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ABSTRACT

In this thesis, we have discovered several important groups that involve the classical
and sporadic groups. These groups have appeared as finite homomorphic images of the
progenitors 3*® : PGLy(T7), 2*14 : L3(2), 5*3 : S3 and 7*2 :,, S3. We used the technique
of manual double coset enumeration to give a by hand construction of several groups,
including (Ma; x 4) : S3, Us(3) : 3, and A7 . For some of the groups we have given
computer-based proofs of their isomorphism types. The symmetric presentations given
in this thesis for the groups Lo(7), Us(3) : 3, (M21 X 4) : S3 and S4(5) are original to the

best of our knowledge.
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Chapter 1

Introduction

The successful exploration of finite groups requires multiple methods, due to
their varied properties. We will investigate and construct several types of groups through-
out this thesis. The first type is symmetric, which we will discuss in Chapter 2. In Chapter
3, we will construct an elternating group, which we will then find and factor by the center.
In Chapter 4, we will construct a projective general linear group, denoted PGL. In some
instances, we utilize multiple types of groups within a single construction. Such is the
case in Chapter 5, where we will construct a unitary group as the homomorphic image of
a general linear group. In Chapter 6, we examine similar presentations of two different
types of groups via their homomorphic images by constructing a monomial presentation
of an elternating group as a homomorphic image of another monomial presentation of
a general linear group. We will also define and discuss the lifting process by induction,
which we utilize to determine multiple homomorphic images of a monomial progenitor in
Chapter 7.

1.1 Definitions
Group

A group is a set, G, combined with an operation *, such that:
(1) An identity element exists:
There exists an e € G such that forall ge G, exg=g*e=g

(2) The inverse element exists in Gt



There exists an h € G such that gxh=hxg=¢

We say H is a subset of G if every element of H is also an element of G.
Semi-Direct Product

Lemma 1.1. Let K be a group and A < AutK be a subgroup of the automorphism group
of K. Then the cartesian product A x K becomes a group under the binary operation” o”
defined by (a,z) o (b,y) = (ab, z%y) where a,b€ A and z,y € K.

The group constructed from a cartesian product of two groups A and K, as
described in the lemma above, is called a semi-direct product and is denoted by K : A.
A progenitor is a semi-direct product of the form:

P=m*: N = {aw|r € N and w is a reduced word in ¢;}
where m*” denotes the free product of n copies of the cyclic group of order m generated
by %; for ¢ = 1,2,...,n, of order n, and N is a transitive permutation group of degree n

which acts on the free product by permuting the generators ( i.e. joins), ¢;’s.
Group Action

Let G be a group and X be a nonempty set. We say that G acts on X if there
exists a mapping o : G X X — X defined as (g,z) — zg such that:
Nz 1l=z,VzeX
(2) For each z € X, z(gh) = (gh)z,VYg,h € X.
The mapping o is called an action of G on X.
If G is a group and a € G, then a conjugate of a is any element in G of the form g~ lag,
where ¢ € G. We also write g7lag = a%. If G act on X, then f : G — Sx is a
homomorphism. We have zf(g) = g,V € X

Right Coset

Let G be a group and H be a subgroup of G then a right coset of h € G is a set
Ha = {hala € G}, where a € G. The cosets partition the set G into disjoint subsets. We
note that:
(1) Either Ha = Hbor HaNHb=Q
(2) Ha= H ifand only ifa € H.



Orbits

Let G be a permutation group on the finite set X and let z € X. The orbit of
z is the set
XC = {z%|a € G}

Double Coset

Let H be a subgroup of G. Let £ € G. Then HzH = {Hzhlh € H} is a double
coset of H in G. Notice that double cosets are composed of right cosets, i.e. single cosets.
The inder of a subgroup H &€ G, denoted by [G : H| = %, is the number of single
cosets of & in G. In particular, the number of single cosets in the double coset NwiN
is ﬁVI(VTI” To determine the distinct single cosets in a double coset NwiV, you take Nw
and conjugate it by its coset stabiliser N {w), If N®) has several elements, you do this
for each element. The orbits of N®) on the symmetric generators are obtained through

conjugation of each generator by N, The orbits are disjoint.
Permutation Group

In some of the following chapters, we will be dealing with groups in which the
control subgroup, N, is a permutation group. The permutation group Sy is the group of
permutations of (01234....n}). The order of S, is |S,| = n!

Let X = {1,2,3,..}. Then Sx, the set of all one-to-one and onto mappings
from X to X, called permutations of X, forms a group under function composition. Sy
is called the permutation group of X. If X = {1,2,3,...,n}, then Sx = S, is called the

symmetric group of degree n.

1.2 Types of Representations

In group theory, we have different ways to characterize and define a specific
group. We define these different methods of expressing groups as a representation.
We will discuss four different types of representations known as symmetric, permutation,

matriz and monomial. We will first discuss symmetric representation.



Symmetric Representation

We define a symmetric representation of a group G of the form

PN

Wy, MWy, ...

G

IR

where p*” denotes a free product of n copies of the cyclic group of order p, NV is a transitive
permutation group of degree m which permutes the n generators of the cyclic groups
by conjugation, which defines a semi-direct product factored by the relators, denoted
Twy, TWa, ...

The progenitor p*™ : N represents an infinite group, so to produce finite images

of G, we must factor by some relation represented by 7w, 7ws,....

Permutation Representation

We will now dicuss a permutation representation of a group.

Let G be a group, denoted by
G = {a,b|a? = b* = (ab)® = 1}

where ab = ba. The elements within this group are {e, a, b, ab}. We will demonstrate the

permutation representaion of G by denoting the elements a and b as two cycle permutaions
a=(1,2)(3,4) and b= (1,3)(2,4).
Then the permutaion representation of this particular G is
P =<(1,2)(3,4),(1,3)(2,4) >

where all the elements within G are generated by these two cycle permutations via right

hand multiplication. This gives us
{e, (1,2)(3,4),(1,3)(2,4),(1,4)(2,3)}
Matrix Representation

We define a Matrix representation of a group G as



G — GL(n,C), where GL(n,C) is a general linear group of degree n
defined by
z — A(z)
where
A:G - GL(n,C)

is a representation of G if A is a homomorphism. Thus, A is an n X n matrix. Now, since

matrix multiplication is associative, we have
A(z) - Aly) = Alzy),Vz,y € G
which implies that
A(z™Y) = A(z)~L.
Since

Alz) - Az ) = Ale) = I,
= A(z) = A(z)™?

Now,
A(z) = A(z - €) = A(x) - Ale) = A(z)
which implies
Ale) =1
Now, the matrix representation of this same group G would be denoted
01
a=
10

and similarly,



If we square the matrix denoted a, we have

, |10
01

and repeat the process with b, which gives us

b2 — 10
01
So, by right hand multiplication, we have
= =1

Thus, a and b satisfy < a, bla? = b® = (ab)? = 1 >. This process implies that

01 10
10/ ]o1
is a matrix representation of GG.

Monomial Representation

A monomial representofion of a group ¢ is a homomorphism from G into
GLp(F), the group of non singular n X n matrices over the field F', in which the im-
age of every element of G is a monomial matrix over F. The action of the image of a
monomial representation on the underlying vector space is to permute the vectors of a
basis while multiplying them by scalars.

Every monomial representation of G in which G acts transitively on the 1-
dimensional subspaces generated by the basis vectors is obtained by inducing a linear
representation of a subgroup H up to G. If this linear representation is trivial, we obtain
the permutation representation of G acting on the cosets of H. Otherwise we obtain a
proper monomial representation.

An ordinary linear representation of H is a homomorphism of H onto Cy,, where
Cm is a cyclic multiplicative subgroup of the complex numbers C, and the resulting
monomial matrices will involve comples mth roots of unity. Similarly, we can define a

linear representation into any field ¥ which possesses mth roots of unity.



1.3 Methods and Applications

The Manual Double Coset Enumeration

Building on the above definitions of right coset and double coset, we define
the process of manual double coset enumeration, which is the process of determining
the decomposition of single and double cosets within a finite group G factored by some

relation.
The Lifting Process

Let GG be a group, let N be a normal subgroup of G and xo be a character of
G / N. Then we define

x(g) = xo(Ng),Vg € G.

x is a character of G lifted from the character xo of G / N.
Naote:

x(n) = xo(Nn) = xo(N)

An example of the lifting proces will be performed in Chapter 7.
Factoring by the Center

As we complete the double coset enumeration of a finite group factored by a
relation, we determine the permutation representation of that group. The three resulting
permutations zz = f(z), yy = f(y) and tt; = f(¢) generate our group G. Factoring by the
center is the process by which we find the centralizing elements (denoted Z) of our group
to determine which double coset (or double cosets) represent blocks of impermiability
that are at the center of the group. We then find the double coset(s) that contain a single
coset farthest from our identity coset (denoted[+]). We then determine what our Z is by
setting the coset representative of that double coset equal to the identity to find our new

relation based on the equation

z=n-w, where w is a word in the /s and m = n~1.

Once we have determined our new relation, we perform double coset enumeration
of our group with the new relation, which will collapse the group into a smaller Cayley

diagram configuration. We utilize this property to find the centraliser of our group.



Chapter 2

Construction of 2° : Ss

We have a computer-based proof that G is isomorphic to 2° : S5. This proof is
obtained as follows: We first us MAGMA to obtain the composition factors of a permu-

tation representation of G. This is done as follows:

f,G1,k:=CosetAction(G,sub<G|x,y>);

CompositionFactors(Gl);
gives

G
| Cyelic(2)

| Alternating(5)
| Cyclic(2)
| Cyclic(2)
| Cyclic(2)
| Cyclic(2)

| Cyelie(2)



We now write a presentation of the group 25 : S5 (obtained based on the composition
factors above) and verify that G =225 : G.
2+ : g,
tol1 = 4itp
We will perform a double coset enumeration on the group 2*° : S5 factored by

the relation tot; = t1tp, denoted by the following group representation:
G =<z, y,vthS,y2, tzs (:cy)4, (ms y)3) ty) (¢ m2ym—-ly)’ (ttm)2 >

where N =< z,y >= 855, £ ~ (01234) and y ~ (01). We know N & Sy has 120 elements,
or |N| =120.

2.1 Relations

We are given the relation tgt1 = t14p. This relation can be used to determine
equal cosets with words of length two. We take Nigt; = Nt1to and conjugate it by every

element in our control group S5 to get the following relations:

tota = tato, lotz =t3to, tots = tatp,
b1ty = tot1, itz =131, ti1t4 = U4y,
lots = t3ly, iotq = i4ta, I3lys = l4i3.

To utilize our relations for words of length three, we must use right coset multiplication
by the t;s to increase the length of the relations. Then we use the above relations to

manipulate the relations of length three:

totita = titoty
= titato
= tatitg
= tatots

Using this method, we can determine all the relations with words of length three:

012 ~ 102 ~ 120 ~ 210 ~ 201 ~ 021
031 ~ 301 ~ 310 ~ 130 ~ 103 ~ 013
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041 ~ 401 ~ 410 ~ 140 ~ 104 ~ 014
241 ~ 421 ~ 412 ~ 142 ~ 124 ~ 214
231 ~ 321 ~ 312~ 132 ~ 123 ~ 213
341 ~ 431 ~ 413 ~ 143 ~ 134 ~ 314

To utilize our relations for words of length greater than three we repeat the aforementioned
process, adding the appropriate amount of letters as needed.

2.2 Double Coset Enumeration

NeN

NeN is a double coset made up of words of length zero. We know NeN = {N},
which is the first double coset [*]. There is one single coset within the first double coset.
The coset representative for [*] is Ne. We find the orbits of V on 0, 1,2, 3,4 by permuting
each element by g € N as follows:

09 = {01234}
19 = {01234}
29 = {01234}
39 = {01234}
49 = {01234}

Thus, we see that the orbit on N on {0,1,2,3,4} is {0,1,2,3,4} When we apply a
representative t; from each orbit to the coset representative Ne we see that all five of
the elements in orbit {0,1,2,3,4} extend to a new double coset NtgN, called [0]. This

double cosets will be made up of words of length one.
NtoN

We must first determine the coset stabilizer, denoted N . We look at permu-
tations in N and find those that ”fix” the the element 0. So, N(® =< (1234),(12) >,
is the point stabiliser in N of 0. At this point in the process, our relation ipt; = t1f
is not needed, since it does not affect words of less than length two. Thus, our point

stabilizer, denoted NC is also our coset stabilizer, denoted N ©), Since N is transitive on
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{01234}, the 24 permwutations that ”fix” the element (0) represent the coset satbilizers.

Thus, |N©] = 24. We now will determine the number of single coset in the double coset

[0] by this formula ﬁv%'ﬁ This gives us 122 = 5. The coset representative for [0] is Nt,.

We now identify the orbits of N{® and determine their action. Since the element (0) is
fixed, our two orbits are {0} and {1,2,3,4}. When we apply a representative #; from each

orbit to the coset representative Nty we see that the following results:
Ntg-to = N(tg)2 € NeN

So the the orbit {0} takes one generator back to the double coset [*].
Ntg -t1 = Ntgty € Ntot: N

So the the orbit {1,2,3,4} extends four generators to a new double coset
Ntot1 N, denoted [01).

Ntot1IN

'We now have a double coset with word of length two, so our relation fgt1 = ¢1tp
must be utilized to help us accurately determine the coset stabilizer. The following
equations will tell us what permutation(s) increase the coset stabilizer by taking the

representative coset back to itself:
Ntgty = Ntito = Ntotl’?) = Ntyto = Nty

So (01) € N, Thus, the generators of N are: < N9, (01) >. The six elements
of the coset stabilizer N1 are : {e, (23), (24), (34), (234), (243)}. The permutation (01)
will double this number, so |N(°Y| = 12. We may now determine the number of single

cosets in the double coset [01] by our formula:

|
[N

This gives us:
120 _
12 = 10.

So there are ten single cosets in the double coset [01] .
Next, we will determine the orbits of Ntgt1. Since N%' =< (234),(23) >, our
orbits of N on {0,1,2,3, 4} are {0,1} and {2, 3,4}. We take a representative coset from

[01] and a representative t; from each orbit to determine the action:
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Nigt1 - t1 = Nto(t1)2 = Nty € NigN
So the the orbit{0, 1} takes two generators back to the double coset [0].
Ntgty - to = Nigt1ts € NitgtiteN

So the the orbit{2, 3,4} extends three generators to a new double coset
Ntgt1teN, denoted [012].

NitgtitaN

We wish to determine the single cosets in the double coset [012] and to do this,

we will ”fix” our next point (2). Thus, the point stabilizer will be :
NO12 =< (34) >.
Using our relation, we can expand the point stabilizer to our desired coset stabilizer:

Ntot; = Nttg = Nigt1ta = Nitjtote = Ntpto ( right hand coset multiplication of £3)
= NitgtityV = Ntitots = Ntotits = the permutation (12)(°1) e N(°12)

So (01) € N(12), Thus, the generators of N(©1:2) are: < (34), (01)(*? > The six elements
of the coset stabilizer N(©12} are : {e, (01), (02), (12), (012),(021)}. The permutation
(34) will double this number, so |N©12)] = 12

We may now determine the number of single cosets in the double coset [012] by

our formula:

_IN]
[NV 017)]

This gives us:

120 _
L0 - 10.

So there are ten single cosets in the double coset [012] .
Next, we will determine the orbits of Ntptito. Since the elements 0,1 and 2 are
fixed, our orbits of N(12) on {0,1,2, 3,4} are {0,1,2} and {3,4}. We take a representative

coset from [012] and a representative ¢; from each orbit to determine the action:

Ntgtits - to = Ntot1(te)? = Ntgt1 € Ntot1 N



13

So the the orbit{0, 1,2} takes three generators back to the double coset [01].
Nigtitg - t3 = Nigtitats € NitgtitataN

So the the orbit{3,4} extends two generators to a new double coset
Nigttqts N, denoted {0123].

NtgtitatsN

We determine the single cosets of [0123]. We begin by "fixing” our next point
(3). Thus, the point stabilizer will be :

NOIB =< e >,

Expanding our relations (as shown in section 2.1), we can increase the point stabilizer.

‘We note:

02~20, 03~30, 04~ 40,
12~21, 13~31, 14~41,
23~ 32, 24~42, 34~43.

The above relations are used to determine the elements in N(%123), We do this by conju-
gating the representative coset Nigtitets by generators that will take the point stabilizer
back to itself:

Ntotltzt:(;m) = Ntitotots = Nigtitats — (01) € N(0123)
Nt0t1t2t§012} = Ntitatots = Nitgtitats — (0,1,2) € N(0123)
Nitot 828012 = Nt totsto = Ntotitats — (0123) € N(©129)
So N(0123) —< (01), (012), (0123) >. Now |[N(©123)| = |§,| = 41 = 24

We may now calculate the number of single cosets in [0123] by our formula:

V]

[N (23]
This gives us:

120 _
24 — Y
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So there are five single cosets in the double coset [0123] .

Next, we will determine the orbits of Ntgtitats. Since the elements 0,1,2 and
3 are fixed, our orbits of N(©23) on {0,1,2,3,4} are {0,1,2,3} and {4}. We take a
representative coset from [0123] and a representative t; from each orbit to determine the
action:

Nigtytats - t3 = Nigtita (t3)2 = Ntot1ts € Nitgt1toN
So the the orbit{0, 1,2, 3} takes four generators back to the double coset [012].
Nitgtitats - tg4 = Nigtitotzty € Nigtytotata N

So the the orbit{4} extends one generator to a new double coset
Ntgtitatsta N, denoted [01234].

NtotitaotgtaIN

We determine the single cosets in the double coset [01234]. First note that all

of the five elements are”fixed”. Thus, the point stabilizer is :
NOZM —c g >,

As before, we must apply the appropirate permutation to the point stabilizer to send it
back to itself:

Ntgtitatst™ = Nitgtatatats — (0,1) € N©1239)

Ntotltzt;;t‘(im%‘!) = Ntjlotststg = Nigtitatsts — (0, 1,2,3, 4) e N(01234)

Now |N1234)| =< (01), (01234) >= {S5] = 5! = 120
We may now calculate the number of single cosets in [01234] by our formula:

Nl
[N (01233)]

This gives us:

[y
o

12 -,

i

[=/

So there is one single coset in the double coset [01234] .

Next, we will determine the orbits of Ntgtytotsts. Since all of the elements
are fixed, our single orbit of N(®1234) on {0,1,2,3,4} is {0,1,2,3,4}. We take a rep-
resentative coset from [01234] and a representative ¢; from this orbit to determine the

action:
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Ntotitotsty - t4 = Nigt1tats(ts)? = Niotitats € Nigtitots N

Thus, the the orbit{0, 1,2,3,4} takes all five generators back to the double coset [0123]
Since we have no generators extending to néw double cosets, our double coset enumer-
ation is complete. All this information is summarized in the following cayley diagram

Figure 2.1:

Figure 2.1: Cayley diagram for 2° : S5

In Table 2.1, we first label each single coset. We then compute the action of zz,

yy, and tto. We will use the information in the table to determine f(z), f(y), and f(t).



Table 2.1: Labeling of and Actions on the Single Cosets

Labeling Single Cosets zx yy tto
1 N 1 N 1 N 2 Nt
2 Nty 3 Nt 3 Nt 1 N
3 Ny 4 Nt 2 Nty 7 Nigt
4 Nty 5 Nia 4 Nitg 8 Nipty
5 Ni3 6 Nty 5 Nt 9 Nigis
6 Niy 2 Nt § Nty 10 Nipgty
T Ntoty 11 Ntito 7 Ntota 3 NY
8 Ntgio 12 Ntjtg 11 Nijtg 4 Nty
9 Nigts 13 Nttty 12 Ntttz 5 Nis
10 Ntpty 7 Nitgty 13 Nttty 6 Nty
11 Ntiiq 14 Niots 8 Nipte 17 Nigtity
12 Ntytg 15 Ntoty 9 Nigis 18 Nigtits
13 Ntits 8 Nigty 10 Ntgty 19 Nigtiy
14 Nitotg 16 Ntgty 14  Nigts 20 Nigtats
156 Nigty 9 Nipts 15 Nigty 21 Ntgtaty
16 Niaty 10 Nioty 16 Nigty 22  Ntgtaty
17 Nigtita 23 Ntyitsilg 17 Nigtity 11 Niits
18 + Nigtyis 24  Ntytoty 18 Ntgtits 12 Niits
19 Nigtity 17  Ntptito 19 Nigtity 13 Niyty
20 Nigtats 25 Nijtaty 23 Ntjtotg 14 Niois
21 Nigtaty 18 Nigtyts 24 Nijtaty 15 Niagty
22 Nigtgty 19 Nigtity 25 Nitzty 16 Nigty
23 Nijtots 26  Niatsty 20 Nipiats 27 Nigtitats
24 Ntytoty 20 Nigtots 21 Nigiaty 28  Nigtiiaty
25 Ntitats 21 Nttty 22  Nigtsts 29  Ntgtitsty
26 Ntatgty 22 Niptsty 26 Nigtaty 30 Nigtataty
27 Nigtytats 31 Ntytatlsty 27 Ntgtitots 23 Nijioty
28 Nigtitats 27 Nigtitots 28 Nigtitaty 24 Ntitoty
29 » Nitgtitsty 28 Nigtitata 29 Nigtitsty 25 Nijtsty
30 Nitototaty 20  Nigtitsty 31 Niitolsty 26 Nigtaty
31 Nititotsty 30 Nipiqtsty 30 Nigtatsty 32 Nitgtitotsty

32 Nigtytotsty 32 Ntgtitatsts 32 Nigtitotsta 31 Niytolsty
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Thus:

F(@) = (2,3,4,5,6)(7,11,14, 16,10)(8, 12, 15, 9, 13)(17, 23, 26, 22, 19)

(18,24, 20, 25,21)(27, 31, 30, 29, 28)

Fly) = (2,3)(8,11)(9, 12)(10, 13)(20, 23) (21, 24) (22, 25)(30, 31)

f(@) = (1,2)(3,7)(4,8)(5,9)(6,10)(11, 17)(12, 18)

(13,19)(14, 20)(15, 21)(16, 22)(23, 27)

2.3 Factoring by the Center

We will find the centralizer of 2° : S5 and factor by its center. The order of our
blocks of impermiability is two,since we have 2 double cosets that contain only one coset.
We see that these permutatons occur on 32 letters because there exist 32 single cosets in

this group. So we have our central element

F() = (1,2)(3,7)(4,8)(5,9)(6,10)(11,17)(12, 18)(13, 19)
(14, 20)(15, 21)(16, 22)(23, 27)(24, 28)(25, 29)(26, 30) (31, 32).

We examine our Cayley diagram and determine the double coset [0,1,2,3,4]
contains only one coset (excluding the identity coset). We then determine our centralizer

Z by setting the coset representative of that double coset equal to the identity

Nt0t1t2t3t4 =€
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We let z = n - w, where w is

totitolsty = €
totitoty = tg1

totate = 35"

Since t? = e then ¢ = ¢t~1. Hence, our relation is toti1ty = t4ta

Using our prior relation fgt1 = £1tg, we also have fotito = t3ty

We now repeat the double coset enumeration with our new relation.
25 . Sy
totitz = tata

We will perform a double coset enumeration on the group 2° : Ss

factored by the relation tgt;te = t3ts, denoted by the

following group representation:

G =< Z,Y, t[a;s, y21 t2a (Iﬂy)4, ("D: y)37 (ti y)7 (ts x2yx-—1y)’ (ttz)zs ttmt(mg)t(ms)t(x4) >
where N =< z,y >2 85, z ~ (01234) and y ~ (01). We know N = S5 has 120 elements,
or |N| = 120.

2.4 Double Coset Enumeration

NelN and NtgIN

Our procees for this double coset enumeration will be repeated exactly as in the
above steps for double coset NeN and Nty N due to the fact that our new relation will

not increase the coset stabilzer N©©. Recall:

NeN ={N}
NitgN = {Nto,Ntl,th,Nt3,Nt4,}

Ntot1IN

We now have a double coset with word of length two, so our relation ¢yt 1ty = tgty

must be utilized to help us accurately determine the coset stabilizer.
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Nitgt; = Nittg = Ntot(lon = Ntitg = Nt1tp

So (01) € NOD. Thus, the generators of N(° are < N (01) >. The six
elements of the coset stabilizer NOU are : {e, (23), (24), (34), (234), (243)}. The permu-
tation (01) will double this number, so |[N{°))| = 12. We may now determine the number
of single cosets in the double coset [01] by our formula |W|Aé|17|' This gives us: 11270 = 10.

So there are ten single cosets in the double coset [01] .

Now we determine the orbits of [01] to be {0,1} and {2,3,4}. We will take a
representative t; from each of these orbits and apply right hand multiplication to the

coset Nigtq:

1. Ntgty -to = Nt0t2 = Ntg € NtpN denoted [0], so this orbit takes 2 generators back
to the double coset [0].

2. Ntpt1-t2 = Ntgtita = Niatz € Nitgt1N denoted [01], so this orbit takes 3 generators
back to itself (the double coset [01}).

Since we have no generators extending to new double cosets, our double coset
enumeration is complete. All this information is summarized in the following cayley dia-

gram Figure 2.2

Figure 2.2: Cayley diagram for 2° : S5 Factored by tot1te = tats
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Chapter 3

Construction of 3*3 : A,

3*3 H Ag
T gty = tatg

We will perform a double coset enumeration of the group 3*3 : A3 factored by

the relation tot; = t1tg, given by:
G =< z,t|2d, 83, " = t°t >

We have a computer-based proof that G = C3 x C3 X C3 x Cj.

where N =< z,t > A3, z « (0,1,2)(01,2). We know N = A3 has 3 elements , or
|N|=3.

3.1 Relations

Since this group has three generators, we let ¢ = t3. Our given relation is

tt* = t*t. We can substitute the values for ¢ ~ f3 and = ~ (123)(123) and obtain

s tg123)(123) _ 7::(,’123)(12:';) ta. thus:

tat; = i3t;.
We prefer to to write t3 = ¢p. Thus, our relation is:
tot1 = tot1.

We have the three generators g, ¢1, t and their inverses, denoted by £, 1, £2, respectively.
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3.2 Double Coset Enumeration

NelN

NeN is a double coset made up of words of length zero. We know NeN = {N},
which is the first double coset [*]. The coset representative for [¥] is V. We find that the
orbits of N on {0,1,2,0,1,2} are {0,1,2} and {0,1,2}. When we apply a representative
¢; from each orbit to the double coset representative N we see that the elements in orbit
{0,1,2} extend to a new double coset NtgN, denoted [0], and.the elements in the orbit
{0,1,2} extend to another new double coset N%yN, denoted [0]. These double cosets will
be made up of words of length one. Unlike 2% : S5 in the previous chapter, this Cayley
diagram splits from [«] and extends to two new double cosets denoted [0] and [0] as shown

in Figure 3.1 below:

Figure 3.1: Partial Cayley diagram of G over Ajz

NtoN

We now will determine the number of single coset in the double coset [0] by

3 _

this formula which gives us ¥ = 3. The coset representative for [0] is Ntp. We now

|N}
IN©]
identify the orbits of N(® and determine where they go. We see that the orbits of N
on {0,1,2,0,1,2} are {0}, {1}, {2},{0},{1}, {2}. When we apply a representative ¢; from

each orbit to the coset representative Nty we see the following results:

1. Ntotg = Nty which means this orbit extends Nty to a.new double coset N#yN,
denoted [0].

2. Nigti= Nipt; which means this orbit extends Nty to a new double coset Nigt N,
denoted [01].

3. Nipte, which means this orbit extends Nty to a new double coset NitgtoV, denoted
[02]. Our relation tells us the double coset [02] is equivalent to [01]. Hence, this orbit
takes Nig to the double coset [01]



4. Ntgto = Ne = N, which takes this coset back to the double coset [*].

5. Ntgt1, which means this orbit extends Nty to a new double coset Ntgf1V, denoted
0],

6. Ntota, which means this orbit extends Ntg to a new double coset Ntgta IV, denoted
[02).

NtoN

We now will determine the number of single coset in the double coset [0] by
this formula I_JE%I)_I which gives us % = 3. N is the stabiliser of the coset N%. We now
identify the orbits of N©) and determine where they go. We see that the orbits of N©
on {0,1,2,0,1,2} are {0}, {1}, {2},{0},{1}, {2}. When we apply a representative #; from

each orbit to the coset representative Nty we see that the following results:
1. Ntgto = Ne=N which means this orbit takes Nt back to the double coset [*].

2. Nipty. Our relation tells us the double coset [01] is equivalent to [02]. Hence, this
orbit takes N7y to the double coset [02)].

3. Niyts. Our relation tells us the double coset [02] is equivalent to [01]. Hence, this
orbit takes Nig to the double coset [01]

4. Ntyty = Ntgy, which takes this coset back to the double coset [0].

5. Ntgt;, which means this orbit extends Nty to a new double coset Nyt N, denoted

[o1].

6. Ntots, which means this orbit extends Ny to a new double coset NigtaV, denoted
03],
From this point on in our process, we will be dealing with words of length two or more, so
we must utilize our relation #yt; = ¢1¢p to find our remaining cosets. In addition, we will
use our relation to determine which double and single cosets (if any) exist in other single
or double cosets. First, we must calculate all our relations. Conjugation by elements of

As gives rise to the following relations:
01 ~ 10, 20 ~ 02, 12 ~ 21,01 ~ 10,12 ~ 21,20 ~ 02,12 ~ 21,20 ~ 02,01 ~ 10
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Furthermore, we use the above relations to seek out which double cosets are
actually elements of other double cosets. We call these “equal cosets”. We will show that

many double cosets in this group are equal. MAGMA confirms what we will show by

hand:
Remembering our notation;
3=0,1=1,2=2,6=0,4=1,5=2.
We prove that [02] = [01);
Note: Az =< (012),(012), (021)(021),e > .
pf:
[01] = [02]
NtgtyN= {N(tot1)" € N} = {Ntgt1, Nt1ta, Nioto}
But our relation tells us that Niotg = Nigte € NigtaN
So Ntot1 N = NtptaN.
[01) = [03]
NigtiN = Nigla N
NigtgyN= {N(pt1)" € N} = {Nipty, Niato, Ntito}
But our relation tells us that Nistg = Nigta € Nigh N
So Ntgt1 N = NigipN.
Similarly, we prove that the remaining ten double coset equalities listed below:
[02] = [01], [01] = [02], [02] = [01], [02] = [01],
[012] = [012], [012] = [012], [012] = [012], [012] = [012)
[0121] = [02], [0121] = [012)], [0120] = [0Z], [0120] = [012].
We will now use these relations to help us find our remaining cosets.
NtotiN

We now will determine the number of single coset in the double coset [01] by

this formula —J-J(%Jl—ﬁ which gives us % = 3. The coset representative for [01] is Ntgt;. We

|N
now identify the orbits of N1 and determine where they go. We see that the orbits of
NOY on {0,1,2,0,1,2} are {0}, {1}, {2},{0},{1},{2}. When we apply a representative

t; from each orbit to the coset representative Nty we see the following results:
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. Niptito = Ntgtpt, = Nigt; which means this orbit extends Ntgt, to a new double

coset Nfoty N, denoted [01].
We have proven that [01] = [02], so this orbit extends Ntgt; to [02].

. Nigt1t)= Nigt; which means this orbit extends Ntgt; to a new double coset Niofy V,

denoted [01].

. Ntgtits which means this orbit extends Nigt; to a new double coset NigtitalN,

denoted [012].

Nitgtito = Nt;, € [0].

. Ntot;f; = Nty, which means this orbit extends Ntgt; back to the double coset

NtgN, denoted [0].

. Ntgtits, which means this orbit extends Ntgt; to a new double coset Nigt s N,

denoted [012].
We have proven that [012] = [012], so this orbit extends Nto#; to [012].

NtpteN

We now will determine the number of single coset in the double coset [02] by

this formula fv%lz)—l which gives 3 = 3. The coset representative for [02] is Ntota. We now
identify the orbits of N2 and determine where they go. We see that the orbits of N(02)

on {0,1,2,0,1,2} are {0}, {1}, {2},{0},{1}, {2}. When we apply a representative ¢; from

each orbit to the coset representative Ntpta we see the following results:

1.

Ntgtato = Nipty which means this orbit extends Nigts to a new double coset
NigtaN, denoted [02)].

Nigtati= Niptite which means this orbit sends Ntgty to the double coset Nigt £aN,
denoted [012].

. Nitgtats = Ntigta, which means this orbit extends Ntgts to a new double coset

Ntgty N, denoted [02)].

Nigtaty = Nigloty = Ntg, € [0]
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5. Nigtoty = Nigt1te, which means this orbit extends Ntots to a new double coset
Ntgtita N, denoted [012].
6. Ntotota = Ntg, which means this orbit sends Nigta back to the double coset [0].

NtotiN

We now will determine the number of single coset in the double coset [0I] by
this formula I{V(—f‘g&,—[ which give"s us % = 3. The coset representative for [01] is Ntot;. We
now identify the orbits of N and determine where they go. We see that the orbits of
N©D on {0,1,2,0,1,2} are {0}, {1}, {2},{0},{1}, {2}. When we apply a representative

t; from each orbit to the coset representative Ntgt; we see the following results:

1. Ntotitg = Nigt; which means this orbit extends Nty to a new double coset NN,
denoted [0].

2. Ntgtit) =Nty which means this orbit takes Ntg#; back to the double coset [0].

3. Ntptitg, which means this orbit extends Nigf; to a new double coset NtofitaN,
denoted [012].

4. Ntot1fo = Ny, which takes this coset back to the double coset [0].

5. Ntot1f1 = Nigty, which means this orbit takes Ntgf, back to a the double coset
[01].

6. Ntotito, which extends Nigf; to a new double coset [012] = [012].
NtotaIN

We now will determine the number of single coset in the double coset [02] by
this formula ﬁ% which givef; us 3 = 3. The coset representative for [02] is Ntols. We
now identify the orbits of N and determine where they go. We see that the orbits of
N© on {0,1,2,0,1,2} are {0}, {1}, {2},{0},{1},{2}. When we apply a representative

t; from each orbit to the coset representative Ntgts we see that the following results:

1. Niptoty = Ntioty which means this orbit extends Ni#pts to a new double coset
NtgteN, denoted [02).
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2. Nitgtot; =Ntgtifa which means this orbit extends Ntgfs to a new double coset
Ntgt1E2 N, denoted [012) € [012).
3. Ntglaty = Nty, which means this orbit sends Nyt back to [0].
4. Ntglafy = N, which takes this coset back to the double coset [0].
5. Niglafy = Ntofifz, which means this orbit takes Ntgtz to a new double coset [012)].

6. Ntgtafs = Ntgts, which means this orbit extends Nigfs to the double coset [02)].
NEot;N

We now will determine the number of single coset in the double coset [01] by

this formula which gives us % = 3. The coset representative for [01] is Ntpt;. We

_IN]
W] ¢
now identify the orbits of N(®1) and determine where they go. We see that the orbits of
N® on {0,1,2,0,1,2} are {0}, {1}, {2},{0},{1}, {2}. When we apply a representative

t; from each orbit to the coset representative Nigt; we see the following results:
1. Nigtitg = Nt; which means this orbit takes Nigt; back to the double coset [0].
2. Nipt1t) = Nipt,, which means this orbit takes Nyt; to the double coset [01].

3. Nipt1to, which means this orbit extends Ntgt; to a new double coset NigtitalV,
denoted [012] = [012)].

4. Ntgtito = Ntot1, which takes this coset back to the double coset [01].
5. Nipt13; = Nip, which means this orbit takes N#ot; back to the double coset [0].

6. Ntgtite, which means this orbit extends Nipt; to a new double coset Nigt iaN,
denoted [012] = [012].

NtgtaN

We now will determine the number of single coset in the double coset [02] by
[N
[N OB

now identify the orbits of N ©02) and determine where they go. We see that the orbits of
N®) on {0,1,2,0,1,2} are {0}, {1}, {2}, {0}, {1}, {Z}. When we apply a representative

t; from each orbit to the coset representative Nigts we see the following results:

this formula which gives us 2 = 3. The coset representative for [02] is Ntgta. We
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. Ntgtato = Nty which means this orbit takes Nigts back to the double coset [0].

Nigtgty = Nigtite, which means this orbit extends Nipt2 to the double coset [012] =
[012].

. Ntgtgta = Niote, which means this orbit takes Nigts to the double coset [02].

. Ntptato = Ntotz, which takes this coset back to the double coset [02].

Nigtaty = Nigtits, which means this orbit extends Nipto to a new double coset
[012).

Nigtaty = Ntp, which means this orbit takes Nipts back to the double coset [0].

Ntgt1N

We now will determine the number of single coset in the double coset [01} by

this formula 5L which gives us = 3. The coset representative for [01] is N, We
1

INGD]

now identify the orbits of N0 and determine where they go. We see that the orbits of
N®D on {0,1,2,0,1,3} are {0}, {1}, {2}, {0}, {1}, {2}. When we apply a representative

t; from each orbit to the coset representative Niyt; we see the following results:

1.

2.

Nigtito = Nt; which means this orbit takes Nfpf; back to the double coset [0].
Niotity = Ntp, which means this orbit takes N#gf; to the double coset {0].

Ntgtito, which means this orbit extends Nipf; to a new double coset NEgtitaNV,
denoted [012].

. Nipt1%p = Ntot1, which takes this coset back to the double coset [01].

. Nitgt1t; = Nigt;, which means this orbit extends Nipf; to a new double coset

Nigt1 N, denoted [01] = [02].

Nigtits, which means this orbit extends NZgf; to a new double coset N#yfifa N,
denoted [012].
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NtotaIN

We now will determine the number of single coset in the double coset [02] by
this formula uvaliﬂ which gives us % = 3. The coset representative for [ﬁﬁ] is Nigty. We
now identify the orbits of N3 and determine where they go. We find that the orbits of
N®) on {0,1,2,0,1,2} are {0}, {1}, {2}, {0}, {1}, {2}. When we apply a representative

t; from each orbit to the coset representative Nigts we see the following results:
1. Nigtatg = NIz which means this orbit takes Nigta back to the double coset [0].

2. Nigtat; = Ntgtyte, which means this orbit extends Ntfpf; to a new double coset
Nigt1#2N, denoted [012].

3. Niotate = Nip, which means this orbit takes Nigfs to the double coset [0].

4. Nigtofy = Ntgle, which means this orbit extends Nigfs to a new double coset
NtotoN, denoted [OQ]

5. Nigtat; = Nigtits, which means this orbit extends N#pts to a new double coset
Ntptita N, denoted [012).

6. Nigtata = Nigte, which means this orbit extends Niyty to a new double coset
Nipt2N, denoted [02] = [01].

Ntot1toIN

We now will determine the number of single coset in the double coset {012] by
this formula IW”“%,WI which gives us -g- = 1. The coset representative for [012] is Nigtite.
We now identify the orbits of N (012) 4nd determine where they go. We find that the
orbits of N©12) on {0,1,2,0,1,2} are {0}, {1}, {2}, {0}, {1}, {2}.

When we apply a representative #; from each orbit to the coset representative

Ntpt1to we see the following results:

1. Nigtitoty = Nigtitz which means this orbit takes Ntgtits to the double coset
[012] = [012].

2. Ntgtitaty = Nigtits which means this orbit extends Ntgtite to the double coset
[0T2).

L,
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3. Ntotitoto = Nigt1fs which means this orbit extends Nigtit2 to a new double coset
Ntot1£2N, denoted [012] = [012].

4. Ntotitato = Ntyte, € [01].

5. Ntgtitof, = Ntpts, which means this orbit takes Ntgt;ts back to the double coset
[02] = [01].

6. Ntgt1tats = Nitgt;, which means this orbit takes Ntgt1ts back to the double coset
{o1].

NtgtytoN

We now will determine the number of single coset in the double coset [012] by

this formula which gives us % = 3. The coset representative for [012] is Nigt;fo. We

Nl _
[N i
now identify the orbits of N2 and determine where they go. We see that the orbits of
N©2) 61 {0,1,2,0,1,2} are {0}, {1}, {2}, {0}, {1}, {Z}. When we apply a representative

t; from each orbit to the coset representative Ntgt1fs we see the following results:

1. Ntot1fatg = Nigt1#> which means this orbit takes Ntgti?s to the double coset
[012] = [012].

2. Ntgtifoti= Ntoi1tz which means this orbit takes Ntot1%2 to the double coset [012] =
[012].

3. Nigtifate = Nigt; which means this orbit takes Nigt1#2 back to the double coset
[01].

4. Ntgt1tatg = Ntis, € [Oi]

5. Ntgtifpf; = Ntgiy, which means this orbit takes Ntgt1Zs back to the double coset
[02].

6. Ntotifafa = Ntgtity, which means this orbit takes Ntgt 2 back to the double coset
[012].
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Ntot1teIN

We now will determine the number of single coset. in the double coset [012] by
this formula W'gl.'&’—)l which gives us % = 3. The coset representative for [012] is Nitpf;ts. We
now identify the orbits of N(°12) and determine where they go. We see that the orbits of
N2 on {0,1,2,0,1,2} are {0}, {1}, {2}, {0}, {1}, {2}. When we apply a representative

t; from each orbit to the coset representative Nitgtyts we see that the following results:
1. Ntotitato = Niotito which means this orbit takes Nigfite to the double coset [012].

2. Ntgtitat1= Nitgty which means this orbit takes Ntgl1¢a to the double coset [02] =
[01]. '

3. Ntotitats = Nigtito which means this orbit takes Nigfite to the double coset
[012) = [012].

4. Ntgtitofs = Nigtyts, € [012].

5. Ntotitet; = Nigtite, which means this orbit takes N#gfit2 back to the double coset
[012].

6. Niot1iats = Ntgt1, which means this orbit takes Ntgf;i2 back to the double coset
[01].

NtgttaIN

We now will determine the number of single coset in the double coset [012] by

this formula Fv'(igilm which gives us 3 = 3. The coset representative for [012] is Nipt,to.

We now identify the orbits of N' (012) gnd determine where they go. We see that the orbits
of [012] on {0,1,2,0,1,2} are {0}, {1}, {2}, {0}, {1}, {Z}. When we apply a representative

t; from each orbit to the coset representative Nip#it; we see the following results:

1. Ntgtitoto = Niity which means this orbit takes N#gt ts back to the double coset
(0.

2. Niplitets = Nip, which means this orbit takes NZgf1ts to the double coset [D].

3. Ntigt1tats, which means this orbit extends Nyt ¢; to a new double coset Nigtifa N,
denoted [012].
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4. Niglitaty = Nigty, which takes Nfgfits back to the double coset [01].

5. Nigtitef; = Nigtite, which means this orbit takes Ntgfi2 to the double coset
[012] = [012].

6. Nigtitats = Nipt;, which means this orbit takes N#yf;ts back to double coset [01].
Ntgt1taN

We now will determine the number of single coset in the double coset [012] by

[V]
| N(012)|

now identify the orbits of NV (012) and determine where they go. We find that the orbits of
N©OI2) on {0,1,2,0,1,2} are {0}, {1}, {2}, {0}, {1}, {2}. When we apply a representative

t; from each orbit to the coset representative Nipt¥o we see the following results:

this formula which gives us 3 = 1. The coset representative for [012] is Nfptf2. We

1. Nigtitato = Niifp which means this orbit takes Nyt back to the double coset

[01].

2. Nigtifat; = Nipla, which means this orbit takes N#ytiZs to the double coset [02] =
[01].

3. Nigtifaty = Nipt;, which means this orbit takes Nyt1t2 back to the double coset
[01].

4. Nigttoty = th;*:lfg, which takes Nt ts back to the double coset [OIQ] = [6‘12]

5. Nigt1foty = Nipt1ty, which means this orbit takes NZpti1ts to the double coset
[012] = [012].

6. Nigti1tate = Nipfits, which means this orbit takes Nigtite back to double coset

012).

As we continue this process, we determine that we have a total of eleven double cosets
that survive the enumeration via the aforementioned relation. Those double cosets are
[*], [0], [0],[01],[01], [02}, [01], [012], [012], [012],and [012). The results are summarized in
the following Cayley graph Figure 3.2:
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Figure 3.2: Cayley diagram of G over Az Factored by tot; = f1o

Factoring this group by the center yields us the following Cayley diagram Figure 3.3:

Figure 3.3: Cayley diagram of G over A3 Factored by the Center
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Chapter 4

Construction of (Mo x 4):53

We have a computer-based proof that G is isomorphic to (Mg X 4):S3. This
proof is obtained as follows: We first use MAGMA to obtain the composition factors of

a permutation representation of G. This is done as follows:

£,G1,k:=CosetAction(G,sub<G|[x,y>);

CompositionFactors(Gl);
gives

The below results indicate a semi direct product:

G

] Cyeclic(3) .
*

| Cyclic(2)
*

| A2, 4) = L(3, 4)
*

|  Cyclic(2)
*

| Cyclic(2)
1

Note: The above progenitor has produced another group in addition to the

presentation we will construct below. From MAGMA, we have
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for a in [0..10] do for b in [0..10] do for ¢ in [0..10] do

for 4 in [0..10] do

for e in [0..10 ] do

G<x,y,t>:=Group<x,y,t|x"8 , y"2 , (x*xy)~3 , (x,y)"4,t°3,(t,y), (t,x"3 *
y ok x™3 x y % x7-1),(t,y ¥ x7-2 *x y % x"3 % y * x"-2),(x¥t)"a,
(x73%t) "D, (X"~2 * y * x72 * y*t~(x76))"c,(x"4 * yxt)"d, (x"2%t) "e>;

if Index(G,sub<Glx,y>) ge 3 then a,b,c,d,e,

Index(G,sub<Glx,y>); end if; end for; end for; end for; end for; end
for;

G<x,y,t>:=Group<x,y,tx"8 , y"2 , (x*y)~3 , (x,y)"4,t"3,(t,y), (£,x°3 %
y* x"3 %y * x™-1),(t,y * x™-2 x y * x"3 % y * x"-2),(x%t)"0,
(x73%t)70,(x7~2 * y * x"2 * y*£~(x76))"0,(x"4 * y*t)~6, (x"2%t)"0>;

CompositionFactors(Gl);

G

| Cyclic(3)

*

|  Cyclic(2)

*

| AC2, 4 = L{(3, 4)
*

I AL, 7) = L{(2, 7)
*

|  Cyclic(2)

*

|  Cyclic(2)

1

which gives rise to the group L3(4).
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We now write a presentation of the group (Ms; x 4):S3 (obtained based on the
composition factors above) and verify that G = (Mo x 4) : Ss.
We will perform a double coset enumeration of the group (Mp; x 4):S3 factored by the

relation tatgts ~ fgtaty, given by:

G 2< z,y, 8|28, o2, (zy)°, (z9)*, 8%, (4, 0), (&, 2PyeByz™Y), (¢, yz~Zyalyz2), (2%)° >
where

N =< z,y > PGLy(7)

yn~ (1: 6) (23 5)(Ss 4) (T: 6)(2 5) (g: Z)

We know N & PGLy(7) has 168 elements , or |[N| = 168.
We have a computer-based proof that G 22 C3 x Cqy X A3(40) = L3(4) x Ca x Cs

4.1 Relations

Since this group has eight generators, we let ¢ = tg.

The first relation we must expand is
(%)% =1
Let 7 = 2%, then our relation becomes
(mt)8 =1
expanding our relation, we have
mOT T T T = ]
A e |
since we are using to,, this relation becomes
22 =1

The permutation representation of our group is
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So, using zz, we have .

T tatetatrtsts = 1

Using right-hand multiplication and the property #;” 1 — &, we obtain the fol-

lowing

t3lglo ~ 1?3{4{7 (41)

4.2 Double Coset Enumeration

NeN

We start our double coset enumeration by evaluating our first double coset,
denoted [*], containing words of length zero. This double coset has one single coset,
which is the identity NeN = N. Since t = tg and t has eight conjugates, there are two
orbits that extend from [¥]. The first orbit includes the generators {1,2,3,4,5,6,7, 8},

Now we examine the double cosets containing words of length one. We do this
by taking a representative ¢; from each orbit and apply right hand multiplication to the
coset V.

N -ty = Nitg € NtgN

Denote this double coset as [8]

N-ES=NES ENLTSN

Denote this double coset as [8]
NtgN

Consider the double coset [8]. We now compute the coset stabilizer N® . Note
that in this case the coset stabiliser equals the point stabilizer N8. Using MAGMA we
found the order of the coset stabiliser, |N(®)| = 42. Next, we find the number of cosets

in the double coset [8] by using the formula

V]

|NtsN| = VO

(4.2)
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Hence, |[NtsN| =28 =38.
Now we compute orbits for the double coset [8] using MAGMA. It tells us that
there are four orbits on [8]. The first orbit contains the generator {8}, the second orbit

contains the generator {8}, the third orbit contains the generators {1,2,3,4,5,6,7} and the

"singleton” orbits containing the generators 8 and 16. We will take a representative ¢;

from each of these two orbits and apply right hand multiplication to the double coset [8].
Ntg-tg = Nig € NigN

So this orbit takes one generator over to the double coset [8].
Ntg -{g = Ne € NeN

So this orbit takes one generator back to the double coset [*]. Now we examine the

remaining two orbits in this double coset:

Ntg -t = Ntgty € Nighh N
Denote this double coset as [8,1].

Nitg - %) = Ntghy € Ntghy N
Denote this double coset as [8, 1].
NtsN

Consider the double coset [8]. We now compute the coset stabilizer N® . Note
that in this case the coset stabiliser equals the point stabilizer N 8, Using MAGMA we
found the order of the coset stabiliser, [N®)] = 42. Next, we find the number of cosets

in the double coset [8] by using the formula

V]

[NtsN| = ING)|

(4.3)

Hence, |[N#gN| = 33 =

Now we compute orbits for the double coset [8] using MAGMA. It tells us that

there are four orbits on [8]. The first orbit contains the generator {8}, the second orbit
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contains the generator {8}, the third orbit contains the generators {1,2,3,4,5,6,7} and

"singleton” orbits containing the generators {8} and {8}. We will take a representative

t; from each of these two orbits and apply right hand multiplication to the double coset

[8].

Nig-tg = Ne € NeN

So this orbit takes one genrator back to the double coset [*].
Ntg - fg = Nitg € NigN

So this orbit takes one generator to the double coset [8]. Now we examine the remaining

two orbits in this double coset.

Nig -t = Nigt; € NightN

Denote this double coset as [8,1].
Nig -t = Nigt; € Nigh N

Denote this double coset as 8, 1].

We have four new double cosets with words of length two. Noete that the orbits
not only extend the generators to double cosets with words of increased length, they also
take the generators back to double coests with words of reduced length. They can also
take generators to other double cosets with words of equal length. We will now consider

these four double cosets.
Ntgt1IN

Consider the double coset [8,1]. We now compute the coset stabilizer N1 .
Note that in this case the coset stabiliser equals the point stabilizer N3. Using MAGMA
we found the order of the coset stabiliser, |[N®1] = 42. Next, we find the number of

cosets in the double coset [8, 1] by using the formula

V]

|Nt8t1N| = l—m

(4.4)
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Hence, |Ntgt1N| = 3—26- = 56 . Therefore, we have 56 cosets in Nitgt;N. This

implies that we have 56 equal names for these cosets. Please note
Ntytg = Nigt; = 12~ 21

Thus we have the following 56 relations for NigtiyN = {N(tgt1)"|n € N}:

12~13~14~ 15~ 16 ~ 17 ~ 18
~21 ~23~24 25026~ 27~28
~ 31l ~32~ 34~ 35~ 36~ 37~ 38
~ 4l ~ 42 ~ 43 ~ 45 ~ 46 ~ 47 ~ 48
~ 51 ~ 52 ~ 53 ~ 54 ~ 56 ~ 5T ~ 58
~ 61 ~ 62 ~ 63 ~ 64 ~ 65 ~ 67 ~ 68
~TL~T2~T3~T4~ 75 ~T76~78
~ 81 ~ 82~ 83 ~ 84 ~ 85 ~ 86 ~ 87

MAGMA confirms these relations, which we will use to find equal double cosets with
words of length three and greater within this group.

Now we compute orbits for the double coset Ntgt1 /N by conjugating elements in
Ntgty N by the coset stabilizer N1, Note that the permutation for Ntgt, N is

CINEY = £y

-

2. 2N®Y = {6,5,7,3,4,2}
3. 8N€Y = (8}

4. IN®Y = (1}

6. 3V = {8}
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To examine these orbits we take a representative ¢; from each of these orbits and
apply right hand multiplication to the double coset [8,1]. We will now examine orbits 1
and 4:
Ntgty - t1 = Nitgt; € Ntgh1 N
So this orbit takes one generator over to the double coset [8, I].

Ntgty °{1 = Nig € NigN

So this orbit takes one genrator back to the double coset [8].
We will now consider the remaining four orbits, which extend the generators to new

double cosets with words of length three.
Ntgty - to = Nigtita € NitgtitaN
So this orbit extends 6 generators to the double coset {8, 1,2].
Nigty - tg = Nigtitg € Nigt1ts N
So this orbit extends one generator to the double coset (8, 1, 8].
Ntgty - Ty = Nigtitp € Nigt1falN

So this orbit extends six generators to the double coset [8,1,2].

Nigt; - tg = Nigtyfg € NigtisN

So this orbit extends one generator to the double coset [8, 1, 8).
Ntgts N

Now we consider the double coset [8,1]. We now compute the coset stabilizer
NG®D | Note that in this case the coset stabiliser equals the point stabilizer N' 81, Using
MAGMA we found the order of the coset stabiliser, [N®1| = 42, Next, we find the

number of cosets in the double coset [8,I] by using the formula

V]

INtstL V| = INGD]

(4.5)
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Hence, |Nt8t—1N| = 3%6 =56 .
Now we compute orbits for the double coset Nigfy N by conjugating elements in

NtgiiN by the coset stabilizer N©D,
1. 1V = (1}
2. 2V®V = [2,4,3,7,5,6}
3. 8V = (8}
4. TVED =1y
6. 8V = (8}
We repeat the process to examine the above orbits:
Nitgty - £ = Ntg € NtgN
So this orbit takes one generator back to the double coset [8].
Ntgty - 1 = Ntgty € Nigiy N
So this orbit takes one generator over to the double coset [8, 1].
Nigty - tg = Ntgtils € NigtitgN
So this orbit extends one generator to the double coset [8, 1, 8].
Nigty - tg = Ntgtits € NigtitgV
So this orbit extends one generator to the double coset [8,1, 8].
Nigly - t2 = Ntgtito € NighifaN
So this orbit extends six generators to the double coset [8, I, 2].
Ntgty - to = Nigtity € NtghitaN

So this orbit extends six generators to the double coset [8, I,2].



42

Nigt1N

Consider the double coset [8, 1]. We now compute the coset stabilizer N®1) . Note that
in this case the coset stabiliser equals the point stabilizer N 81, Using MAGMA we found
the order of the coset stabiliser, |[N31)| = 42 Next, we find the number of cosets in the

double coset [g’. 1] by using the formula

|Nigt1N| = (4.6)

D)

Hence, |[Ntgt1N| = % =56 .
Now we compute orbits for the double coset [8, 1] by repeating the same process detailed

in the prior two double cosets. Our results tells us that there are six orbits on [g, 1]:
1. the generator {1}
2. the generator {8}
3. the generator {1}
4. the generator {8}
5. the generators {2,3,4,5,6,7T}

We repeat the process of right hand multiplication to examine the above orbits:
Nigty - t; = Nigt; € Nighy N
So this orbit takes one generator ox:er to the double coset [8, 1].
Nigt; 21 = Nig € NigN
So this orbit takes one generator back to the double coset [§].
Nigty - tg = Nistitg € NigtytsN

So this orbit extends one generator to a new double coset [8, 1, 8].

Nigty - t1g = Nigti1fg € Nigt TgN
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So this orbit extends one generator to a new double coset [8, 1, 8].
Nigty - to = Nigtily € NigtitoN

So this orbit extends six generators to a new double coset [8,1,2].
Nigty - tg = Nigt tr € Nigt1foN

So this orbit extends six generators to a new double coset [8, 1,2].

Nitgt{N

Consider the double coset [8,1]. We now compute the coset stabilizer N (BI) | Note that
in this case the coset stabiliser equals the point stabilizer N 81, Using MAGMA we found
the order of the coset stabiliser, |N (Ei)| = 42. Next, we find the number of cosets in the

double coset [8, 1] by using the formula

[NV

]ththl = 'INTi)l'

(4.7)

Hence, | Nigt N| = 38 =56 .
Now we compute orbits for the double coset [8,1] using the aforementioned process. It

tells us that there are six orbits on (8, I):
1. the generator {1}
2. the generator {8}
3. the generator {1}
4. the generator {8}
5. the generators {2,3,4,5,6,7}
repeating our process to examine the above orbits, we note the following;:
Nigt; -t = Nig € NigN

So this orbit takes one generator back to the double coset (8]
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Nigty - & = Nigt) € Ntgt1 N

So this orbit takes one generator over to the double coset [8, 1].
Nigt, - tg = Niglitg € NitgtiigN

So this orbit extends one generator to a new double coset [8, 1, 8].
Nigty - 1y = Nigtits € NiglitsN

So this orbit extends one generator to a new double coset [8, 1, 8].
Nigty - tg = Nighits € NigtitaN

So this orbit extends six generators to a new double coset [8,1,2].
Nigty - £, = Nighis € NightaN

So this orbit extends six generators to a new double coset [§,1,2].

‘We have sixteen new double cosets with words of length three. Again, note
that the orbits not only extend the generators to double cosets with words of increased
length, they also take the generators back to double cosets with words of reduced length.
They can also take generators to other double cosets with words of equal length. We
will apply the process described in the relations section of this chapter to find any equal
double cosets with words of length three. By using our relations, we find that six of of
the sixteen "new” double cosets are equivalent to existing double cosets. Thus, we have

ten double cosets with words of length three:

8,1,2],[8,1,2),[8,1,8,[8,1,9),(8,1,2],[8, 1,8}, 8,1, 8], [, 1, 8], 8, 1, 8], [8, 1, 8]
We will now examine these ten double cosets.
NtgtitoIN

Consider the double coset [8,1,2]. We now compute the coset stabilizer N (812)
Using MAGMA we found the order of the coset stabiliser, |[N(®12)| = 2. Next, we find the

number of cosets in the double coset [8, 1,2] by using the formula
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_ 1]
We then calculate the number of cosets in the double coset [8, 1, 2] to be
336
|NtgtitoN| = > = 168 (4.9)

Now we compute orbits for the double coset Nitgt1taN by conjugating elements
in Ntgt1tzN by the coset stabilizer N®12), Our resulting sixteen orbits contain a single

generator in each:

{1}, {2}, {3}, {4}. {5}, {6} {7}, {8}, {1}, {2}, {3}, {4}, {8} {6}. {7}. {8}

We will take a representative ¢; from each of these orbits and apply right hand multi-
plication to the coset Nigtits. Note that we will use our relations to determine which

* double coset; the orbits take their generators to:
Ntgtity - t) = Nigtitot; = Nitgioti1fs = Niglity = Nigtifa € Nigt1foN
So this orbit takes one generator over to the double coset Ntst o N denoted [8,1,2).
Ntgtita - to = Nitgtily € NighfaN
So this orbit also takes one generator over to the double cosetNtgt {2 N denoted [8, 1, 2).
Nigtity - t3 = Ntglylots = Nigtitaty = Nigtitsty = Nigtitits = Niglitg € NighitsN
So this orbit takes one generator to the double coset Ntgfitg N denoted [8, 1, 8].
Nigtity - t4 = Nigtitaty = Nigtitot; = Nitgtitgty = Nigtitits = Niglits € NiglitsN
So this orbit takes one generator to the double coset Ntgfits/N denoted [8, 1, 8].
Ntgtity - ts = Nigtitots = Nigtitoty = Nigtitsty = Nigtstits = Nigty € NigbN
So this orbit takes o[ne generator back to the double coset Nigf; N denoted [8, I).
Nigtita - tg = Nigtitots = Nigtitot; = Nigtitat; = Nigtgtit, = Nigt € NighiN
So this orbit takes one generator back to the double coset Nigfy N denoted [8, 1].

Nigtita - t7 = Niglitoty = Nigtitat; = Niglotifs = Niglite = Nigtifs € Nigt1toN
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So this orbit takes one generator over to the double coset NigtifaN denoted [8,1,2].
Nigtits - t7 = Nigtitots = Nigtitats = Nitglaf ity = Nighits = Nitgtifs € NigtifaN

So this orbit takes one generator over to the double coset Ntgti£2V denoted [8,1,2]. Us-
ing a similar process with their inverse counter parts, the remaining orbits behave in a
similar fashion:

{1} takes one generator to the double coset N#gt;fgN denoted [8,1, 8]

{2} takes one generator to the double coset Nigt; N denoted [8,1]
{3} takes one generator to the double coset Ntgéifo N denoted [8,1,
{4} takes one generator to the double coset Ntgf;{o N denoted [8, T,
{5} takes one generator to the double coset Ntgf;{o N denoted [8,1,
{6} takes one generator to the double coset Nigt1£3N denoted [8, I,
{7} takes one generator to the double coset Ntgt; N denoted [8,1]
{8} takes one generator to the double coset Nigt fgN denoted [8,1,8]

2]
2]
]
]

2
2

Showing Equal Double Cosets

We now have double cosets consisting of words of at least length three. Since
our relation is based on three letters, we must now apply the relation to our double cosets
to verify the existence of equal cosets.

We derived our original relation
$2t3t6t2 = tgtaly

from our symmetric presentation. Through conjugation by elements of our control sub-

group PGLy(7) we obtain the relation
tgt1ts = t1tgty

By using this relation, we will now verify that the double coset Nigt gt NV,
denoted [8, 1,8, 1], is equal to the double coset Ntgf; N, denoted [8,1].

tgtitgts = tatgtity = f1tg

Now we must show that the coset N fg belongs to Ntgiy N
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Lets examine the double coset [81]:

Nfgle = {N(fsfl)nl'n € N}

We must find a permutation, n, in N such that
N{tst)" = Niyig
or n takes the coset Nigt; to Nfifs. We found the desired permutation to be:
n = (z¥)* = (65)(72)(43)(18)(65)(72)(43)(I8)

So, N(%3f,)" = Nt1fg. Hence, the single coset Ni;#3 belongs to the double coset Nigti N.
Since two different double cosets are disjoint, we can conclude that NZ;ZgN = NigtiN.

Hence,
Nigtitgta N = Nai?s@N = Nt18gN = NGHN

Thus, we have verified the following double coset equality
NigtitgtiN = NitgtN.

Repeating this process, we can verify the existence of other equal double cosets

within our group.

(8,1,8,1] = 8,1}
8,1,8,8] = [8,1,8§]
8,1,8,1] = [8,1,8]
8,1,8,8) = [8,1]
8,1,8,2] = [8,1,2]
[8,1,8,2] = [8,1, 8]

Due to times constraints, we were not able to finish the manual construction of
this group. However, we have utilized algorithms in MAGMA that provided us with an

accurate Cayley diagram, which is provided in Figure 4.1 below:



Figure 4.1: Completed Cayley diagram of (Mpz; x 4):53
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4.3 Factoring by the Center

Due to times constraints, we were not able to manually construct this group
factored by its centralizer. However, we have utilized algorithms in MAGMA that provide
us with an accurate Cayley diagram as seen in Figure 4.2. This illustrates the efficiency

in finding and factoring larger groups by their center:

Figure 4.2: Completed Cayley diagram of (Ma; x 4):S3 Factored by the Center

The MAGMA algorithms used to generate the figure above are listed in Appendix C.
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Chapter 5

Construction of U3(3) : 3 as a
Homomorphic Image of 2*1%: I5(2)

‘We have a computer-based proof that
G o~ E2Lal2) homo, 17,3y . 3

This proof is obtained as follows: We first use MAGMA to obtain the composition factors

of a permutation representation of G. This is done as follows:

£,G1,k:=CosetAction(G,sub<G|x,y>);

CompositionFactors(G1);

which gives the following results.

G

| Cyclic(2)

*

| 24(2, 3) = U(8, 3)
1

We now write a presentation of the group Uz(3) : 3 Jome, gxd L3(2) (obtained based on
the composition factors above) and verify that G & Us(3) : 3 22% 2+14 ; L5(2).
We will perform a double coset enumeration on the group Us(3) : 3 home, w14 L3(2)

factored by the relation i3te = £7¢;, denoted by the following group representation:
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G =< 3,3, 82”92 (@), (2, 9)%, &, (6,27 ya?), (6,9), 654, (ayt ™), (apt™)° >
We have a computer-based proof that G 22 Cy x 2A42(3) = Us(3).

where |G| = 12096 and N =< z,y >= L3(2).

The generators are represented by:

and

We know N == L3(2) has 168 elements , or |N| = 168.

5.1 Relations
The relation we must expand is
(zyt* ) =1
Let 7 = zy. We then expand our relation
(ayt™ Yayt™ oyt Yoyt Yoyt )ayt™ Y ayt™ Yayt™ ) =1

We also know that £ ~ #; and t7 1 = ;4. We use the insertion of identity inverses

71t = £7 to convert our relation to a relation involving the t]s:
R O R G M o R T i T i e

Now, we consider our permutation 2y which we have transformed into 7 which becomes
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We then convert our permutations back into ;s to get our relation
mhistatity = 1
Utilizing right multiplication of our t{s , we have a relation based on two letters
gty = 7ty

We can use this relation to evaluate cosets and double cosets within our group.

5.2 Double Coset Enumeration

NelN

We start our double coset enumeration by evaluating our first double coset,
denoted [*], containing words of length zero. This double coset has one single coset,
which is the identity NeN = N. Since our presentation group is U3(3), we have ¢t = #;

and 771 ~ f7. This means our first orbit contains all fourteen generators

When we apply a representative t; from this orbit, say 7 to the coset representative Ne
to get a new coset Ni;. We see that all fourteen generators extend to a new double coset
Nty N, denoted [7]. This double cosets will be made up of words of length one.

Nt;N

We now consider the double coset NtzN = {Nt?|n € N}. We must first deter-
mine the coset stabilizer, denoted N(7). We look at permutations in N = L3(2) and find
those that "fix” the the element (7) and permute all others. We determine
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N7 =< (1T)(26)(33)(45)(62)(45), (165)(243)(432)(516) > .

Since there are no additional relations, our point stabilizer is our coset stabilizer. Thus
we have

N7 =N,

Please note that
IN?|=|NT|=22.3=12

We now determine the number of cosets in [7] by using our equation

|V

which gives us
168

This is true, since each coset in [7] has two equal names. We now determine the orbits

on [7], which are

We will take a representative t; from each of these orbits and apply right hand multipli-

cation to the coset Ntz:

1. Ntgty = Nty 1 = Ntyt; € NeN denoted [*], so this orbit takes 1 generator to the

double coset [*].

2. Ntsi; = Ne € NeN denoted [«], so this orbit takes 1 generator to the double coset
[+].

3. Ntgty = Nizt; € NigtyN denoted [7,1], so this orbit takes 12 generators to the
double coset [7,1].

Nt7t, N

We now consider the double coset Ni¢yt; N. Through Magma, we determine

there are 8 equal names in this double coset:

17,71, 7,1, 1,7, 7,1, [1, 7, (7, 1), (L, 7]
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We must determine the coset stabilizer, denoted N("1), We look at permutations in
N = L3(2) and find those that "fix” the the elements 7 and 1 while permuting all others.

We determine the coset stabilizer by using our relations:

N =< (1717)(2456)(33) (4562), (167)(22)(432)(46) (55)(71)(46) > .

We determine |[N("1)| = 8. Thus, we may now determine the number of cosets within
the double coset [7,1]:

_ Iyl
which gives us
NirtyN| = 28 = o1,
8

We now determine the orbits on [7, 1], which are
{3,3}, {1,7,1,7}, and {2,4,5,6,2,4,5, 6}.

We will take a representative ¢; from each of these orbits and apply right hand multipli-

cation to the coset Nirty:

1. Nitst;ty = Nt; € Ntz N denoted [7], so this orbit takes 4 generators back to the
double coset [7).

2. Nitztits = Nirtits € NigtitsN denoted [7,1, 3], so this orbit extends 2 generators

to a new double coset [7, 1, 3].

3. Niztite = Nigtity € NiztitaN denoted [7,1,2], so this orbit extends 8 generators

to a new double coset [7,1,2].
NtytitaIN

‘We now consider the double coset Nt7t1to.N. As in the prior double cosets, there

are eight equal names:

[5,9,8], (8,14, 9], [14,8,5], [5,9,8],[9,5,14], 12,2, 7], [1,7,12], (2,12, 1]

We must determine the coset stabilizer, denoted N("1:2),

N = L3(2) and find those that ”fix” the the elements 7, 1, and 2 while permuting

all others. We determine the coset stabilizer by utilizing our relations to increase the

We look at permutations in

stabilizer:
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NL2) =< (17)(25)(44)(52)(66)(17), (1572)(33)(4646)(5721), (15)(27)(33)(44)(72)(15) > .

We determine |N{"12)| = 8, We now calculate the number of cosets within

[7,1,2] by using our equation:

[N

|Nt7t1t2N| = W—U:]w_zj—l

(5.3)

which gives us

168 _

|Nt7t1t2N| = 21.

Again, we have 21 cosets in (7, 1,2]. We now determine the orbits on {7, 1, 2}, which are
{3,3}, {4,6,4,6}, and {1,2,5,7,1,2,5,7}.

We will take a representative ¢; from each of these orbits and apply right hand multipli-

cation to the coset Nt7tifo:

1. Ntgtitots = Nigtitats € Ntqtitats N denoted [7,1,2,3], so this orbit extends 2

generators to a new double coset [7,1,2, 3].

2. Ntqtits = Nigtitz € Nitrti1tzN denoted (7,1, 3], so this orbit extends 2 generators

to a new double coset [7, 1, 3].

3. Ntgtity = Nigtita € Nityt1taN denoted (7,1,2), so this orbit extends 8 generators

to a new double coset [7,1,2].
Ntrti1tsIN

We now consider the double coset Ntrt 3N, There are 24 cosets within [7,1, 3]

having equal names:
[1,10,14],[14, 3, 8],[1, 14, 10],[8, 10, 7], [14, 8, 3], [8, 3, 14], [7, 8,10], [1, 3, 7],
[10,8,7],7,10,8],[3,7,1],[7,8,1], 3,1, 7], [10, 7, 8], 14, 1, 10], [10, 14, 1],
[3,8,14],[8,14,3],[7,1,3),(8, 7,10, [14,10,1],[1, 7, 3], [3, 14, 8}, and [10, 1, 14].

We then increase our coset stabilizer to account for the equally named cosets. The

permutation that achives this is:
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(1,3,8,10)(2, 12,13, 11)(4,9,5, 6)(7, 14)(1, 10, 7)(2, 13, 5)(3, 14, 8)(6, 12, 9)

We must determine the coset stabilizer, denoted N(":18), We look at permutations in
N = L3(2) and find those that ”fix” the the elements 7, 1, and 3 while permuting
all others. We determine the coset stabilizer by utilizing our relations to increase the

stabilizer:

NT13) —< (1313)(2564)(4256)(77), (137)(265)(371)(652) > .

We determine |[N("L3)| = 24. We now calculate the number of cosets within [7,1,3] by

using our equation:
|V

|Nt7t1t3N| = W)—I (54)
which gives us
168
|Ntz61t3N| = o= 7.

We now determine the orbits on [7, 1,3], which are
{1,8,7,1,3,7} and {2,4,5,6,2,4,5,6}.

We will take a representative ¢; from each of these orbits and apply right hand multipli-

cation to the coset Niziits:

1. Ntrtitsts = Nigti(t3)? = Nirty € Nizt1N denoted [7,1], so this orbit takes 6
generators backto the double coset [7,1].

2. Ntgtitsts = Nigtiisly € NiqtitstoN denoted [7,1,3, 2], so this orbit extends 8

generators to the new double coset [7,1, 3,2).

We now consider the double coset Ntrtitzte/N. There are 24 cosets within

[7,1,3, 2] having equal names:

[1,10,14,13], [14,3,8,12], [1,14, 10, 6], [8, 10,7, 4], [14, 8,3, 5, [8, 3, 14, 2], [7, 8, 10,13], [1, 3,7, 5],
[10,8,7,12], (7, 10,8, 6], [3,7,1,4], [7,3,1,9], [3,1, 7,11], [10, 7, 8, 5], [14, 1, 10, 4], [10, 14, 1, 2],
3,8,14, 6], (8, 14,3,9], [7, 1, 3,2, 8,7, 10,11], [14, 10,1, 11], [1, 7, 3, 12, [3, 14,8, 18], and
[10,1,14,9).

We then increase our coset stabilizer to account for the equally named cosets. The relation

that we achive this with is:
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(1, 3, 8, 10)(2, 12, 13, 11)(4, 9, 5, 6)(7, 14)(1, 10, 14)(2, 4, 13)(3, 7, 8)(6, 9, 11)

We determine |[N(713:2)] = 24, We now calculate the number of cosets within [7,1,3,2]

by using our equation:

V]
which gives us
168
| NtztitaN| = o 7.

We have 7 cosets in [7,1, 3,2]. We now determine the orbits on (7,1, 3, 2], which are

{1,3,7,8,3,7} and {2,4,5,6,2,4,5,6}.

We will take a representative ¢; from each of these orbits and apply right hand multipli-
cation to the coset Nitrtits:

1. Nigtytgtot; = Niqtity = Nigtitaty € NiqtitotsN denoted [7, 1,2, 3], so this orbit
extends 6 generators to the double coset [7,1,2, 3].

2. Ntytitstaty = Nitgtits € Niqgt1taN denoted 7,1, 3], so this orbit takes 8 generators
back to the double coset (7,1, 3].

We now use MAGMA to confirm that we have an increase in the total count of single cosets
thus far in our group. We determine that the total count of cosets do not increase with
[7,1,3,2], which indicates that we have equal double cosets. We now confirm and identify
our equal double cosets by conjugating the double coset [7,1, 3, 2] by the permutation that

stabilizes the coset, and compare the result to existing double cosets. We find that
(Nitrtytato N)(138,10)(212,13,11)(4,9,5,6)(7,14)(1,10,7)(2,13,5)(3,14,8)(6,12,9)

= Niqt1totsN.

Thus, the double coset [7,1,3,2] = [7,1,2,3]. Therefore, the orbit. {2,4,5,6,2,4,5,86}.
. takes 6 generators back to the double coset 7, 1,2].

Ntrt1t2t4IN

We now consider the double coset NiztjtaNty. There are 24 cosets within

(7,1,2,4] having equal names:
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[2,8,7,10],[3,7,4,5],[8,2,5,3], [7,3,9,12], [9, 10, 7, 8], [14,4,2,1], 5,9, 8, 4], [2, 11, 14, 5,
[4,12,10,2), 11,2,10,12], [12, 4,8, 9], [12, 14,1, 10}, [10,9, 11, 1], [8, 11,12, 7], [7, 1, 2, 4],
[11,8,3,14], [14,12,9,3],[3, 1, 11,9], [4, 14, 3, 8], [10, 5,4, 7], [1, 7, 12, 11], [5, 10, 1, 14],
[1,3,5,2],19,5,14,11].

We then increase our coset stabilizer to account for the equally named cosets. The

permutation that we achieve this with are:

(1,8)(2,7)(3,11)(4, 10)(5,12)(9, 14),
(1,7,3)(2,4, 5)(8,14,10)(9, 11,12),
(1,2,5,14)(3, 11, 10,4)(6, 13)(7, 8,9, 12).

We must determine the coset stabilizer, denoted N("124), We look at permutations in
N = L3(2) and find those that "fix” the the elements 7, 1, 2and 4 while permuting
all others. We determine the coset stabilizer by utilizing our relations to increase the

stabilizer:

We determine |N(7124)| = 24, We now calculate the number of cosets within [7,1,2, 4]

by using our equation:

___IN]
| NtrtitataN| = IN‘(7’—1'2'4)T (5.6)
which gives us
168
INtrtatotg N| = — = T.

2

4
We now determine the orbits on [7,1,2, 4], which are

We will take a representative ¢; from each of these orbits and apply right hand multipli-

cation to the coset Niqtitaty:

1. Ntrtitatats = Nigtita(tg)? = Niqtite € NitytitoN denoted [7,1,2], so this orbit
sends 12 generators back to the double coset [7,1,2].

2. Nt7t1t2t4t5 = Nt7t1t2t4t6 c NNt7t1t2t4t6N denoted [7, 1, 2,4, 6], so this orbit ex-

tends 2 generators to a new double coset (7, 1,2,4, 6].
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Ntrti1tat telN

We now consider the double coset Niztitafsts. There are 168 cosets within
[7,1,2,4,6] having equal names. Utilizing MAGMA, we obtain the permutation that

increase the order of our coset stabilizer to 168:

(1,6,10)(3,8,13)(4,7,12)(5,11,14), (1,2,6)(4,7,5)(8,9,13)(11, 14, 12),
(1,3,11,14,6,12,2)(4,7,13,5,9, 8, 10).

We must determine the coset stabilizer, denoted N{71:245) We look at permutations in
N = L3(2) and find those that ”fix” the the elements 7, 1, 2, 4 and 6 while permuting
all others. We determine the coset stabilizer by utilizing our relations to increase the

stabilizer:

We determine [N (71249 | = 168. We now calculate the number of cosets within [7, 1,2, 4, 6]

by using our equation:
[N

INtrtrtatateN| = o o zmy (5.7
which gives us
168
NistytotgtgN| = — = 1.
| NtrtrtatsteN| 168

We have 1 coset in (7,1, 2,4,6]. We now determine the orbits on [7,1,2, 4, 6], which are

Thus, all the generators are within a single orbit. We will take a representative ¢; from

this orbit and apply right hand multiplication to the coset Ni;t1totats:

1. Nigtitotatels = Nt7t1t2t4(t6)2 = Nigtitoty € Nigtitaty N denoted [7,1,2, 4], so this
orbit sends all 14 generators back to the double coset [7,1,2,4].

Since we have no orbits extending generators to new double cosets, this group is closed
under right hand multiplication. Thus, we have completed the double coset enumeration
process for Us(3) : 3 as a homomorphic image of 2*M : L3(2). The results are submarized

in the following cayley diagram Figure 5.1:



Figure 5.1: Cayley diagram of U3(3) : 3 as a Homomorphic Image of 2*!4 : L3(2)
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Chapter 6

Construction of A7 as
a Homomorphic Image of the

Monomial Progenitor 3*7 :, L3(2)

We have a computer-based proof that

3*7:, L3(2) homo,
tata=tl7t1 ’ A7

This proof is obtained as follows: We first us MAGMA to obtain the composition factors

of a permutation representation of G. This is done as follows:

f,G1,k:=CosetAction(G, sub<G|x,y>);
CompositionFactors(G1l);

give

G
| Alternating(7)
1

We now write a presentation of the group A7 as a Homomorphic Image of the Progenitor
3*7 1, L3(2) (obtained based on the composition factors above) and verify that G is

isomorphic to A7 as a Homomorphic Image of the Progenitor 3*7 =, L3(2).
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homo, 3*7: L3(2)

A ) 34
! tats = byl

7,
I will perform a double coset enumeration on the group G homo, Z:&T'ii-%’ de-

noted by the following group representation:

G =<z, y;t|$7, y2: (my)31 (5‘7) y)41 ta’ (ta :z;—syxz), (t7 y): 2 (.'L't)4 >

We have a computer-based proof that G = As.

where |G| = 2520 and N =< z,y > L3(2).

The generators are represented by:

and
Yy~ (]w i) (31 7) (21 6) (41 5)(11 5) (21 6)'

We know N = L3(2) has 168 elements , or |N| = 168.

6.1 Relations
The first relation we must expand is
(xt)t=1
Let 7 = «, then our relation becomes
(mt)* =1
We then expand our relation, giving us
T = 1
Note in this particular group, t ~ t7 and t77! ~ #7. This transforms our relation to
T ey = 1.

Now, we consider our permutation =z which we have transformed into w which becomes



We then apply our permutation 7 to our relation which gives us our permutations

We then convert our permutations back into ts to get our relation
whistatity = 1

Utilizing right multiplication of our t;s , we have a relation based on two letters
Tt = f7t.

We will use this relation to evaluate cosets and double cosets within our group.

6.2 Double Coset Enumeration

NelN

We start our double coset enumeration by evaluating our first double coset,

denoted [*], containing words of length zero. This double coset has one single coset,

63

which is the identity Ne/N = N. Since our presentation group is Ay, we have ¢t = t7 and

t771 ~ #7. This means our first orbit contains all fourteen generators

When we apply a representative #; from this orbit, say ¢7 to the coset representative Ne

to get a new coset Nty. We see that all fourteen generators extend to a new double

cosetNt7N, denoted [7]. This double cosets will be made up of words of length one.

Nt+IN

We now consider the double coset Nt7zN = {Ni%|n € N}.We must first deter-
mine the coset stabilizer, denoted N(™). We look at permutations in N = L3(2) and find
those that "fix” the the element (7) and permute all others. Using Magma, we found

N7 =< (11)(26)(33)(45)(62) (35), (165)(243)(432) (516) > .
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Since. there are no additional relations, our point stabilizer is our coset stabilizer. Thus
we have

N'=nN®),
We note that
INT| = [N =2%.3=12

“We now determine the number of cosets in [7] by using our equation

V|

(6.1)

whic gives us

168
INtzN| = - = 14.

ments in Ntz N by the coset stabilizer N (M),
1. ™V =
2, TND = (7}

To determine the next orbit, we assign variables to the generators of N = L3(2):

Let A = (11)(26)(33)(45)(62)(45) be the first permutation and let B = (165)(243)(432)(516)
be the second permutation.

Next, we multiply and conjugate the remaining elements by A and B to construct our
orbit:

14 = {1}
14° = {1}
1% = {6}
17° = {8}
15% = (2}

Now all the above generators are in the same orbit as 1. Since 1 and I share the same
cycle within A, any generator within a cycle containing 1 or 1 will be in the same orbit.
Similarly, any generator sharing the same cycle within B will also be in the same orbit.

Having said that, we can finish the construction of this orbit.

18%7 = {4}
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147 = (3,3}
1% = {8}
1%° = {3}
5% = {3}

1Y = (3}

Thus, we have all the above elements in the final orbit:

Now we have three orbits for Nt;N:
1. {7}
2. {7}

We will examine orbits 1 and 2: We will take a representative ¢; from each of these two

orbits and apply right hand multiplication to the coset Nty:
Nt7-t7 = Nt2 = Ni; € NzN
So this orbit takes one generator back to the same double coset Ntz N denoted [7].
Ntz -t; = Ne € NeN
So this orbit takes one generator back to the double coset NeN denoted [*].
Nty -t1 = Niqt; € Ntq7t; N

At first glance, one would assume that this orbit extends the twelve generators to a
new double coset Nt7t1N, but we must remember that the cosets Nt; € NtzN and
Nt; € Nty N. This implies that Nt; = Nt7. By substitution, we have

Nty -t = Ntp - 17 =Nt—2( = Nt; € NizN

so the third orbit also takes the twelve generators back to the same double coset Ni7[V
denoted [7]. Since we have no orbits extending generators to new double cosets, this
group is closed under right hand multiplication. Thus, we have completed the double
coset enumeration process for Az as a homomorphic image of the progenitor 3*7 :,,, L3(2).

The results are submarized in the following cayley diagram Figure 6.1:



Figure 6.1: Cayley diagram of A7 as a Homomorphic Image of 3*7 : L3(2)
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Chapter 7

Finite Homomorphic Images of

the Monomial Progenitor 72 :,, Ss

7.1 An Irreducible Monomial Representation of Ss

We define the monomial representation of a group G as a homomorphism
from G into GLn(F), the group of non-singular n x n matrices over the field F, in which
the image of every element of G is a monomial matrix over F.

We define 2 monomial matrix as follows: An n x n matrix M = [m;;] over a field K is
monomial if there is a € S, and (not necessarily distinct) nonzero elements z, ..., €

K such that

z; if j = afi),

y= { 0 otherwise.
Monomial matrices thus have only one nonzero entry in any row or column. Of course, a
monomial matrix in which each z; = 1 is a permutation matrix over K.
We say Gy, is a monomial character of G if x = A%, where X is a linear character of a
subgroup ( not necessarily proper) of G. Note: For a linear character A, A(1) = 1.
Induced linear characters of H become monomial characters of G. All linear characters
of G are monomial, therefore a single entry in the monomial matrix.
To induce a progenitor from another group, we must utilize their respective character

tables. Tables 7.1 and 7.2 are the character tables for both groups:
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Table 7.1: Character Table for S3
x C. C G

o1 1 1
X 1 -1 1
x® 2 0 -1

Table 7.2: Character Table for Z3

x € C C3
X1 (123) (123)% = (132)

2 1 w w?

x@® 1 w? w

In this example, we will induce from the third character of the Z; table and

write the permutations that generate S3 in matrix form. We have:
S3 =< (123)(12) >,
where the permutations (123) and (12) are represented respectively in this manner:

zz (123)
vy (12)

We find the right transversals through magma, which are:
& (12)

Since the right transversal contains two elements, we a have a 2 X 2 matrix. We want the

four possible entries based on zz using our right transversals e, (12).
Alzz) = exze~! ezz(12)
(12)zze™! (12)zz(12)71

Now we substitute zx = (123) and evaluate the four matrix entries by rultiplying the

permutations and comparing to the elements in A3 = {e, (123), (132)}:

Agm)= [ BT e123)(12)
- (12)(123)e~! (12)(123)(12)7
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which gives rise to the following matrix:

- ( (123) € As (13) ¢ 45

A= g @)= (2= 1297 e 44

These entries must be in Az, else the entries = 0. Then we have the resulting matrix:

Adas) — ( (123) 0 2)
0 (123)

Now we will substitute the entries from the third row of the character table Z3
(see Table 7.2) to find the final matrix configuration denoted A:

A w2 0
0 w

. We must now determine the second matrix, denoted B which pertains to the permuta-

tion yy = (12). Using the same right transversals and matrix template, we have:
-1
eyye eyy(12
B(yy) = _1 ( )_1
(12)yye™ (12)yy(12)~" /

Now we substitute yy = (12) and evaluate the four matrix entries by multiplying the

permutations and comparing to the elements in 4z = {e, (123),(132)}:
e(12)e™! e(12)(12)
B(yy) = . -
(12)(12)e~" (12)(12)(12)
which gives rise to the following matrix:
12 Ag e) € Az
By [ @ E4 @
(e) € As (12) ¢ A3

These entries must be in Az, else the entries = 0. By using the same steps as in deter-

minining A(zz), we have the resulting matrix, denoted B:

0 1
10

B =

So we now have the following matrices A and B:

2.0
A=Y
0 w



70

01
10

B=

‘We must now verify that we have a monomial representation of S3 by checking the order
of A, B, and their product, A- B. From MAGMA, we have: |A| =3, |B|=2,|A- B| =2.
Thus, A, B, given a monomial representation of Ss.

Now, w is a cube root of unity. We must find the smallest finite field with cube roots
of unity. In other words, a finite field which has elements of order 3 in its multiplicative
group. Since the matrices have cube roots of unity, we replace these by the cube root of

1 in the smallest field with cube roots of unity. Consider the field
Zy ={0,1,2,3,4,5,6}.

We take a group H = {1,2,3,4, 5,6}, which is a group under multiplication modulo seven.
Then:

2| = 3, (since 22 = 8 = 1(mod)7)

|4] = 3, (since 43 = 64 = 1(mod)T)
So we let w = 2, and w? = 4. Now, we substitute those values into the matrix A to
generate out ¢;'s, which will generate our permutations for zz and yy.

Since we have 2 x 2 matrices over a field of seven elements, we will have 2¢}s of order 7.

Thus, our progenitor will will be expressed as:
72 . S,

The m typifies this as a monomial presentation. We use our matrix A to generate per-

mutations where each £; goes:

1 19

1{/4 0
Alz) =

(=) 20 2

For the A matrix, we see that entry {1 = 4 and ¢5 = 2, which implies:

tl—)t%

ts — 3.
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We now determine the action on the remaining ¢{s by multiplying the exponents of all
the £;’s by 4, and the exponents of all the #;'s by 2. Note that we evaluate each new
exponent by modulo 7. We now set up our ¢;s based on two sets of six elemnents (six

elements for ¢; and six elements for i5) = 12 letters:

Table 7.3: Labeliﬁg for Matrix A(zz) to Determine ¢;'s

1 2 3 4 5 6 7 8 9 10 11 12
t1 117 t1° t1* ° 0% to te? £9°  to?t  #90  #o0
N T S A A A A

t1t tl % 112 6018 113 12 ! 88 ! 3 190

The results of Table 7.3 give rise to our permutation
zz = (1,4,2)(3,5,6)(7,8,10)(9,12,11)

‘We use a similar method for determining the permuation for yy: We examine the matrix
for B(yy):
t1 to

1{0 1
B(y) =
2V1 0
Since the B matrix has 1’s for all entries for ¢; and o, we see that
t1 — g
o1

for each respective exponent. As with the A matrix, we now set up our labeling table

based on the action of the B matrix:

Table 7.4: Labeling for Matrix B(yy) to Determine ¢;'s

1 2 3 4 5] 6 T 8 9 10 11 12
t1 £ 40 4t 4° 6%t 6 Y bt £ P
N A

tzl t22 t23 t24 t25 tzﬁ tll t12 t]_3 t14 tl5 tl-ﬁ

The results of Table 7.4 give rise to our permutation

Yy = (1) 7) (Zs 8)(37 9)(4, 10)(5= 11)(61 12)
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We are now ready to write our progenito 53, which is represented by the progenitor
S3 =< 23,42, (zy)? >.
Since our matrices are over Z7, we add ¢ to our progenitor which gives us:
72 i S5 =< 23,92, (zy)%, 7 >

We must now find the normaliser for ¢ in N (or, the permutation that takes the set < ¢ >
back to itself). Then we must find the relations which commute with ¢. To find the
normaliser for ¢ we must first assign ¢ to one of the ¢;'s. We let ¢t = ¢;. So by inspection,
we want to determine the permutation cycles that keeps ¢y and its powers together, or
fixes the tis. We find |

zz = (1,4,2)(3,5,6)(7,8,10)(9,12,11), e,z

satisfies that condition. First we must determine the action within the 3-cycle permuta-
tion that contains £]. We see that if we permute 1 by zz, we get t4. Note also that if we
permute #; by (zx)~!, we get t2. Thus, these two actions represent the normaliser of ¢.

Thus far, we have a progenitor:
7*2 i Sz =< 22,92, (29)%, 17,8 = 14,65 =2 >.

We need to find relations that represent what ¢ commutes with. From MAGMA, we have

the relation
(wty)® =1
So we add this relation to our progenitor to get the following:
72 1, Sz =< 23,92, (zy)?, 47, 8 = 14,17 = 82, (zty)® = 1 >.

Having completed this monomial progenitor, we can now look at its composition factors.

MAGMA tells us that the composition factors of this progenitor is:
A(L7TY=L(2,7)

which is a computer-based proof that we verify by constructing the following group.
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7.2 The Construction of 7 :,, S5: The Relations

We will now construct our new progenitor
742 1 Sz =< 23,2, (ay) %, 7,18 = 14,157 =12, (aty)® = 1 >.
by first expanding our relation

(wty)® =1
—> (aty) (aty) (aty) = 1

We now use the identity principle

and the property of conjugation

altr =1
to expand our relation, which gives us

(:ry)3t(my)2t(my)t =1.

Since we have the relation

(zy)? =1
we now have

(zy)tlet = 1.

We now examine the permutations =z and y to further define our ¢;'s. Recall that we
let £ = #;. We need to determine what the permutation (zy) does to 1, then assign
the results to the corresponding ¢;. The permutation (zy) takes 1 to 10. Therefore, our

relation becomes
f(xy)trtiots = 1.
We have two generators, each of order seven. Therefore

ti'=1
=t =1t;78.
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Using right hand multiplication, we can determine other relations:

flxy)titioty =1
= flzy)titiots 1~ =17
= flzy)titio =t17"
We will expand on these relations to determine other relations as needed when we con-

struct and perform double coset enumeration on this group.

7.3 Double Coset Enumeration
We have a computer-based proof that G is isomorphic to

. This proof is obtained as follows: We first us MAGMA to obtain the composition factors

of a permutation representation of G. This is done as follows:

£,G1,k:=CosetAction(G,sub<G|x,y>);
CompositionFactors(Gl);

G

| ACL, T =L(2, 7)

We now write a presentation of the group 7*2 :,, S3 (obtained based on the composition
factors above) and verify that G is isomorphic to 7*2 :, S3.
We will perform a double coset enumeration on the group 7*2 :, S3 factored by

the relation t1t10t1 = 1, denoted by the following group representation:
7*2 1, 83 =< 23,42, (wy)2, 47, = 14,47 =12, (zty)® =1 >.

where N =< z,y >= S3, £+ (1,2,3) and y ~ (1,2). We know N = S3 has 6 elements ,
or|N| = 6.

Consider the following notation of our ¢;'s:

t1 = f(t), te = t1% 83 = t13, s = t1%, 85 = 115,86 = 1°
t2 = f(ty):ts = t223t9 = t23) th = t24, tll = t25, t12 = t26



75

which gives rise to:
t, te=t2, ta=83 ty=t37l1=4% tz=tot=¢" tg=t171 =1
ts =132, to=1t% tw=tel=t}, tu=tsl=t5 tp=t"1=t"
Based on the above notation,
83 =< (1,14,2)(18,13,15)(17,22,2%)(28, 25, 23) >.

We conjugate our relation tltétl = e = 1241 = e by the elements in S3 to obtain our
remaining relations:
11%1 ~ 1111 ~ 1281 ~ 1281 ~ 124

~ 121812 ~ 121412 ~ 122612 ~ 122512 & 122112
~ 131613 ~ 131513 & 132613 ~ 182513 1 132413
~ 16216 ~ 161316 ~ 16216 ~, 162216 ~ 162316
~ 15115 ~ 151315 ~ 15215 ~ 159215 ~ 152315
~ 14114 ~ 141214 ~ 14214 ~ 142214 142514
~ 26196 ~ 26228 ~. 261396 ~, 969296 , 969396
~ 2192 ~ 2152 ~ 2142 ~ 2252 ~ 2212
~ 221922 ~ 221592 ~ 221492 ~ 922692 922422
~ 231693 ~ 231593 ~ 231423 232823 232523
~ 25128 ~ 251295 A 251325 25225 ~, 259395
~ 24194 ~ 241224 ~ 241394 ~ 29204 & 2492010

MAGMA confirms these relations, which we will use to find equal double cosets
with words of length two and greater within this group.
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NelN

NeN is a double coset made up of words of length zero. We know NeN = {N},
which is the first double coset [*]. The coset representative for [*] is N. The number of
cosets in [#] is 1. We find that the orbits of N on {1,1%,13,14,15,16,2,22,23, 24 25 26}
are {1,12,14,2,22,24} and {13,15,15,28,25,26}. When we apply a representative ¢;
from each orbit to the double coset representative N we see that the elements in or-
bit {1,12,14,2, 23,2} extend to a new double coset Nt1 N, denoted [1], and the elements
in the orbit {13,15, 16,28 25,26} extend to another new double coset Nt§N, denoted [18].

These double cosets will be made up of words of length one:
Nt N

We now will determine the number of single coset in the double coset [1) by
this formula IJI\%‘TI which gives us % = 6. The coset representative for [1] is Nt;. We
now identify the orbits of N(1) and determine where they go. We see that the orbits
of N on {1,2,14,2,22, 24} are{1,18},{1},{1%,14,15,24},{2,2%}, {2%},{2°} and{2}. When
we apply a representative ¢; from each orbit to the coset representative Nt; we see the

following results:

1. Ntit; = N(t1)? = Nty € Nt; N, so this orbit sends 2 joins back to the same double
coset Nt1 N, denoted [1].

2. Nt1t8= Nt;~! = Nt;% € Nt;°N which means this orbit sends 4 joins to a new
double coset Nt;5N, denoted [19].

3. Nt;t8 = NeN, so this orbit sends 1 join back to the doublecoset [*].

4, Ntits € NtifaN, which means this orbit extends 2 joins to a new double coset
NtytoN, denoted [1,2].

5. Ntito? € Nitjtp2N, which means this orbit extends 1 join to a new double coset
Ntito2 N, denoted [1,22).

6. Ntite® € Nita®N, which means this orbit extends 1 join to a new double coset
Nt1£28 N, denoted [1,25].



7.

77

Ntito% € Nt1t28N, which means this orbit extends 1 join to a new double coset
Nt1t25N, denoted [1,25].

Nt 5N

We now will determine the number of single coset in the double coset [1°] by

this formula I-I\J%I)_I which gives us § = 6. The coset representative for [1%] is Nts. We now
identify the orbits of N® and determine where they go. We see that the orbits of N on
{13,15,16,23,25 26} are {1}, {12,13,15,2%}, {14,15},{2},{22},{2% 25}, and {25} . When

we apply a representative ¢; from each orbit to the coset representative N 15 we see the

following results:

1.

Nt,6t; = NeN so this orbit send 1 join back to [+].

. Nt,%tg= Nt;~1t]; = Nt; € Nt1N, so this orbit sends four joins back to the double

coset Nty N, denoted [1].

. Nt;54,8 = N(£,%)? = Nt,5 € Nt;8N, so this orbit sends two joins back to itself.

Nt.156,8 = Ntity € NtytaN, so this orbit sends two joins to the double coset
Nt 2N, denoted [1,2].

Nt15t9° = Nt15t95 = Ntjtg € Nt1tglN, so this orbit sends 1 join to the double coset
Ntit22 N, denoted [1, 2]

Nt,5¢y = Nt1t2® € Nt1£28N, so this orbit sends 1 join to the double coset Nt122° N,
denoted [1, 2°].

Nt1%tg = Nt1t2% € Nt1£28N, so this orbit sends 1 join to the double coset Nt1t28N,
denoted 1, 28].

We have now completed all double cosets with words of length one.
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We will now determine the double cosets with words of length two. We will now

utilize our relation
(zy)trtiot1 =1

to determine the orbit paths for our joins within our double coset enumeration. We
will also utilize MAGMA to determine the existence of equal double cosets, which may

collapse part of our Cayley diagram by reducing the number of distinct double cosets.
Nt taIN

We now will determine the number of single coset in the double coset [1,2] by
this formula ﬁﬂ—’L)—l which gives us % = 6. The coset representative for [1,2] is Ntita. We
now identify the orbits of N(1, 2) and determine where they go. We see that the orbits
of N(:2) on {3,15,18,23, 25,25}

are {14,263}, {1, 23}, {15,22},{15,7},{2,2* } and{3,2°}. When we apply a repre-

sentative ¢; from each orbit to the coset representative Nt ts we see the following results:

1. Nttats® = Ntytato™! = Ni; € Nt1N so this orbit send two joins back to the double
coset Nt1N, denoted [1].

2. Nititoti= Ntitotg™! = Nitg € NigN which means this orbit sends four joins back
to the double coset NtgV, denoted [6].

3. Nijtots = Nt1lg & Nt1t2N. So this orbit sends these two joins back to ifself.

4. Niitots = Nitjto?Ntitg € NttgN. So this orbit sends these two joins to the double
coset Nit1tgN, denoted [1,22].

5. Ntitgto* = Nitite® € Ntyt2° N, which means this orbit sends these two joins to the
double coset Nt;ts° N, denoted [1,25].

6. Ntijtotz = Nt1ts® € Nt t,5N, which means this orbit sends these two joins to the
double coset Nt;£26N, denoted [1,26].

Nt1t22N

We now will determine the number of single coset in the double coset [1,2?)

by this formula WI(—IA%Z)—I which gives us % = 3. The coset representative for [1,2%] is
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Nityto?. We now identify the orbits of N(12*) and determine where they go. We see that
the orbits of N on {3,1%,15,23,25 25} are {1,2}, {15,25}, {2,2?}, {15,28},{3,23}, and
{14,2%}. When we apply a representative #; from each orbit to the coset representative

Nt1t5? we see that the following results:

1. Niyto?t) = Ntytg2t- Nty Nig2t2 417 0% = Nt7 % € NtjtaN so this orbit send
two joins back to the double coset Nt N, denoted [1,2).

2. Ntito?ts® = Nt1t22t22_1 = Nt; € Nt1N so this orbit send two joins back to the
double coset Nt N, denoted [1].

3. Niyto2te?= N t1t222 = Nt;% € Nt;%N which means this orbit sends two joins back
to the double coset N¢,5N, denoted [19].

4. Nt1to%t;8 = Nt1t2 = Ntity € Nt1taN. So this orbit sends these two joins to the
double coset NtitaN, denoted [1, 2].

5. Nti1ta?ts®> = Nt1t2® € Nt N. Our relations indicate this orbit sends these two
joins to the double coset Nt;t2° N, denoted [1,25].

B. Ntitz2te? = Nt1t2% € Nt1t:%N, so this orbit sends 2 joins to the double coset
Nt 8§ N, denoted [1,29].

Ntit2°N

We now will determine the number of single coset in the double coset {1,2°%] by
this formula Wung)—l which gives us § = 3. The coset representative for [1,2%] is Nt1t3.
We now identify the orbits of N (1,2°) and determine where they go. We see that the orbits
of N2 on {3,15,15,23, 25,28} are {14,22}, {15,258}, {15,23},{1,2%}, {2,7} and {3,25}
. When we apply a representative ¢; from each orbit to the coset representative N3 we

see that the following results:

1. Ntltgt22 = Nt1t22—1t22 = Nt; € N1 N so this orbit send 2 joins back to the double
coset Nt1.V, denoted [1].

2. Nti;t3t7 = Nt§ € NiSN which means this orbit sends 2 joins back to the double
coset Nt$N, denoted [1°].
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N t1t3t23 = Ntity € NtitaN. So this orbit sends 2 joins to the double coset Ntta N,
denoted [1, 2].

Nt1tite? = Nt1t,2 € N t1t32N. Our relations indicate this orbit sends 2 joins to
the double coset Nt1t2%N, denoted [1,27).

Nt1t3te = Nt1tS € Nt1t§N, so this orbit sends 2 joins to the double coset Nt1§N,
denoted [1, 28].

N3t = Nyt313 = Nt tltd = Nt;t3 = Ntjta? € NtyteN, so this orbit sends 2
joins to the double coset Nt1taN, denoted [1,2].

Nt1t28N

We now will determine the number of single coset in the double coset [1,2°] by

this formula —JM@—- which gives us g = 3. 'i‘he coset representative for [1,2%)] is Nt,¢8.

IN(lvz )I

We now identify the orbits of N (1.2°) and determine where they go. We see that the orbits
of NL2%) on {8,15,18,23,25 26} {1,24}, {2,7}, {3,2°}, {1%,2%,},{15,2%}, and {15,25}.

When we apply a representative ¢; from each orbit to the coset representative Nt;t5 we

see that the following results:

1.

Nt tp8t) = Nt1t§t) = Nt1ty € Nt1toN so this orbit send 2 joins back to the double
coset NtitoN, denoted [1,2].

Nt = Nt]_tztz_l = Nt; € Nt; N so this orbit send 2 joins back to the double
coset Nt N, denoted [1].

Nt;t:,%43 = Ntg € NtgN which means this orbit sends 2 joins back to the double
coset NtgN, denoted [1)].

NitoPt2 = Ntjtg € Nt1£oN. So this orbit sends 2 joins to the double coset
Nt1taN, denoted [1,2].

Nt1t.5t% = Nt1t52 € Nt1t22N. Our relations indicate this orbit sends 2 joins to
the double coset Nt1t22N, denoted [1,27].

Nt1t2848 = N, (t§)? = Nt1t3 € Nt1t3N, so this orbit sends 2 joins to the double
coset Nt1t3N, denoted [1,29].
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This concludes all words of length two. Since we did not extend any of the orbits to new
double cosets, this group is closed under right hand multiplication. Thus, our double
coset enumeration of 7*2 :,,, S3 is complete.

The results are submarized in the following cayley diagram Figure 7.1:

Figure 7.1: Cayley diagram of 7*2 :,,, S3



In Table 7.5, we first label each single coset. We then compute the action of

zz, yy and tt; to determine f(z), f(y), and f(¢):

F(@) = (2,4,6)(3,7,9)(5,11,10)(8, 15, 14) (12, 21, 23) (13, 24, 25)
(16,20, 26)(17, 27, 18) (19, 28, 22)

fly) = (2,5)(3,8)(4,10)(6, 11)(7, 14)(9, 15}(12, 17)(13, 25)
(16,26)(18,21)(19, 28)(23, 27)

Ft) = (1,2,6,7,4,9,3)(5,12,22,17,8, 16, 13)
(10, 14, 23, 26, 28, 25, 18)(11, 19, 15, 24, 21, 27, 20)
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Table 7.5: Labeling of and Actions on the Single Cosets

Labeling  Single Cosets zz vy tt;
1 N 1 N 1 N 2 Nt
2 Nt 4 Nt} 5 Nto 6 Nt
3 Nt§ 7 Nt 8 Ni§ 1 N
4 Nti 6 Nt 10 Nt 9 N
5 Nty 11 Nt3 2 Ny 12 Ntito
6 N2 2 Nty 11 Nt Nt}
7 N3 9 Nt§ 14 Nt3 4 Nt}
8 Ntd 15 N3 3 Nt§ 16 Ntitd
9 N3 N8 15 Nt§ 3 Nitb
10 Nt} Nty 4 Nt} 14 Nt
11 Nt3 10 Nt2 6 Ni? 19 Nijtd
12 Ntits 21 NtltZ 17 Ntoty 22 Ntyts
13 Ntit3 24 Nt2#t3 25 Nyt 5 Nty
14 Nt 8 Nt§ Nt 23 N3t}
15 Nt3 14 Nt Nt 24 Nt ig
16 Ntitd 20 N##§ 26 Ntitd 13 Ntjt
17 Ntaty 27 Ntit! 12 Ntitz 8 Ni§
18 Ntst? 17 Nitgt; 21 Ntjt2 10 Nij
19 Ntitd 28 Nitot? 28 Niotd 15 Nt
20 Nt2t§ 26 Nty 20 Ned§ 11 NitZ
21 Ntit3 23 Nt}i 18 Ntjt? 27 Ntit}
22 Nt i3 19 Ntdtd 22 Nyt 17 Ntoyy
23 Ntdd 12 Ntits 27 Ntit 26 N3
24 Nit?e3 25 Nt 24 Nt#td 21 Ntitd
25 Nitt§ 13 Nty 13 Nty 18 Ntit?
26 Nt 16 Nt{t3 16 Nif3 28 Niotd
27 Ntit} 18 Ntdt2 23 Nt#d 20 N2
28 Nt,td 22 Niyt2 19 Nifts 25 Ntyid

83



84

7.4 Additional Finite Homomorphic Images of the Mono-
mial Progenitor 7*2 :,, S3
We found five other homomorphic images of the monormial progenitor 7*2 :,,, Ss,

which can be further examined as we have done in the above chapter. From MAGMA,

we have the following:

a:=0;b:=0;¢c:=0;d:=4;e:=0;f:=0;g:=0; //Index = 168 //
G<x,y,t>:=0roup<x,y,t1x"3,y"2, (x*y)"2,t"7,t"x=t"4,t" (x"-1)=t"2,
(oktrt~xkt ™ (x72)) ~a, (x*xy*t) “b, (x"2xy*t~x) “c,
(xxy*t~y) ~d, (xxtxt~(x"2)) e,

(x*t*t™ (x72)) e, (yFLFt yrt Xkt y*t 2% (t"x)"3)"F, (t*t"x) "g>;

G;

Finitely presented group G on 3 generators

Relations
x~3 = 14(G)
y~2 = Id(G)
(x * y)°2 = Id(®)
t°7 = Id(G)
t°x = t74

x * t % x°-1 =1t"2

(x * t * y)~4 = Id(G)

#G;

1,008

f,G1,k:=CosetAction(G,sub<G|x,y>);



CompositionFactors(Gl);
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G

| A, 7) =L(2, 7
*

| Cyclic(2)

*

| Cyclic(3)

1

a:=0;b:=0;c:=6;d:=7;e:=0;£:=3;g:=0; //Index = 224 //

G<x,y,t>:=Group<x,y,t[x"3,y"2, (x*y)"2,t"7,t"x=t"4,t" (x"-1)=t"2,
(x*t*t~x*t™ (x"2)) ~a, (x*y*t) "b, (x"2*y*t"x) "c,
(xxy*t~y) ~d, (okt*t~(x"2)) e,

(xxtt™ (x"2)) "e, (yrt*t - yxt xxt ykt 2% (t"x)"3)"f, (t*t"x)"g>;

G;

Finitely presented group G on 3 generators

Relations
x"3 = I4(G)
y~2 = 1d(G)
(x * y)°2 = Id(G)
t7 = 1d(G)
t7x = t74

X *t ¥ x™-1=+t"2

(x"2 * y * x°-1 % t * x)°6 = Id(G)
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(x * t * y)°7 = Id(G)
(y*t *xy -1l *txy*xx™=1%t*x*ky~=1*t*xyx*xt-2*x -1 *%t"3 *

x)"3 = Id(®

#G;

1,344

f,G1,k:=CosetAction(G,sub<G|x,y>);

CompositionFactors(G1);

G

| ACL, 7) =L(2, 7)
*

| Cyclic(2)

*

|  Cyclic(2)

*

| Cyclic(2)

1

a:=0;b:=0;c:=0;d:=0;e:=0;£:=2;g:=0; //Index = 343 //

G<x,y,t>:=Group<x,y,tx"3,y"2, (x*y)~2,t"7,t"x=t"4,t" (x"-1)=t"2,
(x*t*t x*t~ (x72) ) ~a, (x*y*t) "b, (x"2*y*t~x) "c,
(xxy*t~y) °d, (x*t*t~(x"2)) e,

(x*t*t”™ (x72)) "e, (y*t*t y*t xkt y*xt~2%(£"x) "3)"f, (t*t"x)"g>;

G;
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Finitely presented group G on 3 generators

Relations
x"3 = Id(G)
y~2 = Id(G)
(x * y)°2 = Id(G)
t~7 = Id(G)
t7x = t74

x %t x x7-1 =t72
(ot xy -1 *xt *xy*xx =1 xt *x*xy-1x%t*y*t'2%x"-1x*t 3%
x)"2 = Id(®)

#G;

2,058

f,61,k:=CosetAction(G,sub<G|x,y>);

CompositionFactors(Gl);

CompositionFactors(Gl);

G

| Cyclic(2)

%*

Cyclic(3)

Cyclic(7)
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Cyclic(7)

Cyclic(7)

a:=0;b:=0;c:=0;d:=5;e:=0;f:=4;g:=0; //Index = 420 //
G<x,¥,t>:=Group<x,y,t|x"3,y"2, (x*y)"2,t"7,t"x=t"4,t" (x"-1)=t"2,
(xkt*t x*t™ (x"2) ) "a, (x*y*t) "b, (x"2%y*t"x) “c,

(xxy*t y)~d, (x*t*t~ (x72)) "e,

(xxt*t~ (x72)) "e, (yktrt y*t xrt y*t 2% (t7x) "8) £, (t*t7x) "g>;

G;

Finitely presented group G on 3 generators

Relations
x"3 = Id(@®
y 2 = Id(G)
(x * y)°2 = Id(G)
£°7 = Id(G)
tTx = t74

X *t * x"-1 =172
(x x t % y)°5 = Id(G)
(y *t

x)"4

¥ y*-1 % ¢t xy xx"-1 %t % xk y™-1l %t *ky*kt72 %k x"-1 % £t73 *
1d(G)
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#G;
2,520

£,G1,k:=CosetAction(G,sub<Glx,y>);

CompositionFactors(Gi);

CompositionFactors(Gl);

G

| Alternating(7)
1

a:=0;b:=0;¢:=6;d:=7;e:=0;£:=0;g:=0; //Index = 1792 //
G<x,y,t>:=Group<x,y,t[x"3,y"2, (x*y)~2,t"7,t"x=t"4,t " (x"-1)=t"2,
(xxtxt"x*t”~ (x"2)) "a, (x*y*t) "b, (x~2%y*t"x) ~c,
(xxy*t~y) ~d, (x*t*t~(x"2)) e,

(xxt*t~(x"2)) "e, (yrtxt y*t x*xt y*t"2%(t"x)"3)"f, (t*t"x)"g>;

G;

Finitely presented group G on 3 generators

Relations
x"3 = Id(Q®)
y~2 = 1d(G)

(x * y)~2 = 1d(G)
t°7 = 1d(G)



ttx = t74

X *t ok x"-1=1t"2

(x*2 * y x x”-1 * t * x)"6 = Id(G)

(x * t * y)°7 = I4(G)

#G;

// 10,752 //

£,G1,k:=CosetAction(G,sub<Glx,y>);

CompositionFactors(G1l);

CompositionFactors{(Gl);
G

l

*

ACL, )

Cyclic(2)

Cyclic(2)

Cyclic(2)

Cyclic(2)

Cyclic(2)

Cyclic(2)

=L(2, T
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Lastly, we discovered another progenitor 2° : S3 which gives rise to a Symplectic group
S4(5), as seen in our MAGMA code below:

G<x,y,t>:=Group<x,y,tlx"3 , y*3 , (x*ky)}"2, t°5, (t,x),
> (y*t)°5, (xxy*t)~0, (y*t*(t7y) (x72))74>;

> #G;

4680000

> £,G1,k:=CosetAction(G,sub<Glx,y>);

> CompositionFactors(Gl);
G
| C(2, 5) = 5(4, 5)
1

The construction of this presentation gives us 5% : S3.



Appendix A: MAGMA Code for
3*: A3

tot1=t1typ

Group

3 ~*3: A3/t0t1=tit0

N:=Sym(6);
xx:=N1(1,2,3)(4,5,6);

N:=sub<N|xx>;

G<x,t>:=Group<x,t|x"3,t 3, Lt "x=t "x*t>;
Index(G,sub<G|x>);

£,G1,

k:=CosetAction(G,sub<G|x>);

IN:=sub<G1|f(x)>;
ts:={Id(G1) : i in [1..6]];

ts[3]:
ts[4]:

cst :=

=f(t); ts[1]:=£(t"x); ts[2]:=£(t"(x"2));
=ts[1]1"-1; ts[5]:=ts[2]"-1; ts[6]:=ts[3]"-1;
[null : i in [1 .. 27)] where null is [Integers() | ];

prodim := function(pt, Q, I)

VES

Return the image of pt under permutations Q[I] applied sequentially.

v =

for i

<
1

Pt;
in I do

v~ (QL[il);

end for;

return v;

end function;
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CompositionFactors(Gl);
G
| Cyclic(3)
*

I Cyclic(3)

|  Cyclic(3)

| Cyclic(3)

e e e e e e e et e e e e T T Y T et e e e e e e P o e ket e e o B . Y . e e e

N3:=8tabiliser(N,3);

S:={[3]};

85:=5"N;

SSS:=Setseq(SS);

for i in [1..#S8S] do

for n in IN do

if ts[3] eq n*(ts[(Rep(SSS[i]))[111)
then print Rep(SSS[il);

end if;

end for;

end for;

T3:=Transversal(N,N3);

for i in [1..#T3] do
ss:=[3]"T3[i];

cst[prodim(1l, ts, ss)] := ss;

end for;

m:=0;

for i in [1..27] do if cst[i] ne []
then m:=m+1; end if; end for; m;

Orbits (N3);
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N6:=Stabiliser (N,6);

S:={[6]};

35:=5"N;

8SS:=Setseq(SS);

for i in [1..#88S] do

for n in IN do

if ts[6] eq nx(ts[(Rep(SSS[il))[1]11)
then print Rep(SSS[il);

end if;

end for;

end for;

T8:=Transversal(N,N6);

for i in [1..#T6] do

ss:=[6]"T6[i];

cst[prodim(i, ts, ss)] := ss;

end for;

m;=0;

for 1 in [1..27] do if cst[i] ne []
then m:=m+1; end if; end for; m;

Orbits(N6);

N31:=Stabiliser(N3,1);

S:={[3,1]};

S55:=5"N;

SSS:=Setseq(SS);

for i in [1..#S8] do

for g in IN do if ts[3]#tsf1]

eq gxts[Rep(SSS[il) [1]1]*ts[Rep(SSS[i]) [2]]
then print SSS[i];

end if; end for; end for;

T31:=Transversal (N,N31);



for i in [1..#T31] do

ss:=[3,1]1"T31[i];

cst[prodim(l, ts, ss)] := ss;

end for;

m:=0; for i in [1..27] do if cst[i] ne [I
then m:=m+1; end if; end for; m;

Orbits (N31);

N34:=Stabiliser (N, [3,4]);

8:={[3,41};

S5:=S"N;

SSS:=Setseq(SS);

for i in [1..#S8] do

for g in IN do if ts[3]*ts([4]

eq g+ts[Rep(888[il1)[111*ts[Rep(8SS[i]) [2]]
then print 8S8S[i];

end if; end for; end for;

T34 :=Transversal (N,N34);

for i in [1..#T34] do

ss:=[3,4]1"T34[i];

cst[prodim(1l, ts, ss)] := ss;

end for;

m:=0; for i in [1..27] do if cst[i] ne []
then m:=m+1; end if; end for; m;

Orbits(N34);

N32:=Stabiliser (N, [3,2]);
S:={[3,21};

58:=8"N;

888:=Setseq(8S);

for i in [1..#S8] do

for g in IN do if ts[3]xts[2]
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eq gxts[Rep(8SS[i]) [1]11*ts[Rep(SSSiil) [2]]
then print SSS[i];

end if; end for; end for;

Orbits(N32);

T32:=Transversal(i,N32);

for i in [1..#T32] do

ss:=[3,2]"T32[1];

cst[prodim(1, ts, ss)] := ss;

end for;

m:=0; for i in [1..27] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N32};

N35:=Stabiliser(N, [3,5]);

§:={[3,5]};

SS:=8"N;

88S:=Setseq(S8);

for i in [1..#SS] do

for g in IN do if ts[3]*ts[5]

eq g+ts[Rep(8SS[il) [11]*ts[Rep(8SSIil) [2]]
then print SSS[il;

end if; end for; end for;

Orbits(N35);

T35:=Transversal(N,N35);

for i in [1..#T35] do

ss:=[3,5]"T35[i];

cst[prodim(1, ts, ss)] := ss;

end for;

m:=0; for i in [1..27] do if cst[i] ne []
then m:=m+1; end if; end for; m;

Orbits(N35);




N61:=Stabiliser (N, [6,1]1);

S:={[6,11};

55:=8"N;

SSS:=Setseq(SS);

for i in [1..#88] do

for g in IN do if ts[6]*ts[1]

eq g*ts[Rep(SSS[il) [111*ts[Rep(SSS[il) [2]]
then print SSS[il;

end if; end for; end for;
T61:=Transversal (N,N61);

for i in [1..#T61] do

ss:=[6,1]"T61[i];

cst[prodim(1l, ts, ss)] := ss;

end for;

m:=0; for i in [1..27] do if cst[i] ne []
then m:=m+1; end if; end for; m;

Orbits(N61);

N64:=Stabiliser(N, [6,4]);
S:={(6,41};

SS:=5"N;

S8S:=Setseq(S8);

for i in [1..#S5] do

for g in IN do if ts[6]*ts[4]
eq gxts[Rep(SSS[i]) [1]1]*ts[Rep(SSS[i]) [2]]
then print SSS[il;

end if; end for; end for;
Orbits(N64);
T64:=Transversal (N,N64);

for i in [1..#T64] do
ss:=[6,4]"T64[i];
cst[prodim(1, ts, ss)] := ss;
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end for;
m:=0; for i in [1..27] do if cst[i] ne []
then m:=m+1; end if; end for; m;

Orbits(N64);

N62:=Stabiliser (N, [6,2]);

S:={[6,2]};

S58:=8"N;

S8S:=Setseq(SS);

for i in [1..#88] do

for g in IN do if ts[B]*ts([2]

eq g*ts[Rep(SSS[il) [1]]*ts[Rep(SSS[il) [2]1]
then print SSS[i];

end if; end for; end for;
T62:=Transversal(N,N62);

for i in [1..#T62] do

ss:=[6,2]1"T62[i];

cstlprodim(l, ts, ss)] := ss;

end for;

m:=0; for i im [1..27] do if cstl[i] ne []
then m:=m+1; end if; end for; m;

Orbits{N62);

N65:=Stabiliser(N, [6,51);
S:={[6,5]};
SS:=S8"N;
8SS:=Setseq(SS);
for i in [1..#8S] do
for g in IN do if ts[6]*ts[5]
eq g*ts[Rep(88S8[i]) [111*ts{Rep(SSSLil) [2]]
then print SSS[i];

end if; end for; end for;
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T65:=Transversal (N,N65) ;

for i in [1..#765] do

ss:=[6,5]"T65[i];

cst[prodim(1l, ts, ss)] := ss;

end for;

m:=0; for i in [1..27] do if cst[i] ne []
then m:=m+1; end if; end for; m;

Orbits(N65);

N642:=Stabiliser(N, [6,4,2]);
S:={[6,4,2]};

SS8:=8"N;

SSS:=Setseq(SS);

for i in [1..#88] do

for g in IN do if ts[6]*ts[4]*ts[2]

eq g*xts[Rep(SSS[i]) [1]1]1*ts[Rep(SSS[il) [2]1]*ts[Rep(SSS[i]) [3]]
then print SSS[i];

end if; end for; end for;
T642:=Transversal (N,N642);

for i in [1..#T62] do

ss:=[6,4,2] "T642[i];

cstprodim(1l, ts, ss)] := ss;

end for;

m:=0; for i in [1..27] do if cstl[i] ne []

then m:=m+1; end if; end for; m;

Orbits(N642);

N312:=Stabiliser(N,[3,1,21);
s:={[3,1,2]1};

8S:=8"N;

858:=Setseq(SS);

for i in [1..#SS] do
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for g in IN do if tsf3]*ts[1]*ts[2]

eq g+ts[Rep(SSS[il) [1]11*ts[Rep(SSS[i]) [2]11*ts[Rep(8SS[il) [3]]
then print SSS[il;

end if; end for; end for;

for n in N do if [3,1,2]"n eq [1,2,3]
then N312:=sub<N|N312,n>; end if; end for;
// Determines equal double cosets //

for n in ¥ do if [3,1,2]"n eq [2,3,1]
then N312:=sub<N|N312,n>; end if; end for;
T312:=Transversal(lN,N312);

for i in [1..#T312] do
ss:=[8,1,2]1"1312[i]l;

cstprodim(l, ts, ss)] := ss;

end for;

m:=0; for i in [1..27] do if cstl[i] ne []
then m:=m+1; end if; end for; m;

Orbits (N312);
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N342:=Stabiliser(N, [3,4,2]);
S:={[3,4,21};
S8S:=5"N;
SSS:=Setseq(SS);
for i in [1..#8S] do
for g in IN do if ts[3]*ts[4]*ts{2]
eq gxts[Rep(SSS[il) [111*ts[Rep(SSS[i]) [2]1]1*ts[Rep(SSS[i]) [3]]
then print SSS[il;
end if; end for; end for;
T342:=Transversal (N,N342);
for i in [1..#T342] do
ss:=[3,4,2]"T342[i];
cst[prodim(1l, ts, ss)] := ss;

end for;



m:=0; for i in [1..27] do if cst[i] ne []
then m:=m+1; end if; end for; m;

Orbits(N342);

N3421:=Stabiliser (N, [3,4,2,1]);
5:={[3,4,2,11};

8S:=5"N;

SSS:=Setseq(SS);

for i in [1..#SS] do

for g in IN do if ts[3]*ts[4]*ts[2]*ts[1]
eq g*ts[Rep(SSS[il) [1]1]1*ts[Rep(8SS{i]) [2]1]1*ts[Rep(SSS[il) [31]*ts[R\
ep(SSS[il) [4]]

then print SSS[il;

end if; end for; end for;
T3421:=Transversal (N,N3421);

for i in [1..#T342] do
ss:=[3,4,2,1]1"T3421[i];

cst[prodim(1, ts, ss)] := ss;

end for;
m:=0; for i in [1..27] do if cst[i] ne []
then m:=m+1; end if; end for; m;

Orbits(N3421);

N3424:=Stabiliser (N, [3,4,2,4]);
8:={[3,4,2,41%};
85:=8"N;
S8S:=Setseq(SS);
for i in [1..#S8] do
for g in IN do if ts[3]*ts[4]*ts[2]*ts[4]
eq g*ts[Rep(SSS[il) [111*ts[Rep(8SS[il) [2]11*ts[Rep(SSS[i]) [31]1*ts[R\
ep(88S[il) [41]
then print SSS[il;
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end if; end for; end for;

// determines equal cosets //
for n in N do if [3,4,2,4]"n eq [1,5,3,5]
then N3424:=sub<N|N3424,n>; end if; end for;
for n in N do if [3,4,2,4]1"n eq [2,6,1,6]
then N3424:=sub<N|N3424,n>; end if; end for;
T3424 :=Transversal (N,N3424);
for i in [1..#T3424] do
ss:=[3,4,2,4]"T3424[i];

cst[prodim(1, ts, ss)] := ss;
end for;
m:=0; for i in [1..27] do if cst[i] ne [I
then m:=m+i; end if; end for; m;

Orbits (N3424) ;

N3426:=Stabiliser(N, [3,4,2,6]1);
S:={[3,4,2,6]};

S5:=8"N;

$8S8:=Setseq(SS);

for i in [1..#88] do

for g in IN do if ts[3]*ts[4]*ts[2]*ts[6]
eq g*ts[Rep(SSS[i]) [1]1]*ts[Rep(SSS[il) [2]]1%tsfRep(SSS[i]) [3]]*ts[Rep(8SS[i]) [4]]

then print SSS([i];

end if; end for; end for;

T3426:=Transversal(N,N3426) ;

for i in [1..#T3426] do

ss:=[3,4,2,6] "T3426[1];

cst[prodim(1, ts, ss)] := ss;

end for;

m:=0; for i in [1..27] do if cst{i] ne []

then m:=m+1; end if; end for; m;

Orbits(N3426);
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N3423:=Stabiliser(N, [3,4,2,3]1);
8:={[3,4,2,31};

88:=8"N;

SSS:=Setseq(SS);

for i in [1..#88] do

for g in IN do if ts[3]*ts{4]l*ts[2]*ts[3]

eq g¥ts[Rep(SSS[i]) [1]1]1*ts[Rep(SSS[il) [2]]*ts[Rep(SSS[i]) [3]1]*ts[Rep(SSS[i]) [4]]

then print SSS[i];

end if; end for; end for;
T3423:=Transversal (N,N3423);

for i in [1..#T3423] do

ss:=[3,4,2,3] "T3423[i];

cst[prodim(1, ts, ss)] := ss;

end for;

m:=0; for i in [1..27] do if cst[i] ne []
then m:=m+1; end if; end for; m;

Orbits(N3423);

N645:=Stabiliser (N, [6,4,5]);
s:={[6,4,5]};

SS:=5"N;

58S5:=Setseq(SS);

for i in [1..#88] do

for g in IN do if ts[6]*ts[4]*ts[5]

eq g*ts[Rep(8SS[il) [11]1*ts[Rep(8SS[il) [2]11*ts[Rep(SSS[il)[3]1]

then print S8SS[il;

end if; end for; end for;

// determines equal cosets //

for n in N do if [6,4,5]1"°n eq [5,6,4]
then N645:=sub<N|N645,n>; end if; end for;
for n in N do if [6,4,5] n eq [4,5,6]
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then N645:=sub<N|N645,n>; end if; end for;
T645:=Transversal (N,N645) ;

for i in [1..#T645] do
ss:=[6,4,5]"T645[i];

cst[prodim(1l, ts, ss)] := ss;

end for;

m:=0; for i in [1..27] do if est[i] ne []
then m:=m+1; end if; end for; m;

Orbits(N645);
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Appendix B: MAGMA Code for

tot10t1=e

G<x,¥,t>:=Group<x,y,t1x"3,y"2, (xxy) "2,t"7,t"x=t"4,t" (x"-1)=t"2, (x*y*t) "3>;

#G;

//188//

Index(G,sub<Glx,y>);

/] 28 //

£,G1,k:=CosetAction(G,sub<G|x,y>);

£((y*x) "3%t” ((y*x) “2) ¥t~ (y*x) *t) ;

£ ((xxy) “3%t~ ((x*y) "2) %t~ (x*xy) *t) ;

CompositionFactors(Gl);

/*

| A1, 7) =L(2, D



106

*/

IN:=sub<G1l[£(x),£(y)>;

ts:=[Id(CG1) : i in [1..12]];

ts[1]:=£(t); ts[2):=(ts[11)"2; ts[3]:=(ts[1])"3;

ts[4]:=(ts[1]1)"4; ts[5]:=(ts[1))"5; ts(6]:=(ts[1]1)76;ts[7]:=£(t"y);
ts[8] :=(ts[7])"2;ts[9] :=(ts[7])"3;ts[10]:=(ts[7])"4;ts[11] :=(ts[7])"5;ts

[12] :=(ts[7])"6;

S:=Sym(12);
xx:=81(1,4,2)(3,5,6)(7,8,10)(9,12,11);
yy:=81(1,7)(2,8) (3,9)(4,10)(5,11)(6,12);
N:=sub<S|xx,yy>;

XX*YY;
/7, 10)(2, 7)(3, 11)(4, 8)(5, 12)(6, 9) //
£ (x*xy)*xts[1)%ts[10]*ts[1] ;
// Ta(GL) //

£ (xxy)*ts[7]*ts [2] *ts (7] ;

if f(x*y)*ts[1]*ts[10] eq ts[1]"-1 then print true;end if;
if f(x*xy)*ts[1] eq ts[1]~-1*ts[10]"-1 then print true;end if;

cst := [mwll : i in [1 .. 28]] where null is [Integers() | ];
prodim := function(pt, Q, I)

v = pt;

for i in I do
v = v"(Q[il);
end for;

return v;
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end function;

#DoubleCosets(G,sub<G|x,y>,sub<G|x,y>);

/1T

DoubleCosets(G,sub<G|x,y>,sub<G|x,y>);

/*

{ <GrpFP, Id(G), GrpFP>, <GrpFP, t * y * x * t, GrpFP>, <GrpFP, t * y * t,
GrpFP>, <GrpFP, t, GrpFP>, <GrpFP, t°-1, GrpFP>, <GrpFP, t * y * t°~1, GrpFP>,
<GrpFP, y~t, GrpFP> }

*/

Setseq(DoubleCosets (G,sub<G|x,y>,sub<G|x,y>));

/%

[ <GrpFP, Id(G), GrpFP>, <GrpFP, t * y * x * t, GrpFP>, <GrpFP, t * y * t,
GrpFP>, <GrpFP, t, GrpFP>, <GrpFP, t~-1, GrpFP>, <GrpFP, t * y * t"-1, GrpfFpP>,
<GrpFP, y~t, GrpFP> ]

> { <GrpFP, Id(G), GrpFP>, <GrpFP, t * y * x * t, GrpFP>, <GrpFP, t * y * t,

> GrpFP>, <GrpFP, t, GrpFP>, <GrpFP, t~-1, GrpFP>, <GrpFP, t * y * t~-1, GrpFP\
>’

> <GrpFP, y~t, GrpFP> }

*/
-—-= ti’s and inverses ---—-----—- -

ts[1]*ts[6];

// 1d(G1) implies ts[1] = ts[6]~-1 //

ts[2]*ts[5];

// 1d(G1) implies ts[2] = ts[B1~-1 //

ts[3]1*ts[4];

// 1d(G1l) implies ts[3] = ts[4]"-1 //

ts[4]*ts[3];

//18(G1) implies ts[4] = ts[3]1°-1//
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ts[B]#ts[2];

//1d(G1) implies ts[5] = ts[2]"-1//

ts[6]*ts[1];
//Id(G1) implies ts[6] = ts[1]~-1 //

ts[7)*ts[12];
// 1d(G1) implies ts[7] = ts[12]~-1//

ts[8]*ts[11];
//1d(G1) implies ts[8] = ts{11]~-1//

ts[9]*ts[10];
//1d(G1) implies ts[9] = ts[101"1//

ts[10]*ts[9];

//1d(G1) implies ts[10] = ts[9]1"1//
ts[11l*ts[8];

//Td(G1) implies ts[11] = ts[8]~-1//
ts[12] *ts[7];

//1d(G1) implies ts[12] = ts[7]1"-1//

Checking oxbits paths from DC to DC

checking orbit paths from DC [1]
if ts[1]1*ts[6] eq Id(G1l) then print true; end if;
// true so ts[6] takes 1 to [*]//



if
/!
if
//
if
//
if
/!
if
//
if
//

ts[11*ts[3] eq ts[1] then print true; end if;
7? so either ts[1] or ts[3] takes 2 back to itself//
ts[1]*ts[5] eq ts[6] then print true; end if;
so ts[5] takes 4 to [6]//
ts[1]*ts[7] eq ts[1]*ts[7] then print true; end if;
so ts[7] takes 2 to [1,7]//
ts[1]*ts[] eq ts[1]*ts[8] then print true; end if;
true so ts[8] takes 1 to [1,81//
ts[1]+ts[] eq ts[1]*ts[11] then print true; end if;
true so ts[11] takes 1 to [1,111//
tsf1]*ts[] eq ts[1]*ts[12] then print true; end if;
true so ts[12] takes 1 to [1,12]//

checking orbit paths from DC [6]

if
/7
if
//
if
//
if
//
if
//
if
/!
if
/!

ts[6]xts[1] eq Id(G1) then print true; end if;

true so ts[1] takes 1 to [*]//

ts[6]*ts[6] eq ts[6] then print true; end if;

?? so either ts[4] or ts[6] takes 2 back to itself//

ts[6]*ts[2] eq ts[1] then print true; end if;

true so ts[2] takes 4 to [11// ‘

ts[6]1*ts[10] eq ts[1i]#ts[7] then print true; end if;
?? so either ts[10] or ts[12] takes 2 to [1,71//

ts[6]*ta[11] eq ts[1]#ts[8] then print true; end if;

true so ts[8] takes 1 to [1,8]1//

ts[6l*ts[] eq ts[1]*ts[11] then print true; end if;

true so ts[11] takes 1 to [1,11]1//

ts[6]*ts[] eq ts[1]*ts[12] then print true; end if;

true so ta[i2] takes 1 to [1,12]1//

checking orbit paths from DC [1,7]

if
/!

t5[1]1*ts[7]1*ts[12] eq ts[1] then print true; end if;
true so ts[12] takes 2 to [1]//
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if
//
if
/
if
/!
if
/!
if
/!
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ts[1]*ts[7)*ts[9] eq ts[1]~(-1) then print true; end if;

77 so either ts[1] or ts[9] takes 2 to [6]//
ts[1]1*ts[71*ts[8] eq ts[il*ts[7] then print true; end if;
7?7 so either ts[5] or ts[8] takes 2 back to itself//
ts[11#ts[71*ts[7] eq ts[1]*ts[8] then print true; end if;
true so ts[7] takes 2 to [1,8)//

ts[1]1*ts[7]*ts[10] eq ts[1]*ts[11] then print true; end if;
true so ts[10] takes 2 to [1,11]//

ts[1]*ts[7]*ts[11] eq ts[1]*ts[12] then print true; end if;
true so ts[11] takes 2 to [1,12]//

checking orbit paths from DC [1,8]

if
/!
if
/!
if
/7
if
/7
if
/!

ts(1]*ts[8]*ts[12] eq ts[1]*ts[7] then print true; end if;
true //

ts[1]*ts[8]*ts[11] eq ts[1] then print true; end if;

true //

ts{1]*ts[8]#ts[8] eq ts[1]"-1 then print true; end if;

77 //

ts[1])*ts[8]*ts[9] eq ts[1]*ts[11] then print true; end if;
true //

ts[11*ts[8] *ts[10] eq ts[1l*ts[12] then print true; end if;
true //

checking orbit paths from DC [1,11]

if
/!
if
//
if
/!
if
/7

ts[11*ts[11]*ts[8] eq ts[i] then print true; end if;

true //

ts[1]*ts[11]1*ts[12] eq ts[6] then print true; end if;

7 //

ts[1]#ts[11]1%ts[9] eq ts[1I*ts[7] then print true; end if;
true //

ts[1)*ts[11]1*ts[10] eq ts[il*ts[8] then print true; end if;

true //



if ts[1]*ts[111*ts[7] eq ts[1}*ts[12] then print true; end if;
// true //

checking orbit paths from DC [1,12]

if ts[i]*ts[12]*ts[7] eq ts(1] then print true; end if;

// true //

if ts[1I*ts[12]1*ts[11] eq ts(6] then print true; end if;
/2

if ts[1]*ts[12]1*ts[8] eq ts[1]*ts[7] then print true; end if;
// true //

if te[1]*ts[12]*ts[9] eq ts[1]1*ts[8] then print true; end if;
// true //

if ts[1)*ts[12)*ts[12] eq ts[1]*ts[11] then print true; end if;
// true //

/= e DC [1] -—~——~——~m—— e //
S:={[11};
SS:=3"N;

88S:=Setseq(88);

for i in [1..#S8] do

for g in IN do

if ts[1] eq g*ts[Rep(SSS[il)[1]1]
then print SSS[il;

end if;

end for;

end for;

/*
{
[1]

*/
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Ni:=Stabiliser(N,1);

#N1;

N1;

/*

Permutation group N1 acting on a set of cardinality 12
Order = 1

*/

T1:=Transversal (N,N1i);#T1;

// 6 transversals //

T1;

/*

{e
Ia(N),
1, 4, 2)(3, 5, 8)(7, 8, 10)(9, 12, 11),
(1, (2, 8)(3, 4, 10)(, 11)(6, 12),
(1, 2, 4)(38, 6, 5)(7, 10, 8)(9, 11, 12),
(1, 1002, 7@, 11)(4, 8)(5, 12)(6, 9),
(1, 8)(2, 10)(3, 12)(4, 7)(5, 9 (6, 11)

e}

*/

for i in [1..#T1] do

88:=[11"T1[il;

cst [prodim(1i,ts,SS)]:=8S;

end for;

m:=0; for i in [1..#cst] do if c¢st[i] ne [] then m:=m+1; end if;

end for; m;

// 6, so 6 cosets in the DC [1] //

Orbits(N1);
/*
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GSet{ 1 },
GSet{ 2 1},
GSet{ 3 1},
GSet{ 4 },
GSet{ 5 },
GSet{ 6 },
GSet{ 7 7F,
GSet{ 8 },
GSet{ 9 I},
GSet{ 10 3,
GSet{ 11 },
GSet{ 12 }

*/

N6:=Stabiliser (N,6);
S:={[6]};
85:=8"N;
8SS5:=Setseq(SS);
for i in [1..#SS] do
for g in IN do
if ts[6) eq g*ts[Rep(8SS[il)[11]
then print SSS[il;
end if;
end for;
end for;
/*
{

(6]

*/
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#N6;
/1 7/
N6;
/%
Permutation group N6 acting on a set of cardinality 12
Order = 1
*/

T6:=Transversal (N,N6) ; #T6;

// 6, so 6 transversals //

T6;

/%

{e
Id(N),
(1, 4, 2)(3, 5, 6)(7, 8, 10)(9, 12, 11),
1, 72, 8)(3, 94, 10)(5, 11)(6, 12),
(1, 2, 4)(8, 6, 5)(7, 10, 8)(9, 11, 12),
(1, 10)(2, 73, 11)(4, 8)(5, 12)(6, 9),
(1, 8)(2, 10)(3, 12)(4, 7)(5, 9)(6, 11)

e}

*/

for i in [1..#T6] do

55:=[6]"T6[i];

cst [prodim(1,ts,SS)]:=8S;

end for,;

m:=0; for i in [1..#cst] do if cst[i] ne [] then m:=m+1; end if;

end for; m;

// 6, so 6 cosets in DC [6] //

Orbits{N6);
/*



115

GSet{ 1 1},
GSet{ 2 I},
GSet{ 3 1},
GSet{ 4 1},
GSet{ 5 1},
GSet{ 6 },
GSet{ 7 },
GSet{ 8 1},
GSet{ 9 },
GSet{ 10 },
GSet{ 11 },
GSet{ 12 }

N17:=Stabiliser(N,[1,7]);
S:={[1,71};
SS:=8"N;
SSS:=Setseq(SS);
for i in [1..#8S] do
for g in IN do
if ts[1]1*ts[7] eq g*ts[Rep(SSS[il) [1]1]1*ts{Rep(SSS[il) [2]1]
then print SSS(i];
end if;
end for;
end for;
/*
{
[1, 7]
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#N17;
/1l

N17;

/*

Permutation group Ni7 acting on a set of cardinality 12
Order =1

*/

T17:=Transversal(N,N17);

for i in [1..#T17] Qo

ss:=[1,7]"T17[il;

cst[prodim(1i, ts, ss)] := ss;

end for;

m:=0; for i in [1..28] do if cstl[i] ne []
then m:=m+1l; end if; end for; m;

// 18-12=6, so 6 cosets in DC [1,7] //
#T17;

/7l 6/

T17;

/*

{e
Id(N),
(1, 4, 2(38, 5, 6)(7, 8, 10)(9, 12, 11),
(1, D@2, 8)(8, 94, 10)(5, 11)(6, 12),
(1, 2, 4)(3, 6, 5)(7, 10, 8)(9, 11, 12),
(1, 100(2, 7 (3, 11)(4, 8)(5, 12)(6, 9,
(1, 8)(2, 100(3, 12)(4, 7)(5, 9 (6, 11)

e}

*/

Orbits(N17);
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/*

GSet{ 1 },
GSet{ 2 },
GSet{ 3 7},
GSet{ 4 1},
GSet{ 5 },
GSet{ 6 },
GSet{ 7 1},
GSet{ 8 },
Gset{ 9 },
GSet{ 10 },
GSet{ 11 },
GSet{ 12 }

S:={[1,81};

85:=5"N;

88S8:=Setseq(SS);

for i in [1..#SS] do

for g in IN do

if ts(1]*ts{8] eq g*ts[Rep(SSS[il) [11]1*ts[Rep(SSS[il)[2]]
then print SSS[i];

end if;

end for;

end for;



118

L1, 8]

L7, 21

N18:=Stabiliser (i, [1,8]);

/* Enter [1,8] ~ [7,2]1%/

for n in N do if I"n eq 7 and 8™n eq 2
then N18c:=sub<N|N18,n>; end if;end for;
[1,8]"Ni8c¢;

#N18c;
//2//
Ni8c;
/*

Permutation group N18c acting on a set of cardinality 12
Order = 2
(1, 7)(2, 8)(8, 94, 10)(5, 11)(6, 12)

*/

T18:=Transversal(N,N18c);

for i in [1..#T18] do
ss:=[1,8]"T18[i];
cstprodim(1, ts, ss)] := ss;
end for;

m:=0; for i in [1..28] do if cst[i] ne []



then m:=m+1; end if; end for; m;

// 21-18=3, so 3 cosets in DC [1,8] //

#T18;
/6 //
T18;
/*
{@
Id(N),

(1, 4, 2)(3, 5, 6)(7, 8, 10)(9, 12, 11),
(1, 2, 4)(3, 6, 5)(7, 10, 8)(9, 11, 12)

@}

*/

Orbits(N18);
VES

GSet{ 1, 7 },
GSet{ 2, 8 1,
GSet{ 3, 9 },
GSet{ 4, 10 },
GSet{ 5, 11 },
GSet{ 6, 12 }

So our orbit paths are:
1) Nt_1t_8t_7=

2) Nt_1t_8t_8=

3) Nt_1t_8t_

4) Nt_1t_8t_
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5) Nt_1t_8t_
6) Nt_1t_8t_

*/

S:={[1,11]1};
38:=8"N;
8SS8:=Setseq(SS);

for i in [1..#8SS] do

for g in IN do

if ts[1]#ts[i1] eq g*ts[Rep(SSS[i]) [1]1]*ts[Rep(SSS(i]) [2]1]
then print SSS[i];

end if;
end for;
end for;
/*
{
[1, 11 ]
¥
{
[ 10, 31
}
*/

N111:=Stabiliser(N, [1,11]);

/* Enter

(1,111 = [10,3]%/

for n in N do if 1™n eq 10 and 11~

n eq 3
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then N11ilc:=sub<N|N111,n>; end if;end for;
[1,11]1"Nilic;

#N1iic;
/1 27/
Nilic;
/*
Permutation group Nlllc acting on a set of cardinality 12
Order = 2
1, 10)(2, 7)(3, 11)(4, 8)(5, 12)(8, 9)

*/

Ti1l:=Transversal(N,Nl1lc);

for i in [1..#T111] do
ss:=[1,11]"T111[i];

cst[prodim(1, ts, ss)] := ss;

end for;

m:=0; for i in [1..28] do if cst[i] ne []

then m:=m+1; end if; end for; m;

// 24 - 21 =3, so 3 cosets in DC [1,11] //

#T111;
/3 1/
T111;

/*
{e
1d(N),
(1, 4, 2)(3, 5, 6)(7, 8, 10)(9, 12, 11),



(1, 2, 4)(3, 6, 5)(7, 10, 8)(9, 11, 12)

@}

*/

Orbits(Nilic);
/%
L

GSet{ 1, 10 1},
GSet{ 2, 7 },
GSet{ 3, 11 },
GSet{ 4, 8 },
GSet{ 5, 12 },
GSet{ 6, 9 }

S:={[1,12]1};
SS:=8"N;
$SS:=Setseq(SS);

for i in [1..#88] do

for g in IN do

if ts[1]*ts[12] eq g+ts[Rep(8SS[il) [1]]*ts[Rep(SSS[i]) [21]

then print SSS[il;
end if;

end for;
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end for;
/*
{
{ 10, 5]
[ 1, 12 ]
}
*/

N112:=Stabiliser(N, [1,12]);

/* Enter [10,5] = [1,12]%/

for n in N do if 10°n eq 1 and 5°n eq 12
then N112c:=sub<N|N112,n>; end if;end for;
[1,12]"N112¢;

#N112c;
/7 2//
Nii2c;
/*
Permutation group N112c acting on a set of cardinality 12
Order = 2
(1, 10)(2, 7)(3, 11)(4, 8)(5, 12)(6, 9)
*/

T112:=Transversal(N,N112¢);
for i in [1..#T112] do
ss:=[1,12]"T112[i];
cstlprodim(1l, ts, ss)] := ss;
end for;

m:=0; for i in [1..28] do if cst[i] ne []
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then m:=m+l; end if; end for; m;

// 27-24 = 3, so 3 cosets in DC [1,12]} //

#N112;

/1 L/

N112;

/*

Permutation group N112 acting on a set of cardinality 12
Order = 1

*/

#T112;

/! 31/

T112;

/*

{e
Id(N),
(1, 4, 2)(3, 5, 6)(7, 8, 10)(9, 12, 11),
(1, 2, 4)(3, 6, 5)(7, 10, 8)(9, 11, 12)
e}

*/

Orbits(N112C);

/*

[
GSet{ 1, 10 },
Gset{ 2, 7 1},
GSet{ 3, 11 },
Gset{ 4, 8 },
GSet{ 5, 12 },
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Gset{ 6, 9 }

]

*/

~-process for finding relations used in determining equal double cosets--

NN<a,b>:=Group<a,bla”3,b"2, (b*a) "2>;

Sch:=SchreierSystem (NN, sub<NN|Id(NN)>);

ArrayP:=[Id(N): i in [1..6]];

for i in [2..6] do

P:=[Id(N): 1 in [1..#Sch([il]];

for j in [1..#Sch[il] do

if Eltseq(Sch[il)f{j]l eq 1 then P[j]:=xx; end if;

if Eltseq(Sch[i]l)[j] eq -1

then P[j]:=xx"-1; end if;

if Eltseq(Sch[i])[j] eq 2

then P[jl:=yy; end if;

end for;

PP:=Id(N);

for k in [1..#P] do

PP:=PP*P[k]; end for;

ArrayP[i]:=PP;

end for;

for n in IN do if ts[1]l*ts[8] eq n*ts[7]*ts[2] then n; end if; end for;

/*

2, 4, 6)(3, 7, 9, 11, 10)(8, 15, 14)(12, 21, 23)(13, 24, 25)(16, 20, 26) (17,
27, 18) (19, 28, 22)

*/

for i in [1..20] do i, cst[i];: end for;

/*

10

2[1]

3[6]

4 [4]
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5 [7]

6 [2]
7[3]

8 [ 12 ]

9 [5]

10 [ 10 ]
i1 [ 8]

12 [7,1]
13[07,6]
14 [9]

15 [ 11 1]
16 [ 7, 51
17 [, 7]
18 [ 2, 10 ]
198, 1]
20 [ 8, 6]

So (2,6,4)-->(1,2,4): (3,9,7)-->(6,6,3): (5,10,11)-->(7,10,8)

: (8,14,15)-->(12,9,11): enter that into next loop.

We use [1..6} since S_3 has 6 elements...

*/

for i in [1..6] do if ArrayP[i] eq N!(1,2,4)(6,5,3)(7,10,8)(12,9,11)
then Schlil; end if; end for; // a"-1 , so we use (x"-1) as relation
that proves [1,8]=[7,2]//

ts[1]*ts[8] eq f(x~-1)*ts[7]*xts([2];

// true , so $t_1t_8=(x"~1)t_T7t_2% //

NN<a,b>:=Group<a,bla~3,b"2, (bxa) "2>;
Sch:=SchreierSystem (NN, sub<NN|Id(NN)>);
ArrayP:=[Id(N): i in [1..6]1];

for i in [2..6] do

P:=[Id(N): 1 in [1..#Sch[i]]];
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for j in [i..#Schli]l] do

if Eltseq(Sch[il)[j] eq 1 then P[j]:=xx; end if;
if Eltseq(Schiil)[j] eq -1

then P[j]l:=xx"-1; end if;

if Eltseq(Sch[il)[j] eq 2

then P[jl:=yy; end if;

end for;

PP:=Id(N);

for k in [1..#P] do

PP:=PP*P[k]; end for;

ArrayP[i] :=PP;

end for;

for n in IN do if ts[11#*ts[11] eq n*ts[lO]*fé[S] then n;
end if; end for;

/*

(2, 6, 4)(3, 9, T, 10, 11)(8, 14, 15)(12, 23, 21)
(13, 25, 24)(16, 26, 20)(17,18, 27)(19, 22, 28)
*/

for i in 1..20] do i, cst[i]; end for;

/*

(]

(1]

[ 6]

[ 4]

(71

[ 2]

7[3]

8 [12 ]

9 [561]

10 [ 10 ]

11 [ 8]

1207, 1]

W
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1307, 6]
14 [ 9]

15 [ 11 ]

16 [ 7, 51
17 [ 1, 71
18 [ 2, 10 1]
198, 1]
20 [ 8, 6]

So (2,6,4)-->(1,2,4): (3,9,7)-->(6,5,3): (5,10,11)-->(7,10,8):
(8,14,15)-->(12,9,11): enter that into next loop.
We use [1..6} since S_3 has 6 elements...*/
for i in [1..6] do if ArrayP[i] eq N!(1,2,4)(6,5,3)(7,10,8)(12,9,11)
then Sch[i]; end if; end for;
// a~-1 , so we use (x"-1) as relation that proves [1,11]={10,31//
ts[1]1*ts[11] eq £(x"-1)*ts[10]*ts[3];

// true , so $t-1t_11=(x"-1)t_10t_3% //

NN<a,b>:=Group<a,b|a"3,b"2, (b*a) "2>;
Sch:=SchreierSystem(NN,sub<NN|Id(NN)>);
ArrayP:=[Id(N): i in [1..6]];

for i in [2..6] do

P:=[1d(N): 1 in [1..#Sch[i]l];

for j in [1..#Sch[i]] do

if Eltseq(8ch[il) [j] eq 1 then P[jl:=xx; end if;
if Eltseq(Sch[i])[j] eq -1

then P[j]:=xx"-1; end if;

if Eltseq(Sch[i])[j] eq 2

then P[j]:=yy; end if;

end for;

PP:=Id(N);

for k in [1..#P] do
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PP:=PP*P[k]; end for;
ArrayP[i] :=PP;

end for;

for n in IN do if ts[10]*ts[5] eq n*ts[1]*ts[12] then n;

end if; end for;

/*

(2, 6, (3, 9, 7)(5, 10, 11)(8, 14, 15)(12, 23, 21)(13, 25, 24)
(18, 26, 20017, 18, 27)(19, 22, 28)

*/

for i in [1..20] do i, cst[i]; end for;

/*

10

2[11]
3[s]1
4 [ 4]
58071
6 [ 21
7031

8 [12]

9 [5]
10 [ 10 ]
11 [ 8]

12 [ 7, 1]
13[7, 6]
14 [9]

15 [ 11 1]
16 [ 7, 5]
17 [1, 71
18 [ 2, 10 ]
19 [ 8, 1]
20 (8,61

so we use this table’s labeling to convert the above permutation
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to another permutation and use the resulting permutation to determine
the relation: (2,6,4)->(1,2,4): (3,9,7)->(6,5,3): (5,10,11)->(7,10,8):

(8,14,15)->(12,9,11) . We use [1..6} since S_.3 has 6 elements...*/

for i in [1..6] do if ArrayP[i] eq N!(1,2,4)(6,5,3)(7,10,8)(12,9,11)

then Schlil; end if; end for; // a"-1 , so we use (x"-1) as relation

that proves [10,5]=[1,12]1// ts[10]*ts[5] eq f(x"-1)*ts[1]*ts[12];

// true , so $t_10t_5=(x"-1)t_1t_12% //
// S0 THE RELATION (x~-1) IS USED TO PROVE ALL EQUAL DOUBLE COSETS //
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Appendix C: MAGMA Code for
(Mg x 4):S53 Factored by Center

MAGMA CODE 3*8 : PGL _2 (7)
FACTORED BY NEW RELATIONS :

((£7(x"6))"-1)"3, x™-1 * y * x"2%(£"(x73))"-1*t" (x"6)*t~ (x"3) * (¢
“(x"8))"-1, (x7-1 % y x x™2) "1kt 7 (x"3)*t 7 (x76) % (" (x73) ) "-1x(£7(x76) ) "-1>;
ok ok sk ook R sk o SR KoK ook o o AR RS Rk s ok oK o SR K ok o K KK SRR R ok

8:=8ym(16) ;
xx:=8!(8,2,5,4,6,1,7,3)(16,10,13,12,14,9,15,11);
yy:=81(1,6)(2,5)(3,4)(9,14)(10,13) (11,12);
N:=sub<S|xx,yy>;
G<x,y,t>:=Group<x,y,t|x"8 , y"2 , (x*y)"3,
(x,¥)74,£73, (t,y),
(£,x"3 * y * x"3 x y * x™-1),
(L,y * x™=2 * y * x"83 x y % x7-2),
(x~3%t) "6,
((x"(x"6))"-1)"3,
x"~1 * y x x”2%(£7(x73)) "-1*t " (x"6) ¥t~ (x"3)*(t" (x76)) -1,
(x"=1 * y * x"2) -1t~ (x"3)*t" (x"6)* (£t~ (x73)) "-1* (£~ (x"6)) -1
>;
IndexG:=Index(G,sub<G|x,y>);
f,G1,K:=CosetAction(G,sub<G|x,y>);
G1; '
/%
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Permutation group Gl acting on a set of cardinality 360
Order = 120960 = 277 * 3"3 * b % 7
where 360 is the number of double cosets.
*/
IN:=sub<Gl|f(x)>;
ts:=[Id(G1) : i in [1..161];
ts[8] :=f(t);
tsi2] :=£(+7x);
£s[5] =€ (£~ (x"2));
ts[4] :=f (x"(x"3));
ts[6]) :=£(t"(x"4));
ts[1]:=£(t"(x75));
ts[7]:=f (£ (x76));
ts[3) :=f (£~ (x"7));
ts[9] :=ts[1]"-1;
ts[10] :=ts[2]"-1;
tsf11]:=ts[3]"-1;
ts[12) :=ts[4]"-1;
ts[13) :=ts[5] ~-1;
ts[14] :=ts[6] ~-1;
ts[15] :=ts[7]1"-1;
ts[16] :=ts[8]"-1;
prodim := function(pt, Q, I)
v = pt;
for i in I do
v = v (Q[il);
end for;
return v;

end function;

cst := [null : i in [1 .. 360]] where null is [Integers() | 1;
for i := 1 to 16 do
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cst[prodim(1, ts, [i])] := [il;
end for;
m:=0; for i in [1..#cst] do if cst[i] ne [] then m:=m+1; end if;
end for; m;
// 16 so the origional 16 SC’s in [8] and [16] /717177
for a in [8,16] do
Stabil := Stabilizer(N,[al);
trans := Transversal(N, Stabil);
for i := 1 to #trans do
ss := [a]l"trans[il;
cst[prodim(1, ts, ss)] := ss;
end for;
n:=m;m:=0;for i in [1..#cst] do if cst[i] ne [] then m:=m+1; end if,; end for;
if m-n ne 0 then "Number of Cosets in DC [",a,"]",m-n,m; end if;
if m—n ne O then Orbits(Stabil); end if;

end for;
// now we f£ix [8] & [16] and check all words of length two //

for a in [8,16],b in [1..16] do
Stabil := Stabilizer(N,[a,bl);

trans := Transversal(N, Stabil);
for 1 := 1 to #trans do
ss := [a,b] trans[i];

cst [prodim(1, ts, ss)] := ss;
end for;
n:=m;m:=0;for i in [1..#cst] do if cst[il] ne [] then m:=m+1; end if; end for;
if m-n ne O then "Number of Cosets in DC [",a,b,"]: ",m-n;
"Total Cosets filled out of 360:",m; end if;
if m-n ne 0 then Orbits(Stabil); end if;

end for;



// below are all DC’s, SC’s and orbits of length two//

/*
Number of Cosets in DC [ 8 1 J: 28
Total Cosets filled out of 360: 44
£

GSet{ 1 1},

GSet{ 8 1},

GSet{ 9 },

GSet{ 16 },

GSet{ 2, 3, 4, 5, 6, 7 },

GSet{ 10, 11, 12, 13, 14, 15 }
]
Number of Cosets in DC [ 8 9 1: 56
Total Cosets filled out of 360: 100
{

GSet{ 1 },

GSet{ 8 },

GSet{ 9 1},

GSet{ 16 1},

GSet{ 2, 3, 4, 5, 6, 7},

GSet{ 10, 1i, 12, 13, 14, 15 }
]
Number of Cosets in DC [ 8 16 ]: 1
Total Cosets filled out of 360: 101
C

GSet{ 8 1},

GSet{ 16 },

GSet{ 1, 2, 3, 4, 5, 6, 7 },

GSet{ 9, 10, 11, 12, 13, 14, 15}
]
Number of Cosets in DC [ 16 9 ]: 28

134



135

Total Cosets filled out of 360: 129

[
GSet{ 1 },
GSet{ 8 I},
GSet{ 9 7,
GSet{ 16 },
GSet{ 2, 3, 4, 5, 6, 7 },
GSet{ 10, 11, 12, 18, 14, 15}
]
*/

/* Now, we fix the third elements {1],[9],[16] & check for DC’s of length three
*/

for a in [8,16],b in [1,9,16], ¢ in [1..16] do
Stabil := Stabilizer(N,[a,b,cl); ’
trans := Transversal(N, Stabil);
for 1 := 1 to #trans do
ss := [a,b,c] trans[i];
cstlprodim(l, ts, ss)] := ss;
end for;
n:=m;m:=0;for i in [1..#cst] do if cst[i] ne [] then m:=m+l; end if; end for;
if m—n ne 0 then "Number of Cosets in DC [",a,b,c,"]1: ",m-n;
"Total Cosets filled out of 360:",m; end if;
if m-n ne 0 then Orbits(Stabil); end if;

end for;

// below are the results of that search /////////

/*
Number of Cosets in DC [ 81 2 ]: 42
Total Cosets filled out of 360: 171
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GSet{ 1 },
GSet{ 2 1},
GSet{ 3 7},
GSet{ 4 7,
GSet{ 5 },
GSet{ 6 7},
GSet{ 7 },
GSet{ 8 },
GSet{ 9 },
GSet{ 10 1},
GSet{ 11 },
GSet{ 12 },
GSet{ 13 },
GSet{ 14 1},
GSet{ 15 1,
GSet{ 16 }
]
Number of Cosets in DC [ 81 10 J: 84
Total Cosets filled out of 360: 255
[
GSet{ 1 },
GSet{ 2 },
GSet{ 3 7},
GSet{ 4 I,
GSet{ 5 },
GSet{ 6 },
GSet{ 7 J},
GSet{ 8 1},
GSet{ 9 7},
GSet{ 10 },
GSet{ 11 },



]

Number of Cosets in DC [ 8 9 10 ]:
Total Cosets filled out of 360: 339

A

]
/*

GSet{ 12 },
GSet{ 13 17,
GSet{ 14 I},
GSet{ 15 },
GSet{ 16 }

GSet{ 1 I},
GSet{ 2 },
GSet{ 3 },
GSet{ 4 },
GSet{ 5 },
GSet{ 6 1,
GSet{ 7 },
GSet{ 8 I,
GSet{ 9 1},
GSet{ 10 },
GSet{ 11 1},
GSet{ 12 },
GSet{ 13 1,
GSet{ 14 },
GSet{ 15 I,
GSet{ 16 }

84
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Now, we fix the fourth elements [2],[10] & check for DC’s of length four

*/

for a in [8,16],b in [1,9,16], ¢ in [2,10], d in [1..16] do
Stabil := Stabilizer(N,[a,b,c,d]);

trans

:= Transversal (N, Stabil);
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1 to ##trans do

for i :

ss := [a,b,c,d] “trans(i];
cst[prodim(1l, ts, ss)l := ss;
end for;
n:=m;m:=0;for i in [1..#cst] do if ¢st[i] ne [l then m:=m+1; end if; end for;
if m-n ne 0 then "Number of Cosets in DC [",a,b,c,d,"]: ",m-n;
"Total Cosets filled out of 360:",m; end if;

if m-n ne O then Orbits(Stabil); end if; end for;

//0ur resulting final DC, it’s SC’s and orbits are below //////

Number of Cosets in DC [ 8 1 10 12 ]: 21
Total Cosets filled out of 360: 360
L

GSet{ 1 1,

GSet{ 2 },

GSet{ 3 },

GSet{ 4 },

GSet{ 5 },

GSet{ 6 1,

GSet{ 7 },

GSet{ 8 1},

GSet{ 9 7},

GSet{ 10 },

GSet{ 11 },

GSet{ 12 },

GSet{ 13 },

GSet{ 14 },

GSet{ 15 },

GSet{ 16 }
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The below code is to check the extensions from Double coset to
connected double cosets. By inputting a specific DC, the below program
compares the two lists and based on my input DC, outputs all the orbit
paths to their respective DC’s. From this information, I’m able to
complete my Cayley diagram.
/*

List of the Names of my Double Cosets
*/

mlist:=[

[el,

[16],

(8,11,

[8,9],

[8,16],

[16,9],

(8,1,2],

[8,1,10],

[8,9,10],
[8,1,10,12]

1;

restore pkm;

a :=16;b:=9;

for ¢ in [1..16]do
Stabil := Stabilizer (N, [a,b,cl);

trans := Transversal(N, Stabil);

for i := 1 to #trans do

ss := [a,b,c] trans[i];
cst[prodin(1l, ts, ss)] := ss;
end for;
n:=m;m:=0;for i in [1..#cst] do if cst[i] ne [] then m:=m+1; end if; end for;

if m-n ne 0 then "Number of Cosets in DC [",a,b,c,"]: ",m-n;
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end if;
end for;

load pk;

"[",a,b,c,"1";

nlist:=[null : i in [1..10]] where null is [Integers() | ];
i:=1;j:=1;k:=1;

repeat

if mlist[i] eq dlist[j]l then i:=i+l; j:=j+1; end if;

if mlist[i] ne dlist[j] then nlist[k]:=mlist[i]; k:=k+1; i:=i+1; end if;
until i gt 10 or j gt 10;

for i in [1..10] do if nlist[i] ne [] then nlist[i]; end if; end for;
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