit2t0 (20) Artitot2 (22) ATtatitg
(21) ATtotitg (22) Artit2tQ (21) ATtitot2 (25) Ntit?t?
(22) Art2tit5 (23) Art0t2tT (23) AT2t0tT (10) ATtit2
(23) ATtot2tT (21) lVtiiot5 (22) ATit2tQ (26) ATtgiuty
(24) ATtotitg (26) ATtit^tg (26) ATjtot^ (27) Nt?t^t?
(25) Nt2t?t^ (24) Ntot^t? (25) Nt^t? (14) Wj
(26) ATtjt^ (25) ATt2tftQ (24) Not-^t? (16) Nt2t7
(27) ATt^tjig (27) ATtitgto (27) Ni^t^t? (19) Wa
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tt$x = (1,2,5)(3,8,13) (4,9,15) (6,11,17) (7,12,18) (10,20,22) (14,21,25)

(16,23,26)(19, 24,27) = «0-

ttfg*  = (1,3,6)(4,10,16) (2,8,11)(7,14,19)(5,13,17)(9,20,23)(15,22,24)

(12.21.25) (18,26,27) = tti.

tt^ = (1,2,5) (3,8,13) (4,9,15) (6,11,17) (7,12,18) (10,20,22) (14,21,25)

(16.23.26) (19,24,27) = tt0.

ttf = (1,4,7)(2,9,12) (3,10,14) (5,15,18)(6,16,19)(8,20,21)(ll,23,26)

(13,22,24) (17,25,27) — tt2-

Since the above conditions are satisfied, then < xx, yy, tto > is a homomorphic 

image to G.

2.4 Conclusion.

We have f(G) =< xx,yy,tt§ >.

By Fundamental Theorem,

G/Kerf f(G).

=> G/kerf =< xx, yy, tto >.

=> |G|/|fcer/[ = [ < xx,yy,tt0 > |.

|G| = \kerf\ • [ < xx,yy,ttQ > ].

|G| = \kerf\ • (162) => |G| > 162.

But we have:

|G| < (1 + 3 + 34-3 + 6 + 3 + 1 + 3-1-3 + 1)11V| = (27) • 6 = 162.

So,

|G| < 162 (from Cayley’s graph) and Kerf ~ 1

Therefore: ]G| = 162.

Figure 3 shows final look of Cayley’s graph.
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> G<xJy,t>:=Group<x>y/t|xA3JyA2J(x*y) A2,tA3,(tjX’y)^ 
(t*t Ax) ° tAx*t>;

> #G;
1ST
> #DoubleCosets(GjSub<G|xjy>,sub<Gjx,y>);
16
> N:=5ym(6);
> xx:=fi!(l,2,3X433);
> yy:=H!(3>lX43);
> fh=sab<N|xx,yy>j
> Index(GjSub<G|x/y>);
27
> f>Gl>k:=CosetAction(G>sub<G|x,y>);
> fj Gl, k: =GosetAction (G, s ub<G | x_,y>);
> IM:=sub<Gljf(x)
> CdmpositionFactors(G1);

■G
I Cyclic(3)

| Cyclic(2)
*
I Cyclic(3)
*
| Cyclic(3)
* 1
I Cyclic(3) '
1

Figure 2.4: Computer-based proof for' Composition Factors of G 
i



Chapter 3

Construction of 25 : ./I5

In this chapter, we will prove by hand that the group G given by

the control subgroup is /I5, given by : 1
c & : A5'

is isomorphism to 25 : A5. ,

We perform a double coset enumeration of G over N. We call N the control subgroup, 

(N = A5), which is the symmetric group of degree 5 on six letters, {0,1,2,3,4,5}. N can 

be generated by x and y, N =< x,y > where x ~ (1,2,3,4,5) and y (0,5,1)(2,4,3). 

The double coset enumeration will enable us find all double cosets [w] that can be repre

sented by:

IVwIV = {IVwn|n € IV}

= {lVnn-1wn]n € IV}

= {Nwn\n G IV} .

Now, when all the double cosets of the group are determined, we will be able to determine 

the number of single cosets of IV in G, and hence the process terminates when the set of 

right cosets is closed under right multiplication by the 6 t/s where i G {0,1,2,3,4,5}. 

The symmetric presentation of G is given by:

G{x, y, t) = Groups, y, 11x5, y3, (xy)2,t2, (t,x), (t^2, (xy)), [xy(ty)x2(t^)^]2),
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3.1 Double Coset Enumeration of G over

3.1.1 Relations

• Let t ~ to and take x ~ (1,2,3,4,5) , (0,5,1)(2,4,3),

• - (f0)(0.5,l)(2,4,3) _ <B

• Let

s = (5,1,2,3,4),

=>x2 = (5,1,2,3,4)2 = (5,2,4,1,3)
=.^ = (5,1,2,3,4)® = (5,3,1,4,2).

. (tg)»2 = (t(0.5.1)C2.4,3)y5,l,2,3,4)^ = ((5j(5,2,4,1,3) =

. x • y = (5,1,2,3,4)(0,5,1)(2,4,3) = (5,0)(l, 4)

• (ty)®3 = (ts/5’1'2,3,4)3 = (t5)(53A>4^) = We have the following relation:

tztstzh — e

t2t3^3 ’ ^3 =' ^3

^2^2 = *3

^^3^2 • ^2 ='ts^2

t2^3 = '^2-

• N = A5 = (a;,y) = ((1,2,3,4,5), (0,5,1)(2,4,3)).
I

. |7V| = Jfl = = 60.

3.1.2 Word of Length Zero [*]

We denote the double-coset by [★] and it can be represented as:

NeN = {Nen :n€ N]

= {Ne}

= w

The double coset [★] will have a single coset A’. Therefore, = 1.

Note, since N is transitive on {0,1,2,3,4,5}, we take a representative coset Ar from [*]
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and a representative from {0,1,2,3,4,5} and determine the double coset to which Nti 

belongs, where i G {0,1,2,3,4,5}. We consider it= 0, so Nto is a representative coset, 

and hence we will have a new double coset TVtoN which can denoted by [0]. There will 

be six possible tfs in [★] that can advance to the next double coset [0].

3.1.3 Word of Length One [0]

Denoted by NwN = NtoN = {N$|n G N}, or [0]. We need to find the point 

stabiliser of 0.

=> Nt0N = [0] = [N$|n e N} = {Nt0N,NtiN, Nt2N,Nt3N,Nt4N,Nt5N}.

Since, the point stabiliser of 0 in the subgroup N» is the permutations in N that fixes 0 

and permutes the rest of the set {1,2,3,4,5}.
Note : N<°) >< (1,2,3,4,5), (25)(34) >.

=> |N<°) | = 10

=> number of single cosets are in [0] is = yg = 6.

i

Figure 3.1: Cayley’s diagram shows ttie double cosets [★] and [0]

Now, the orbits of N° on {0,1,2,3,4,5} are {0} and {1,2,3,4,5}. We choose a repre

sentative from each orbit, {0} and {1,2,3,4,5}. If we choose to from the orbit {0} and 

choose t§ from the orbit {1,2,3,4,5}, then we notice the following :

• Nto-to = Nt§ = NG [*].

This will collapse and hence it will go back to [★]. This is denoted by number 1 in 

Cayley’s diagram (to the left of the circle containing 6.)

• Nto ■ ts = Ntot$ G [05].



30

This is a new double coset, which will extend the Cayley’s graph from [0] to [05]. 

Since there are 5 elements in this orbit, then there will be 5 t^s that extend [0] to 

[05] •

3.1.4 Word of Length Two [05]

We are at a new double coset [05], Ntot^N = {7V(toi5)n|^ G A"}. Now, to 

determine all the single cosets of this double cosets, we need to determine the point 

stabiliser of TV05, this means finding the set of elements that fix 0 and 5 in TV and 

permutes the rest elements of the set {1,2,3,4}.

Now, using our relation M3 = M2, We can see that : 2 —> 3 and 3^2.
=> JV42423)(05) = Ntst2 = Nt2ts.

=> (23) (05) e Ar(°5>.

Also, (
7Vt2414)(°5) = Ws-

=> (14)(05) G AT(°5).

=> 7V(°5> > <(14)(05), (23)(05)>. '

Thus, |7V(°5)| = 2-2 = 4.

Therefore, the total number of single cosets in [05] is = ^ = 15.

In order to find these 15 single cosets, we need to determine the transversals (right coset 
i

representatives) of 7V(°5\ Hence, they are: (

[e, (1,2,3,4,5), (1,0,5)(2,4,3), (1,3,5,2,4), (1,0)(2,5), (1,4,2,5,3),
(1,2,3)(4,0,5), (1,0,2)(3,4,5), (1,5,4,3,'2), (1,3,0,5,2), (1,4,5,3,0),

(3,5)(4,0), (1,5]2,0,4), (2,0,5,3,4), (1,2,0)(3,5,4)}

Therefore, the different cosets are:

1. (23 = 32)e => 23 = 32.

2. (23 = 32)^’23,4,5) 34 = 43.

3. (23 = 32)(L0j5)(2,4,3) 42 = 24.

4. (23 = 32)^3,5,2,4) 45 = 54.

5. (23 = 32)<1-o)(2>5) => 53 = 35.
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6. (23 = 32)(1>4»2’5>3) => 51 = 15.

7. (23 = 32)(1>2,3)(4,o,5) 31 = 13.

8. (23 = 32)^’0,2)(3,4,5) 14 = 41.

9. (23 = 32)(1’M,3,2) 12 = 21.

10. (23 = 32)<1>3’°’5>2) =£■ 10 = 01.

11. (23 = 32)<1’4’5’3’0) 20 = 02.

12. (23 = 32)(3’5><4’°) 25 = 52.

13. (23 = 32)t1’5’2’0’4) 03 = 30.

14. (23 = 32)(2>0’5’3-4) => 04 = 40.

15. (23 = 32)f1>2’°X3’5’4) 05 = 50

The 15 single distinct cosets of the double coset [05] are:

{Ntz t3, Nt3t4i Nt4t2, Nt4t5, Ntst3,7Vi5ti, 7Vt3ti, Nt4t4, Ntit2,

Nt4tQ, Ntito, JVi2t5, Wtot3) Ntot4, Ntote}.

Now, we need to find the orbits TV^05) to advance to the next double coset.

From the generator of 1V(05) > ((14)(05), (23)(05))> the orbits of ?A05) on {0,1,2,3,4,5}

are:

{1,4}, {0,5}, {2,3}.

Considering a representative from each orbit of N't05), we will

choose the following representative from each orbit:

is from {0,5},

t4 from {1,4},

i2 from {2,3}.

Multiply each representative with Ntots, *
i

• TVtois -15 = Ntot2 = Nto € [0].

Hence two elements will go back to that double coset because {0,5} is one orbit.
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• IVtof5 • $4 € [054],
New double coset, hence two elements can advance from [05] to [054] because 

{1,4} is on same orbit.

• ATtots • h G [052].
New double coset, hence two elements can advance from [05] to [052] because 

{2,3} is one orbit.

The corresponding Cayley’s diagram is:

Figure 3.2: Cayley’s diagram shows [*], [0], [052] and [054]

Therefore, two new double cosets [054] and [052] will extend the Cayley’s diagram.

3.1.5 Word of Length Three [054] and [052]

Word of Length Three [054]

Again we need to find the point stabiliser of 0,5 and 4. This is denoted by N054.

Therefore, we need to find the permutations in N that fixes 0, 5 and 4 and permutes the 
rest; 1,2 and 3. The group stabiliser, A^054) > AZ054.

Using relation tots = tgto, if we multiply both sides by ti,

we will get = tstoM
=> (05) G AT(°54).

Now, 054 504 540 450.

and, 054 ~ 045 ~ 405.
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So, 054 504 540 450 045 405
Thus, 054 ~ 405 =J> (450) G W^054). => N(t0t5t4)m = Nt4t0ts.

=*  W(°54) = <(l,3,2)(4,5,0),(2,3)(0,5)> = S3

Hence,
1^054), =3! = 6|SO_M_ = “ = 10.

Therefore, there are 10 distinct coset representatives. The transversals of A^054) in N

axe:
I

Now, we conjugate our relation 054 = 504 = 540 = 450 — 045 = 405 by the above 10

transversals, we will get :

1. e 054 = 504 = 540 = 450 = 045 = 405.

2. (1,2,3,4,5)

3. (1,2,4)(3,0,5)

4. (1,3,5,2,4)

5. (l,3,0)(2,5,4)

6. (1,4,2,5,3)

7. (1,4,3)(2,0,5)

8- (1,5,4,3,2)

9- (1,3,0,5,2)

015 = 105 = 150 = 510 = 051 = 501.
r
, 531 = 351 = 315 = 135 = 513 = 153.
i
i 021 = 201 = 210 = 120 = 012 = 102.
i
i 142 = 412 = 421 = 241 = 124 = 214
i
’ 032 = 302 = 320 = 230 = 023 = 203.
I

1 523 = 253 = 235 = 325 = 532 = 352.

043 - 403 = 430 = 340 = 034 = 304.

524 = 254 = 245 = 425 = 542 = 452.

10. (l,2,0)(3,5,4) 143 = 413 = 431 = 341 = 134 = 314.

The 10 single distinct cosets of the double coset [054] are the set

{Ntot$t4, TVYoii^S) Ntotrfii Ntit4t2y Ntoist?, Nt^tzts, Ntotals, Nt^tzt4.

The orbits of A^05'1^ on {0,1,2,3,4,5} are:
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{1,2,3} and {0,4,5}.

We take a representative from each orbit and multiply it with the coset Ntot^t^. We 

choose the following representatives:

tl from {1,2,3},

from {0,4,5},

Now,

• Ntotsti ■ £4 G [05].

£4 will collapse Cayley’s graph. Since, this orbit has 0, 5 beside 4, then three tfs 

will take [054] to [05]. (

• Ntotst4 • ii e [0541].

Since, this orbit of length 3, then three tfs will extend the Cayley graph.

Figure 3.3: Cayley’s diagram shows [★],[0], [052],(054] and [0541]

Word of Length Three [052]

Again we need to find the point stabiliser of 0 , 5 and 2, denoted by IV052.

Therefore, we need to find the permutations in N that fix 0, 5 and 2 and permutes the 

rest 1,3 and 4.

Hence,

Using relation tots = t$to,

if we multiply both sides by i2>

tot§t2 = tstotz
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=> (05) G N(°52\

Now, 052 = 502,

Now, 052 = 025 = 205. (From above)
=> (025) G N(°52\

Thus, N(°52> > ((05), (025)) = S3.

TTpyi HP
^<O52’l = 3! = 6=>^ = ^ = 10.

So there are 10 distinct coset representatives, the transversals of _ZV(052);

{e, (1,5,0)(2,3,4), (1,0,5)(2,4,3), (1,5,0,4,3), (1,0)(2,5), (2,3)(5,0),

(1,0,4,2,3), (1,0,2)(3,4,5), (1,5)(2,4), (1,0,3,5,4)}

Now, we conjugate our relation = i.r/o^2 by the above 10 transversals, 

we will get :

1. (052 = 502)e => 052 = 502. '

2. (052 = 502)(bs.o)(2,3,4) 103 = 013.

3. (052 = 502)t1-0>5)(2,4,3) 514 = 154.

4. (052 = 502)(1,5,o’4’3) => 402 = 042.

5. (052 = 502)(1-0)(2,5) 125 = 215.

6. (052 = 502)(2>3)<5’°) =}> 503 = 053.

7. (052 = 502)(1»o,4’2>3) 453 = 543.

8. (052 = 502)^’0,2)0,4,5) 231 = 321.

9. (052 = 502) 4) 014 = 104.

10. (052 = 502)^’0,3,5,4) 342 = 432.

The 10 single distinct cosets of the double coset [052] are:I

Ntitotz, Nt5tit4, Ntitotz, Nt-fats, Nt3tQt3, Nt4t5t3l Nt2t3ti, Nttfifa}.
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Note:

052 ~ 502520 ~ 250.

052 - 025 - 205.

So

052 = 502 = 520 = 250 = 025 = 205.

Therefore, the 10 distinct equal cosets of the double coset [052] are:

1. e 052 = 502 = 520 = 250 = 025 = 205

2. (1,5,0)(2,3,4)

3. (1,5,0,4,3)

4. (1,0,5)(2,4,3)

5. (1,5,0,4,3)

6. (l,0)(2,5)

7. (2,3)(5,0)

8. (1,0,4,2,3)

9. (1,5)(2,4)

10. (1,0,3,5,4)

Now, we need to find the orbits of A^052^ 

generator of A^052) > ((0,5)(0,2,5)), the

{0,2,

103 = 013 = 031 = 301 = 130 = 310

402 = 042 = 024 = 204 = 420 = 240

514 = 154 = 145 = 415 = 541 = 451 i
I

402 = 042 = 024 = 204 = 420 = 240 i

125 = 215 = 251 = 521 = 152 = 512

503 = 053 = 035 = 305 = 530 = 350

453 = 543 = 534 = 354 = 435 = 345

014 = 104 = 140 = 410 = 041 = 401

342 = 432 = 423 = 243 = 324 = 234

i advance to the next double coset. From, the
bits of Ad052) on {0,1,2,3,4,5} are:

,{1,3,4}

Taking a representative from each orbit, for example we take:

t2 from {0,2,5}, and

tl from {1,3,4}.

We multiply each of the above representatives with we have the following:

tot5t2t2 and
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• to*5*2  • tz = Ntot5tl — Ntots G [05].

Hence, three t^s will make Cayley’s graph collapse and go back to the double coset 

[05] because this orbit is of length 3.

• MjM ■ ii = Ntot^titi € [0541].

Since, the orbit {1,3,4} isoflength3, then three t^’s will take [0521] to [0541]. (See 

below graph)

Figure 3.4: Cayley’s diagram- extension of [052] to [0541] 
i

3.1.6 Word of Length Four [0541] '
I

We look at the new double coset NttitstjtiN. that is represented by [0541]. We 

need to determine if it will extend the Cayley’s graph further or will collapse it. We have 

the relation tots ~ f5i0) post multiply both sides by ^.then followed by ti,

=> MsMi MoMi-
In order to obtain the elements in the double coset [0541], we have to find the point 

stabiliser of 0,5,4, and 1 . TV0541 =< Id >

We know

0541 = 5041 = 5014

So,

0541 = 5041 = 5014 = 0514

Therefore,
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AT(tot5i4ii)(°5) = ATtsto^ti = ATtotst^i => (05) G N't0541). 
Nt0t5t4t^14) = Nt^ot^ = Ntottfat! =$*  (05) (14) G A^0541).

So, ATt°541) >< (05)(14), (05) >.

These are the generator of AT^0541) in AT.

Hence, |ATt0541)] = 2-2 = 4=$*  = 15 single cosets in [0541], and 0541 =

5041 — 5014 = 0514 is one of them. To find the rest of the 15, we need to find the 
transversals of A;t0541) in AT. The transversals of N(0541) are :

{e, (1,2,3,4,5), (1,0,5)(2,4,3), (1,3,5,2,4), (l,0)(2,5), (1,4,2,5,3),

(1,2,3)(4,0,5), (1,0,2)(3,4,5), (1,5,4,3,2), (1,3,0,5,2), (1,4,5,3,0), (3,5)(4,0),

(1,5,2,0,4), (2,0,5,3,4), (1,2,0)(3,5,4)}.

1. e 0541 = 5041 = 5014 = 0514

2. (1,2,3,4,5)
1
( 0152 = 1052 = 1025 = 0125

3. (1,0,5)(2,4,3)
1

5130 = 1530 = 1503 = 5103

4. (1,3,5,2,4) i 0213 = 2013 = 2031 = 0231

5- (l,0)(2,5) 1240 = 2140 = 2104 = 1204

6. (1,4,2,5,3) 0324 = 3024 = 3042 = 0342

7. (1,2,3)(4,0,5) 5402 = 4502 = 4520 = 5420

8. (1,0,2)(3,4,5) 2350 = 3250 = 3205 = 2305

9. (1,5,4,3,2) 0435 = 4035 = 4053 = 0453
1

10. (1,3,0,5,2) 5243 = 2543 = 2534 = 5234

11. (1,4,5,3,0) 1354 = 3154 = 3145 = 13451

12. (3,5)(4,0) ' 4301 = 3401 = 3410 = 4310

13. (1,5,2,0,4) 4215 = 2415 = 2451 = 4251

14. (2,0,5,3,4) 5321 = 3521 = 3512 = 5312

15. (l,2,0)(3,5,4) 1432 = 4132 = 4123 = 1423
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Note: the orbit of A^0541) on {0,1,2,3,4,5} are:

{1,4}, {2,3}, {0,5}.

We take a representative from each orbit of TV^0541) and we multiply it with Ntot^t4ti 

and determine if it will extend the Cayley’s graph or collapse it.

• Ntot^ti • ti = NtQtst4(ti)2 = Ntot^ti G [054].

Since, the orbit {1,4} of length 2, then two ifs will collapse the Cayley’s graph to 

[054]

• Ntotst4ti • t2 = Ntot5t4tit2 E [05412].

Since, the orbit {2,3} of length 2, then two ij’s will extend the Cayley’s graph from 

[0541] to [05412],

i
• Ntot^t4t4 • io = Ntotst^to = = AioisUA^o — Ntotot^to = Ntot^t2 E

[052].

So, two ij’s will collapse the Cayley’s graph and will take [05410] to [052].

Figure 3.5: Extension of Cayley’s graph by [05412]

3.1.7 Word of Length Five [05412]

The new double coset Ntot^t^N which is given by [05412]. The point sta

biliser of 0,5,4,1 and 2, A'05421 in N. ,

Thus, TV05421 =< e > => the coset stabiliser AM05421) > A’05421.

The equal single cosets are:

05412 = 01254 = 50142 = 10524 = 21045 = 54201 = 24510 = 45021 = 42150 = 12405.
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So, we note 05412 = 42150 =$> (04152) G AA05421) because:

A^totgtit!^/04152) = Nt^titsto = NtotMlh-

Also, 05412 = 01254 => (51) (24) e A^05421) because:

Ar(tot5t4tlt2/51^24) = ATtoili2<5t4 —

Thus, A^05421) >< (51) (24), (04152) >.

Therefore, |A^05412)| = 2 • 5 = 10 => | = = 6 single cosets in [05412],

The transversals of A^05421) in N = {e, (1,5,0)(2,3,4), (1,0,5)(2,4,3), (2,4,3,5,0), 

(1,0,4,2,3), (l,5)(3,0)}.

If we conjugate (05412 = 01254 = 50142 = 10524 - 21045 = 54201 = 24510 = 45021 = 

42150 = 12405) by the above transversals, we will get the following distinct cosets.

1. (05412 = 01254 = 50142 = 10524 = 21045 = 54201 = 24510 = 45021 =

42150 = 12405)e ,

=> 05412 = 01254 = 50142 = 10524 = 21045 = 54201 = 24510 = 45021 = 

42150 = 12405.

2. (05412 = 01254 = 50142 = 10524 = 21045 =! 54201 = 24510 = 45021 =

42150 = 12405)(1-5’0^2’3’4) <

10253 = 15302 = 01523 = 51032 = 35120 = 02315 = 32051 = 20135 =

23501 = 53210. >
i

3. (05412 = 01254 = 50142 = 10524 = 21045 ='54201 = 24510 = 45021 = 
42150 = 12405)^1,0’5)(2,4,3^

=> 51304 = 50413 = 15034 = 05143 = 4053.1 = 13450 = 43105 = 31540 = 

34015 = 04351. I

4. (05412 = 01254 = 50142 = 10524 = 21045 = 54201 = 24510 = 45021 = 
42150 = 124O5/2’4’3’5’0)

=> 20314 = 21403 = 02134 = 12034 = 41230 = 63421 = 43612 = 36241 = 

34162 = 14326.

5. (05412 = 01254 = 50142 = 10524 = 21045 = 54201 = 24510 = 45021 = 
42150 = 124O5/1-0’4-2-3)

=> 45203 = 40352 = 54023 = 04532 = 30425 = 52340 = 32504 = 25430 =

23054 = 03245.
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6. (05412 = 01254 = 50142 = 10524 = 21045 = 54201 = 24510 = 45021 =
42150 = 124O5)<1’5^3’0)

=> 31452 = 35214 = 13542 = 53124 = 25341 = 14235 = 24153 = 41325 = 

42513 = 52431.

Therefore, The distinct single cosets of the double coset [05412] are: 

[05412] = {05412,10253,51304,20314,45203,31452}.
Hence, the orbits of 7V(05421) on {0,1,2,3,4,5} are :

{3}, {0,1,2,4,5}

We now take a representative from each orbit, say £3 from {3} and £2 from {0,1,2,4,5}. 

So, we have

and
i

• M5M1M2 G [0541].

Hence, 5 £/s will make Cayley’s graph collapse and therefore any of the following: 

Wi, £2^4 or £5 will take [05412] to [0541].

• M5M1M3 G [054123]. 1
I

This represented by 1 in Cayley’s graph, (see figure 6).

Figure 3.6: Cayley’s graph with extension to [054123]

3.1.8 Word of Length Six [054123]

At the double coset we will have all elements being fixed in N.
=} ^054123 =< e >
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We already know that A^05412> >< (51) (24), (04152) >=< (051) (243), (12345) >= A5.

Now,

054123 = 051423 = 051432 = 051342.
=> 051423 = 051342 => (243) G A^054123).

=*  AT(°5412> >< (51)(24), (04152), (243) >= A5.

From the generators of A^054423) , there will be one single orbit generated which is 

{0,1,2,3,4,5}.
Thus, |AT(°54123) | = A5 = 60.

=> |jv(054i23)| = = 1 single coset in [054123]. The equal single cosets of the double coset
[054123] are:

(051423 = 524316 = 413250 = 210453 = 352140 =

203145 = 143205 = 532104 = 351204 = 235014 =

230541 = 153024 = 134502 = 425130 = 531240 =

135420 = 320514 = 504132 = 105243 = 450213 =

421503 = 314520 = 102534 = 023154 = 214035 =

431052 = 341025 = 032451 = 043512 = 241530 =

021345 = 403521 = 325041 = 405312 = 054123 =

124053 = 045321 = 015234 = 302415 = 201354 =

253410 = 412305 = 510324 = 452031 = 430125 =

315402 = 142350 = 542013 = 034215 = 245103 =

340152 = 501423 = 523401 = 304251 = 150342)/rf<N)
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051423 = 524316 = 413250 = 210453 = 352140 = 

203145 = 143205 = 532104 = 351204 = 235014 = 

230541 = 153024 = 134502 = 425130 = 531240 = 

135420 = 320514 = 504132 = 105243 = 450213 = 

421503 = 314520 = 102534 = 023154 = 214035 = 

431052 = 341025 = 032451 = 043512 = 241530 = 

021345 = 403521 = 325041 = 405312 = 054123 = 

124053 = 045321 = 015234 = 302415 = 201354 = 

253410 = 412305 = 510324 = 452031 = 430125 = 

315402 = 142350 = 542013 = 034215 = 245103 =

340152 = 501423 = 523401 = 304251 = 150342

3.1.9 Conclusion

Therefore: the double coset enumeration' gives that
|(7| < (1*1  + _1*L  -i- _i*l i M -I" |N(0)| -I- |N(D5)| + 1*1  i 1*1  pV(054)j jjV(052)| 1*1  .1*1|JV(0541)] 1*  |]V(O5412)|

+ |^(054123) | ) ’ l-^T

= {1 + 6 + 15 + 10 4- 10 4-15 4- 6 4-1} • |N| = 64 • ,60 = 3840 .( from Cayley’s graph).

Note,

• |N| = 60.

• |G?| > 3840 ( from Magma) .

Therefore,

|(7| = 3840.

See final Cayley’s graph next page.
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Figure 3.7: Cayley graph of G over A5
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Chapter 4

Double Coset Enumeration of

^2(7) Over A4

I
In this chapter, we want to do a double coset enumeration for:

_ [(l,2,3)(T,2,.3)i3p

Where,

x ~ (1,2,3)(1,2,3),

K~(1J)(2,2).

xy = (1,2,3)(2,3,1).
The abstract presentation of the progenitor 3* 6 :m >14 is:

G{xt y, t) = Group{x, y, t|a;3, y2, (a? * y)3, i3, (t, y), t ♦ , (x * t)5).

The control subgroup, N, is Sq which is the symmetric group of degree 6 on six letters 

1, 2, 3, 1, 2, and 3. N can be generated by x and y (above). Thus, N =< x, y >.
Note: 3* 6 means t3 = = t3 = ^i3 = h3 = ti3 = Identity.

4.1 Relations
I

t3 = e.
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_ 4"

Therefore, (
«1 = tl

tl = ti
tl = ti

so far, we have the following relations

£3 = e and £2 =ti where i = 1,2,3 .

given t ~ £3. and we have the relation [(1,2,3) (1,2,3)£s]5 = Id 

Now let

7F = (1,2,3)(1,2,3).

7T2 = (1,2,3) (1,2,3) • (1,2,3)(1,2,3) = (1,3,2)(1,5,2). 

ir3 = (1,3,2)((1,3,2) • (1,2,3)(1,2,3) = Id.

tt4 = e • (1,2,3)(1,2,3) = jr.

7T5 = TT2.

Thus, our given relation can be simplified to , 

7rt37r£37rt37T Ms = Id.

=> 7r7r47r“4£37r7r37r-3£37r7r27r-2£37F7r17r-1£3 = Id. '

=> 7r5(7r-4£37T4)(7r-3t37r3)(7r~2£37r2)(7r-1£37r1)£3 = Id

we know that 7r-1£i7r = tf.6 f
Hence, our given relation is:

7T5£f tf tf tft3 = Id.

=+ 7T2£1£3£2£1£3 = Id. => 7F2£i£2t3 = Ml ■

4.2 Double Coset Enumeration of G over A4

4.2.1 Double Coset [*]:

TVeTV denote the double coset [*]  . Since TV is transitive on {1,2,3,1,2,3}, we 

take a representative coset TV from [*],  and a representative from {1,2,3,1,2,3}, let it be
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t3 and determine if the new double coset will extend Cayley’s graph or collapse it.

NelV = {NeNjn E IV}.

= {Nn\n E IV}.

=w- 

[*]  will have single coset which is || — 1 because |IV| = IA4I = 12.

iv.t3 = ivt3e[3].

Now, since £3 is among other 6 elements of the orbits, this indicates 6 elements will extend 

Cayley’s graph from [*]  to [3], See figure 1.

Figure 4.1: Extension of Cayley’s graph from [*]

4.2.2 Double Coset [3]:

Secondly, we are at the double coset Nt3N = [3]. This is a word of length I
one. To find the number of single cosets, we need the point stabiliser of 3, IV3 in IV. 
M3> =< (1,1), (2,2) >=S2

Thus,

So there are 6 single cosets of length one word in the double coset [3]. Next we need to 
determine the orbits of IV(3\ IV(3) orbits can be obtained from the generators of IV^3X 

We will have the following orbits:

{3}, {3}, {1,1}, {2,2}.
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To find all the elements in this double coset, we need to find the transversals of A^3) in 

N and then we conjugate Nt3 by them. Using Magma program, the transversals (right 

coset representatives) of Nt3 are:

{Id, (1,2,3)(1,2,3), (1,3,2)(1,3,2), (1,2,3)(2,3,1), (1,3,2)(2,T, 3), (1,1)(3,3)}

Therefore,

= Nt3.
3)(T,2,3) =

Nt^^=Nt2.
Art(l,3J2)(2,I,3) =

^(112,3)(2,3J)=W

ATt^1J)(3’3) = Nte.

Thus, [

Nt3N = [3] = {ATtiAT, Nt2N, Nt3N, ATtjAT, NfyN, Nt^N}.
Now, we go back to our orbits of Art3) and take a representative from each orbit and 

multiply it by Nt3 (

to determine if Cayley’s graph extends. (

• Nt3 • t3 = Nt3 = Nt3 G [3]

One element will go to the same double coset [3]

• Nt3 • t3 = AT G [★].

One element will go back to [*].

• ATt3 -ti G [31].

Since 1 G {1,1} then two elements will extend Cayley’s graph.

• Nt3 ■ t2 G [32],

Since 2 G {2,2} then two elements will extend Cayley’s graph.

Therefore, the double cosets [31] and [32] are new double cosets that extends Cayley’s 

graph. The new Cayley’s graph would be:
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Figure 4.2: Extension of Cayley’s graph from [3]

4.2.3 Double Coset [31]:

We look at the double coset Nt3tiN which denote [31]. To find its single cosets, 

we need to determine its point stabiliser. Therefore, we fix 3 and 1, Ar31, and permute 
the rest letters. We know that A^31) > TV31.

=s> N<31) > {Id).

Thus,
|M31)| = 1.

Hence, the number of single cosets in the double coset [31] is = y = 12.
The orbits of AM31) are {1}, {1}, {2}, {2}, {3}, {3}. Taking a representative from each 

orbit and multiply it by Nt3ti and see if it will expand Cayley’s graph or the ti will 

collapse it.

Now,

• Nt3ti ■ ti = Nt3t2 = Nt3ti G [31].

• IWi ■ t2 e [312].

• W1 ■ t3 G [313].

• Ntsti ■ ti = Nt3 g [3].

• ATt3ti ■ h G Nt3t2 g [32].

Because 312 = 32212 = 322112 = 3221231 = 32211231 = 3221311 = 3232 = 32

since our relation is 123 = 31.
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• Nt^tits e [313].

So Cayley’s graph would be:

Figure 4.3: Extension of Cayley’s graph from [31]

[31] = Nta^N = {Nfat^n e N}.
The transversals of 7V(31) are:

{ W), (1,2,3)(1,2,3), (1,1)(2,2), (1,3,2)(1,3,2), (1,2,'3)(2,3,1), (1,2,3)(2,3,1), 

(1,3,2)(2,1,3), (1,3,2)(3,2,T), (1,3,2)(2,T,3), (1,2,3) (3,1,2), (2,2)(3,3), (1,1)(3,3)}

• JVt3t'123)<123) = Ntit2.

. jVt3t(132>(™> = Nt2t3.

. JVtst']123’'123’ = WJ.

. W?35)(I32) = NT2t3.

. W?”™ = Nt&.
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• ar341T)(22) = A?W

• = Nt&.

• ATt34135)(2T3) = Nt2te.
I

. Ni3t'125)(315) = MTt2.

• Art341S2)(321) = Ntfa.

• JVt3t$25)(33) = Wi.

• = Wi-

The 12 distinct single cosets of Nt3tiN are

[31] = {12,23,12,23,31,31,12,23,12,23,31,31}.

The new double cosets axe [312], [313], [313]. We will discuss these cosets later. 

Now we go back to determine the double coset [32].
I

4.2.4 Double Coset [32]:

The double coset [32] is denoted by Nt3t2N. To find its cosets, we again need 

to determine the point stabiliser of 3 and 2, AT32. It is the permutations in AT which fix 

3,2 and permutes the rest.

Thus,
AT32 = Id

=» |A7<32)| = 1.

We have,
Ad32) > Al32.

= Nt3t2.
Id E => Ad32) > (Id}.

Thus,

the total number of single cosets in [32] is = ^ = 12.

The orbits of N<32) are {1}, {2}, {3}, {1}, {2}, {3}.

To determine the elements of [32], we conjugate AT£3£2by 12 transversals which are:

WO, (1,2,3)(I,2,3),(1,1)(2,2),(1,3,2)(1,5,5), (1,2,3)(2,3,T),(1,2,3)(2,3,1), 

(1,3,2)(2,I,5),(1,3,2)(3,2,1),(1,3,2)(2,T,3),(1,2,3)(3,T,2),(2,2)(3,3), (1,1)(3,3)}
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Therefore,

. aM123)(I55) = mlt3.

• Ntst^^ = Nt3ti.
I

• = Ntzti-

. wf55’'231’ = JVtlta.

• JVt34153)(23i) =

. wf 32)(2l3) = iVffi.

. wfS2)(85I) = Ntlti.

• = Nt&.

• Arta4123,<315)=iv7Jt5.

. JVt3t<25)(33) = WJ-

. lVt341I)(3S) =JVtJt2.

• Nt3t^d — Nt3t2-

[32] = {13,32,21,13,13,2l, 21,21,13,32,32,32}.
The orbits of N^32) have been previously determined, so we consider a representative from 

each orbit and multiply it by Nt3t2-

• Nt3t2t ■ ti G [31].

Nt3t3t2t2ti — Nt3t3t2t2ti — Nt3ti.

Hence, one element will go back to [31].

• Nt3t2t • t2 — Ntfa G [32].

One element will go to [32].

• Nt3t2 ■ t3 G [313].

3223 = 321123 = 313313 = 313.

• Nt3t2 • ti G [312].
321 = 311211 = 311211 = 3112 = 3112 = 312
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• Ntstz • tz G [3].

• 7Vt3t2ii G [323]

This is a new double coset that will extend Cayley’s graph.

The new extended Cayley’s graph will be as shown in figure 4,

Figure 4.4: Extension of Cayley’s graph from [32] 
i

4.2.5 Double Coset [312]:

Now, we look at the double coset Nt^titzN, which denotes [312]. To determine 

how many elements are in this double coset, we need to find the point stabiliser of 3,1 
and 2, N312.
=> jy312 _ e

We need to add relations to the stabilsing set.

Now

(14) (25)i3tii2 = *1*2*3.
(312)(23) G N't312).

Similarly if we consider the double cosets [312] and [231].

Since,

(33)(U)t 3ti*2  = tfah.
=> (132) (12) G Ar(312),



54

■=> ]y(312) >< (312)(23), (132)(12) >.

Thus
|JV<312)| = 3.

Therefore, number of single cosets in [312] is = y = 4.
Note: ((132) (213))-1 = (231) (312) € AT<312\

Hence, the equal cosets are : 312 = 231 = 123.

By conjugating these equal cosets by four transversals which are: 

{Id, (123)(123), (132)(152), (123)(231)}.

Thus,

1. (312 = 231 = 123)Jd => 312 = 231 = 123.

2. (312 = 231 = 123)(123)(123) 123 = 312 = 231.

3. (312 = 231 = 123)C132^132) =^ 231 = 123 = 312.

4. (312 = 231 = 123/123>(23T) => 123 = 312 = 231.

Therefore,

The different single cosets of the double coset [312] are: 

{312,123,231,123}.
The orbits of IV^312) on {1,2,3,1,2,3} are {1,3,2}and {2,1,3}.

Taking a representative from each orbit and multiply it by Nt3tit2, 

we get the following:

• Nt3tit2 ■ t2 = G [31].
Since this orbit contains 3 elements, then three tjs 

will take [312] to [31],

Thus, Cayley’s graph collapse.

• Nt3tit2 • t2 = Ngtjt2t2 — Ht3t2t3t2-

= Nt3t2t3t3t2 “ Xt3t2t3t3t'2 = Nt3t2 G [32].

Thus 3 t/s will make Cayley’s graph collapse, 

because this orbit of length 3 so [312] —> [32].

Therefore, at the double coset [312], 3 t$’s will go back to [31] 

and 3 tfs will return to [32],

Thus, at [312] there is no further extension to Cay lay’s graph.
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4.2.6 Double Coset [313]:

To determine the double coset Nt^t-^t^N, [313], again we need to find the single 

cosets number.
Thus, we need to find the point stabiliser of 3,1 and 3, TV313 in N.

=> AT313 = Id.
]V(313) > N313_

|jV(313)| = 1.

The total number of elements in this double coset is = 12.

Thus,

The distinct cosets of Nt^tit^N will be:

[313] = Nt^titzN = {Af(43ti43)n|n inN],

The 12 distinct cosets are:

[313] =

Nt2t3t2, Nt2t3t2, Nt 1^2^15 Afijjiitjj, Nt3tit3, ^3^3}.

The orbits of Ari3iii3A'r on {1,2,3,1,2,3} are {1}, {2}, {3}, {ti}, {*2},  {h}-

The same procedure, we take a representative from each orbit and multiply by Ntst-fa.

• Afi34ii3 • ti = Nt3tit3t3titi = = Nt3tjt3 E [313].

One element will go back to [313].

• Nt3tit3 • t2 = Nt3tit3t2t2 “ Nt3tit3t2t2 — Nt3tit3 G [313].
One element will go back to [313].

• AT434i43 - 43 = Nt3t& G [313].

One element will go back to [313].

• Nt3t]t3 • ti = Nt3tit3t4t4 = Ntstifatiti = Aft34i43 G [313].

One element will go back to [313].

• 7V43tit3 • t2 = N~434i4i434342 = Ari3tit342i3^2 ~ Nt3t2t^^^2

— A^4342434i4i43 G [32].

One element will go back to [32].

• Art3tii3 ■ t3 = 7V434i G [31].

One element will go back to [31].

Therefore, the double coset [313] will not extend Cayley’s graph any further.(Figure 5 

shows the collapsing of [313]).
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[*1

Figure 4.5: Collapsing of the double coset [313]

4.2.7 Double Coset [313]:
I

The double coset, denotes [313].| Thus, we need to determine the point

stabiliser for 3,1 and 3. 1

=> TV313 = Id.

Now, '
i

TL *3*1*5  — *̂*2*1-

=4> n = (3l2)(312).

=> (312)(312)* 3*i*3  = *1*2*1*

=> (312) (31) e N<313).

and

n *3*1*3  = *2*5*2-

=> n — (321)(321)t3*i*3  = *2* 3*2-

=> (132) (32) 6 N't313).

Thus,

Nt313) >< (312)(31), (132)(32).

Therfore, |N<313)| = 3.



57

The total number of equal single cosets are :
1*1  = 12 4

|2V(313)| 3

((312)(123))-1 = (213) (321) G 7V<313)

Thus,
313(W) = 313.
3^(312)(123) _

31g(213)(321) _

Therefore, the equal cosets are 313 = 121 = 232

To find the other 3 distinct cosets of [313], we conjugate the above equal coset by the 

following transversals set: 1

{Id, (123)(123), (132)(132), ((132)(213)}.

• (313 = 121 = 232) 313 = 121 = 232.

• (313 = 121 = 232)<123Ml23> => 121 = 232 = 313.
I

• (313 = 121 = 232)<132X2l3> =+ 232 = 313 = 121.

• (313 = 121 = 232) (132)(132) => 232 = 313 = 121.

These are the 4 distinct equal cosets of the double coset [313].

The orbits of on {1,2,3,1,2,3} are {3,1,2}, and {1,2,3}. We take a representative

from each orbit, and multiply it by Nt3t-\t3, we get :

1. Nt3tit3t3 = Nt$ti G [31].

3 t{S will make [313] collapse and go back to [31].

2. AMiMl = WHs G [313].

3 ids will make [313] collapse and go back to [313].

4.2.8 Double Coset [323]

The point stabiliser of Ntat^tsN, is where the points 3, 2 and 3 being fixed in

N and the rest of elements are permuted.
=> Ar323 = Id

We know,

=> nt3t2t3 = £iMi.
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=> n = (312)(312).

=> (312) (315)43*2*3  = *1*3*1-

• Ar*3*2*3*3 = Nt3t2 G [32].
i

Three tfs will make Cayley’s graph collapse and go back to [32].

• Nt3t2irti = N3t2t3 G [323] G [313].

Three */s will make Cayley’s graph collapse and go back to [313].

Cayley’s graph would look like this.

=> (132) (13) G7V<323\

and

77*3*2*3  = *2*1*2-

n = (321)(321).

=> (321)(321)*3*2*3  = *2*1*2-

=?> (123)(32) G A*( 323).

=> jy(323) >< (132) (13), (123)(32) >.

So the orbits of 7\r(323) on {1,2,3,1,2,3} are {1,3,2} and {1,2,3}. Furthermore, the total 

number of single cosets in [323] is :
= 12 =4

|7V(323] 3

Now by taking a representation from each orbit and multiply it by AT*3*it3,  we get
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6

i

Figure 4.6: Cayley’s graph for L2(7) over A4
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Chapter 5

Construction of Finite
Homomorphic Images of 2* 5 :

I
I

In this chapter, we will find and construct finite homomorphic images of 2* 5 : S5.

Given, <
i

G < x,y,t >¥ Group (<E,y,t|:r5,y2,(a;y)V2, (xy)')2, (x"2(xy)2)3,
(x~3(xy)3)4, (x-^xy)4)5, (x~2yx2y}2^ {t,x2yx~A), (t,yx), (t,y), 

(xyt)a, (Cry)'1*) 6, (xt^2)c, (x^d^y^xt^2)6, (t^)*̂) 2)/);
i

We will give range of values for each of the following parameters a, &, c, d, e, /. The smaller 

range, the less time takes the computer to generate subgroups. The chosen interval for
1

the parameters a, b, c, d, e, f are as follow:

a G [0..50], b G [0..20], c G [0..20], 

d G [0..20], e G [0..10], /G[0..10],

We let the code to run in the background without interaction. Each change of parameter 

will produce new subgroup. Note that some of the generated homomorphic image of 
2s : S5 will be repeated more than once. For example, the parameters (0,0,0,0,0,2) 

is isomorphic to the parameters (0,0,0,0,4,2). Both of them generate the same group 

order,32. However, the bold face numbers that in the above parameters axe the keys 

to generate the group, and the rest of parameters will enable us to add more factors to 

the group. For information, when we run this code, the process took couple of days to 

complete and there were about 100 pages of subgroups of 2* 5 : S5. Please see table 1 for
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i

sample of generated subgroups of 2* 5 : S3. If we consider the first entries of parameters 

in table 1, where

a = 0, b = 0, c = 0, d = 0, e = 0, f — 2, order of the group is 32 

and substitute them in the above general form of the group G. We will obtain the 

following symmetric presentation:

G < x,y,t >= Group {x,y,t\x3,y2, (zy)4,t2, (rr_2(a:y)2)3, (x~3(xy)3yi,
(x~4(xy)4)3, {x-2yx2y}\ (t,x2yx-A), (t, yx), (t, y), (t^t^2)2);

The control subgroup N, is 5s which is the symmetric group of degree 5 on five letters 

1,2,3,4 and 5. N can be generated by x and y, where x ~ (1,2,3,4,5) and y ~ (1,5) 

and has order of 5! = 120. Thus, N = (x,y).

I
5.1 Relation

25 =< ti > * < t2 > * < t3 > * < *4  > * < is >, , 

in which, each if is of order 2. '

We let t = t4 and take x ~ (1,2,3,4,5), y ~ (1,5)(. 

The given relation is: '
(<(®v)t(®»)2)2 _ e>

rry = (1,2,3,4,5)(1,5) = (1,2,3,4) 

(rry)2 = (1,2,3,4)2 = (1,3)(2,4).
Thus, our relation is )2 = (i^1’2,3’4^^1’3^2,4^)2 _ e,

(iit2)2 = e.

=>■ iit2tjt2 — e.

Thus the final relation is:

*1*2  = <2*1-

5.2 Double Coset Enumeration of G over N

We will perform a double coset enumeration of G over N. This means, we 

determine all the double cosets [w] until the set of right cosets is closed under right 

multiplication by the 5 t^s. Furthermore, we will determine the number of single cosets 

in each double coset.
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It suffices to determine for the double coset [w], tlie double coset to which Nwti belongs 

for one ti from each orbit of the coset stabiliser IV^ of the coset on {1,2,3.4,5}.

We denote the first double coset NeN by [*].  Since IV is transitive on {1,2,3,4,5}, 

we take a representative coset IV from [*],  and a representative from {1,2,3,4,5} and 

determine the double coset to which belongs.1

IVt4lV = [4] = {Nt$\n G IV} = {IVti, IVt2,IVi3,IVt4,IVt5}
1

Therefore, the double coset [4] will have 5 single cosets. Since 11V^ | — 4! = 24
The number of single cosets in [4] is given by-pjy^yj = |t = 5

1V(°) >< (1,2,3), (1,5) >.

The orbits of IVon {1,2,3,4,5} are {4} and {1,2,3,5}. We take a representative from 

each orbit and multiply it by lVt4, we get:

• IVt4 • t4 ~ Nt2 ~ Ne = IV G [*].

Since, t4t4 = t2 = e^> Nt^t^ = Ne = IV.

t4 will collapse Cayley’s graph, and hence will take [4] to [*]

• Ntt • t2 G [42].

Four tj’s will take [4] to [42], and hence it will extend Cayley’s graph.

In order to find the number of the single cosets in [42], we need to determine the point 

stabiliser of 4 and 2, IV42. Furthermore, in IV, fixing 4 and 2 will result in permuting only 

three elements of IV which will be 1,3 and 5.

Thus,

TV42 = S3 =< (1,3,5), (1,3) >.

Note that;
IV<42) > IV42.

IVt4t2lV = {IV(t4t2)n|n G IV}.
IV(t4t2/42) = IVt2i4 = IVt4t2. (by relation ti t2 = i2ti => t2t4 = t4t2).

=> (42) G 1V(42).

=> IV(42) >< IV42, (42) >=< (135), (35), (24) >.

This means that |1V(42)| = [S3I ■ 2 = 3! ■ 2 = 12.
=> the number of single cosets in [42] = jj|(42)| = = 10-

The transversals (right coset representatives) of N^ axe:
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{Id(N), (1,2,3,4,5), (1,3,5,2,4), (1,5,4,3,2), (1,4,2,5,3), (1,3)(2,4,5), (1,5,4), 

(1,3,4,5,2), (1,4,2,3), (1,2,3)}.

Therefore, different cosets are:

(42 ~ 24)™^ =G> 42 = 24.

(42 ~ 24)t1-2’3’4-5) => 53 = 35.
(42 24^1,3,5,2,4) 14 _ 41#

(42 - 24)t1’5’4’3’2) => 31 = 13.

(42 ~ 24/1-4’2’5’3) => 25 = 52.

(42 - 24)(1,3)(2’4’5) => 54 = 45.

(42 - 24)^’5’4) => 12 = 21.

(42 ~ 24) f1,3,4,5’2) => 51 = 51.

(42 - 24/1’4-2’3) => 23 = 32.

(42 - 24/1’2’3) => 43 = 34.

Hence, the 10 distinct single cosets are:

42,53,14,31,25,54,12,51,23,43 f

The orbits of on {1,2,3,4,5} are {2,4} and.{l, 3,5}.

Taking a representative from each orbit and multiplying with Nt4t2 and see if this mul

tiplication will extend the Cayley’s graph or collapse it.

• Nt4t2 • *2  — Nt4t2t2 G [4].

Since, t\t2 — t2t\ => t2t4 = t4t2, t2 will take [42] to [4],

• Nt4t2 • *3  G [423].

The three */s,  where i G {1,3,5} will extend Cayley’s graph from [42] to [423].

Now, for the double coset Nt4t2t3N, denoted by [423], need to determine how many single 

cosets are in the double coset and which tfs will extend Cayley’s graph.

Therefore, we must first determine the point stabilsier TV423. This means we fix 4,2 and 

3 in TV, and permute the other two elements.

Thus, TV423 =< (1,5) > =$> 17V<423)| = 2!.

We know that TV^423) > TV423.

Now, Nt4t2t3N = {TV(*4* 2*3) n|n G TV}.
We have TV(*4*2*3) ^423^ = Nt2t3t4 — Nt4t2t3. (since *4*2  = *2*4)

=> (423) G 7V(423).
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=>7V<423) >< TV423, (423) >. '

we look for more relations, »

= Nt4t3t2.
=> (23) G M423\

=> 7V<423) >< TV423, (423), (23) M2 x S3. '

This means that 17V<423) | = 2! • 3 • 2 = 12.

=> the number of single cosets in [423] = = 10-

423 = 432 = 342 = 324 = 234 = 243.

Thus;

423 = 432 = 342 = 324 = 234 = 243.

We conjugate the above equal cosets by 10 transversals which are:

{Id(N), (1,2,3,4,5), (1,3,5,2,4), (1,2,3,4), (1,4,2,5,3), (1,3,4,5), (1,5,4,3,2), 

(1,4)(2,3,5), (1,5,3,2), (1,4,5)(2,3)}.

Conjugating (423 = 432 = 342 = 324 = 234 = 243) with transversals:

(423 = 432 = 342 = 324 = 234 = 243)

423 = 432 = 342 = 324 = 234 = 243.
I

(423 = 432 = 342 = 324 = 234 = 243) t1’2-3-4-5)

534 = 543 = 453 = 435 = 345 = 354.
(423 = 432 = 342 = 324 = 234 = 243) t1-3’5-2-4)

=+ 145 = 154 = 514 - 541 = 451 = 415.
(423 = 432 = 342 = 324 = 234 = 243) t1’2’3-4)

=> 134 = 143 = 413 = 431 = 341 = 314.
(423 = 432 = 342 = 324 = 234 = 243)(1’4’2’5-3)

=> 251 = 215 = 125 = 152 = 512 = 521.
(423 = 432 = 342 = 324 = 234 = 243)<1’3’4’5)

=G 524 = 542 = 452 = 425 = 245 = 254.
(423 = 432 = 342 = 324 = 234 = 243)(1’5’4’3’2)

=> 312 = 321 = 231 = 213 = 123 = 132.
(423 = 432 = 342 = 324 = 234 = 243) (M)(2>3,5)

=> 135 = 153 = 513 = 531 = 351 = 315.
(423 = 432 = 342 = 324 = 234 = 243/1-5’3’2)

-- 412 = 421 = 241 = 214 = 124 = 142.



65

(423 = 432 = 342 = 324 = 234 = 243) (M,5)(2,3)

=> 532 = 523 = 253'= 235 = 325 = 352.

The 10 distinct single cosets of Nt.^CsN are given below:

[423] = {423,534,145,134,251,524,312,135,412,532}.
The orbits of N't423) on {1,2,3,4,5} are {2,3,4} and {1,5}.

We take a representative from each orbit and multiply it by *̂4*2*3, we will have the 

following:

• N*4*2*3  • *2  “ -N*4*2*3*2  = N*4*2*2*3  = -*̂4*3  G [42].

• N*4*2*3  ■ *5  G [4235].

New double coset that will extend Cayley’s' graph from [423] is [4235]. Hence, *i  

and *5  will extend it. I

The double coset which is denoted by [4235], has point stabiliser of

N4235 =< e >, since four points are fixed and only one can permute.

However, using the above relations, we can see that N^4235) > TV4235.
1

Now, we have ,

423 - 243
=> 4235 ~ 2435 '

4235 = 4253 = 2453 = 2543 = 5243 = 2435.
=► (5243) G N^4235)

I
=> W^235) >< e, (24), (423), (4235) >=< (2345), (23) >.

=^|N(4235)| = 2-3-4 = 24. '

=>- number of single cosets are = 5.
The transversals of A^4235) are:

{Id(lV), (1,2,3,4,5), (1,5,2,4), (1,3,5,2,4), (1,4,2,5,3)}.

We have the equal cosets:

4352 = 2354 = 5234 = 3425 = 3524 = 2534 = 3245 = 2345 = 5423 = 2543 = 4235

= 4325 = 2435 = 5243 = 4523 = 4532 = 3542 = 5342 = 3254 = 3452 = 5324 = 4253 =

2453 = 5432.

If we conjugate the above equal cosets by each of the transversals, we will find:

1. (4352 = 2354 = 5234 = 3425 = 3524 = 2534 = 3245 = 2345 = 5423 = 2543 = 

4235 = 4325 = 2435 = 5243 = 4523 = 4532 = 3542 = 5342 = 3254 = 3452 =
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5324 = 4253 = 2453 = 5432)/dW

=> (4352 = 2354 = 5234 = 3425 = 3524 = 2534 = 3245 = 2345 = 5423 = 2543 = 

4235 = 4325 = 2435 = 5243 = 4523 = 4532 = 3542 = 5342 = 3254 = 3452 = 

5324 = 4253 = 2453 = 5432.

2. (4352 = 2354 = 5234 = 3425 = 3524 = 2534 = 3245 = 2345 = 5423 = 2543 =

4235 = 4325 = 2435 = 5243 = 4523 = 4532 = 3542 = 5342 = 3254 = 3452 =
5324 = 4253 = 2453 = 5432) t1’2-3’4’5)

=> 5431 = 4351 = 1345 = 3154 = 5134 = 3514 = 3145 = 1543 = 1453 = 4513 =

1534 = 4315 = 3415 = 4531 = 4135 = 3541 = 4153 = 5143 = 1354 = 5341 =

5413 = 5314 = 3451 = 1435.

3. (4352 = 2354 = 5234 = 3425 = 3524 = 2534 = 3245 = 2345 = 5423 = 2543 = 

4235 = 4325 = 2435 = 5243 = 4523 = 4532 = 3542 = 5342 = 3254 = 3452 = 
5324 = 4253 = 2453 = 5432) C1’5’2-4)

1243 = 3241 = 2341 = 1324 = 1342 = 3421 = 2431 = 1423 = 4123 = 3142 = 

2413 = 4231 = 4321 = 4312 = 3412 = 4132 = 3214 = 3124 = 4213 = 2134 = 

1432 = 1234 = 2314 = 2143.
i

4. (4352 = 2354 = 5234 = 3425 = 3524 = 2534 = 3245 = 2345 = 5423 = 2543 = 

4235 = 4325 = 2435 = 5243 = 4523 = 4532 = 3542 = 5342 = 3254 = 3452 = 
5324 = 4253 = 2453 = 5432/1’3’5-2’4)

2451 = 1245 = 2514 = 1425 = 1254 = 5421 = 2541 = 4125 = 1524 = 5241 = I
2415 = 1542 = 5124 = 1452 = 4512 = 4521 = 5214 = 4152 = 4215 = 5142 = 

5412 = 2145 = 2154 = 4251.

5. (4352 = 2354 = 5234 = 3425 = 3524 = 2534 = 3245 = 2345 = 5423 = 2543 =

4235 = 4325 = 2435 = 5243 = 4523 = 4532 = 3542 = 5342 = 3254 = 3452 =
5324 = 4253 = 2453 = 5432) t1-4’2-5-3)

=> 2531 = 2513 = 1325 = 3521 = 5231 = 1253 = 1523 = 5123 = 3152 = 5132 =

3512 = 1532 = 5213 = 3215 = 5312 = 3251 = 2153 = 1352 = 2135 = 1235 =

2315 = 5312 = 2351 = 5321.

Hence, the distinct cosets of will be :

[4235] = {4235,4352,5431,1243,2451,2531}
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The orbits of A^4235) on {1,2,3,4,5} are {1}, {2,3,4,5}.

We take a representative from each orbit and multiply by Ntttitstz, we get:

• • A E [42351]. 1
I

New double coset that will extend Cayley’s graph.
J

• Nt^tsts • t2 = ^4/3^5 G [435] G [423). 1

At the double coset NtttitztztiN, [42351], we will have all elements being fixed in N, 

A'42351 =< e >;
we already know that A^4235) >< (42), (4235) >='S4.

Now,
42351 = 42315 -> (15) G Ar(42351\

=> AT<42351> >< (15), (42), (42351 >.

Since one of the generators of N't42351) is (42351), ithis would indicate that the orbit

of A^42351) on {1,2,3,4,.5} is the single orbit, which is {1,2,3,4,5}.
The transversal of A'A12351) = Id(N). Therefore, '

(12543 = 51342 = 45312 = 43125 = 25143 = 45321 = 42153 = 25134 = 14253 = 51324 = 

32514 = 31542 = 25314 = 13524 = 42351 = 32415 = 23145 = 3412,5 = 41532 = 

31245 = 42513 = 41352 = 15423 = 54231 = 51423 = 43251 = 42135 = 25413 = 15342 =

41235 = 15243 = 34521 = 23154 = 53421 = 15234 = 42531 = 21543 = 24513 = 45132 =

45123 = 52413 = 32541 = 34152 = 32154 = 31254 = 21435 = 12435 = 35214 = 41325 =

35412 = 15432 = 12534 = 53124 = 14352 = 12453 ,= 123,54 = 13245 = 24531 = 23451 =

52431 = 15324 = 54312 = 53412 = 43521 = 35241, = 41523 = 52134 = 21453 = 52314 =
52341 = 14532 = 52143 = 35124 = 45231 = 43152' = 35142 = 21345 = 53214 = 35421 =

24315 = 13452 = 43215 = 24135 = 24351 = 31425 = 12345 = 31524 = 54321 = 34251 =

45213 = 42315 = 13425 = 21534 = 14523 = 31452 = 14235 = 41253 = 51432 = 54132 =

34215 = 51234 = 13542 = 23415 = 43512 = 24153 = 53142 = 54123 = 34512 = 23514 =

32451 = 32145 = 51243 = 25431 = 21354 = 13254 = 54213 = 14325 = 23541 = 25341 =
53241 )Z(W.

12543 = 51342 = 45312 = 43125 = 25143 = 45321 = 42153 = 2,5,134 = 14253 = 

51324 = 32514 = 31542 = 25314 = 13524 = 42351 = 32415 = 23145 = 34125 = 41532 =
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31245 = 42513 = 41352 = 15423 = 54231 = 51423 = 43251 = 42135 = 25413 = 15342 =

41235 = 15243 = 34521 = 23154 = 53421 = 15234 = 42531 = 21543 = 24513 = 45132 =

45123 = 52413 = 32541 = 34152 = 32154 = 31254 = 21435 = 12435 = 35214 = 41325 =

35412 = 15432 = 12534 = 53124 = 14352 = 12453 = 12354 = 13245 = 24531 = 23451 =

52431 = 15324 = 54312 = 53412 = 43521 = 35241 = 41523 = 52134 = 21453 = 52314 =

52341 = 14532 = 52143 = 35124 = 45231 = 43152 = 35142 = 21345 = 53214 = 35421 =

24315 = 13452 = 43215 = 24135 = 24351 = 31425 = 12345 = 31524 = 54321 = 34251 =

45213 = 42315 = 13425 = 21534 = 14523 = 31452 = 14235 = 41253 = 51432 = 54132 =

34215 = 51234 = 13542 = 23415 = 43512 = 24153 = 53142 = 54123 = 34512 = 23514 =

32451 = 32145 = 51243 = 25431 = 21354 = 13254 = 54213 = 14325 = 23541 = 25341 =

53241.

This step would terminate the double coset enumeration.

Hence, all the double coset along with the single cosets they contain have been found.

1. There are six double cosets which are [*],  [4]; [42], [423], [4235], [42351].

2. There are a total of 1,5,10,10,5,1 single cosets respectively for the above double
(

cosets.
i

i

3. G = NeN U Nt^N U Nt&N U Nt^tzN U U

a ici-^l ! |NL i |ArL i w i i W ,i i.ViM — Vpvp jjvw] |N(42)| |jV<423)| pv(4235)| m |N(42351)p IJVI-

5. |G| = (1 + 5 + 10 + 10 + 5 + 1) • 120 = 3840.1
i

Now according to Magma, the order of G is 3840, this results will confirm that our double 

coset enumeration of G over our control group N = S5 is correct.
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Table 5.1: Some finite subgroups of 2*5 : S5

a b c d e f Order of G
0 0 0 0 0 2 32
0 0 0 0 4 0 1042
0 0 0 0 4 2 32
0 0 0 0 4 4 1024
0 0 0 0 4 6 32
0 0 0 0 4 8 1024
0 0 0 0 4 10 32
0 0 0 0 8 2 32
0 0 0 1 0 2 32
0 0 0 1 6 2 32
0 0 0 2 0 2 32
0 0 0 2 4 0 1024
0 0 0 2 4 2 ,32
0 0 0 2 4 4 ■ 1024
0 0 0 2 4 6 32
0 0 0 2 4 8 ,1024
0 0 0 2 4 10 32
0 0 0 2 8 2 32
0 0 0 3 0 2 32
0 0 0 3 3 3 720
0 0 0 3 6 2 32
0 0 0 4 0 2 32
0 0 0 4 4 0 1024
0 0 0 4 4 2 32
0 0 0 4 4 4 1024
0 0 0 4 4 6 32
0 0 0 4 4 8 1024
0 0 0 4 4 10 32
0 0 0 4 8 2 32
0 0 0 5 0 2 32
0 0 0 5 3 3 720
0 0 0 5 6 2 32
0 0 0 6 0 2 32
0 0 0 6 4 0 1024



m

Figure 5.1: Cayley’s graph
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Table 5.2: Some discovered finite, subgroups of 2*5 : S$

a b c d e f Order of G Group Name
0 0 0 0 0 2 32 ' 2®T%
0 8 10 2 4 4 1024
0 0 0 3 3 3 720' S6:S5
0 0 5 0 0 0 16 S5 x24
0 10 6 1 3 3 12' Sg x 2
0 0 8 1 0 4 1960 PGX2(49) x 2
0 0 10 0 0 3 162 (34 : 2) : S5
0 0 10 1 0 7 4802 (7*:  2): S5
0 10 18 0 5 3 236196 (39 : 2) : S6
0 0 10 3 0 9 13122 (3s : 2) : S5
0 0 10 0 0 5 1250 (54 : 2) : Ss
0 0 12 0 0 3 6144 (21U : Ss)
0 5 0 0 0 0 6
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Chapter 6

Construction of 2* 5 : S5 in

MAGMA
I

I

In this chapter we will write the MAGMA code for and give a compute-based

proof that G = 2* 5 : S5.

We have,

G {x,y,t} = Group {x,y,t\x3,y2, (xy)2,t2, (ir-1^)1)2, (x~2(xy)2)2, (x~3(xy)3)4, 
(x~4(xy)4)5, {x~2yx2y}2, (t,x2yx~^\(t,yx), (t,y), (t^t^2)2);

The group input into MAGMA as below:

> N:=Sys(5);
> xx:=N!(l,2,3,4,5);
> yy:-H!(l,5);
> N:=sub<N|xx,yy>;
> G<x,y,t>:= Group<x,y,t|xA5, yA2,(x*y) A4, (x^-l *(x*y) Al)A2,
(xA-2*(x*y)  A2)A3, (xA-3 *(x*y) A3)A4, (xA-4 *(x»y) A4)A5, 
(xA-2 *y  *x A2*y) A2,tA2, (t,xA2*y*x A-l),
(tjyAx),(t,y),(tA(x*y )*t A((x*y )A2))A2>;

> Index(G,siib<G|x,y>);
32

Figure 6.1: Magma input

Note: Index will tell us how many single cosets are there in the above defined group.
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6.1 Relations

We know that,

(£i*2) 2 = e;

OR

M2 = £2£i.

In order to start the double coset enumeration for G over TV using computer based, 

MAGMA, we must define the entries of x in terms of the stabilised element, t4.

We must store each entry of x under a unique labeling called £s[i] where i G {1,2,3,4,5'}. 

(See figure 2)

We have t ~t4 => £s[4] —

Now, we define x in respect to the above expression.
I

1- is = i4“ I

=> £s[5] = 1

2. £1=^2

=> is[i] = /(if)- ;

3. i2=.tf.

=>is[2]

4. t3 = tf.

£s[3] =

I

> fJGlJk:=CosetAction(G/sub<G]x,y>);
> Ib!:=sub<Gl|,f(x)Jf(y)>;
> rs + [ld(Gl) : i in [1..5]];
> ts[5]:=f(tAx); ts[l]:=-f(tA(xA2)); ts[2]:-f(tA(xA3));
ts[3T:=f(tA(xA4));

Figure 6.2: Defining is’s

According to figure 5.2 output, there exist 32 single cosets. Each single coset is stored in 

a cst. The number of how many cst’s exist in a double coset, is denoted by m. Thus, 

each new double coset we determine, there exist a counter called, m, m = [1..32] that is
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created. If the double coset is new and therefore will extend Cayley’s graph, then m will 

increase. Otherwise, m remains unchanged.

Figure 5.3 will show how cst’s are stored and labeled [1..32].

> for i in [1..31] do i, cst[i];end; for;
1 []
2 [ 4 ]
3 [ 5 ]
4(3]
5 [ 1 ]
6 [ 5, 4 1
7 ■[ 4j 3 ]
8(2]
9 ( 1, 4 ]
10 .[ 1, 5 ]
11 [ 3, 2 ]
12 ( 4, 2 ]
13 I 2, 5 ]
14 { 5, 3 ]
15 :[ 1, 2 ]
16 ;[ 5, 4, 1 ]
17 [ 3j 2, 4 ]
18 I 3, 1 ]
19 ( 5,. 4, 2 J
2& [ 4, 3; 5 ]
21 [ 1, 4, 2 ]
22 ( 2, .lJt 5 ]
23 [ 3, 2, 1 ]
24 ( 4, 3, 1 ]
25 [ 3, 141 5 ]
26 [ 3, 2, 5 ]
27 ( 2, 1,. 4, 5 ]
28 ,[ 1, 4, 2, 3 ]
29 [ 1, 5, 3, 4 ]
30 [ 4j 3j 5j 2 ]
31 [ S, 3, 1, 2 ]

Figure 6.3: Show how cst’s are stored and labeled [1..32].

The corresponding Cayley’s diagram as illustrated earlier is as below:

[*1 [4233] [42351]
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Table 1 below, expresses the content of each double cosets that is determined in the group 

with the value of corresponding m.

Note that, in MAGMA,

1. m does not count the first double coset, [*],  and therefore, 1 must be added each 

time the codes run.

2. Each new double coset will increase the value of m.

For example; the double coset [4] will have 5 single cosets, and the double coset [42] 

will have 10. MAGMA will produce the value of m = 15. Since, m counts the most 

updated total of single cosets and not individually computed.

i

Table 1, defines the double cosets of 2*5 : S$ with corresponding single cosets;

Double Cosets Single Cosets #
H 1 1
[4] 5
[42] io ,
[423] 10
[4235] 5
[42351] 1 ,

i

6.2 Composition Factors 1

When we type the command of composition factors in Magma, the following 

result will be: (see Figure 5.4)
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> f1,61,kl:^CosetAction(G,sub<G|x,y >);
> CowpositionFactors(Gl); t

G
| Cyclic(2)

•*
j Alternating(S)

| Cyclic(2)

] Cyclic(2) ,
A

I Cyclic(2)
*
| Cyclic(2)
* I

| Cyclic(2) i
1

Figure 6.4: Composition factors of 2* 5 : S$
i

I
To discuss the above further, we name each subgroup from bottom to top with the 

following label,

* —> Gq —> Ge/l = C*2  — C2, and hence Gq 1 < G&

* “A G§ —> G5/Gq = C2

* —C?4 —> GU/G$ = C2 1

* —> G3 —> G3 / G4 = C2

*^g2^g2/g3 = c2 ,

* —>■ Gi —> Gi/G2 = A 5

* -> G -> G/G2 = C2

=>
g6/i = c2^gq = c2.

G5/Gq = C2^G5 = C2xGg = C2x c2.

G4/G5 = C2 => G4 = C2 x C2 x C2.

G3/G4 = c2 => g3 = c2 x c2 x c2 x c2.

G2/G3 = C2 =>■ G2 = C2 x C2 x C2 x C2 x C2.

Gi/G2 = A 5 => Gi = Ai : C2 x C2 x C2 x C2 x C2.

G/G2 = C2 => G = C2 : Ai : C2 x C2 x C2 x C2 x C2.
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=> our group is isomorphic to 2* 5 : S5.

The normal subgroup lattice will be:

normal subgroup, lattice

[1]

[2]

Order 1

Order 2

Length 1

Length 1

Maximal Subgroups:

Maximal Subgroups: 1

’(31 Order 16 Length 1 Maximal Subgroups: 1

[4] Order 32 Length 1 Maximal Subgroups;: 2 3

[5] Order 960 Length 1 Maximal Subgroups: 3

[6] Order 1920 Length 1 Maximal Subgroups:. S
[7] Order 1920 Length 1 Maximal Subgroups: 5
[8] Order 1920 ■Length 1 Maximal Subgroups: 4 5

[9] Order 3840 Length 1 Maximal Subgroups: 6 7 8

Figure 6.5: Normal subgroup lattice

The corresponding Normal Lattice is :

Figure 6.6: Normal subgroup lattice diagram
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Now, to check if our above assumption is true and hence G = 2* 5 : 5q, 

Gq <1 G5 <1 G4 <1 G$ <1 t?2 .

The corresponding command for the above is:

> H<aJb>c,dJe>:= Group <aJb1cJd^e|aA2,bA2JcA2JdA2>eA2> 
(aJbL(aJch(aJd)J(a,e),(b,c)>(bjd)J.(bJe)J(cJd),

(<be)>;
> f4,H4,k4:= CosetActianfHjSiiExHlIdtHJx);.
> r:=IsIsomorphic(H4jNL[4]); 1
> r;
true

Figure 6.7: MAGMA code to check for isomorphism against 1VI[4],

Therefore, G4 is isomorphic to AT£[4] and hence we can write: 
t

Ge < G5 < G4 < G$ < G2.

We continue the process to the next level up in the Normal Lattice.

Now,

According to the Normal Lattice diagram, NL[8]’is the next possible isomorphic group 
I

that we can check against. It turned to be true as, stated below.

> H<a,bJcJd#eJf,gJh>:a: Group <a;bJcJd,e,f,g;h|aA2,bA2>cA2<dA2, 
eA21(atb).,(a,c),(a,d)>(a^e)>(b*c):,(b,dh(fa,e)>(c >d)>(c>e)> 
(d,e)-,f A3jgA3,hA3, (f*g) A2, (f*h) A2, (g*h) A2,aAf=d,bAf=b,cA-F=c, 
d^f=eJeAf=a,aAg=a;bAg‘=d,cAg=c,dAg=eJe^g=bJaAh=a7bAh=b, 
cAh=d_,dAh=eJeAh-c >;

> f4,H5,k5:= CosetAction(H>sub<H]Id(H)>);
> r: =IsIson’1orphic(H5JNL[8]);
> r;
true

Figure 6.8: MAGMA code to check for isomorphism against 7VL[8]

Finally, we check if G is isomorphic with N£[9], MAGMA answer’s:
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> H<a,b,c,d,eJf,gJh,i>:“ Group <aJbJc,dJeJ-FJgJh>i[aA2JbA2,cA2,dA2J

fA3>gA3JhA3/(f*g) A2,(f*h) A2f(g*h) A2,aAf=djbAf=bicAf=cJdAf=eJ 
eAf=aJaAg=sa,bAg=dJcAg=c,dAg-e,eAg=b,aAh=a,bAh=bJcAh=d/dAh=ieJ 
eAh=cJiA2>‘3Ai'15bjaAb=a?cAi=c,dAi=d,eAi=e,fAi=gJ,gAi=fjhAl=h >;

> f6,H6,k6:= CosetActioh(H,sub<H|ld(H)>);
> r:=IsIsomorphic(H6,ML[9]);
> r;

true

Figure 6.9: MAGMA code to check for isomorphism against jVL[9]

Therefore, From figure 6.8 we conclude that G is isomorphic to 2* 5 : S$.

The complete MAGMA code is as below:
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fi;=Sym(S);
xx:=N!(1,2,3,4,5);
yy:=N!(l,5);
N:«sub<N|xx,yy>;
G<xJyJt>:“ Group<x,y,t|xA5, yA2, (x*y) A4, tA2, (xA-l *(x*y) Al)A2, 

(xA-2*(x*y) A2)A3, (xA-3 *(x*y) A3)A4, (xA-4 *(x*y) A4)A5,
(xA-2 *y  *x A2*y) A2, (t,xA2*y*x A-l), (t,yAx)/(tJy); 
(tA(x*y)*t A((x*y) A2))A2>;
Index(G,sub<G|x,y>);

f,Gl,k:=CosetAction(G,sub<G|x,y>);
IN:=sub<Gl|f(x),f(y)>;
ts:=[Id(Gl) : i in [1..5]];
ts[4]:=f(t); ts[5]:=f(tAx); ts[l]:=f(tA(xA2)); ts[2]:=f(tA(xA3)); 
ts[3]:=f(tA(xA4));

prodim := -function(pt, Q, I)
v pt;
for i in I do
v := vA(Q[i]);
end for; ,
return v;
end function;
cst := [null : i in [1 .. 32]] where null is [IntegersQ | ]; 
for i := 1 to 5 do 
cst[prodim(l, ts, [i])] := [i];
end for;
m:=0; for i in [l..#cst] do if cst[i] ne [.] then m:=m+l; end if; 
end for; m;

H42:-Stabiliser(N,[4,2]); N42s:-N42;
for g in N do if 4Ag eq 2 and 2Ag eq 4 then N42s:s=sub<tl|N42sJg>; 
end if; end for;
T:=Transversal (N,N42s);
for i := 1 to #T do
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ss := [4,2]AT[i];
cst['prodim(l, ts, ss)] := ss;
end for;
m:=0; for i in [l..#cst] do if cstfi] ne f] then m:=nw-l; end if; 
end for; m;

FJ423: -Stabiliser(N, [4,2,3] ); N423s: =N423;
for g in M do if 4Ag eq 3 and 3Ag eq 2 and 2Ag eq 4 then
N423s:=sub<N|N423s,g>; end if; end for;
T:“Transversal (MJFJ423s);
for i := 1 to #T do
ss [4,2,3]AT[i];
cst[prodim(l, ts, ss)] := ss;
end for;
m:=0; for i in [l..#cst] do if cstfi] ne [] then m:=m+l;
end if; end for; m;
N4235:-Stabiliser(N,[4,2,3,5]); N4235s:-N4235;
for g in N do if 4Ag eq 4 and 5Ag eq 2 and 3Ag eq 3
and 2Ag eq 5 then
N4235s:=sub<N|N4235s,g>; end if; end for;
T:=Transversal (hl,M4235s); i
for i := 1 to #T do
ss - [4,2,3,5]ATfi];
cst[prodim(l, ts> ss)] := ss;
end for;
m:=0; for i in [l..#cst] do if cstfi] ne [] then m:=m+l;

end if; end for; m;
N42351:-Stabiliser(N,[4,2, 3,5,1]); M42351S:-N42351;
for g in N do if 3Ag eq 4 and 5Ag eq 5 and 2Ag eq 1 and lAg eq 3 
and 4Ag eq 2 then N42351s:=sub<M|M42351s,g>; end if; end for; 
]T: “Transversal (^,11423515);
for i 1 to #T do
ss [4,2,3,5,l]AT[i];
cst[prodim(l, ts, ss)] := ss;
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end for;
for i in (1. .#cst] do if cst[i] ne [J then m:=nH-l;

end if; end for; a;

f1,G1,kl:=CosetAction(G,sub<G| x ,y>);
CompositionFactors(Gl);
CompositionFactors(Gl);
,NL:“NormalLattice(Gl);
;NL;

H<a»b,c.d,e>:= Group <a,b,c,d,e|aA2,bA2,cA2>dA2,eA2.(a,b),(a,c). 
(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e),(d,e)>;
f4,H4,k4:= CosetAction(H,sub<H|Id(H)>);
r:“IsIsomorphic(H4yNL[4]);
r;

H<a>b,c,d,eJf,g,h>:“ Group <a,bJc,dJe,f,gJh|aA2,bA2>cA2,dA2,eA2> 
(aJb),(a,c),(a,d),(a,e),(b>c),(b,d),(bJe)J(c,d)J(c,e),(d,e)/fA3, 
gA3,hA3J(f*g) A2/(f*h) A2,(g*h) A2JaAf“d,bAf“b,cAf-c,d^f“e,eAf=aJ 
aAg=a/bAg=d,cAg“cJdAg=eJeAg=bJaAh=aJbAh=bJcAh=d,dAh=e,eAh=c >; 
f4,H5,k5:= CosetActicn(H,sub<H|Id(H)>);
r:-IsIsomorphic(H5,NL[8]);
r; r
H<a,bjC,d,e,f,g,h,i>:= Group <a>bjc,d,e>f,g,h,i|aA2,bA2>cA2,dA2, 
eA2,(aAb)J(azG)Xa>d)^(a,e)7(b^)J(bJci)>(^e),(c>d)J(cJe),(die), 
fA3,gA3,hA3,(f*g) A2,(f*h) A2,(g*h) A2,aAf=dJbAf=b,cAf-c,dAf-e,eAf=aJ 
aAg=a,bAg=d,cAg=c,dAg=e,eAg=bJaAh=a,bAh=b,cAh=d,dAh=e,eAh=c,iA2, 
aAi=b, aAb=a, cAirC,dAi=d,eAi=e,fAi=g>gAi=f, hAi=h >;
f6,H6,k6:- CosetAction(H,sub<H|Id(H)>);
r:“Isisomorphic(H6,NL[9]); '
rj

i
i

I
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Chapter 7

Wreath Product of Permutation
I

Groups

7.1 Definition

Definition 32. Let H and K be permutation groups acting on sets X and Y respectively 

. We shall describe a very important way of constructing a new permutation group called 

the wreath product of H and K. This is to act on^the set product Z = X xY.

There are two types of the wreath product:

1. The unrestricted wreath product of X and Y, given by X Wr Y or in symbol XIY.

2. The restricted wreath product of X and Y. Given by X wr Y.

Define H < Sx and K < Sy.

Let, i

Z = X x Y, such that X n Y = (f.

Define permutation group on Z, and let 7 € H, y G Y and k G K.

now let,
(x,y) H- (xy,y)

y(y) G Sz Since (7(y))_1 =

Then,

7(2/) = <

1-1 H = e H} = H(y).
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7 <—> 7(y)

<H(y)\yEY>=DTyeYH(y) '

Note : 7(3/) and 7(2/1), do not move the same element of Z. (y 1)

HM n < H(y)\y ^^y^yi> = 1 and

H(yi)<<H(y}\y e>.

Define,

k E K, define &*(x,y)  1—> (x,yk).

Since

(fc*)" 1 = (fc-1)*,  fc*  e Sz. (

So given,

^:K^Sz

=> K = {k*\k  E K} = k* .

Therefore, the functions 7 1—> 7(2/) (y is a fixed 1 element of Y with image iffy)), and 

k 1—> fc*  with image K*  are monomorphism from H and K to Sym Z. This is written 

HlK H(y) j k y E Y , this is called the ^3ase,^L

B = DryeYH(y) : %*•  Note:(fc*)~ 1H(y)Z;*  maps:

1. (agyfc) 1—> (x^yk).

2. (x,yi) 1—>(x,yi), yi^yk.

Hence, by definition

(fc*) _17(y)fc*  = 7(yx) and (fc*) _1H(y)fc*  = H(yk).

For more details see reference [Rob96].
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7.2 Presentation of 2* 9 : Z3 ? S3

For better understanding the wreath products, we will consider the following 

example. We will obtain a presentation for 2* 9 : S3 J S3.

Permutation Wreath Products

2* 9:Z31S3.

/
33 31.

i

33 • 3! = 27 • 6.

X = {1,2,3}, 

y = {4,5,6},

Z3 = {e, (123)},

S3 =< (123) >.

7 = (123).

Z = X X Y = {(1,4), (1,5), (1,6), (2,4), (2,5), (2,6), (3,4), (3,5), (3,6)}.

Label the elements of Z by order 1 — 9 as follow:

Table 7.1: Labeling Z elements set
(1) (1,4)
(2) (1,5)
(3) (1,6)
(4) (2,4)
(5) (2,5)
(6) (2,6)
(7) (3,4)
(8) (3,5)
(9) (3,6)

To find 7(4), 7(5), 7(6), where 4, 5 and 6 are elements of Y. We compute them using the 

above defined relation, which is :



Table 7.2: Substituting for y = 4 and labeling permutations
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1- (14) (2,4) . 4
2. (1,5) (1,5) . 2
3. (1,6) (1,6) . 3
4. (2,4) (3,4).. 7
5. (2,5) (2,5) . 5
6. (2,6) (2,6) . 6
7. (3,4) (1,4) • 1
8. (3,5) (3,5) . 8
9. (3,6) (3,6) . 9

So from the above table,

(1.4) -> (2,4), and

(2.4) —>(3,4), and

(3.4) ->(1,4).

=> H (4) = (147).

Now, computing y = 5

Table 7.3: Substituting for y = 5 and labeling permutations
1- (1,4) (1,4) ■ 1
2. (1,5) (2,5) . 5
3. (1,6) (1,6)'. 3
4. (2,4) (2,4)1. 4
5. (2,5) (3,5) 8
6. (2,6) (2,6)'. 6
7. (3,4) (3,4) . 1
8. (3,5) (1,5):- 2
9. (3,6) (3,6) . 9

Therefore,

(1.5) ->(2,5), and

(2.5) -> (3,5), and

(3.5) —>(1,5).

=> 77(5) = (2 5 8). (from the above table).,

Also, (from table 7.4) we have

(1.6) -> (2,6), (2,6) -> (3,6), and (3,6) -> (1,6).

=> H(6) = (3 6 9)



Table 7.4: Substituting for y = 6 and labeling permutations
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!■ (14) (1,4) • 1
2. (1,5) (1,5) . 2
3. (1,6) (2,6)'. 6
4. (2,4) (2,4)'. 4
5. (2,5) (2,5)'. 5
6. (2,6) (3,6) . 9
7. (3,4) (3,4) . 7
8. (3,5) (3,5) . 8
9. (3,6) (1,6) . 3

Now, we compute the Base, B;

1. We computed

(4) x H(5) x H(6) =< (1 4 6) x (2 5 8) x (3 6 9) >.
i

2. We need to compute 1

fc*  and fcp
I

Now, given k = (4 5 6),

and the formula for k*  is : (x, y) i—> (e, yk)
I

the corresponding table will be:

Table 7.5: k* permutations
1- (1,4) (1,5) -2
2. (1,5) (1,6) .3
3. (1,6) (1,4) -1
4. (2,4) (2,5) .5
5. (2,5) (2,6) .6
6. (2,6) (2,4) .4
7. (3,4) (3,5) .8
8. (3,5) (3,6) .9
9. (3,6) (3,4) .7

the permutation will be: fc*  — (1 2 3)(4 5 6)(7 8 9).

Similarly, for fci := (4,5)

fc*  = (1 2)(4 5)(7 8).(from table 6)

Therefore, the generators of the group, N, have been established :



88

Table 7.6: fci permutations
1- (1,4) (1,5) ■ 2
2. (1,5) (1,4) ■ 1
3. (1,6) (1,6) • 3
4. (2,4) (2,5) . 5
5- (2,5) (2,4) . 4
6. (2,6) (2,6) . 6
7. (3,4) (3,5) . 8
8. (3,5) (3,4) . 7
9. (3,6) (3,6) . 9

N =< (147)(258)(369), (123)(456)(78), (12)(45)(78) >.

Hence, using program computer, Magma, to find the size of the group N, 

the result is 162.

Now, we are given 2* 6 : Z3 ? S3

Which is Wreath Product (cyclic group(3),sym(3)).

We need to find a presentation for Z3 ? S3. '

The general presentation for the above group is: '

N =< z,t,u, x, y\z3, t3, u3, (z, t), (z, u), (t, u), x3, y2, (x, y)2,

ZX = ,tX = ,ux = , zy — ,ty = ,uy = >.

Determining zx,tx,ux, zy. ty, uy ,

We have: i

z ~ (1,4,7), t~(2,5,8), u~(3,6,9), '

X ~ (1,2,3)(4,5,6)(7,8,9) , and y ~ (1,2)(4,5)(7,8).
Now, 1

zx = (2,5,8) = i, tx = (3,6,9) = u, ux = (1,4,7) = z, 

zy = (2,5,8) =t, ty = (1,4,7) = z, uy = (3,6,9) = u.

Therefore, a presentation for Z3 ? S3 would be:

N =< z, t, u, x, y[z3, i3, u3, (z, t), (z, u), (t, u), x3, y2, (x, y)2,

zx = t,tx = u, ux = z, zy = t, ty = z, uy = u >.

We use Magma to check if the above results are corrects. We define Sym(Q) to be symmet

ric group with 9 letters and N, the obtained above group of order 162, Magma indicates 

that W, Z3 ? S3, is isomorphic to N. (See next pages )
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> S:= Sy<9);
> N:=sub<SlSI(1,4,7),51(2,5,8),51 (3,6,9),

5!.(1,2,3)(4,5,6)(7,8,9), 
SI(1,2)(4,5)(7,8)>;

> W.“ VlreathProduct(CyclicGroup(3),Sym(3));
> r:=IsIsomorphic(N,W);
> r;
true
>
> G<z,t,u,x,y>:=Group<z,t,u,x,y|zA3,tA3,uA3,(z,t), 

(z,u),(t,u),xA3,yA2,(x*y) A2, zAx=tr tAx=u, uAx=z, 
zAy=t, tAy-z,, uAy= u>;,

> f ,Gl,k:-CosetAction(G,sub<G|Id(G)>);
> s:=IsIsoraorphic(Gl,N);
> s:=IsIsomorphic(Gl,N);

> *;
> zz:=S!(1,4,7);
> tt:“SI(2,5,8);
> uu:=S!(3,6,9);
> xx:-SI(1,2,3)(4,5,6)(7,8,9);
> yy:-SJ(l,2)(4,5)(7,8);
> N:-sub<S|zz,tt,uu,xx,yy>;
> NN<aJb,c,d,e>:-Group<a,b,c,d,e|aA3,bA3,cA3,(a,b),
(a,c),(b,c),dA3,eA2,(d*e) A2, aAd=b, b^d=c, cAd=a, 
aAe=b, bAe=a, cAe= c>;

> #G;
162 '

> Sch:«SchreierSystera(NN,sub<NN[Id(NN)>);
> ArrayP:=[Id(N): 1 in [1..162]];
> for i in [2..162] do
for> P:=(Id(N): 1 in [1..#Sch[i]]]; 1
for> for j in [l..#Sch[i]] do
for|for> if Eltseq(Sch[i])[j] eq 1 then P[j]:=zz; end if;
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for]for> if Eltseq(Sch[i])[j] eq -1 then P[j]:=zzA-l; end if; 
for[for> if Elt5eq(Sch[i])[j] eq 2 then P[j]:“tt; end if; 
for[for> if Eltseq(Sch[i])[j] eq -2 then P[j]:»tt*-1;  end if;| 
fdr|for> if Elt5eq(Sch[i])[j] eq 3 then P[j]:=uu; end if; 
for[for> if Eltseq(Sch[i])[j] eq -3 then P[j]:=uuA-l; end if; 
for,|for> if Eltseq(Sch[l])[j] eq 4 then R[j]:=xx; end if; 
for|for> if Eltseq(Sch[i])[j] eq -4 then P[j]:=xxA-l; end if; 
for|for> if Eltseq(Sch[i])[j] eq 5 then P[j]:^yy;end if; 
for|for> end for;
for>
> Sch;

Id(NN), a, b, c, d, e, aA-l, bA-l, c*-l,  dA-l, a * b,
a * Cj a * dj a * e^ a * b71-!, a * cA-l, a * dA-lj, b * Cj
b * d, b * e, b * aA-l, b * cA-l, b * dA-l, c * d, c * e,
c * aA-l, c * bA-l? c * dA-l^ J ♦ e, d • aA-l, d * bA-l,
d * ca-17 e * d,. e * aA-l> e * bA-l, e * cA-l, aA-l * bA-l,
aA-l » cA-l, aA-l * dA-lJ bA~l * cA-l; bA-l * dA-l, cA-l * dA-l/ 
a * b * c, a * b * d, a * b * e, a*b*  cA-lj a * b * dA-l? 
a*c*d Ja*c*e,a*c*  bA-l, a * c * dA-l, a * d « e, 
a * d * aA-l, a * d • cA-l, a*e*d,  a»e*  aA-l, a * e * cA-l,
a * bA-l * cA-l, a * bA-l * dA-l, a * cA-l * dA-l, b * c * d,
b * c * e, b ’ c * aA-lJ b * c * dA-l,>b*d*e Jb*d*  aA-l, 
b * d * bA-l, b*e*d,b*e*  bA-l,b * e * cA-l, b * aA-l * cA-l,
b * aA-l * dA-l, b * cA-l * dA-l, c * d * e, c * d « bA-l,
c ’* d * c^-l, c*e*d :Jc*e*  aA-l/c * e * bA-l, c * aA-l * bA-l,
c * aA-l ♦ dA-l, c * bA-l * dA-lj d * e * aA-l, d * e * bA-l, 
d * e » cA-lJ d * aA-l * bA-l, d * aA-l * cA-l^ d * bA-l * cA-l, 
e * d * aA-l, e * d * bA-l, e * d * cA-l, e * aA-l*  bA-lj
e * aA-l * cA-l, e * bA-l * cA-l, aA-l * bA-l * cA.l, aA-l • bA-l * 
dA-l, aA-l * cA-l * dA-l, bA-l * cA-l * dA-l, a * b * c » d, 
a • b * c « e, a * b * c * dA-l, a * b * d * e, a * b * d * aA-l,
a * b * e * d, a*b*e*  cA-l, a * b * cA-l * dA-l, a • c * d * e,
a * c * d * cA-l, a • c • e ’* d, a * c * e * aA-l,
a » c * bA-l * dA-l, a * d * e ♦ bA-i,'a * d * e■ * cA-ij
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a * d * aA-l * cA-l,. a * e * d * aA-l, a * e » d * bA-l, 
a * e * aA-l * cA-l, ,a- * bA-l * cA-l * dA-i, b * .c * d * e, 
b * c * d * bA-lj b*c*e*d,b*c*e*  bA-l, 
b * c * aA-l * dA-l, b *-d  * e aA-l/b » d * e * 6at1, 
b * d * aA-l * bA-l, b * e * d * aA-l, b~*  e * d * cA-l,
b * e * bA-l * cA-l, b * aA-l * cA-l * dA-l, c * d * e * aA-l,
c ♦ d ♦ e. ♦ cA-l, c ♦ d * bA-l * cA-l, c * e * d * bA-l,

■c ♦ e * d *c A-l, c * e * aA-l * bA-l, c • aA-l * bA-l * dA-l,
d * e * aA-l * bA-l, d * e * aA-l * cA-l, d * e * bA-l * cA-l, 
d * aA-l *•  bA-l * cA-l, e * d * aA-l * bA-l, e * d * aA-l * cA-l, 
e * d * bA-l * cA-l,. e « aA-l * bA-l * cA-l, aA-l * bA-l * cArl
* dA-l, a * b * c '* ;d ♦ e, a * b * c * e * d, a * b * d * e * bA-l, 
a * b *e * d * aA-l, a»c*d»e* cA-l, a*c*e*,d» bA-l, 
a * d * e * bA-l * cA-l, a ♦ e » d * ,aA-l * bA-l, b * c * d *
e * aA-l, b * c * e * d * cA-l, b * d» e * aA-l * bA-l, b * e *
d *'  aA-l * cA-l, c * d * e * aA-l * cA-l, c * e * d '*■  bA-l *'  cA-l,
d -*  e * aA-l * bA-l * cA-l, e * d * aA-l * bA-l * cA-l ©}
> Ml:=Stabiliser(N,l);
> Ml;
Permutation group Ml acting on a set of cardinality 9
Order = 18 = 2 * 3A2

5, 8)
(3, 6j 9)
(2, 3, 8, 9, 5, 6) ,

> -for i in [1..162] do if ArrayPfi] eq 81(2,9,8,6,5,3) 
then print Sch[iJ; end if; end for; 1

> for i in [1..162] do if ArrayPfi] eq 8!(2,5,8) 
then print Sch[i]; end if; end for;,

> for i in- [1..162] do if ArrayP[i] eq il!(3,6,9) 
then print Sch[iJ; end if; end for;,

> G<a,b,c,d,e,t>:=Group<a,b,c,d,e,t}aA3,br3,cA3,(a,b),L(a,c), 
(b,c),dA3,eA2i(d*e) A2, aAd=b, bAd=c, cAd=a? aAe^b>bAe=aJ 
cAe= c,tA2,(t,d * e » cA-l),(t,b),(t,c)>
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Chapter 8

Construction of Sq x

In this chapter, we will find and construct finite homomorphic images of Sq x S5, 

Given, i
I

G < x,y,t >=

Group{x,y,t\x3,y2, (zy)4, (ar^zy)1)2, (ic-2(rry)2)3, (ar3(zy)3)4, (ar4(ay)4)5, 
(x~2yx2y)2,t2, (t,x2yx~1'), (t)yx')i (t, y), (x^yt)3, (y^y)®*̂ 2)3, (tC^ft^y)2)3);

Note: this group is one of the groups that was discovered in chapter 5. The control 

subgroup is N, is S5 which is the symmetric group of degree 5 on five lettersl, 2, 3, 4, 

and 5. N can be generated by x and y, where x ~ (1,2,3,4,5) and y ~ (1,5). Thus 

1V= (x,y).

8.1 Relations

We have (i^y)*̂) 2)3 = e,

where,

t ~ *4,

x ~ (1,2,3,4,5), 

y ~ (i> 5) 
xy = (1,2,3,4,5)(1,5) = (1,2,3,4), 
(rcj,)2 = (1,2,3,4)2 = (1,3)(2,4).

The relation will be
t(l,2,3,4)f(l^)(2,4)^ =
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=> (ti£2)3 = e.

=£> tit2tit2tit2 = e,

=>• £i£2£i = t2tit2.

8.2 Double Coset Enumeration of G over S5

8.2.1 Double Coset [*]

IVelV, since IV is transitive on {1,2,3,4,5} we take a representative coset IV from 

[*]  and a representative from {1,2,3,4,5} and determine the double coset Nt^ belongs.

8.2.2 Double Coset [4]
IV£4IV, point of stabiliser of 4 in IV is the permutations in IV that fixes 4,

Thus, I.
IV<4> >< (1,2,3,5), (1, 5) >=S4.

=> |1V<4)| = 4!.

=> number of cosets are in [4] is = 5.

which are:

Nt^N = [4] = {Nt±, Nt2, Nt^Nt^Nts}. Therefore, the double coset [4] will have 5 

single cosets.
Now, Ad4> >< (1,2,3), (1,5) >.

The orbits of 1V^ on N are {4} and {1,2,3,5}. We take a representative from each orbit 

and multiply it by Nt^

• 1V£4 • £4 = Ntl = N € [*].

Therefore, £4 will collapse Cayley’s graph.

• IVt4 • £2 G [42].

Since this orbit is of order of 4, then four t^s will extend Cayley’s.

The process will continue to determine all the double cosets [w], and hence all the set of 

right cosets is closed under right multiplication by the 5 tiS. Next graph will show all 

the determined double cosets for this constructed group.
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[42315]

Figure 8.1: Cayley’s graph for S3 x S3
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Chapter 9

Construction of Finite
Homomorphic Images of 3* 5 :

9.1 Introduction

In this chapter, we will search for the homomorphic images of 3* 5 : C$. In order 

to find some of the subgroups we run the following codes with parameters a, b, c, and d 

as below:

Given ■

for a,b,c,d in [0..10] do

G < x,t >:= Group < x. t|o:5, t3, (xt)at, (xttx)a, (txt)d >;;

The above range of parameters have generated some new groups that can be constructed. 

See table below:

We choose the parameters (0,2,0,5) with group order of 660 to be our group that will 
I

perform a double coset enumeration on it. Hence, the symmetric presentation of the 

progenitor is given by:

G < x,t >:= Group < x,t|x5,t3, (xttx)2, (txt)5 >;

Where C5 =< x > and x ~ (1,2,3,4,5).
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Table 9.1: Some finite subgroups of 3*5 : C$

a b c d Order of G Group Name
0 0 0 2 60 A5
0 0 10 0 15 Z15
0 0 2 4 360 ^6
0 2 0 5 660 L(2,11)
0 2 0 7 161280 FTSr
0 2 0 8 14880 £2(31)
0 2 3 7 2520 Ar
3 3 9 5 233280
3 5 0 5 62400 CZ(3,4)
3 6 3 0 92160
3 9 3 0 699840
5 3 4 4 737280 2I0TS^
5 6 2 8 184320 ^Ts6
8 3 2 0 5760 '
8 6 2 5 184320 1 &Tss

9.2 Relation

We have: 1
i 

t ~ *5.

Relation 1 : (xttx)2 = e. 1

Relation 2 :(ta?*) 5 ~ e.

Relation One, (xttx)2 :

(xttx)2 ~ (xt^t^)2. 
(W5)2 = (x*5412345))2. ,

(rrtgt^12345^)2 = (xtsti)2 = 37*5*137*5*1  = x2 x^tstixtsti.

(Mi)*
= x2(t5ti)xteti.

I
= a?2*it2*5*i.

Hence, the final relation is:
a72*i*2  = *1*5-

Relation Two, (t*  x*t) 5 = e.

(txt) (txt) (txt) (txt) (txt) — e.

txt2xt2xt2xt2xt = 2. 

to5a;~4*2a7437-3*2373a7-2*237-1*237*  = e.
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txr'x 4t2x4p 3t2_x3jc W^W/= e.
f2^-4 i21-3 t2x~2 t2*-1

tx5 ^~4t2x4j^c~3t2x3j^~2tix2jix~lt2x4jt — e.
£2® 2 ^2l3 t2^4

1 9 q 4
4 +2X i2x i2x 42* 4 _£5^5 G t5 £5 £5 — e
We know that

x ~ (12345).

x2 ~ (13524).

x3 ~ (14253).

x4 ~ (54321).

x5 - Id.

Thus,

= e
Therefore, the final relation is:

= e.
hence,

£o£i£2 = ^^4^3-

1

9.3 Double Coset Enumeration
I

9.3.1 Double Coset [*]  <

The first double coset [★]. IV is transitive on {1,2,3,4,5, T, 2,3,4,5}.

We take a representative coset N from [*]  and a representative from {1,2,3,4,5,1,2,3,4,5}, 

like 5 and determine the double coset to which Nts belongs.

AR5N = [5] = {Nt$\n 6 IV} = {lVtx,IV£2,1V£3,IV£4,1V£5}.

Nt^N = [5] = {NtT\n € IV} = {IVtl,Nh,Nti,Nt^,Nt^}.

9.3.2 Double Coset [5]

Therefore, stabilising 5, IV5, then IV5 = e,

Orbits IV5 are {1}, {2}, {3}, {4}, {5}, {!}, {2}, {3}, {4}, {5}.

From above, the double coset [5] will have 5 single cosets, we take a representative from

each orbit, and multiply it by Nt3,
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1. Ni5.iiG[51].

Extends Cayley’s graph.

2. Nts-t2 G [52].

Extends Cayley’s graph.

3. Nt5-t3 G [53].

Extends Cayley’s graph.

4. Nts • *4  G [54].

Extends Cayley’s graph.

5. Nig ■ = Nt5 G [5].

[55] will go back to [5]

6. Nt3 ■ tj G [51]. Extends Cayley’s graph.

7. Ntg • t2 G [52]. Extends Cayley’s graph.

8. Nig ■ h G [53] G [51].
Because tgti = (54321)(5432l)(tgtT)(51234)t51234).

Thus, tgtj = (54321) (54321)tit2 = x4^. ,

=> [53] = [12]. Collapse Cayley’s graph i

9. Nig-ilG [52].

Now, t-J? =

where g = (51234)(51234) = x and h = Id.

=> [52] = [54] . Collapse Cayley’s graph.

10. Nig • tg = Ne G [*].
[55] will go back to [*].

9.3.3 Double Coset [5]

Stabilising 5, N5, then N° = e,

Orbits are {1}, {2}, {3}, {4}, {5}, {I}, {2}, {3}, {3}, {5}.

From above, the double coset [5] will have 5 single cosets, we take a representative from

each orbit, and multiply it by Nt$,
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1. Wt5ti G [51].

Extends Cayley’s graph.

2. Nt$t2 G [52].

Extends Cayley’s graph.

3. IVt5t3 G [53] G [51].

Now t^ti = (51234) (51234) (tit3)/d.

=> [51] = [53].

Collapse Cayley’s graph

4. Nt^t4 G [52].

Since, Ntrf2 = g(Nt&4.)h where g = (51234)(51234) and h = (54321)(54321) 

^[102] =5[43]

5. Nt$t$ G [*].  j

6. Nt$ti G [51].

Extends Cayley’s graph. i
i

7. NtfK2 G [53]

[53] = ff[52]h, where g = (53142)(53142) = and h = (52413)(52413). 

=> [53] = a:3[23].
___  I

8. Nt$t$ G [33]

Extends Cayley’s graph. '

9. G [51]

[51] = <?[54]^ where g — x3 and h = e.

=> [51] =z3[54].

10. Nt& G [5]

9.3.4 Double Coset [51]

Stabilising 5 and 1, TV51, then IV51 = e,

Orbits TV51 are {1}, {2}, {3}, {4}, {5}, {1}, {2}, {3}, {4}, {5}.

the double coset [51] will have 5 single cosets, we take a representative from each orbit,

and multiply it by Nt3ti,
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1. N*s*l*i  = N*s*y  g [51].

2. N*5* i*2  G [54] .
Because [5,4] = y[512]h where g = e , h = x.

=*  [5,4] = [123].

3. N* 5*i*3  g [513].

Extends Cayley’s graph.

4. N*5* i*4 g [5].
Since,[5] = y[514]h where g = x2 and h = e.

=> [5] = a:2 [514].

5. N*5* i*5  g [515].

Extends Cayley’s graph. ,
I

6. = N*s  G [5],

7. N*s*i*2 G [123]. I

Since, [513] = y[512]^ where g = x3 and h x

=> [513] = x3[123].

8. N*s*i*3 G [51]. I
Since, [51] = y[513], where x = x2, and h = a;4. 

=> [51] = x2 [452].

9. N* 5ti*7  G [52].
Since, [52] = a;3[514]®4

[52] = x3 [453].

10. N*s*i*̂  G [515].

Extends Cayley’s graph.

Due to limited time, I was unable to finish this chapter. However, I have attached 

all my computer-based proof, in which all double cosets were determined. (Please see 

Appendix C and below the corresponding Cayley’s graph.)
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/—0£

Figure 9.1: Cayley’s graph for G over L2(ll)
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Chapter 10
I

Finite Homomorphic Images of
Some Progenitors

In this chapter, we will search for the homomorphic images of some progenitors. 
I

10.1 The Homomorphic Images'of Progenitor 2* 6 : Ac

The following parameters are chosen: for a in [0..50] do for b in [0..20] do for c

in [0..20] do for d in [0..20] do for e in [0..10] do for f in [0..10] do

G < x,y,t >= Group < x, y, £|a?4, y3, (xy)5, {y^x^yx)2, t2, (t, y),
(t, (xU2)-1 (xyt)a, (Cry)_1t)\ (xt^2)c, {xyt)d, fa^xt^2)6, >;

A := ToddCoxeter(G, sub < G|®, y >: GosetLimit := 10000000);

if A ge 4 then a, b. c, d, e, f, A; end if;

The table below shows some of the discovered groups.

Table 10.1: Some finite subgroups of 2*6 : Ag

a b c d e f Order of G Group Name
0 0 0 0 0 2 64 &Tse
0 0 0 0 6 0 14
0 0 0 0 10 3 486 sTTS's
0 0 0 0 10 4 65536 &TS6
0 0 8 0 0 0 128
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10.2 PGL2(13) is an Image of the Progenitor 2* 7 : S3

given by
G < x,y,t>= Group < x, y, t\x2, y2, (xy)2, t7, (t, y), (a?£)7, (y®2*) 4 >;

The order of the group, |G| is equal to 2184, and the composition factor for the group is: 

Composition Factors (Gl);

G

| Cyclic(2)

★

| .4(1,13) = L(2,13)

1

10.3 S4 x 72 is an Image of the Progenitor 2* 7 : S4
I

given by

G < x,y,t >= Group < x, y, 11a;4, y2, (zy)3, t7, (t, y), (tx, y), (xt}4 >;

The order of |G| is equal to 8232.

The composition factors is:

G
[ Cyclic(2)

*

| Cyclic(3)
*

| Cyclic(2)

*

] Cyclic(2)
*

| Cyclic(7)
*

I Cyclic(7)

★

1
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Appendix A: MAGMA Code for

Sq x S5

N:=Sym(5);

xx:=N!(1,2,3,4,5);

yy:=N!(1,5); <

N:=sub<NIxx,yy>;

G<x,y,t>:= Group<x,y,t|x"5, y*2 ,(x*y) "4, (xA-l *(x*y)'T)"2,  

(x*-2*(x*y)' ‘2)“3, (x"-3 *(x*y)~3)"4,  (x"-4 '*(x*y)*4)' -5,
i

(x~-2 *y  *x~2*y)~2,t “2, (t ,x"2*y*x~-l)  , (t,y''x) , (t ,y) ,

(x“(y*t) *3, (f(x*y)*x*t" ((x*y) “2)))~3,(t~(x*y)*t “((x*y)~2) )“3>;
i

Index(G,sub<G|x,y>); (

#DoubleCosets(G,sub<GIx,y>,sub<G|x,y>);

f,G1,k:=CosetAction(G,sub<G|x,y>);

IN:=sub<GlIf(x),f(y)>;

ts: = [Id(Gl) : i in El. .522;

ts[4] :=f (t);

ts [5] :=f (t“x) ; 1

ts[l] :=f (t‘(x"2));

ts[2]:=f(t*(x"3) );

ts[3] :=f (t'"(x“4));

N4:-Stabiliser(N,[4]); N4s:=N4;

S:={[4]};

SS:=S~N;

#SS;



105

SSS:=Setseq(SS);

for i in [l..#SS] do

for g in IN do if ts[4] eq g*ts  [Rep(SSS [i] ) [1]]

then print SSS[i]; end if; end for; end for;

N4:=Stabiliser(N,[4]);

#N4; N4;

N4s:=N4;

N4s; #N4s;Orbits (N4s);

[4]"N4s;

T:=Transversal (N,N4s);

#T,T;

for i in [l..#T] do ( [4] ~N4s) *T[i]  ; end for;I
for i := 1 to #T do i

ss := [4]"T[i]; '
1

end for;

prodim := function(pt, Q, I) 1
1

V := pt; ,

for i in. I do '
i

v := v" (Q[i] ) ; f

end for; ,

return v;
I

end function; ,

cst := [null : i in [1 .. 720]] where null is [IntegersO | ];

for i 1 to 5 do

cst[prodim(l, ts, [i])] := [i] ; 1

end for;

m:=0; for i in [l..#cst] do if cst[i] ne [] then m:=m+l; end if; 

end for; m;

N42:=Stabiliser(N,[4,2]); N42s:=N42;

S:={[4,2]};

SS:=S~N;

#SS;
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SSS:=Setseq(SS);

for i in [l..#SS] do

for g in IN do if ts[4]*ts[2]  eq g*ts  [RepCSSS [i] ) [1] ] *ts  [Rep(SSS [i] ) [2] ] 

then print SSS[i]; end if; end for; end for;

for g in IN do for k in IN do if ts[4]*ts[2]  eq g*(  ts[4])“k then g,k; 

break; end if; end for;end for;

#N42; N42;

N42s:=N42;

N42s; #N42s;Orbits (N42s); I
[4,2] "N42s;

T:=Transversal (N,N42s);

#T,T;

for i in [l..#T] do ( [4,2] *N42s)  *T[i]  ; end f or;
for i := 1 to #T do J

ss := [4,2] ~T[i] ;
I

cst[prodim(l, ts, ss)] := ss;

end for; I

m:=0; for i in [l..#cst] do if cst[i] ne [] then m:=m+l; end if; end for;

m; (

N423:=Stabiliser(N, [4,2,3]); N423s:=N423;I

S:={[4,2,3]};
I

SS:=S“N; ■

#SS;

SSS:=Setseq(SS);

for i in [l..#SS] do 1

for g in IN do if ts [4] *ts  [2] *ts  [3] eq g*ts  [Rep(SSS [i] ) [1] ]

*ts[Rep(SSS[i] ) [2]] *ts  [Rep(SSS [i] ) [3]]

then print SSS[i]; end if; end for; end for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]  eq

g*(  ts[4])"k then g,k; break; end if; end for;end for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]  eq

g*(  ts[4]*ts[2])~k  then g,k; break; end if; end for;end for;
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#N423; N423;

N423s:=N423;

N423s; #N423s;Orbits (N423s);

[4,2,3]~N42s;

T:=Transversal (N,N423s);

#T,T;

for i in [l..#T] do ([4,2,3]“N423s)“T [i];end for;

for i := 1 to #T do

ss := [4,2,3] ~T[i] ;

cst [prodimd, ts, ss)] := ss;

end for;

m:=0; for i in [l..#cst] do if cst [i] ne [] then m:=m+l; end if;

end for; m; ,

N424:=Stabiliser(N, [4,2,4]); N424s:=N424;

S:={[4,2,4]};

SS:=S"N;

#SS;

SSS:=Setseq(SS); '
for i in [l..#SS] do 1

for g in IN do if ts [4] *ts  [2] *ts  [4] eq

g*ts  [Rep(SSS [i] ) [1] ] *ts  [Rep(SSS [i] ) [2] ] *ts  [Rep(SSS [i] ) [3] ]

then print SSS[i]; end if; end for; end for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[4]  eq g*(  ts [4]) ~k

then g,k; break; end if; end forjend for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[4]  eq g*(  ts [4] *ts  [2]) "k 

then g,k; break; end if; end for;end for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[4]

eq g*(  ts [4]*ts  [2] *ts  [3] )~k

then g,k; break; end if; end forjend for;

#N424; N424;

N424s:=N424;

N424s; #N424s;Orbits (N424s);
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[4,2,4]~N424s;

T:=Transver sal (N,N424s);

#T,T;

for i in [l..#T] do ([4,2,4] -'N424s) -T[i] end for;

for i := 1 to #T do

ss := [4,2,4] ~T[i] ;

cst[prodimCl, ts, ss)] := ss;

end for;

m:=0; for i in [l..#cst] do if cst[i] ne [] then

end if; end for; m;

N4231:"Stabiliser(N,[4,2,3,1]); N4231s:=N4231;

S:={[4,2,3,1]};

SS:=S"N;

#SS; <

SSS:=Setseq(SS);
i

for i in [l..#SS] do ■

for g in IN do if ts [4] *ts  [2] *ts  [3] *ts[l]eq  g*ts  [Rep(SSS [i]) [1] ]

*ts [Rep (SSS [i]) [2] ] *ts  [Rep (SSS [i]) [3] ] *ts  [Rep (SSS [i]) [4] ]

then print SSS[i]; end if; end for; end for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[l]

eq g*(  ts[4])'‘k then g,k; break; end if; end forjend for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]  *ts[l]

eq g*(  ts[4]*ts [2])~k then g,k; break; end if; end for;end for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts  [1]

eq g*(  ts [4] *ts  [2] *ts  [3]) “k then g,k; break; end if; end for;end for;

#N4231; N4231;

N4231s:«N4231;

N4231s; #N4231s;Orbits (N4231s);

[4,2,3,1]'N4231s;

T:=Transversal (N,N4231s);

#T,T;

for i in [l..#T] do ([4,2,3,1]"N4231s)*T[i] ;end for;
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for i := 1 to #T do

ss := 14,2,3,1] “Tti];

cst[prodim(l, ts, ss)] := ss;

end for;

m:=0; for i in [l..#cst] do if cst [i] ne [] then m:=m+l; end if;

end for; m;

N4234:=Stabiliser(N, [4,2,3,4] ) ; N4234s:=N4234;

S:={[4,2,3,4]};

SS:=S~N;

#SS;

SSS:=Setseq(SS);

for i in [l..#SS] do

for g in IN do if ts [4] *ts  [2] *ts  [3] *ts  [4] eq

g*ts  [Rep (SSS [i] ) [1] ] *ts  [Rep (SSS [i] ) [2] ] *ts  [Rep (SSS [i] ) [3] ]

*ts [Rep (SSS [i] ) [4] ]

then print SSS[i]; end if; end for; end for;

for g in N do if 4~g eq 3 and 2~g eq 4 and 3"g eq 2 and 4“g eq 3 

then N4234s:=sub<NIN4234s,g>; end if; end for;

for g in IN do for k in IN do if ts[4]*ts[2]  +ts[3]*ts[4]

eq g*(  ts[4])“k then g,k; break; end if; end for;end for;
I

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]  *ts[4]

eq g*(  ts[4] *ts [2])~k then g,k; break; end if; end forjend for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[4]

eq g*(  ts[4]*ts [2]*ts [3])*k  then g,k; break; end if; end for;end for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[4]

eq g*(  ts[4]*ts [2]*ts [3]*ts [1])"k then g,k; break; end if;

end for;end for;

#N4234; N4234;

N4234s:=N4234;

N4234s; #N4234s;Drbits (N4234s);

[4,2,3,4]"N4234s;

T:=Transversal (N,N4234s);
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#T,T;

for i in [l..#T] do ([4,2,3,4]*N4234s) “T[i] ;end for;

for i := 1 to #T do

ss := [4,2,3,41 "T[i] ;

cst[prodim(l, ts, ss)] := ss;

end for;

m:=0; for i in [l..#cst] do if cst[i] ne [] then m:=m+l;

end if; end for; m;

N4232:=Stabiliser(N, [4,2,3,2]); N4232s:=N4232;

S:={[4,2,3,2]};

SS:=S“N;

#SS;

SSS:=Setseq(SS);

for i in [l..#SS] do

for g in IN do if ts [4] *ts  [2] *ts  [3] *ts  [2] eq g*ts  [Rep(SSS [i] ) [1] ] 

♦ts [Rep (SSS [i] ) [2] ] ♦ts [Rep (SSS [i] ) [3] ] ♦ts [Rep (SSS [i] ) [4] ] 

then print SSS[i]; end if; end for; end for;

for g in N do if 4"g eq 4 and 2"g eq 3 and S'-g eq 2

and 2~g eq 3

then N4232s:=sub<N|N4232s,g>; end if; end for;

for g in IN do for k in IN do if ts[4]*ts[2]  ♦ts[3]*ts[2]  

eq g*(  ts[4])“k then g,k; break; end if; end for;end for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]  *ts[2]

eq g*(  ts[4]+ts[2])"k then g,k; break; end if; end for;end for; 

for g in IN do for k in IN do if ts[4]*ts[2]  ♦ts[3]+ts[2] 

eq g*(  ts[4]+ts[2]*ts[3]) “k then g,k; break; end if;

end for;end for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[2]  

eq g*(  ts[4]*ts [2]♦ts[4])~k then g,k; break; end if;

end for;end for;

for g in IN do for k in IN do if ts[4]*ts[2]  ♦ts[3]*ts[2]

eq g*(  ts [4] ♦ts [2] *ts  [3] *ts  [1]) "k then g,k; break;
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end if.; end for;end for;

#N4232; N4232;

N4232s:=N4232;

N4232s; #N4232s;Orbits (N4232s);

[4,2,3,21*N4232s ;

T:=Transversal (N,N4232s);

#T,T;

for i in do ([4,2,3,21"N4232s)"T[i];end for;

for i := 1 to #T do

ss := [4,2,3,21~T[i];

cst [prodim(l, ts, ss)l := ss;

end for;

m:=0; for i in [l..#cst] do if cst[i] ne [] then m:=m+l; 

end if; end for; m; 1
!

N42321:=Stabiliser(N,[4,2,3,2,1]) ; N42321S:=N42321;

S :={ [4,2,3,2,1] }■;

SS:=S~N; i
#SS;

SSS:=Setseq(SS);

for i in [l..#SS] do (

for g in IN do if ts [4] *ts  [21 *ts  [3] *ts  [2] *ts  [1] 

eq g*ts[Rep(SSS[i])  [1]]*ts[Rep(SSS[il ) [2] 1

*ts [Rep(SSS [il ) [3] ] *ts  [Rep(SSS [i] ) [411 *ts  [Rep(SSS [il ) [5] ] 

then print SSSfiJ; end if; end for; end for;

for g in IN do for k in IN do if ts[4]*ts[2]

*ts[3]*ts[21  *ts[l]  eq g*(  ts[4])"k

then g,k; break; end if; end for;end for;

for g in IN do for k in IN do if ts[41*ts[2]  *ts[3]*ts[2]  

*ts[l] eq g*(  ts [41 *ts  [21) “k

then g,k; break; end if; end for;end for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[2]  

*ts[l] eq g*(  ts[4]*ts[2]*ts[3])'"k
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then g,k; break; end if; end for;end for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[2]

*ts[l] eq g*(  ts[4]*ts[2]*ts[41) “k

then g,k; break; end if; end for;end for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[2]

*ts[l] eq g*(  ts [4] *ts  [2] *ts  [31 *ts  [4] ) ~k

then g,k; break; end if; end for;end for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[2]

*ts[l] eq g*(  ts[4]*ts[2]*ts[3]*ts[l])"k

then g,k; break; end if; end forjend for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[2]

+ts[l] eq g*(  ts [4] *ts  [2] *ts  [31 *ts  [2] ) *k
I

then g,k; break; end if; end forjend for;

for g in N do if 4~g eq 4 and 3~g eq 2 and
i

2"g eq 3 and 3"g eq 2 and l~g eq 1

then N42321S:=sub<N|N42321s,g>; end if; end for;

#N42321; N42321;

N42321s:=N42321;

N42321s; #N42321s;Orbits (N42321s);

[4,2,3,2,11"N42321s;

T:=Transversal (N,N42321s);

#T,T;

for i in [l..#T] do ( [4,2,3,2,1] "N42321s) 'T[i] ;end for;

for i := 1 to #T do

ss := [4,2,3,2,11 “TEi] ;
cst[prodimfl, ts, ss)] := ss;

end for;

m:=0; for i in [l..#cst] do if cst[i] ne [] then m:=m+l; end if; 

end for; m;

N42341:=Stabiliser(N,[4,2,3,4,11); N42341S:=N42341;

S:={[4,2,3,4,1]};

SS:=S“N;



113

#SS;

SSS:=Setseq(SS);

for i in [l..#SS] do 

for g in IN do if ts [4] *ts  [2] *ts  [3] *ts[41*ts[l]

eq g*ts[Rep(SSS[i])  [1]]

*ts [Rep (SSS [i] ) [2] ] *ts  [Rep (SSS [i] ) [3] ] *ts  [Rep(SSS [i] ) [4] ]

*ts [Rep (SSS [i] ) [5] 1 

then print SSS[i]; end if; end for; end for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[4]  

*ts.[l] eq g*(  ts[4])“k

then g,k; break; end if; end for;end for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[4]

*ts[l] eq g*(  ts [4] *ts  [2] ) "k

then g,k; break; end if; end forjend for;'

for g in IN do for k in IN do if ts[4]*ts|j2]  *ts[3]  *ts  [4]

*ts[l] eq g*(  ts [4] *ts  [2] *ts  [3] )'‘k 

then g,k; break; end if; end for;end for; (

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[4]  

*ts[l] eq g*(  ts [4] *ts  [2] *ts  [4] ) *k

then g,k; break; end if; end forjend for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[4]

*ts[l] eq g*(  ts[4]*ts  [2] *ts[3]  *ts[2]  ) “k

then g,k; break; end if; end forjend for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[4]

*ts[l] eq g*  ( ts[4]*ts  [2] *ts  [3] *ts[l]  )"k 

then g,k; break; end if; end forjend for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[4]

*ts[l] eq g*(  ts [4] *ts  [2] *ts  [3] *ts  [4] ) ~k

then g,k; break; end if; end forjend for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[4]

*ts[l] eq g*(  ts[4]*ts[2]*ts[3]*ts[2]*ts[l])' ‘k

then g,k; break; end if; end forjend for;
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for g in N do if 4~g eq 3 and 2"g eq 4 and 3“g eq 2

and 4~g eq 3 and l"g eq 1

then N42341s:=sub<N|N42341s,g>; end if; end for;

#N42341; N42341;

N42341s:=N42341;

N42341s; #N42341s;Orbits (N42341s);

[4,2,3,4,11“N42341s;

T:=Transversal (N,N42341s);

#T,T;

for i in [l..#T] do ( [4,2,3,4,1]~N42341s)"T[il;end for;

for i := 1 to #T do

ss := [4,2,3,4,1] *T[i]  ;

cst[prodim(l, ts, ss)l := ss;

end for;

m:=0; for i in [l..#cst] do if cst[i] ne [] then m:=m+l; end if; 

end for; m;

N42314:=Stabiliser(N,[4,2,3,1,4]) ; N42314s:=N42314;

S:={[4,2,3,1,4]>;

SS:=S~N;

#SS;

SSS:=Setseq(SS); ,

for i in [l..#SS] do

for g in IN do if ts [41 *ts  [21 *ts  [31 *ts  [1] *ts  [4] eq g*ts  [Rep(SSS [il ) [1]

1 *ts  [Rep (SSS [il) [2] ] *ts  [Rep (SSS [i]) [3] ] *ts  [Rep (SSS [il) [4] ]

*ts [Rep(SSS [il ) [511

then print SSS[i]; end if; end for; end for;

for g in IN do for k in IN do if ts[4]*ts[21  *ts[3]*ts[l]  *ts[5]  

eq g*(  ts[4])~k then g,k;

break; end if; end forjend for;

for g in IN do for k in IN do if ts[41*ts[2]  *ts[3]*ts[l]  *ts[5]  

eq g*(  ts [4]*ts  [21 )~k then g,k;

break; end if; end forjend for;
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for g in IN do for k in IN do if 

eq g*  ( ts [4] *ts  [2] *ts  [3] ) "k then 

break; end if; end for;end for;

for g in IN do for k in IN do if 

eq g*(  ts [4] *ts  [2] *ts  [4] ) “k then 

break; end if; end for;end for;

for g in IN do for k in IN do if 

eq g*(  ts [4] *ts  [2] *ts  [3] ♦ts [2] ) “] 

break; end if; end for;end for;

for g in IN do for k in IN do if 

eq g*(  ts [4] *ts  [2] *ts  [3] *ts  [1] ) “] 

break; end if; end for;end' for;

for g in IN do for k in IN do if 

eq g*(  ts[4]*ts[2]*ts[3]*ts[4]) “: 

break; end if; end for;end for;

for g in IN do for k in IN do if 

eq g*(  ts [4] *ts  [2] *ts  [3] *ts  [2] *t

ts [41 ♦ts [2]f ♦ts [3] ♦ts [11 ♦ts [5]

g»k; i

ts[4] *ts[2] *ts [3] ♦ts [11 ♦ts [5]

g,k;

ts [41 *ts  [21 *ts [31 *ts [1] *ts [5]

: then g,k;

ts [41 *ts  [21 *ts [31 *ts [1] *ts [51

c then g,k;

ts[4] *ts[2] ♦ts [31 ♦ts [11 ♦ts [5]

c then g,lc;

ts[4]*ts[2]  *ts[3]'*ts[l]  *ts[5]  

s [1])"k then g,k;

break; end if; end for;end for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[31*ts[U  *ts  [51 

eq g*(  ts [41 *ts  [2] *ts  [3] *ts  [41 *ts  [11) "k then g,k;

break; end if; end for;end for;

#N42314; N42314;

N42314s:=N42314;

N42314s; #N42314s;Orbits (N42314s);

[4,2,3,1,41~N4214s;

T:=Transversal (N,N42314s);

#T,T;

for i in [l..#T] do ([4,2,3,1,41"N42314s)’~T[iJ;end for;

for i := 1 to #T do 

ss := [4,2,3,1,4]''T[il ;

cst[prodimd, ts, ss)l := ss;

end for;
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m:=0; for i in [l..#cst] do if cst[i] ne [] then m:=m+l; end if; 

end for; m;

N42315:=Stabiliser(N,[4,2,3,1,5]); N42315s:=N42315;

S:={[4,2,3,1,5]};
SS:=S~N;

#SS;

SSS:=Setseq(SS);

for i in [l..#SS] do 

for g in IN do if ts [4] *ts  [2] *ts  [3] *ts[l]*ts[5]

eq g*ts[Rep(SSS[i]  ) [1]] *ts  [Rep(SSS [i] ) [2]]

*ts [Rep (SSS [i] ) [3] ] *ts  [Rep (SSS [i] ) [4] ]

*ts[Rep(SSS[i]) [5]] then print SSS[i]; end if; end for; end for; 

for g in IN do for k in IN do if ts [4] *ts  [2] *ts  [3] *ts  [1] *ts  [5]
i

eq g*(  ts[4])“k then g,k; break; end if; end for;end for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[l]  *ts[5]  

eq g*(  ts[4] *ts[2]  )“k then g,k; break; end if; end for;end for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[l]  *ts[5]  

eq g*(  ts [4] *ts  [2] *ts  [3]) ~k then g,k;

break; end if; end for;end for;
for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[l]  *ts  [5] 

eq g*(  ts[4]*ts [2]*ts [4])~k then g,k; break; end if;

end for;end for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[l]  *ts[5]  

eq g*(  ts[4] *ts  [2] *ts[3]  *ts[l]  )~k then g,k;

break; end if; end for;end for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[l]  *ts  [5] 

eq g*(  ts [4] *ts  [2] *ts  [3] *ts  [2] ) ~k then g,k;

break; end if; end for;end for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[l]  *ts  [5] 

eq g*(  ts [4] *ts  [2]*ts  [3] *ts  [4] ) "k then g,k;

break; end if; end forjend for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[l]  *ts[5]
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eq g*(  ts[4]*ts[2]*ts[3]*ts[2]*ts[l])~k  then g,k;

break; end if; end for;end for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[l]  *ts[5]  

eq g*(  ts[4]*ts[2]*ts[3]*ts[4]*ts[l])"'k  then g,k;

break; end if; end for;end for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[l]  *ts[5]  

eq g*(  ts [4] *ts  [2] *ts  [3] *ts  [1] *ts  [4] ) “k then g,k;

break; end if; end for;end for;

#N42315; N42315;

N42315s:=N42315;

N42315s; #N42315s;Orbits (N42315s);

[4,2,34,5] "N4215s;

T "Transversal (N,N42315s);

#T,T;

for i in [l..#T] do ([4,2,3,1,5]~N42315s)"T[i];end for;

for i := 1 to #T do
I

ss := [4,2,3,1,5] ~T[i] ;

cst [prodim(l, ts, ss)] := ss;

end for;
m:=0; for i in [l..#cst] do if cst[i] ne [] then m:=m+l; end if;

end for; m;

N423214:=Stabiliser(N,[4,2,3,1,4]); N423214s:=N423214; 

S:={[4,2,3,2,1,4]};

SS:=S"N;

#SS;

SSS"Setseq(SS);

for i in [l..#SS] do

for g in IN do if ts [4] *ts  [2] *ts  [3] *ts  [2] *ts  [1] *ts  [4]

eq g*ts  [Rep (SSS [i] ) [1] ] *ts  [Rep (SSS [i] ) [2] ] *ts  [Rep (SSS [i] ) [3]

] *ts  [Rep (SSS [i]) [4] ] *ts  [Rep (SSS [i]) [5] ] *ts  [Rep (SSS [i]) [6] ] 

then print SSS[i]; end if; end for; end for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[2]  *ts[l]  *ts[4]
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eq g*(  ts[4])~k then g,k; break; end if; end for;end for;

for g in IN do for k in IN do if ts[41*ts[21  *ts[31*ts[2]  *ts[l]  *ts[4]  

eq g*(  ts[4]*ts[21  )"k then g,k; break; end if; end for;end for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[2]  *ts[l]  *ts[4]  

eq g*(  ts[4]*ts[2]*ts[3])*k  then g,k; break; end if; end for;end for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[2]  *ts[ll  *ts[4]  

eq g*(  ts[4]*ts[2]*ts[4])' “k then g,k; break; end if; end for;end for;

for g in IN do for k in IN do if ts[41*ts[21  *ts[3]*ts[2]  *ts[l]  *ts[41  

eq g*(  ts [4] *ts  [2] *ts  [3] *ts  [2]) “k then g,k;

break; end if; end for;end for;

for g in IN do for k in IN do if ts[41*ts[2]  *ts[31*ts[2]  *ts[l]  *ts[41  

eq g*(  ts[4] *ts[2]*ts  [3] *ts  [1] )~k then g,k;

break; end if; end for;end for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[2]  *ts[l]  *ts[4]  

eq g*(  ts [41 *ts  [2] *ts  [31 *ts  [41) “k then g,k;

break; end if; end for;end for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[2]  *ts[ll  *ts[4]  

eq g*(  ts[4]*ts  [21 *ts [31 *ts [2]*ts  [11)“k then g,k;

break; end if; end for;end for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[2]  *ts[l]  *ts[4]  

eq g*(  ts[4]*ts [2]*ts [31 *ts [4]*ts [11)“k then g,k;

break; end if; end for;end for; 'I
for g in IN do for k in IN do if ts[4]*ts,[2]  *ts[3]*ts[21  *ts[l]  *ts[4]  

eq g*(  ts [4] *ts  [2] *ts  [3] *ts  [1] *ts  [4] ) "k then g,k;

break; end if; end for;end for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[31*ts[2]  *ts[i]  *ts[4]  

eq g*(  ts[4]*ts[2]*ts  [3]*ts[l]  *ts[5]  )"k then g,k;

break; end if; end for;end for;

&N423214; N423214;

N423214s:=N423214;

N423214s; #N423214s;Orbits (N423214s);

[4,2,3,2,1,41“N423214s;
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T:=Transversal (N,N423214s);

#T,T;

for i in [l..#T] do ([4,2,3,2,1,4]*N423214s)*T[i] ;end for;

for i := 1 to #T do

ss := [4,2,3,2,1,43 ~T[i] ;

cst[prodim(l, ts, ss)] := ss;

end for;

m:=0; for i in [l..#cst] do if cst[i] ne [] then m:=m+l; end if; 

end for; m;

N423215:=Stabiliser(N,[4,2,3,1,5]); N423215s:=N423215;

S:={[4,2,3,2,1,5]};

SS:=S"N;

#SS;

SSS:=Setseq(SS);
for i in [1..#SS] do '

for g in IN do if ts[4]*ts[2]*ts[3]  *ts  [2] *ts  [1] *ts  [5]

eq g*ts  [Rep (SSS [i]) [1] ] *ts  [Rep (SSS [i]) [2] ] *ts  [Rep (SSS [i]) [3] ] 

*ts [Rep (SSS [i]) [4] ] *ts  [Rep (SSS [i]) [5] ] *ts  [Rep (SSS [i]) [6] ] 

then print SSS[i]; end if; end for; end for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[2]  *ts[l]  

*ts[5] eq g*(  ts[4]),'k then g,k;

break; end if; end forjend for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[2]  *ts[l]

*ts[5] eq g*(  ts [4] *ts  [2] ) "k then g,k;

break; end if; end forjend for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[2]  *ts[l]  

*ts[5] eq g*(  ts [4] *ts  [2] *ts  [3]) "k then g,k;

break; end if; end forjend for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[2]  *ts[l]  

*ts[5] eq g*(  ts[4]*ts [2] *ts [4])“k then g,k;

break; end if; end forjend for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[2]  *ts[l]
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*ts[5] eq g*(  ts[4]*ts[2]*ts[3]*ts[2]) “k then g,k; 

break; end if; end forjend for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[2]  *ts[l]  

*ts[5] eq g*(  ts[4]+ts[2]*ts[3]*ts[l]) “k then g,k;

break; end if; end forjend for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[2]  *ts[l]  

*ts[5] eq g*(  ts [4] *ts [2] *ts [3] *ts [4])"k then g,k;

break; end if; end forjend for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3j*ts[2]  *ts[l]  

*ts[5] eq g*(  ts[4]*ts[2]*ts[3]*ts[2]*ts[l])''k  then g,k;

break; end if; end forjend for;

for g in IN do for k in IN do if ts[4]*ts.[2]  *ts[3]*ts[2]  *ts[l]  

*ts[5] eq g*(  ts [4] *ts  [2] *ts  [3] *ts  [4] *ts  [1] ) ~k then g,k;

break; end if; end forjend for; 1

for g in IN do for k in IN do if ts[4]*tst2]  *ts[3]*ts[2]  *ts[l]  

*ts[5] eq g*(  ts [4] *ts  [2] *ts  [3] *ts  [1] *ts  [4] ) "k then g,k;

break; end if; end forjend for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[2]  *ts[l]  

*ts[5] eq g*(  ts [4] *ts  [2] *ts  [3] *ts  [1] *ts  [5] ) "k then g,k;

break; end if; end forjend for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[2]  *ts[l]  

*ts[5] eq g*(  ts [4] *ts  [2] *ts  [3] *ts  [2] *ts  [1] *ts  [4] ) ~k then g,k;

break; end if; end forjend for;

#N423215; N423215;

N423215S:=N423215;

N423215S; #N423215s;Orbits (N423215s);

[4,2,3,2,1,5]~N423215s;

T:-Transversal (N,N423215s);

#T,T;

for i in [l..#T] do ([4,2,3,2,1,5]~N423214s)~T[i];end for;

for i := 1 to #T do 

ss := [4,2,3,2,1,5]-T[i] ;
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cst [prodim(l, ts, ss)] := ss;

end for;

m:=0; for i in [l..#cst] do if cst[i] ne [] then m:=m+l; 

end if; end for; m;

N423415:=Stabiliser(N,[4,2,3,4,1,5]); N423415s:=N423415; 

S:={ [4,2,3,4,1,5] )■;

SS:=S"N;

#SS;

SSS:=Setseq(SS);

for i in [l..#SS] do 

for g in IN do if ts [4] *ts  [2] *ts  [3] *ts  [4] *ts  [1] *ts  [5] 

eq g*ts[Rep(SSS[i])  [1] ] *ts  [Rep(SSS [i] ) [2]] *ts  [Rep(SSS [i] ) [3]] 

*ts [Rep (SSS [i]) [4]]*ts[Rep(SSS[i] ) [5] ] *ts  [Rep (SSS [i]) [6]] 

then print SSS[i]; end if; end for; end for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[4]  *ts[l]  *ts[5]  

eq g*(  ts[4])~k then g,k; break; end if; end for;end for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[4]  *ts[l]  *ts[5]  

eq g*(  ts[4]*ts [2])~k then g,k; break; end if; end for;end for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[4]  *ts[l]  *ts[5]  

eq g*(  ts[4]*ts[2]*ts[3])'k  then g,k;

break; end if; end for;end for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[4]  *ts[l]  *ts[5]  

eq g*(  ts[4]*ts [2]*ts [4])“k then g,k; break; end if; end for;end for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[4]  *ts[l]  *ts[5]  

eq g*(  ts[4]*ts [2]*ts [3]*ts [2])*k  then g,k;

break; end if; end for;end for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[41  *ts[l]  *ts[5]  

eq g*(  ts[4]*ts[2]*ts[3]*ts[l]) “k then g,k;

break; end if; end for;end for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[4]  *ts[l]  *ts[5]

eq g*(  ts [4] *ts  [2] *ts  [3] *ts  [4] ) ~k then g,k;

break; end if; end for;end for;
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for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[4]  *ts[l]  *ts[5]  

eq g*(  ts[4]*ts[2]*ts[3]*ts[2]*ts[l]) “k then g,k;

break; end if; end for;end for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[4]  *ts[l]  *ts[5]  

eq g*(  ts[4]*ts [2]*ts [3]*ts [4]*ts [1])"k then g,k;

break; end if; end for;end for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[4]  *ts[l]  *ts[5]  

eq g*(  ts [4] *ts  [2] *ts  [3] *ts  [1] *ts  [4]) "k then g,k;

break; end if; end for;end for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[4]  *ts[l]  *ts[5]  

eq g*(  ts [4] *ts  [2] *ts  [3] *ts  [1] *ts  [5] ) "k then g,k;

break; end if; end for;end for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[4]  *ts[l]  *ts[5]  

eq g*(  ts[4]*ts[2]*ts[3]*ts[2]*ts[l]*ts[4]) “k then g,k;

break; end if; end for;end for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[4]  *ts  [1] *ts  [5] 

eq g*(  ts [4] *ts  [2] *ts  [3] *ts  [2] *ts  [1] *ts  [5] ) *k  then g,k;

break; end if; end for;end for;

#N423415; N423415;

N423415s:=N423415;

N423415s; #N423415s;Orbits (N423415s);

[4,2,3,4,1,51"N423415s;

T:=Transversal (N,N423415s);

#T,T;
for i in [l..#T] do ([4,2,3,4,1,5]*N423414s)  ~T[i];end for;

for i := 1 to #T do 

ss := [4,2,3,4,1,51'‘T[iJ ;

cst[prodim(l, ts, ss)] := ss;

end for;

m:=0; for i in [l..#cst] do if cst[i] ne [] then m:=m+l; end if;

end for; m;

N423154:=Stabiliser(N,[4,2,3,1,5,4] ); N423154s:=N423154;
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S :={[4,2,3,1,5,41};

SS:=S‘N;

#SS;

SSS:=Setseq(SS);

for i in [l..#SS] do 

for g in IN do if ts [4] *ts  [2] *ts  [3] *ts  [l];*ts  [5] *ts  [4] 

eq g*ts[Rep(SSS[i])  [1] ] *ts  [Rep(SSS [i] ) [2] ] *ts  [Rep(SSS [i] ) [3]] 

*ts [Rep (SSS [i] ) [4] ] *ts  [Rep (SSS [i] ) [5] ] *ts  [Rep (SSS [i] ) [6] ]

then print SSS[i]; end if; end for; end for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[l]  *ts[5]  

eq g*(  ts [4] *ts  [2] *ts  [3] *ts  [1] ) ~k then g,k;

break; end if; end for;end for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[l]  *ts  [5] 

eq g*(  ts[4] *ts [2]*ts  [3] *ts  [2]) “k then g,k;

break; end if; end for;end for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[l]  *ts[5]  

eq g*(  ts[4]*ts[2]*ts[3]*ts[4]) “k then g,k;

break; end if; end for;end for;

*ts [4]

*ts [4]

*ts [4]

for g in IN do for k in IN do if ts[4]*ts[2]  *ts  [3] *ts  [1] *ts[5] *ts[4]

eq g*(  ts [4] *ts  [2] *ts  [3] *ts  [2] *ts  [1] ) "k then g,k;

break; end if; end for;end for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[l]  *ts[5]  

eq g*(  ts [4] *ts  [2] *ts  [3]+ts [4] *ts  [1] ) “k then g,k;

break; end if; end for;end for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[l]  *ts[5]  

eq g*(  ts [4] *ts  [2] *ts  [3] *ts  [1] *ts  [4]) ~k then g,k;

*ts [4]

*ts [4]

break; end if; end for;end for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[l]  *ts[5]  

eq g*(  ts [4]*ts  [2] *ts  [3] *ts  [1] *ts[5]  )“k then g,k;

break; end if; end for;end for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[l]  *ts[5]

*ts [4]

*ts [4]

eq g*(  ts [4] *ts  [2] *ts  [3] *ts  [2] *ts  [1] *ts  [4] ) "k then g,k;
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break; end if; end for;end for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[l]  *ts[5]  *ts[4]  

eq g*(  ts [4] *ts  [2] *ts  [3] *ts  [2] *ts  [1] *ts  [5] ) “k then g,k;

break; end if; end for;end for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[l]  *ts[5]  *ts[4]  

eq g*(  ts[4]*ts[2]*ts[3]*ts[4]*ts[l]*ts[5])*k  then g,k;

break; end if; end for;end for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[l]  *ts[5]  *ts[4]  

eq g*(  ts [4] *ts  [2] *ts  [3] *ts  [1] *ts  [4] *ts  [5] ) ~k then g,k;

break; end if; end for;end for;

for g in N do if 4~g eq 5 and 2"g eq 4 and 3'g eq 2 and l"g eq 3

and 5"g eq 1 and 4~g eq 5 then N423154s:=sub<N|N423154s,g>;

end if; end for;
I

#N423154; N423154;

N423154s:=N423154;

N423154s; #N423154s;Orbits (N423154s);

[4,2,3,1,5,41~N42154s;

T:=Transversal (N,N423154s);

#T,T;

for i in [l..#T] do ([4,2,3,1,5,4]‘N423154s)~T[i];end for;

for i := 1 to #T do

ss := [4,2,3,1,5,4] ~T[i] ;

cst[prodimd, ts, ss)] := ss;

end for;

N4232145:=Stabiliser(N,[4,2,3,2,1,4,5]); N4232145s:=N4232145;

S:={ [4,2,3,2,1,4,5]};

SS:=S‘N;

#SS;

SSS:=Setseq(SS);

for i in [l..#SS] do

for g in IN do if ts [4] *ts  [2] *ts  [3] *ts  [2] *ts  [1] *ts  [4] *ts[5]

eq g*ts  [Rep(SSS [i] ) [1] ] *ts  [Rep(SSS [i] ) [2] ] *ts  [Rep(SSS [i] ) [3] ]
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*ts [Rep (SSS [i]) [4] ] *ts  [Rep (SSS [i]) [5] ] *ts  [Rep (SSS [i]) [6] ]

*ts [Rep (SSS [i] ) [7] ]

then print SSS[i]; end if; end for; end for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[2]  *ts[l]

*ts[4] *ts[5]  eq g*(  ts[4])‘k then g,k;

break; end if; end forjend for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[2]  *ts[l]

*ts[4] *ts[5]  eq g*(  ts [4] *ts  [2] ) "k then g,k;

break; end if; end forjend for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[2]  *ts[l]

*ts[4] *ts[5]  eq g*(  ts [4] *ts  [2] *ts  [3] ) "k then g,k;

break; end if; end forjend for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[2]  *ts[l]  *ts[4]

*ts[5] eq g*(  ts[4] *ts [2]*ts  [4])“k then g,k;

break; end if; end forjend for; i

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[2]  *ts[l]  *ts[4]

*ts[5] eq g*(  ts[4]*ts [2] *ts [3] *ts [2]*ts  [1]) "k then g,k;

break; end if; end forjend for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[2]  *ts[l]  *ts  [4]

*ts[5] eq g*(  ts[4]*ts[2]*ts[3]*ts[4]*ts[l])' ‘k then g,k;

break; end if; end forjend for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[2]  *ts[l]  *ts[4]

*ts[5] eq g*(  ts [4] *ts  [2] *ts  [3] *ts  [1] *ts  [4] ) "k then g,k

; break; end if; end forjend for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[2]  *ts[l]  *ts[4  

] *ts[5]  eq g*(  ts [4] *ts  [2] *ts  [3] *ts  [1] *ts  [5] ) "k then g,k;

break; end if; end forjend for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[2]  *ts[l]  *ts[4]

*ts[5] eq g*(  ts[4]*ts  [2]*ts  [3]*ts [2]*ts  [1] *ts [4])~k then g,k;

break; end if; end forjend for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[2]  *ts[l]  *ts  [4 

] *ts[5]  eq g*(  ts [4] *ts  [2] *ts  [3] *ts  [2] *ts[l]  *ts[5]  )~k then g,k
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; break; end if; end for;end for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[2]  *ts[l]  *ts[4

] *ts[5]  eq g*(  ts[4]*ts[21*ts[3]*ts[4]*ts[l]*ts[5]) “k then g,k;

break; end if; end for;end for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[2]  *ts[l]  *ts[4]

*ts[5] eq g*(  ts[4]*ts[2]*ts[3]*ts[l]*ts[5]*tsE4])*k  then g,k;

break; end if; end for;end for;

for g in N do if 4~g eq 1 and 2‘g eq 2 and 3“g eq 3

and 2"g eq 2 and l~g eq 4 and 4~g eq 1 and 5~g eq 5

then N4232145s:=sub<N|N4232145s,g>; end if; end for;

#N4232145; N4232145;

N4232145S:=N4232145;

N4232145s; #N4232145s;Orbits (N4232145s);

[4,2,3,2,1,4,51~N4232145s; 1
I

T:=Transversal (N,N4232145s);

#T,T;

for i in [l..#T] do ([4,2,3,2,1,4,5]*N4232145s)~T[i] ;end for;

for i := 1 to #T do

ss := [4,2,3,2,1,4,5] "T[i] ; I
cst [prodim(1, ts, ss)] := ss; (

end for;

m:=0; for i in [l..#cst] do if cst[i] ne [] then m:=m+l;

end if; end for; m;

N4232154:=Stabiliser(N,[4,2,3,2,1,5,4] );

N4232154s:=N4232154;

S:={ [4,2,3,2,1,5,4]};
SS:=S~N;

#SS;

SSS:=Setseq(SS);

for i in [1..#SS] do

for g in IN do if ts [4] *ts  [2] *ts  [3] *ts  [2] *ts  [1] *ts  [5] *ts[4]

eq g*ts[Rep(SSS[i])  [l]]*ts[Rep(SSS[i])  [2] ] *ts  [Rep(SSS [i] ) [3]]
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♦ts [Rep (SSS [i] ) [4] ] *ts  [Rep (SSS [il ) [5] ] *ts  [Rep (SSS [i] ) [6] ]

♦ts [Rep (SSS [i] ) [7] ]

then print SSS[iJ; end if; end for; end for;

for g in IN do for k in IN do if ts[4]*ts[2]  ♦ts[3]*ts[2]  *ts  [1] 

♦ts[5] *ts[4]  eq g*(  ts[4])*k  then g,k;

break; end if; end forjend for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[2]  *ts[l]

*ts[5] ♦ts[4] eq g*(  ts [4] *ts  [21) “k then.g.k;

break; end if; end forjend for;

for g in IN do for k in IN do if ts[4]*ts[2]  ♦ts[3]*ts[21  ♦ts[l] 

*ts[4] eq g+( ts[4]*ts[2]*ts[3]) “k then g,k;

♦ts [5]

break; end if; end for;end for;

for g in IN do for k in IN do if ts[4]*ts[2]  ♦ts[3]*ts[2]  ♦tsLl]

*ts[4] eq g*(  ts [4] ♦ts [2]♦ts [4] ) "k then g,k;

break; end if; end for;end for;

for g in IN do for k in IN do if ts[4]+ts[2] ♦ts[3]*ts[2]  ♦ts[l]

♦ts[4] eq g*(  ts[4]*ts[2]*ts[3]*ts[2]*ts[l]) “k then g,k;

break; end if; end forjend for; '
i

for g in IN do for k in IN do if ts[4]^ts[21 *ts[3]*ts[2]  ♦ts [1] 

] *ts[4]eq  g+( ts [4] ♦ts [2] ♦ts [3] *ts  [4] ♦ts [1] ) “k then g,k;

♦ts [5]

♦ts [5]

♦ts [5

break; end if; end forjend for;

for g in IN do for k in IN do if ts[4]*ts[21  ♦ts[3]*ts[2]  ♦ts[l]

] *ts[4]  eq g*(  ts [4] ♦ts [2] ♦ts [3] *ts  [1] ♦ts [4] ) ~k then g,k; 

break; end if; end forjend for; i

for g in IN do for k in IN do if ts[41*ts [2] ♦ts[3]♦ts[2] +ts [1]
i

♦ts[4] eq g+( ts[41 *ts [2]♦ts[3]*ts [1]♦ts[5])~k then g,k;

♦ts [5

♦ts [51

break; end if; end forjend for;

for g in IN do for k in IN do if ts[4]*ts[2]  ♦ts[3]*ts[2]  ♦ts[l] ♦ts[5]

♦ts[4] eq g+( ts[4]^ts[2]+ts[3]*ts[2]^ts[l]*ts[4])''k  then g,k;

break; end if; end forjend for;

for g in IN do for k in IN do if ts[4]*ts[2]  ♦ts[3]*ts[2]  ♦ts[l] *ts[5]

♦ts[4] eq g+( ts[4]+ts[2]*ts[3]*ts[2]*ts[ll*ts[5]) “k then g,k;
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break; end if; end for;end for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[2]  *ts[l]  *ts[5]  

*ts[4] eq g*(  ts [4] *ts  [2] *ts  [3] *ts  [4] *ts  [1] *ts  [5] ) “k then g,k;

break; end if; end for;end for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[2]  *ts[l]  *ts[5]  

*ts[4] eq g*(  ts [4] *ts  [2] *ts  [3] *ts  [1] *ts  [5] *ts  [4]) "k then g,k;

break; end if; end for;end for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[2]  *ts[l]  *ts[5]
I

*ts[4] eq g*(  ts [4] *ts  [2] *ts  [3] *ts  [1] *ts  [4] *ts  [5] ) ~k then g,k;

break; end if; end for;end for;

for g in IN do for k in IN do if ts[4]*ts[2]  *ts[3]*ts[2]  *ts[l]

*ts[5] *ts[4]  eq g*(  ts [4] *ts  [2] *ts  [3] *ts  [2] *ts  [1] *ts  [4] *ts  [5]) “k 

then g,k; break; end if; end forjend for;

for g in N do if 4“g eq 4 and 2“g eq 3 and 3~g eq 2 and 2,'g

eq 3 and l“g eq 1 and 5“g eq 5 and 4~g eq 4
I

then N4232154s:=sub<N1N4232154s,g>; end if; end for;

#N4232154; N4232154;
I

N4232154s:=N4232154;

N4232154s; #N4232154s; Orbits (N4232154s);

[4,2,3,2,1,5,41"N4232154s;

T:=Transversal (N,N4232154s); 1

#T,T;

for i in [l..#T] do ([4,2,3,2,1,5,4]*N4232154s)"T[i] ;end for;

for i := 1 to #T do

ss := [4,2,3,2,1,5,4]"T[i];

cst[prodim(l, ts, ss)] := ss; 1

end for;

m:=0; for i in [l..#cst] do if cst[i] ne [] then m:=m+l; end if;

end for; m;
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Appendix B: MAGMA code for
3* 5 : C5

MAGMA OURPUT

S:=Sym(10);

> xx:=S!(1,2,3,4,5)(6,7,8,9,10); I
> N:=sub<S|xx>;

> G<x,t>:=Group<x,t|x~5,t~3,(x*t*t"x) "2,(t*x*t)~5>;

> Index(G,sub<G|x>);

132

> f,G1,k:=CosetAction(G,sub<GIx>);

> IN:=sub<Gl|f(x)>;

> CompositionFactors(Gl);

G

I A(l, 11) = L(2, 11)

1

> #DoubleCosets(G,sub<GIx>,sub<GIx>);

28

> prodim := function(pt, Q, I)

function> /*

function> Return the image of pt under permutations Q[I]

applied sequentially\

A
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function>

function> */
function> v ::= pt;

function^ for i in I do

function 1for> v := V

functionIfor> end for;

function> return v;

function> end function;

> ts := [Id(Gl): i in [1 .. 10] ];

> ts[5]:=f(t); ts[l] :=f (t'x); ts [2] :=f (t~ (x~2)) ; 

ts[3] :=f(t"(x"3)) ;ts [4] :=f(t~(x"4));

> ts[10] : = (f (t))"2; ts[6] : = (f (t"x)) “2;

ts[7] :=(f(t~(x*2))) "2;

ts[8] : = (f (t“ (x*̂)  ) ) "2;ts [9] t=(f(t"(x“4)))"2;

> cst := [null : i in [1 .. 132]] where null

is [IntegersO I 1;
> for i := 1 to 5 do

I

for> cst[prodim(l, ts, [i])] := [i] ;

for> end for;

> m: =0;

> for i in [1..132] do if cst[i] ne [] then m:=m+l;

end if; end for; m;

5

>

> for i := 6 to 10 do

for> cst [prodimCl, ts, [i])] : = [il ;
f or> end for;

> m:=0;

> for i in [1..132] do if cst[i] ne [] then m:=m+l;

end if; end for; m;

10
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> N51:=Stabiliser (N,[5,1J);

> SSS:={[5,1]}; SSS:=SSS“N;

> SSS;

GSet{{[ 1, 2 ]},{[ 2, 3 ]},{[ 4, 5 ]},

<[ 3, 4 ]},{[ 5, 1 ]}}■

> #(SSS);

5

> Seqq:=Setseq.(SSS) ;

> Seqq;

E <[ 1, 2 ]}, {[ 2, 3 ]},{[ 4, 5 ]},

<[ 3, 4 ]}, <[ 5, 1 ] }]

> for i in [l..#SSS] do

for> for n in IN do

for|for> for n in IN do

for|for|for> if ts[5]*ts[l]  eq
I

for ] for] for I if > n*ts  [Rep (Seqq [i] ) [1] ]*ts  [Rep (Seqq [i]) [2]]

for I for I for I if> then print Rep(Seqq[iJ);

for I for|for I if> end if; end for; end forjend for;

[5, 1 ],[ 5, 1 ],[ 5, 1 ],[ 5, 1 ],[ 5, 1 ]
> N51; #N51;Orbits(NSls);

Permutation group N51 acting on a set of

cardinality 10

Order = 1

1

N51; #N51;

> N51s:=N51;

> #N51s;

1

> [5,l]"N51s;

GSet{[ 5, 1 ]}

> T51:=Transversal(N,N51);

> for i in [l..#T51] do



132

for> ss : = [5,1] "T51 [i] ;

for> cst[prodim(l, ts, ss)] := ss;

for> end for;

> m:=0; for i in [1..132] do if cst[i] ne '[] 

for|if> then m:=m+l; end if; end for; m;

15

> N52:=Stabiliser (N,[5,2]);

> SSS: ={[5,2]]-; SSS:=SSS~N;

> SSS;

GSet{{[ 1, 3 ]}, {[ 3, 5 ]},

<[ 5, 2 ]}, {[ 4, 1 ]},

<[ 2, 4 ]}}

> #(SSS);

5

> Seqq:=Setseq(SSS);

> Seqq;

[{[ 1, 3 ]},{[ 3, 5 ]},{[ 5, 2 ]},

a 4, 1 ]},{[ 2, 4 ]}]

> for i in [l..#SSS] do

for> for n in IN do

for|for> for n in IN do

for I for If or> if ts[5]*ts[2]  eq

for I for I for | if > n*ts[Rep(Seqq  [i]) [1]]*

ts [Rep(Seqq[i] ) [2]]

for I for I for|if> then print Rep(Seqq[i] );

for I for I for Iif> end if; end for;

end for;end for;

[ 5, 2 ],[ 5, 2 ],[ 5, 2 ],[ 5, 2 ],[ 5, 2 ]

> N52; #N52;Orbits(N52s);

Permutation group N52 acting on a set of 

cardinality 10
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Order = 1

1

> N52s:=N52;

> #N52s;

1

> [5,2KN52s;

GSet{[ 5, 2 ]}

> T52:-Transversal(N,N52);

> for i in [l..#T52] do

for> ss : = [5,2] "T52 [i] ;

for> cst[prodim(l, ts, ss)] := ss;

for> end for;

> m:=0; for i in [1..132] do if cst[i] ne □

for|if> then end if; end for; m;

20

N53:-Stabiliser (N, [5,3]);

> SSS:={[5,3]}; SSS:=SSS-N;

> SSS;

GSetU [ 4, 2 ]}, {[ 3, 1 ]}, {[ 1, 4 ]},

<[ 5, 3 ]}, { [ 2, 5 DI

> #(SSS);

5

> Seqq:=Setseq(SSS);

> Seqq;

[<[ 4, 2 ]}, {[ 3, 1 ]}, {[ 1, 4 ]},

<[ 5, 3 ]}, {[ 2, 5 ]}]

> for i in [l..#SSS] do

for> for n in IN do

for|for> for n in IN do

for|for|for> if ts[5]*ts[3]  eq 

for I for | for | if > n*ts[Rep(Seqq[i] ) [1]]*
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ts [Rep(Seqq[i] ) [2]]

for|fori for)if> then print Rep(Seqq[i] ) ;

for|for I for I if> end if; end for;

end for;end for;

[ 5, 3 ],[ 5, 3 ],[ 5, 3 ],[ 5, 3 ],[ 5, 3 ]

> N53; #N53;Orbits(N53s);

Permutation group N53 acting on a set of

cardinality 10

Order = 1
1

> N53; #N53;

> N53s:=N53;

> #N53s;
I

1 <

> [5,3]*N53s;

GSet{[ 5, 3 ]}

> T53:=Transversal(N,N53); I

> for i in [l..#T53] do

for> ss : = [5,3] "T53 [i] ; <

for> cst[prodim(l, ts, ss)] := ss; '
i

for> end for;

> m:=0; for i in [1..132] do if cst[i] ne' [] 

for|if> then m:=m+l; end if; end for; m;
I

25

> N54:=Stabiliser (N, [5,4]);

> SSS: ={ [5,4] ]■; SSS:=SSS‘N;

> SSS;

GSet{-[[ 5, 4 ] }, {[ 2, 1 ]},{[ 4, 3 ]}, 

{[1, 5] }, { [3, 2] }}

> #(SSS);

5
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> Seqq:=Setseq(SSS);

> Seqq;

[<[ 5, 4 ]}, {[ 2, 1 D, {[ 4, 3 ]},

<[ 1, 5 ]}, {[ 3, 2 ]}]

> for i in [l..#SSS] do

for> for n in IN do

for|for> for n in IN do

for|for|for> if ts[5]*ts[4]  eq

for I for | for | if > n*ts  [Rep (Seqq [i] ) [1]]*  

ts [Rep (Seqq [i] ) [2]]

for I for|for|if> then print Rep(Seqq[i] );

for I for Ifor 1 if> end if; end for;

end for;end for;

[ 5, 4 ],[ 5, 4 ],[ 5, 4 ],[ 5, 4 ],[ 5, 4 ]

> N54; #N54;Orbits(N54s);

Permutation group N54 acting on a set of 

cardinality 10

Order = 1

1

» N54; #N54;

> N54s:=N54;

> #N54s;

1

> [5,4]*N54s;

GSet{[ 5, 4 ]}

> T54:=Transversal(N,N54);

> for i in [l..#T54] do

for> ss : = [5,4] ~T54[i] ;

for> cst[prodim(l, ts, ss)] := ss;

for> end for;

> m:=0; for i in [1..132] do if cst[i] ne [] 

for|if> then m:=m+l; end if; end for; m;
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30

N56:=Stabiliser (N,[5,6]);

> SSS:={[5,6]}; SSS:=SSS~N;

> SSS;

GSet{{[ 3, 9 ]}, {[ 5, 6 ] }, {[ 2, 8 ]},

{[ 4, 10 ]}, {[ 1, 7 ]}}

> #(SSS);

5

> Seqq:=Setseq(SSS);

> Seqq;

[<[ 3, 9 ]}, {[ 5, 6 ]},{[ 2, 8 ]},{[ 4, 10 ]}, 

{[ 1, 7 ]}]

> for i in [l..#SSS] do

for> for n in IN do

for|for> for n in IN do

for|for|for> if ts[5]*ts[6]  eq

for I for|for 1 if> n*ts  [Rep (Seqq [i])[1]]*

ts [Rep(Seqq[i] ) [2] ]

for I for 1 for I if> then print Rep(Seqq[i]);

for I for I for|if> end if; end for;

end forjend for;

[5, 6],[5, 6],[5, 6],[5, 6],[5, 6]

> N56; #N56;Orbits(N56s);

Permutation group N56 acting on a set of 

cardinality 10

Order = 1

1

> N56; #N56;

> N56s:=N56;

> #N56s;

1
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> [5,6]~N56s;

GSet{ [ 5, 6 ]}

> T56:=Transversal(N,N56);

> for i in [l..#T56] do

for> ss: = [5,6] *T56[i]  ;

for> cst[prodim(l, ts, ss)] := ss;

for> end for;

> m:=0; for i in [1..132] do if cst[i] ne [] 

for|if> then m:=m+l; end if; end for; m;

35

N57:=Stabiliser (N,[5,71);

> SSS: ={[5,7]}; SSS:=SSS~N;

> SSS;

GSet{{[ 5, 7 ]}, {[ 3, 10 ] }, {[ 1, 8 ]},

{[ 2, 9 ]},{[ 4, 6 ]}}

> #(SSS); I
5

> Seqq:=Setseq(SSS);

> Seqq;

[{[ 5, 7 ]},{[ 3, 10 ]}, { [ 1, 8 ]},{[ 2, 9 ] }, 

{[ 4, 6 ] }]

> for i in [l..#SSS] do

for> for n in IN do

for|for> for n in IN do

for I for If or> if ts[5]*ts[7]  eq

for I for | for I if> n*ts  [Rep (Seqq [i] )[!]]*  

ts[Rep(Seqq[i]) [2]]

for I for|for I if> then print Rep(Seqq[i]);

for I for[for|if> end if; end for;

end for;end for;

[ 5, 7 ],[ 5, 7 ],[ 5, 7 ],[ 5, 7 ],[ 5, 7 ]
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> N57; #N57;Orbits(N57s);

Permutation group N57 acting on a set of 

cardinality 10

Order = 1

1

> N57; #N57;

> N57s:=N57;

> #N57s;

1

> [5,7]"N57s;

GSet{[ 5, 7 ]

> T57:=Transversal(N,N57);

> for i in [l..#T57] do

for> ss: = [5,7]“T57[i] ;

for> cst[prodim(l, ts, ss)] := ss;

for> end for; ,

> m:=0; for i in [1..132] do if cst[i] ne [] 

for|if> then m:=m+l; end if; end for; m; , 

40

N101:-Stabiliser (N,[10,1]);

> SSS: ={[10,1]}; SSS:-SSS"N;

> SSS;

GSet{{[ 6, 2 ]},{[ 9, 5 ]},{[ 8, 4 ]},{[ 10, 1 ]}, 

<[ 7, 3 ]}}

> #(SSS);

5

> Seqq:-Setseq(SSS);

> Seqq;

[{[ 6, 2 ]},{[ 9, 5 ]}, <[ 8, 4 ]}, {[ 10, 1 ]}, 

{[ 7, 3 ]}]

> for i in [l..#SSS] do
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for> for n in IN do

for|for> for n in IN do

for]for|for> if ts[10]*ts[l]  eq

for | for I for I if> n*ts  [Rep(Seqq[i]) [1]]*  

ts[Rep(Seqq[i]) [2]]

for I for I for|if> then print Rep(Seqq[i]);

for Ifor I for|if> end if; end for; end forjend for;

[10, 1 1, 10, 1 ],[ 10, 1 ],[ 10, 1 ],[ 10, 1 ]

> N101; #N101;Orbits(NIOls);

Permutation group N101 acting on a set

of cardinality 10

Order = 1

1

> N101; #N101;

> NIOls:=N101;

> #N101s;

1

> [10,l]“N101s;

GSet{[ 10, 1 ]}
> T101:=Transversal(N,N101);

> for i in [1..#T101] do

for> ss: = [10,l]“T101[i] ;
for> cst[prodim(1, ts, ss)] := ss;

for> end for;

> m:=0; for i in [1..132] do if cst[i] ne []

for I if> then m:=m+l; end if; end for; m;

45

N102:=Stabiliser (N,[10,2]);

> SSS:={[10,2]}; SSS:=SSS‘N;

> SSS;
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GSet-KE 6, 3 ]},{[ 8, 5 ]},{[ 10, 2 ]},{[ 7, 4 ]}, 

<[ 9, i m

> #(SSS);

5

> Seqq:=Setseq(SSS);

> Seqq;

KE 6, 3 ]},{[ 8, 5 ]},{[ 10, 2 ]},

<E 7, 4 ]},{[ 9, 1 ]}]

> for i in [l..#SSS] do

for> for n in IN do

for|for> for n in IN do

for|for|for> if ts[10]*ts[2]  eq

for| for] fori if> n*ts  [Rep (Seqq [i]) [1]]*  

ts [Rep (Seqq [i] ) [2] ]

for 1 for I fori if> then print Rep(Seqq[i]);

for|for|for I if> end if; end for; <

end forjend for; i
[ 10, 2 ],[ 10, 2 ],[ 10, 2 ],

[10, 2 ],[ 10, 2 ]

> N102; #N102;Orbits(N102s);

Permutation group N102 acting on a set of' 

cardinality 10

Order = 1

1
> N102; #N102;

> N102s:=N102;

> #N102s;

1

> [10,2]"N102s;

GSet{[ 10, 2 ]}

> T102:=Transversal(N,N102);

> for i in [l..#T102] do
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for> ss: = [10,2]‘T102[i] ;

for> cst[prodim(l, ts, ss)] := ss;

for> end for;

> m:=0; for i in [1..132] do if cst[i] ne [] 

for|if> then m:=ni+l; end if; end for; m;

50

N106:=Stabiliser (N,[10,6]);

> SSS: ={[10,6]}-; SSS:=SSS"N;

> SSS;

GSet{{[ 10, 6 ]},{[ 8, 9 ]},{[ 6, 7 ]},

<[ 7, 8 ]},{[ 9, 10 ]}}

> #(SSS);

5

> Seqq:=Setseq(SSS); i

> Seqq;

[{[ 10, 6 ]},{[ 8, 9 ]},{[ 6, 7 ]},

{[ 7, 8 ]},{[ 9, 10 ]}]

> for i in [l..#SSS] do

for> for n in IN do i

for|for> for n in IN do

forlfor|for> if ts[10]*ts[6]  eq

for I for I for I if > n*ts  [Rep (Seqq [i] ) [1]]*

ts [Rep (Seqq [i] ) [2] ]

for I for I for|if> then print Rep(Seqq[i]);

for 1 for I for I if> end if; end for;

end for;end for;

[ 10, 6 ],[ 10, 6 ],[ 10, 6 ],

[10, 6 ],[ 10, 6 ]

> N106; #N106;Orbits(N106s);

Permutation group N106 acting on a set of 

cardinality 10
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Order = 1

1

> N106; #N106;

> N106s:=N106;

> #N106s;

1

> [10,6]*N105s ;

> [10,6]~N105s;

> T106:=Transversal(N,N106);

> for i in [l..#T106] do

for> ss: = [10,6] "T106[i] ;

for> cst [prodimd, ts, ss)] := ss;

for> end for;

> m:=0; for i in [1..132] do if cst[i] ne [] 

for I if> then m:=m+l; end if; end for; m;

55

N108:=Stabiliser (N,[10,8j);

> SSS:={[10,8]}; SSS:=SSS"N;

> SSS;

GSet{{[ 7, 10 ]},{[ 9, 7 ]},{[ 10, 8 ]}, 

{[ 6, 9 ]}, {[ 8, 6 W

> #(SSS);

5

> Seqq:=Setseq(SSS);

> Seqq;

[{[ 7, 10 ]},{[ 9, 7 ]},{[ 10, 8 ]},

{[ 6, 9 ]},{[ 8, 6 ]}]

> for i in [l..#SSS] do

for> for n in IN do

for|for> for n in IN do

for|for|for> if ts[10]*ts[8]  eq
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for|for I for I if> n*ts  [Rep(Seqq[i]) [1]]*

ts [Rep(Seqq[i] ) [2]]

f or 1 for I for I if > then, print Rep(Seqq[i]);

for I for I for]if> end if; end for; end for;end for;

[10, 8 ],[ 10, 8 ],[ 10, 8 ],

[10, 8 ],[ 10, 8 ]

> N108; #N108;Orbits(N108s);

Permutation group N108 acting on a set

of cardinality 10

Order = 1

1

> N108; #N108;

> N108s:=N108;

> #N108s;

1

> [10,8]“N108s;

GSet{[ 10, 8 ]}

> T108:=Transversal(N,N108);

> for i in [l..#T108] do

for> ss: = [10,8] "T108[i] ;

for> cst[prodim(l, ts, ss)] := ss;

for> end for;

> m:=0; for i in [1..132] do if cst[i] ne []

for I if> then end if; end for; m;

60

N513:=Stabiliser (N,[5,1,3]);

> SSS:={[5,1,3]}; SSS:=SSS'N;

> SSS;

GSet«[ 5, 1, 3 ]},{[ 2, 3, 5 ]}, <[ 1, 2, 4 ]}, 

<[ 4, 5, 2 ]]-,<[ 3, 4, 1 ]}}

> #(SSS);
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5

> Seqq:=Setseq(SSS);

> Seqq;

[<[ 5, 1, 3 ]},{[ 2, 3, 5 ]},{[ 1, 2, 4 ]}, 

<[ 4, 5, 2 ]},{ [3, 4, 1 ]}]

> for i in [l..#SSS] do

for> for n in IN do

for|for> for n in IN do

for|for]for> if ts[5]*ts[l]  *ts[3]eq  

for|forlfor|if> n*ts  [Rep(Seqq[i]) [1]]*  

ts [Rep(Seqq[i] ) [2] ] *ts  [Rep(Seqq[i] ) [3]] 

for Ifor|for|if> then print Rep(Seqq[i]); 

for Ifor|for|if> end if; end for;

end forjend for;

[5, 1, 3]([5, 1, 3],[5, 1, 3],

[5, 1, 3],[5, 1, 3]

> N513; #N513;Orbits(N513s);

Permutation group N513 acting on a set of 

cardinality 10

Order = 1

1

> N513; #N513;

> N513s:=N513;

> #N513s;

1

> [5,1,3]“N513s;

GSet{[ 5, 1, 3 ]}

> T513:-Transversal(N,N513);

> for i in [l..#T513] do

for> ss: = [5,1,3] "'T513[i] ;

for> cst[prodim(l, ts, ss)] := ss;

for> end for;
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> m:=0; for i in [1..132] do if cst[i] ne [] 

for|if> then m:=m+l; end if; end for; m;

65

N515:=Stabiliser (N, [5,1,5]);

> SSS:={[5,1,5]}; SSS:=SSS'N;

> SSS;

GSet{{[ 1, 2, 1 ]},{[ 5, 1, 5 ]},{[ 3, 4, 3 ]}, 

{[ 2, 3, 2 ]},{[ 4, 5, 4 ]}}

> #(SSS);

5

> Seqq:=Setseq(SSS);

> Seqq;

[<[ 1, 2, 1 ]>,{[ 5, 1, 5 ]},{ [ 3, 4, 3 ]},

{[ 2, 3, 2 ]},{[ 4, 5, 4 ]}]

> for i in [l..#SSS] do

for> for n in IN do

for|for> for n in IN do

forlfor|for> if ts[5]*ts[l]  *ts[5]eq 1 

for I for 1 for 1 if> n*ts[Rep(Seqq[i] )[1] ] * 

ts [Rep (Seqq [i] ) [2] ] *ts  [Rep (Seqq [i] ) [3] ] \

for|for I for I if> then print Rep(Seqq[i]);

for I for|for I if> end if; end for;

end for;end for;

[ 5, 1, 5 ],[ 5, 1, 5 ],[ 5, 1, 5 ] ,

[ 5, 1, 5 ],[ 5, 1, 5 ]
> N515; #N515;Orbits(N515s);

Permutation group N515 acting on a set of 

cardinality 10

Order = 1

1

> N515; #N515;
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> N515s:=N515;

> #N515s;

1

> [5,1,5]"N515s;

GSet{

[ 5, 1, 5 ]

> T515:=Transversal(N,N515);

> for i in [l..#T515] do

for> ss: = [5,1,5] ~T515[i] ;

for> cst[prodim(l, ts, ss)] := ss;

for> end for;

> m:=0; for i in [1..132] do if cst[i] ne [] 

for|if> then m:=m+l; end if; end for; m;

70

N526:^Stabiliser (N,[5,2,6]);

> SSS:={[5,2,6]}; SSS:=SSS‘N;

> SSS;

GSet« [ 2, 4, 8 ]},{[ 3, 5, 9 ]},{ [ 5, 2, 6 ]}, 

<[ 4, 1, 10 ]}, {[ 1, 3, 7 ID

> #(SSS);

5
> Seqq:=Setseq(SSS);

> Seqq;

[<[ 2, 4, 8 ]},{[ 3, 5, 9 ]>, { [ 5, 2, 6 D,

<[ 4, 1, 10 ]},{[ 1, 3, 7 ] H

> for i in [l..#SSS] do

for> for n in IN do

for|for> for n in IN do

for|for|for> if ts[5]*ts[2]  *ts[6]eq
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for I for [for I if > n*ts[Rep(Seqq[i] ) [1]]*  

ts [Rep(Seqq[i]) [2] ] *ts  [Rep(Seqq[i]) [3]] \ 

for I for I for I if> then print Rep(Seqq[i] ); 

for I fori fori if> end if; end for;

end for;end for;

[5, 2, 6 ],[ 5, 2, 6 ],[ 5, 2, 6 ],

[5, 2, 6],[5, 2, 6]

> N526; #N526;Orbits(N526s);

Permutation group N526 acting on a set of 

cardinality 10

Order = 1

1

> N526; #N526;

> N526s:=N526;

> #N526s;

1

> [5,2,6] "N526s;

GSet{ [ 5, 2, 6 ]}

> T526:=Transversal(N,N526);

> for i in [l..#T526] do

for> ss : = [5,2,6] “T526 [i] ;

for> cst[prodim(l, ts, ss)] := ss;

for> end for;

> m:=0; for i in [1..132] do if cst[i] ne [] 

for|if> then m:=m+l; end if; end for; m;

75

N521 .'-Stabiliser (N,[5,2,1]);

> SSS:={[5,2,1J]-; SSS:=SSS'N;

> SSS;

GSet{ {[ 3, 5, 4 ]},{[ 1, 3, 2 ]},{[ 4, 1, 5 ]},

<[ 5, 2, 1 ]},{[ 2, 4, 3 ]}}
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> #(SSS);

5

> Seqq:=Setseq(SSS);

> Seqq;

[{[ 3, 5, 4 ]},{[ 1, 3, 2 ]},{[ 4, 1, 5 ]},

<[ 5, 2, 1 ]},{[ 2, 4, 3 ]}]

> for i in [l..#SSS] do

for> for n in IN do

for|for> for n in IN do

for|for|for> if ts[5]*ts[2]  *ts[l]eq

for I for Ifor I if> n*ts[Rep(Seqq[i])Cl]  1 * 

ts [Rep(Seqq[i] ) [2] ] *ts  [Rep(Seqq[i] ) [3]] \ 

for 1for|for I if> then print Rep (Seqq [i] ) ;

for I for|for I if> end if; end for; end for;end for;

[ 5, 2, 1 ],[5, 2, 1 ],[ 5, 2, 1 ],

[5, 2, 1],[5, 2, 1]

> N521; #N521;Orbits(N521s);

Permutation group N521 acting on a set of 

cardinality 10 <

Order = 1

1

> N521; #N521;

> N521s:=N521;

> #N521s;

1

> [5,2,1]"N521s;

GSet{[ 5, 2, 1 ]}

> T521:=Transversal(N,N521);

> for i in [l..#T5211 do

for> ss : = [5,2,1] “T521 [i] ;

for> cst[prodim(l, ts, ss)] := ss;

for> end for;
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> m:=0; for i in [1..132] do if cst[i] ne [] 

for I if> then m:=m+l; end if; end for; m;

80

N523:=Stabiliser (N, [5,2,3] ) ;

> SSS:={[5,2,3]}; SSS:=SSS"N;

> SSS;

GSet{{ [ 5, 2, 3 ]},{[ 3, 5, 1 ]>,{[ 4, 1, 2 ]},

{[ 2, 4, 5 ]},{[ 1, 3, 4 ]}}

> #(SSS);

5

> Seqq:=Setseq(SSS);

> Seqq;

[{[ 5, 2, 3 ]>,{[ 3, 5, 1 ]},{[ 4, 1, 2 ]}-,

{[ 2, 4, 5 ]},{[ 1, 3, 4 ]}]

> for i in [l..#SSS] do

for> for n in IN do

for|for> for n in IN do

for | for If or> if ts[5]*ts[2]  *ts[3]eq

for | for | for | if> n*ts  [Rep (Seqq[i]) [1]]*

ts [Rep (Seqq [i] ) [2] ] *ts  [Rep (Seqq [i] ) [3] ] \ 

for|fori fori if> then print Rep (Seqq [i]); , 

for|for Ifor|if> end if; end for; end for;end for;

[ 5, 2, 3 ],[ 5, 2, 3 ],[ 5, 2, 3 J,

[ 5, 2, 3 ],[ 5, 2, 3 ]

> N523; #N523;Orbits(N523s);

Permutation group N523 acting on a set of 

cardinality 10

Order = 1

1

> N523; #N523;

> N523s:=N523;
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> #N523s;

1

> [5,2,3]"N523S;

GSet{

[ 5, 2, 3 ]

1
> T523:=Transversal(N,N523);

> for i in [l..#T523] do

f or> ss: = [5,2,3] “T523 [i] ;

for> cst[prodimd, ts, ss)] : = ss;

for> end for;

> m:=0; for i in [1..132] do if cst[i] ne [] 

for|if> then m:=m+l; end if; end for; m;

85

N524:=Stabiliser (N, [5,2,4]);

> SSS:={[5,2,4]1; SSS:=SSS"N;

> SSS;

GSet{{[ 4, 1, 3 ]}, {[ 2, 4, 1 ]},-[ [ 1, 3, 5 ]}, 

{ [ 3, 5, 2 ]}, {[ 5, 2, 4 ]}}

> #(SSS);

5

> Seqq:=Setseq(SSS);

> Seqq;

[ < [ 4, 1, 3 ]}, {[ 2, 4, 1 ]>,{[ 1, 3, 5 ]>,

<[ 3, 5, 2 ]}, {[ 5, 2, 4 ]}]

> for i in [l..#SSS] do

for> for n in IN do

for|for> for n in IN do

forlfor|for> if ts[5]*ts[2]  *ts[4]eq  

for 1 for [for | if > n*ts[Rep(Seqq[i] ) [1]]*  

ts [Rep (Seqq [i] ) [2]]*ts[Rep(Seqq[i]  ) [3]] \
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for I for I for|if> then print Rep(Seqq[i]);

for 1 for Ifor I if> end if; end for; end forjend for;

[5, 2, 4 ],[ 5, 2, 4 ],[ 5, 2, 4 ],

[5, 2, 4],[5, 2, 4]

> N524; #N524;Orbits(N524s);

Permutation group N524 acting on a set of 

cardinality 10

Order = 1

1

> N524; #N524;

> N524s:=N524;

> #N524s;

1

> [5,2,4]"N524s;

GSet{[ 5, 2, 4 ]}

> T524:=Transversal(N,N524);

> for i in [l..#T524] do

for> ss:=[5,2,4]"T524[i];

for> cst[prodimCl, ts, ss)] := ss;

for> end for;

> m:=0; for i in [1..132] do if cst[i] ne [] 

for|if> then m:=m+l; end if; end for; m;

90

N525:=Stabiliser (N,[5,2,5]);

> SSS:={[5,2,5]}; SSS:=SSS"N;

> SSS;

GSet{{[ 5, 2, 5 ] {[ 1, 3, 1 ] },{ [ 4, 1, 4 ]},

{[ 3, 5, 3 ]}, {[ 2, 4, 2 ]}}

> #(SSS);

5

> Seqq:=Setseq(SSS);
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> Seqq;

[<[ 5, 2, 5 ]>,{[ 1, 3, 1 ]},{[ 4, 1, 4 ]},

<[ 3, 5, 3 ]}, { [ 2, 4, 2 ]}]

> for i in [l..#SSS] do

for> for n in IN do

for|for> for n in IN do

for I for Ifor> if ts[5]*ts[2]  *ts[5]eq

for | for I for | if > n*ts  [Rep (Seqq [i] ) [1]]*  

ts [Rep (Seqq [i] ) [2] ] *ts  [Rep (Seqq [i] ) [3] ] \ 

for|for I for|if> then print Rep(Seqq[i]);

for|forI forI if> end if; end for; end forjend for;

[ 5, 2, 5 ],[ 5, 2, 5 ],[ 5, 2, 5 ],

[ 5, 2, 5 ],[ 5, 2, 5 ]

> N525; #N525;Orbits(N525s);

Permutation group N525 acting on a set of 

cardinality 10

Order = 1

1

> N525; #N525;
> N525s:=N525;

> #N525s;

1

> [5,2,5]“N525s;

GSet{ [ 5, 2, 5 ] }■

> T525:=Transversal(N,N525);

> for i in [1..#T525] do

for> ss: = [5,2,5]',T525[i] ;

for> cst[prodim(l, ts, ss)] := ss;

for> end for;

> m:=0; for i in Cl.. 132] do if cst[i] ne [] 

for|if> then m:=m+l; end if; end for; m;

95



153

N5210:=Stabiliser (N, [5,2,10]);

> SSS:={[5,2,10]}; SSS:=SSS“N;

> SSS;

GSet«[ 3, 5, 8 ]},{[ 1, 3, 6 ]},{[ 2, 4, 7 ]},

<[ 5, 2, 10 ]},{ [ 4, 1, 9 ]}}

> #(SSS);

5

> Seqq:-Setseq(SSS);

> Seqq;

[<[ 3, 5, 8 ]}, {[ 1, 3, 6 ]},{[ 2, 4, 7 ]},

{[ 5, 2, 10 ]},{[ 4, 1, 9 ]}]

> for i in [l..#SSS] do

for> for n in IN do

for|for> for n in IN do

for|for|for> if ts[5]*ts[2]  *ts[10]eq

for I for I for I if > n*ts  [Rep (Seqq [i]) [1]]*  

ts [Rep (Seqq [i] ) [2] ] *ts  [Rep (Seqq [i] ) [3] ] \

forI for I forIif> then print Rep (Seqq [i] ) ;

for I for Ifor 1 if> end if; end for; end forjend for;

[ 5, 2, 10 ],[ 5, 2, 10 ],[ 5, 2, 10 ],[ 5, 2, 10 ] 

[ 5, 2, 10 ]

> N5210; #N5210;Orbits(N5210s);

Permutation group N5210 acting on a set of 

cardinality 10

Order = 1

1

> N5210; #N5210;

> N5210s:=N5210;

> #N5210s;

1

> [5,2,10]"N5210s;
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GSet{[ 5, 2, 10 ]}

> T5210:=Transversal(N,N5210);

> for i in [l..#T5210] do

for> ss: = [5,2,10] ~T5210[i] ;

for> cst[prodim(l, ts, ss)] := ss;

for> end for;

> m:=0; for i in [1..132] do if cst[i] ne [] 

for|if> then m:=m+l; end if; end for; m;

100

N532:=Stabiliser (N,[5,3,2]);

> SSS:={[5,3,2]}; SSS:=SSS“N;

> SSS;

GSetK [ 3, 1, 5 ]},{[ 1, 4, 3 ]},<[ 4, 2, 1 ]},

<[ 5, 3, 2 ]},{[ 2, 5, 4

> #(SSS);

5

> Seqq:=Setseq(SSS);

> Seqq;

[<[ 3, 1, 5 ]},{[ 1, 4, 3 ]},{[ 4, 2, 1 ]},

<[ 5, 3, 2 ]},{[ 2, 5, 4 ]}]

> for i in [l..#SSS] do

for> for n in IN do

for|for> for n in IN do

for|for|for> if ts[5]*ts[3]  *ts[2]eq

f or I f or | for I if > n*ts[Rep(Seqq[i])  [1]]

*ts [Rep (Seqq [i] ) [2] ]

*ts[Rep(Seqq[i]) [3]] \

for Ifor|for I if> then print Rep(Seqq[i]);

for 1 for I for I if> end if; end for; end forjend for;

[ 5, 3, 2 ],[ 5, 3, 2 ],[ 5, 3, 2 ],[ 5, 3, 2 ]

[ 5, 3, 2 ]



155

> N532; #N532;Orbits(N532s);

Permutation group N532 acting on a set of

cardinality 10

Order = 1

1

> N532; #N532;

> N532s:=N532;

> #N532s;

1

> [5,3,2]"N532s;

GSet{[ 5, 3, 2 ]}

> T532:=Transversal(N,N532);

> for i in [l..#T532] do

for> ss:=[5,3,2]*T532[i];

for> cst[prodim(l, ts, ss)] := ss;

for> end for;

> m:=0; for i in [1..132] do if cst[i] ne []

for|if> then m:=m+l; end if; end for; m;

105

N535:=Stabiliser (N,[5,3,5]);

> SSS:={[5,3,5])-; SSS:=SSS'N;

> SSS;

GSet{{[ 5, 3, 5 ]},{ [ 4, 2, 4 ]},{ [ 3, 1, 3 ]},

{[ 1, 4, 1 ]},{ [ 2, 5, 2 ]}}

> #(SSS);

5

> Seqq:=Setseq(SSS);

> Seqq;

[<[ 5, 3, 5 ]},{ [ 4, 2, 4 ]},{[ 3, 1, 3 ]},

<[ 1, 4, 1 ]},{[ 2, 5, 2 ]}]

> for i in [l..#SSS] do
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for> for n in IN do

for|for> for n in IN do

for|for|for> if ts[5]*ts[3]  *ts[5]eq

for If or If or | if > n*ts[Rep(Seqq[i])  [1]]*  

ts [Rep (Seqq [i]) [2] ] *ts  [Rep (Seqq [i]) [3] ] \

for Ifor|forI if> then print Rep(Seqq[i]) ;

for 1 for I for I if> end if; end for; end for;end for;

[5, 3, 5],[5, 3, 5],[5, 3, 5 ] ,

[ 5, 3, 5 ],[ 5, 3, 5 ]
> N535; #N535;Orbits(N535s);

Permutation group N535 acting on a set of 

cardinality 10

Order = 1

1

> N535; #N535;

> N535s:=N535;

> #N535s;
I

1

> [5,3,5]~N535s;

GSet{ [ 5, 3, 5 ]}

> T535:=Transversal(N,N535);

> for i in [1..#T535] do

for> ss: = [5,3,5]“T535[i];

for> cst[prodim(1, ts, ss)] := ss;

for> end for;

> m:=0; for i in [1..132] do if cst[i] ne []

for I if> then m:=m+l; end if; end for; m;

110

N563:=Stabiliser (N,[5,6,3]);

> SSS:={[5,6,3]}; SSS:=SSS“N;
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> SSS;

GSet«[ 1, 7, 4 ]},{[ 4, 10, 2 ]>, {[ 3, 9, 1 ]},

{ [2, 8, 5 ]},{[ 5, 6, 3 ]}}

> #(SSS);

5

> Seqq:=Setseq(SSS);

> Seqq;

K [ 1, 7, 4 ]},{ [ 4, 10, 2 ]>,{[ 3, 9, 1 ]},

< [ 2, 8, 5 ]},{[ 5, 6, 3 DJ

> for i in. [l..#SSS] do

for> for n in IN do

for|for> for n in IN do

for|for]for> if ts[5]*ts[6]  *ts[3]eq  

for|for I for I if> n*ts[Rep(Seqq[i] )[1]]*  

ts [Rep (Seqq [i] ) [2] ] *ts  [Rep (Seqq [i] ) [3] ] \ 

for|for|forlif> then print Rep(Seqq[i] ); 

for[for I for I if> end if; end for; end for;end for;

[ 5, 6, 3 ],[ 5, 6, 3 ],[ 5, 6, 3 ],

[5, 6, 3],[5, 6, 3]

> N563; #N563;Orbits(N563s);

Permutation group N563 acting on a set of

cardinality 10

Order = 1

1

> N563; #N563;

> N563s:=N563;
> #N563s;

1

> [5,6,3]“N563s;

GSet{ [ 5, 6, 3 ]>

> T563:=Transversal(N,N563);

> for i in [1..#T563] do
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for> ss:=[5,6,3]“T563[i];

for> cst[prodim(l, ts, ss)] := ss;

for> end for;

> m:=0; for i in [1..132] do if cst[i] ne [] 

for[if> then m:=m+l; end if; end for; m;

115

N5710:=Stabiliser (N,[5,7,10]);

> SSS:={[5,7,10]}; SSS:=SSS"N;

> SSS;

GSet{{[ 5, 7, 10 ]},{[ 2, 9, 7 ]]-,{[ 4, 6, 9 ]},

{[ 3, 10, 8 ]},{[ 1, 8, 6 ]}}

> #(SSS);

5

> Seqq:=Setseq(SSS);

> Seqq;

[{[ 5, 7, 10 ]},{[ 2, 9, 7 ]},{[ 4, 6, 9 ]},

<[ 3, 10, 8 ]}, {[ 1, 8, 6 ]}]

> for i in [l..#SSS] do

for> for n in IN do

for|for> for n in IN do

for|for|for> if ts[5]*ts[7]  *ts[10]eq  

for 1 for | for I if > n*ts[Rep(Seqq[i] ) [1]] * 

ts [Rep (Seqq [i] ) [2] ] *ts  [Rep (Seqq [i] ) [3] ] \ 

fori for I for I if> then, print Rep (Seqq [i] ) ; 

for I for I for I if> end if; end for; end for;end for;

[ 5, 7, 10 ],[ 5, 7, 10 ],[ 5, 7, 10 ],

[5, 7, 10 ],[ 5, 7, 10 ]

> N5710; #N5710;Orbits(N5710s);

Permutation group N5710 acting on a set of

cardinality 10

Order = 1
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1

> N5710; #N5710;

> N5710s:=N5710;

> #N5710s;

1

> [5,7,10]*N5710s;

GSet{

C 5, 7, 10 ]

> T5710:=Transversal(N,N5710);

> for i in [1..#T5710] do

for> ss: = [5,7,10] ~T5710[i] ;

for> cst[prodim(l, ts, ss)] := ss;

for> end for;

> m:=0; for i in [1..132] do if cst[i] ne [] 

for|if> then m:=m+l; end if; end for; m;

120

N571:=Stabiliser (N,[5,7,1]);

> SSS:={[5,7,1]}; SSS:=SSS"N;

> SSS;

GSet« [ 2, 9, 3 ] },{[ 4, 6, 5 ]},{[ 3, 10, 4 ]},

< [ 1, 8, 2 ]},{ [ 5, 7, 1 ]}}

> #(SSS);

5

> Seqq:=Setseq(SSS);

> Seqq;

[{ [ 2, 9, 3 ]},{[ 4, 6, 5 ]},{[ 3, 10, 4 ]},

<[ 1, 8, 2 ]},{[ 5, 7, 1 ]}]

> for i in [1..#SSS] do

for> for n in IN do
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for|for> for n in IN do

for I for If or> if ts[5]*ts[7]  *ts[l]eq  

for I for|for Iif> n*ts  [Rep (Seqq [i])[1]] 

*ts [Rep (Seqq [i] ) [2] ] *ts  [Rep (Seqq [i] ) [3] ] \ 

for I for I for I if> then print Rep (Seqq [i]) ;

] >)

J

[ [ J [ J,
[ ] [ [] ],

[ > [>] [*]

[ ] [ ],[
[ 3, 10, 4 ],[ 3, 10, 4 ],[ 3, 10, 4 ], 

[ 1, 8, 2 ],[ 1, 8, 2 ],[ 1, 8, 2 ],

[1, 8, 2],[1, 8, 2],[5, 7, 1],

[ 5, 7, 1 ],[ 5, 7, 1 ],[ 5, 7, 1 ],

[ 5, 7, 1 ]

> N571; #N571;Orbits(N571s);

Permutation group N571 acting on a set of 

cardinality 10

Order = 1 ' 

1

> N571; #N571;

> N571s:=N571;

> #N571s;

1

> [5,7,1]"N571s;

GSet{[ 5, 7, 1 ]}

> T571:-Transversal(N,N571);

> for i in [l..#T571] do

for> ss:= [5,7,1] "T571 [i] ;

for> cst[prodim(l, ts, ss)] := ss;

for> end for;

> m:-0; for i in [1..132] do if cst[i] ne []
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for I if> then m:=m+l; end if; end for; m;

121

N1026:=Stabiliser (N,[10,2,6]);

> SSS:={[10,2,6])-; SSS: =SSS~N;

> SSS;

GSetttE 8, 5, 9 ]},{[ 10, 2, 6 ]},{E 6, 3, 7 ]}, 

<[ 9, 1, 10 ]},{[ 7, 4, 8 ]}}

> #(SSS);

5

> Seqq:=Setseq(SSS);

> Seqq;

E<E 8, 5, 9 ]},{[ 10, 2, 6 ]},{[ 6, 3, 7 ]},

<[ 9, 1, 10 ] >,{[ 7, 4, 8 ]}]

> for i in [l..#SSS] do

for> for n in IN do

forlfor> for n in IN do

for I for Ifor> if ts[10]*ts[2]  *ts[6]eq

for I for | for I if> n*ts  [Rep (Seqq [i]) [1]]

*ts [Rep (Seqq [i] ) [2] ] *ts  [Rep (Seqq [i] ) [3] ] \ 

forlfor|for|if> then print Rep(Seqq[i]);

for Ifor I for I if> end if; end for;

end forjend for;

[ 10, 2, 6 ],[ 10, 2, 6 ],[ 10, 2, 6 ],

[ 10, 2, 6 ],[ 10, 2, 6 ]

> N1026; #N1026;Orbits(N1026s);

Permutation group N1026 acting on a set of 

cardinality 10

Order = 1

1

> N1026; #N1026;

> N1026s:=N1026;

> #N1026s;
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1

> [10,2,6]"N1026s;

GSet{[ 10, 2, 6 ]}

> T1026:=Transversal(N,N1026);

> for i in [l..#T1026] do

for> ss : = [10,2,6] "T1026 [i] ;

for> cst[prodim(1, ts, ss)] := ss;

for> end for;

> m:=0; for i in [1..132] do if cst[i] ne [] 

for|if> then m:=m+l; end if; end for; m;

126

> N545:=Stabiliser (N, [5,4,5]);

> SSS:={[5,4,5]}; SSS:=SSS"N;

> SSS;

GSet«[ 2, 1, 2 ]},{[ 4, 3, 4 ]},{[ 5, 4, 5 ]},

{[ 1, 5, 1 ]},{[ 3, 2, 3 ]}}

> #(SSS);
5

> Seqq:=Setseq(SSS);

> Seqq;
[<[ 2, 1, 2 ]},{[ 4, 3, 4 ]},{[ 5, 4,'5 ]},

<[ 1, 5, 1 ]}, {[ 3, 2, 3 ]}]

> for i in [l..#SSS] do

for> for n in IN do

for|for> for n in IN do

for|for|for> if ts[5]*ts[4]  *ts[5]eq  

for I for I for I if > n*ts  [Rep (Seqq [i]) [1]]

*ts [Rep (Seqq [i] ) [2] ] *ts  [Rep (Seqq [i] ) [3] ] \

for I for I for I if> then print Rep(Seqq[i]);

fori for I for Iif> end if; end for; end forjend for; 

[ 5, 4, 5 ],[ 5, 4, 5 ],[ 5, 4, 5 ],
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[ 5, 4, 5 ],[ 5, 4, 5 ]

> N545; #N545;Orbits(N545s);

Permutation group N545 acting on a set of 

cardinality 10

Order = 1

1

> N545; #N545;

> N545s:=N545;

> #N545s;

1

> [5,4,5]"N545s;

GSet{ [ 5, 4, 5 ]}

> T545:=Transversal(N,N545);

> for i in [l..#T545] do

for> ss: = [5,4,5]~T545[i] ;

for> cst[prodim(l, ts, ss)] := ss;

for> end for;

> m:=0; for i in [1..132] do if cst[i] ne [] 

for I if> then m:=m+l; end if; end for; m; 

131
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