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Abstract

In this thesis, we have discovered several important groups that involve the classical 
and sporadic groups. These groups have appeared as finite homomorphic images of the 
progenitors 3* 8 : 2* 14 : £3(2), 5* 3 : S3 and 7* 2 :m S3. We used the technique
of manual double coset enumeration to give a by hand construction of several groups, 
including (M21 x 4) : S3, 7/3(3) : 3, and A? . For some of the groups we have given 
computer-based proofs of their isomorphism types. The symmetric presentations given 
in this thesis for the groups 1*2(7),  1/3(3) : 3, (M21 x 4) : S3 and £4(6) are original to the 
best of our knowledge.
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Chapter 1

Introduction

The successful exploration of finite groups requires multiple methods, due to 
their varied properties. We will investigate and construct several types of groups through­
out this thesis. The first type is symmetric, which we will discuss in Chapter 2. In Chapter 
3, we will construct an alternating group, which we will then find and factor by the center. 
In Chapter 4, we will construct a projective general linear group, denoted PGL. In some 
instances, we utilize multiple types of groups within a single construction. Such is the 
case in Chapter 5, where we will construct a unitary group as the homomorphic image of 
a general linear group. In Chapter 6, we examine similar presentations of two different 
types of groups via their homomorphic images by constructing a monomial presentation 
of an alternating group as a homomorphic image of another monomial presentation of 
a general linear group. We will also define and discuss the lifting process by induction, 
which we utilize to determine multiple homomorphic images of a monomial progenitor in 
Chapter 7.

1.1 Definitions

Group

A group is a set, G, combined with an operation *,  such that:
(1) An identity element exists:
There exists an e G G such that for all g G G, e * g = g * e = g
(2) The inverse element exists in G:
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There exists an h € G such that g*h  = h*g  = e
We say IT is a subset of G if every element of H is also an element of G.

Semi-Direct Product

Lemma 1.1. Let K be a group and A < AutK be a subgroup of the automorphism group 
of K. Then the cartesian product Ax K becomes a group under the binary operation ” o” 
defined by (a, x) o (6, y) = (ab, xby) where a,b e A and x,y G K.

The group constructed from a cartesian product of two groups A and K, as 
described in the lemma above, is called a semi-direct product and is denoted by K : A. 
A progenitor is a semi-direct product of the form:
P = m* n : N = {7rw|7T G N and oj is a reduced word in if}
where m* n denotes the free product of n copies of the cyclic group of order m generated 
by for i — 1,2,n, of order n, and TV is a transitive permutation group of degree n 
which acts on the free product by permuting the generators ( i.e. joins), tfs.

Group Action

Let G be a group and X be a nonempty set. We say that G acts on X if there 
exists a mapping a : G x X —> X defined as (g, x) -> xg such that:
(1) , x • 1 = x, Vrr G X
(2) For each x G X, x(gh) = (gh'jxyg, h G X.
The mapping a is called an action of G on X.
If G is a group and a G G, then a conjugate of a is any element in G of the form g~rag, 
where g G G. We also write g^ag = a3. If G act on X, then f : G —> Sx is a 
homomorphism. We have xf(g) = xg,Vx G X

Right Coset

Let G be a group and H be a subgroup of G then a right coset of h G G is a set 
Ha = {/m|<2 G G}, where a G G. The cosets partition the set G into disjoint subsets. We 
note that:
(1) Either Ha = Hb or Ha Pl Hb = 0
(2) Ha = H if and only if a G H.
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Orbits

Let G be a permutation group on the finite set X and let x € X. The orbit of 
x is the set

X° = {a:a|a e G}

Double Coset

Let H be a subgroup of G. Let x G G. Then HxH = {Hxh\h G H} is a double 
coset of II in G. Notice that double cosets are composed of right cosets, i.c. single cosets. 
The index of a subgroup H G G, denoted by [G : II] = is the number of single 
cosets of H in G. In particular, the number of single cosets in the double coset NwN 
is |. To determine the distinct single cosets in a double coset NwN, you take Nw 
and conjugate it by its coset stabiliser N^w\ If has several elements, you do this 
for each element. The orbits of on the symmetric generators are obtained through 
conjugation of each generator by N^w\ The orbits are disjoint.

Permutation Group

In some of the following chapters, we will be dealing with groups in which the 
control subgroup, N, is a permutation group. The permutation group Sn is the group of 
permutations of (01234....n). The order of Sn is |Sn| = n!

Let X — {1,2,3,...}. Then Sx, the set of all one-to-one and onto mappings 
from X to X, called permutations of X, forms a group under function composition. Sx 
is called the permutation group of X. If X = {1,2,3, ...,n}, then Sx = Sn is called the 
symmetric group of degree n.

1.2 Types of Representations

In group theory, we have different ways to characterize and define a specific 
group. We define these different methods of expressing groups as a representation. 
We will discuss four different types of representations known as symmetric, permutation, 
matrix and monomial. We will first discuss symmetric representation.
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Symmetric Representation

We define a symmetric representation of a group G of the form

p* n : N
G =--------

7TW1, 7TW2, ...

where p* n denotes a free product of n copies of the cyclic group of order p, N is a transitive 
permutation group of degree n which permutes the n generators of the cyclic groups 
by conjugation, which defines a semi-direct product factored by the relators, denoted 
7FW1,1TW2, ...

The progenitor p* n : N represents an infinite group, so to produce finite images 
of G, we must factor by some relation represented by irwi, 7tw2, ....

Permutation Representation

We will now dicuss a permutation representation of a group.
Let G be a group, denoted by

G = {a, &]a2 = b2 = (a&)2 — 1}

where ab = ba. The elements within this group are {e, a, b, a6}. We will demonstrate the 
permutation representaion of G by denoting the elements a and b as two cycle permutaions

(1,2)(3,4) and b= (1,3)(2,4).

Then the permutaion representation of this particular G is

P=< (1,2)(3,4), (1,3)(2,4) >

where all the elements within G are generated by these two cycle permutations via right 
hand multiplication. This gives us

{e, (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)}

Matrix Representation

We define a Matrix representation of a group G as



5

G —> GL(n, C), where GL(n, C) is a general linear group of degree n

defined by

x A(x)

where

A:G^GL(n,C)

is a representation of G if A is a homomorphism. Thus, A is an n x n matrix. Now, since 
matrix multiplication is associative, we have

A(x) ■ A(y) = A(xy),Vx,yCG

which implies that

Afa:"1) = Afrr)"1.

Since

A(x) ■ A (a?-1) = A(e) = In
=> A (a;) = A(x)-1

Now,

A(x) = A(x ■ e) = A(z) • A(e) = A(rr)

which implies

A(e) = I

Now, the matrix representation of this same group G would be denoted

and similarly,

1
0

0
-1
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If we square the matrix denoted a, we have

0
1

and repeat the process with b, which gives us

0
1

So, by right hand multiplication, we have

a2 = b2 = I.

Thus, a and b satisfy < a, b\a2 ~b2 = (ab)2 = 1 >. This process implies that

1 0
0 1

is a matrix representation of G.

Monomial Representation

A monomial representation of a group G is a homomorphism from G into 
GLn(F), the group of non singular n x n matrices over the field F, in which the im­
age of every element of G is a monomial matrix over F. The action of the image of a 
monomial representation on the underlying vector space is to permute the vectors of a 
basis while multiplying them by scalars.

Every monomial representation of G in which G acts transitively on the 1- 
dimensional subspaces generated by the basis vectors is obtained by inducing a linear 
representation of a subgroup H up to G. If this linear representation is trivial, we obtain 
the permutation representation of G acting on the cosets of H. Otherwise we obtain a 
proper monomial representation.

An ordinary linear representation of H is a homomorphism of H onto Cm, where 
Cm is a cyclic multiplicative subgroup of the complex numbers C, and the resulting 
monomial matrices will involve comples mth roots of unity. Similarly, we can define a 
linear representation into any field F which possesses mth roots of unity.
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1.3 Methods and Applications

The Manual Double Coset Enumeration

Building on the above definitions of right coset and double coset, we define 
the process of manual double coset enumeration, which is the process of determining 
the decomposition of single and double cosets within a finite group G factored by some 
relation.

The Lifting Process

Let G be a group, let N be a normal subgroup of G and xo be a character of 
G/N. Then we define

X(y) =Xo(ATy),Vy 6 G.
X is a character of G lifted from the character xo of G/N.
Note:

x(n) = Xo(ATn) = Xo(N)
An example of the lifting proces will be performed in Chapter 7.

Factoring by the Center

As we complete the double coset enumeration of a finite group factored by a 
relation, we determine the permutation representation of that group. The three resulting 
permutations xx = f(x), yy = f(y) and tt$ = f(t) generate our group G. Factoring by the 
center is the process by which we find the centralizing elements (denoted Z) of our group 
to determine which double coset (or double cosets) represent blocks of impermiability 
that are at the center of the group. We then find the double coset(s) that contain a single 
coset farthest from our identity coset (denotedf*]).  We then determine what our Z is by 
setting the coset representative of that double coset equal to the identity to find our new 
relation based on the equation

z = n ■ w, where w is a word in the t^s and m = n”1.

Once we have determined our new relation, we perform double coset enumeration 
of our group with the new relation, which will collapse the group into a smaller Cayley 
diagram configuration. We utilize this property to find the centraliser of our group.
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Chapter 2

Construction of 25 : S5

We have a computer-based proof that G is isomorphic to 25 : S5. This proof is 
obtained as follows: We first us MAGMA to obtain the composition factors of a permu­
tation representation of G. This is done as follows:
f,G1,k:=CosetAction(G,sub<GIx,y>);
CompositionFactors(Gl);
gives
G
I Cyclic(2)
*
I Alternating(5)
*
I Cyclic(2)
*
I Cyclic(2)
*
I Cyclic(2)
*
I Cyclic(2)
*
I Cyclic(2)
1
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We now write a presentation of the group 25 : Sg (obtained based on the composition 
factors above) and verify that G = 25 : Sg.

2* 5 : S5
toti = tito

We will perform a double coset enumeration on the group 2* 5 : Sg factored by 
the relation Z(Vi = titp, denoted by the following group representation:

G =< x, y, tlx5,y2, t2, (xy)4, (x, y)3, (t, y), (t, x2yx~4y), (ttx)2 >

where N =< x,y >= S5, x ~ (01234) and y ~ (01). We know N = S5 has 120 elements, 
or |N| = 120.

2.1 Relations

We are given the relation to^i = fyto- This relation can be used to determine 
equal cosets with words of length two. We take TVipti = Ntito and conjugate it by every 
element in our control group Sg to get the following relations:

— t2ti,

hh = *3^2}

t()t3 = ^3^01

£1*3  = Ml,

^2^4 = ^4^2,

to ^4 — t4to,

tjt4 = Ml>

^3^4 = ^4^3-

To utilize our relations for words of length three, we must use right coset multiplication 
by the ijs to increase the length of the relations. Then we use the above relations to 
manipulate the relations of length three:

totit2 = titpt2

= tit2tp

= htitp

= t2tptl

Using this method, we can determine all the relations with words of length three:

012 - 102 ~ 120 ~ 210 - 201 - 021
031 - 301 - 310 - 130 - 103 ~ 013
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041 401 410 ~ 140 ~ 104 014
241 ~ 421 - 412 - 142 - 124 ~ 214
231 - 321 ~ 312 - 132 - 123 - 213
341 - 431 - 413 ~ 143 - 134 - 314

To utilize our relations for words of length greater than three we repeat the aforementioned 
process, adding the appropriate amount of letters as needed.

2.2 Double Coset Enumeration

NeN

NeN is a double coset made up of words of length zero. We know NeN = {N}, 
which is the first double coset [*].  There is one single coset within the first double coset. 
The coset representative for [*]  is Ne. We find the orbits of N on 0,1,2, 3,4 by permuting 
each element by g G N as follows:

= {01234}
13 = {01234}
23 = {01234}
33 = {01234}
43 = {01234}

Thus, we see that the orbit on N on {0,1,2,3,4} is {0,1,2,3,4} When we apply a 
representative from each orbit to the coset representative Ne we see that all five of 
the elements in orbit {0,1,2,3,4} extend to a new double coset NtoN, called [0]. This 
double cosets will be made up of words of length one.

Nt0N

We must first determine the coset stabilizer, denoted N^°\ We look at permu­
tations in N and find those that ’’fix” the the element 0. So, N^ =< (1234), (12) >, 
is the point stabiliser in N of 0. At this point in the process, our relation to^i = 
is not needed, since it does not affect words of less than length two. Thus, our point 
stabilizer, denoted N° is also our coset stabilizer, denoted N(oL Since N is transitive on 
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{01234}, the 24 permutations that ’’fix” the element (0) represent the coset satbilizers. 
Thus, | A^°^ | = 24. We now will determine the number of single coset in the double coset 
[0] by this formula This gives us -^ = 5. The coset representative for [0] is Nto- 
We now identify the orbits of A'^°*  and determine their action. Since the element (0) is 
fixed, our two orbits are {0} and {1,2,3,4}. When we apply a representative t{ from each 
orbit to the coset representative Nto we see that the following results:

Nto • to = Wo)2 e

So the the orbit {0} takes one generator back to the double coset [*].
Nto • t; = jVtoti 6 TVYotjTV

So the the orbit {1,2,3,4} extends four generators to a new double coset 
TVtotiW, denoted [01].

Ntot]N

We now have a double coset with word of length two, so our relation toil = tito 
must be utilized to help us accurately determine the coset stabilizer. The following 
equations will tell us what permutation(s) increase the coset stabilizer by taking the 
representative coset back to itself:

TVtoti = Ntito => JVtoti01) = Ntito = W]to

So (01) G Thus, the generators of M01) are: < A01, (01) >. The six elements
of the coset stabilizer A^01) are : {e, (23), (24), (34), (234), (243)}. The permutation (01) 
will double this number, so |A^01^| = 12. We may now determine the number of single 
cosets in the double coset [01] by our formula:

IM|M01)|
This gives us:

120 = 1012 1U'

So there are ten single cosets in the double coset [01] .
Next, we will determine the orbits of Ntoti- Since A'01 =< (234), (23) >, our 

orbits of N01 on {0,1,2,3,4} are {0,1} and {2,3,4}. We take a representative coset from 
[01] and a representative ti from each orbit to determine the action:
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AfroU • ti = Nto(ti)2 = Nto € NtoN

So the the orbit{0,1} takes two generators back to the double coset [0].

• t2 = Ntotit2 € NtotitzN

So the the orbit{2,3,4} extends three generators to a new double coset
NtQtibzN, denoted [012].

Ntotit2N

We wish to determine the single cosets in the double coset [012] and to do this, 
we will ’’fix” our next point (2). Thus, the point stabilizer will be :

AT012 =< (34) >.

Using our relation, we can expand the point stabilizer to our desired coset stabilizer:

ATtoA = Ntito => Ntotitz = Ntitat2 = Ntito ( right hand coset multiplication of t2) 
=3- Ntotit^ = Ntitot2 = Ntotit2 => the permutation (12/01) 6 A^012)

So (01) 6 Ad012). Thus, the generators of A^0,1’2) are: < (34), (01/12) > The six elements 
of the coset stabilizer A^0,1’2) are : {e, (01), (02), (12), (012), (021)}. The permutation 
(34) will double this number, so |N^012^| = 12

We may now determine the number of single cosets in the double coset [012] by 
our formula:

|N|
|N((n2)|

This gives us:

122 = 1012

So there are ten single cosets in the double coset [012] .
Next, we will determine the orbits of Ntotih- Since the elements 0,1 and 2 are 

fixed, our orbits of A^012' on {0,1,2,3,4} are {0,1,2} and {3,4}. We take a representative 
coset from [012] and a representative ti from each orbit to determine the action:

NtQtit2 • t2 = -ZVtoti(t2)2 = Ntoti e JVtotiN’
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So the the orbit{0,1,2} takes three generators back to the double coset [01].

Ntot^ • t3 = Ntotit2t3 G

So the the orbit{3,4} extends two generators to a new double coset 
denoted [0123].

Ntotit2t3N

We determine the single cosets of [0123]. We begin by ’’fixing” our next point 
(3). Thus, the point stabilizer will be :

N0123 =< e >.

Expanding our relations (as shown in section 2.1), we can increase the point stabilizer. 
We note:

02 - 20, 03 - 30, 04 ~ 40,
12 ~ 21, 13 - 31, 14 ~ 41,
23 ~ 32, 24 - 42, 34 ~ 43.

The above relations are used to determine the elements in jy(oi23). conju­
gating the representative coset by generators that will take the point stabilizer
back to itself:

Wii24O1) = Ntitohts = Nt0tit2t3 (01) e N<0123) . 
!Vtotlt24O12) = W2«0<3 = Wl*2«3  -»• (0,1,2) € M0123> 
Ntotlt2t^ = ffliWo = JVtotit2t3 -4 (0123) e N<0123>

So w(°123) =< (01), (012), (0123) >. Now |N(°123)| = |S4| = 4! = 24
We may now calculate the number of single cosets in [0123] by our formula:

|JV(°123>|

This gives us:
120 __
24 —
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So there are five single cosets in the double coset [0123] .
Next, we will determine the orbits of Since the elements 0,1,2 and

3 are fixed, our orbits of A^0123) on [0,1,2,3,4} are {0,1,2,3} and {4}. We take a 
representative coset from [0123] and a representative ti from each orbit to determine the 
action:

Ntot^ts ■ = Xtotit2 G Ntot&N
So the the orbit{0,1,2,3} takes four generators back to the double coset [012].

NtQtit2t3 ■ ^4 = Vtotit2^3^4 € NtQt^tst^N
So the the orbit{4} extends one generator to a new double coset 
Ntotidenoted [01234].

Ntotit2t3t4N

We determine the single cosets in the double coset [01234], First note that all 
of the five elements are”fixed”. Thus, the point stabilizer is :

IV01234 _< e >

As before, we must apply the appropirate permutation to the point stabilizer to send it 
back to itself:

WiW,011 = JVtotit2t3t4 -»• (0,1) 6 M01234)
7Vtotit2t3t401234) = Art1t2t3t4to = Wtotii2t3t4 -> (0,1,2,3,4) e jv(<>1234)

Now |N<01234) I =< (01), (01234) >= |S5| = 5! = 120
We may now calculate the number of single cosets in [01234] by our formula:

1^1
|^(Q1234) |

This gives us:
120 _ -i
120 “

So there is one single coset in the double coset [01234] .
Next, we will determine the orbits of Since all of the elements

are fixed, our single orbit of A^0,1’2’3,4) on {0,1,2,3,4} is {0,1,2,3,4}. We take a rep­
resentative coset from [01234] and a representative tj from this orbit to determine the 
action:
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Ntotit2t3t4 • tl = TVtotit2t3(t4)2 = Ntot^h G NtotitztsN

Thus, the the orbit{0,1,2,3,4} takes all five generators back to the double coset [0123] 
Since we have no generators extending to new double cosets, our double coset enumer­
ation is complete. All this information is summarized in the following cayley diagram 
Figure 2.1:

’=@4—2^3—3@2——5@ 

[*]  [°1 [01l [°121 l0123l [01234]

Figure 2.1: Cayley diagram for 25 : S$

In Table 2.1, we first label each single coset. We then compute the action of xx, 
yy, and tto. We will use the information in the table to determine f(x), f(y), and f(t).
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Table 2.1: Labeling of and Actions on the Single Cosets
Labeling Single Cosets XX yy tt0

1 N 1 N 1 N 2 Nt0
2 Nt0 3 Nil 3 Nti 1 N
3 Nil 4 Nt2 2 Nt0 7 Ntoti
4 m2 5 Nt3 4 Nt2 8 Ntot2
5 Nt3 6 Nt4 5 Nt3 9 Ntot3
6 Nt4 2 Nto 6 Nt4 10 Ntot4
.7 Ntoti 11 Ntit2 7 Ntoti 3 Nti
8 W2 12 Ntit3 11 Ntit2 4 Nt2
9 Ntofy 13 Ntit4 12 W3 5 Nt3
10 Nt0t4 7 Ntoti 13 Ntxt4 6 Nt4
11 Ntit2 14 Nt2t3 8 Ntot2 17 Ntotit2
12 Nti t3 15 Nt2t4 9 Ntot3 18 NtQtit3
13 Ntit4 8 Nt()t2 10 Nt0t4 19 Ntotit4
14 Nt2t3 16 Nt3ti 14 Nt2t3 20 Ntot2t3
15 Nt2t4 9 Ntf)t3 15 Nt2t4 21 Ntot2t4
16 Nt3t4 10 NtQt4 16 Nt3t4 22 Ntot3t4
17 NtQtlt2 23 Ntit2t3 17 Ntotxt2 11 Ntit2
18 ' NtQtitz 24 Ntit2t4 18 Ntoti t3 12 Ntit3
19 Ntotit4 17 Ntotxt2 19 Ntoti t4 13 Ntit4
20 NtQt2t3 25 Ntit3t4 23 Ntit2t3 14 Nt2t3
21 Ntot2t4 18 Ntotit3 24 Ntit2t4 15 Nt2t4
22 Nt0t3t4 19 NtQtlt4 25 Ntit3t4 16 Nt3t4
23 Nt!t2t3 26 Nt2t3t4 20 Ntot2t3 27 Ntotit2t3
24 Ntit2t4 20 NtQt2t3 21 Ntot2t4 28 NtQtit2t4
25 Ntit3t4 21 Ntot2t4 22 Ntot3t4 29 Ntotit3t4
26 Nt2t3t4 22 NtQt3t4 26 Nt2t3t4 30 Nt0t2t3t4
27 NtQtlt2t3 31 Ntit2t3t4 27 Ntotit2t3 23 Ntit2t3
28 Ntotit2t4 27 Ntoht2t3 28 Ntotit2t4 24 Ntit2t4
29 • Ntotit3t4 28 Nt0tit2t4 29 Ntotit3t4 25 Ntit3t4
30 Ntot2t3t4 29 Ntotit3t4 31 Ntit2t3t4 26 Nt2t3t4
31 Ntit2t3t4 30 Nt()t2t3t4 30 Ntot2t3t4 32 Ntotit2t3t4
32 Nt0tit2t3t4 32 NtQtlt2t3t4 32 Ntotit2t3t4 31 Ntit2t3t4
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Thus:

fix') = (2,3,4,5,6) (7,11,14,16,10) (8,12,15,9,13) (17,23,26,22,19)
(18,24,20,25,21) (27,31,30,29,28) 

f(y) = (2,3)(8,11)(9,12)(10,13)(20,23)(21,24)(22,25)(30,31)

/W = (1,2)(3,7)(4,8)(5,9) (6,10) (11, 17)(12,18)
(13,19) (14,20)(15,21) (16,22)(23,27)

2.3 Factoring by the Center

We will find the centralizer of 25 : S5 and factor by its center. The order of our 
blocks of impermiability is two,since we have 2 double cosets that contain only one coset. 
We see that these permutatons occur on 32 letters because there exist 32 single cosets in 
this group. So we have our central element

/(t) = (1,2)(3,7)(4,8)(5,9)(6,10)(ll, 17)(12,18)(13,19)
(14,20) (15,21) (16,22) (23,27) (24,28) (25,29) (26,30) (31,32).

We examine our Cayley diagram and determine the double coset [0,1,2,3,4] 
contains only one coset (excluding the identity coset). We then determine our centralizer 
Z by setting the coset representative of that double coset equal to the identity

Ntotit2t3h = e
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We let z = n • w, where w is

Vi *2*3*4  = e
ioM2^3 = «41

*0*1*2  = *4  *3  •

Since *2 = e then t = *_1. Hence, our relation is *o*i*2  = hh
Using our prior relation toil — Uh, we also have *o*i*2  = *3*4
We now repeat the double coset enumeration with our new relation.

25:S5
*0*1*2  = hh

We will perform a double coset enumeration on the group 25 : S$
factored by the relation *0*1*2  = *3*4,  denoted by the
following group representation:

G =< x,y, t\x5, y2, t2, (xy)4, (x, y)3, (*,  y), (*,  x2yx“1y), (ttx)2, ita:t(x2)t(x3)t(x4) > 

where N =< x,y >= S$, x ~ (01234) and y ~ (01). We know N = S$ has 120 elements, 
or |N| = 120.

2.4 Double Coset Enumeration

NeN and Nt0N

Our procees for this double coset enumeration will be repeated exactly as in the 
above steps for double coset NeN and N*oN  due to the fact that our new relation will 
not increase the coset stabilzer N^°\ Recall:

NeN = {N}
N* 0N = {N* o, Ntb Nt2, Nt3, Nt4,}

NtotiN

We now have a double coset with word of length two, so our relation *0*1*2  = *3*4  
must be utilized to help us accurately determine the coset stabilizer.
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Ntoti — Ntito => JVioti01) = Ntito = IVtito

So (01) 6 M01\ Thus, the generators of A’(01) are < TV01, (01) >. The six 
elements of the coset stabilizer A^01) are : {e, (23), (24), (34), (234), (243)}. The permu­
tation (01) will double this number, so [ = 12. We may now determine the number 
of single cosets in the double coset [01] by our formula This gives us: 4^ = 10.

So there are ten single cosets in the double coset [01] .
Now we determine the orbits of [01] to be {0,1} and {2,3,4}. We will take a 

representative ti from each of these orbits and apply right hand multiplication to the 
coset Ntoil:

1. Ntoti ■ to = NtOt2 = Nto G A-to A7 denoted [0], so this orbit takes 2 generators back 
to the double coset [0].

2. TVtoil -t2 = Ntotit2 = Nt^ 6 NtotiN denoted [01], so this orbit takes 3 generators 
back to itself (the double coset [01]).

Since we have no generators extending to new double cosets, our double coset 
enumeration is complete. All this information is summarized in the following cayley dia­
gram Figure 2.2

[*]  [0] [01]

Figure 2.2: Cayley diagram for 25 : S$ Factored by = £3^4
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Chapter 3

Construction of 3* 3 : A%
3* 3 : A3

G =------tori = rito
We will perform a double coset enumeration of the group 3* 3 : A3 factored by 

the relation tori. = rito, given by:

G=<x,t\x3)t3,tt?: = t?!t>

We have a computer-based proof that G = G3 x C3 x C3 x C3.

where N =< x, t >= A3, x (0,1,2) (01,2). We know IV = A3 has 3 elements , or 
|AT| = 3.

3.1 Relations

Since this group has three generators, we let t = t3. Our given relation is 
ttx = txt. We can substitute the values for t ~ t3 and x ~ (123) (123) and obtain 
m(123)(I23) = t(123)(123)t3]

riiri = t3ri.

We prefer to to write i3 = to. Thus, our relation is:

tori = tori-

We have the three generators to, ri, t2 and their inverses, denoted by to, ri, ri, respectively.
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3.2 Double Coset Enumeration

NeN

NeN is a double coset made up of words of length zero. We know NeN = {TV}, 
which is the first double coset [*].  The coset representative for [*]  is N. We find that the 
orbits of TV on {0,1,2,0,1,2} are {0,1,2} and {0,5,2}. When we apply a representative 
ti from each orbit to the double coset representative TV we see that the elements in orbit 
{0,1,2} extend to a new double coset TVtoTV, denoted [0], and .the elements in the orbit 
{0,1,2} extend to another new double coset TVZqTV, denoted [0]. These double cosets will 
be made up of words of length one. Unlike 25 : in the previous chapter, this Cayley
diagram splits from [*]  and extends to two new double cosets denoted [0] and [0] as shown 
in Figure 3.1 below:

Figure 3.1: Partial Cayley diagram of G over A3

Nt0N

We now will determine the number of single coset in the double coset [0] by 
this formula which gives us | = 3. The coset representative for [0] is TVt0. We now 
identify the orbits of TV^0) and determine where they go. We see that the orbits of TV 
on {0,1,2,0,1,2} are {0}, {1}, {2},{0},{1}, {2}. When we apply a representative ti from 
each orbit to the coset representative TVto we see the following results:

1. TVio^o — Nt0 which means this orbit extends Nto to a; new double coset TVioTV, 
denoted [0].

2. TVtoii= TVtoti which means this orbit extends Nto to a new double coset NtotiN, 
denoted [01].

3. Nt0t2, which means this orbit extends Nto to a new double coset Ntot2N, denoted 
[02]. Our relation tells us the double coset [02] is equivalent to [01]. Hence, this orbit 
takes Nto to the double coset [01]
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4. Ntoto = Ne = N, which takes this coset back to the double coset [*].

5. Ntoti, which means this orbit extends Nto to a new double coset NiofyN, denoted 
[oi],

6. NtQt2, which means this orbit extends Nto to a new double coset NtotzN, denoted 
[02].

Nt0N

We now will determine the number of single coset in the double coset [0] by 
this formula which gives us | = 3. N^ is the stabiliser of the coset Nt0. We now 
identify the orbits of N(°) and determine where they go. We see that the orbits of N(°) 
on {0,1,2, 0,1, 2} are {0}, {1}, {2},{0},{I}, {2}. When we apply a representative t{ from 
each orbit to the coset representative Nto we see that the following results:

1. Ntoto = Ne=N which means this orbit takes Nto back to the double coset [*].

2. Ntofy- Our relation tells us the double coset [01] is equivalent to [02]. Hence, this 
orbit takes Nto to the double, coset [02].

3. Ntot2- Our relation tells us the double coset [02] is equivalent to [01]. Hence, this 
orbit takes Nto to the double coset [01]

4. Ntoto = Nto, which takes this coset back to the double coset [0].

5. Ntoii, which means this orbit extends Nto to a new double coset NtotiN, denoted 
[01].

6. Nt0t2, which means this orbit extends Nto to a new double coset NtohN, denoted 
[02].

From this point on in our process, we will be dealing with words of length two or more, so 
we must utilize our relation toil = tito to find our remaining cosets. In addition, we will 
use our relation to determine which double and single cosets (if any) exist in other single 
or double cosets. First, we must calculate all our relations. Conjugation by elements of 
A3 gives rise to the following relations:

01 - 10, 20 - 02, 12 ~ 21,01 ~ 10,12 ~ 21,20 ~ 02,12 - 21,20 - 02,01 - 10
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Furthermore, we use the above relations to seek out which double cosets are 
actually elements of other double cosets. We call these “equal cosets”. We will show that 
many double cosets in this group are equal. MAGMA confirms what we will show by 
hand:

Remembering our notation;
3=0, 1 = 1, 2 = 2, 6 =0, 4 =1, 5 = 2.
We prove that [02] = [01];
Note: A3 =< (012),(012), (021)(021), e > .
pf:
[01] = [02]
Ntc)tiN= {AT(toil)" € N} = {Ntoti,
But our relation tells us that Nt2to = Ntot2 G Nt(]t2N
So NtotiN = Ntot2N.

[01] = [02]
TVtoiiTV = Ntot2N
NtotiN— [N(totx)n 6 TV} = {Ninti, Nt2to, Ntit2}
But our relation tells us that Nt2to = TVt0t2 € TVtotiTV
So TVtotiTV = TVtot27V.

Similarly, we prove that the remaining ten double coset equalities listed below:
[02] = [01], [01] = [02], [02] = [01], [02] = [01],
[012] = [012], [012] = [012], [012] = [012], [012] = [012]
[0121] = [02], [0121] = [012], [0120] = [02], [0120] = [012].
We will now use these relations to help us find our remaining cosets.

NtotiN

We now will determine the number of single coset in the double coset [01] by 
this formula which gives us | = 3. The coset representative for [01] is TVioti- We
now identify the orbits of TV^01) and determine where they go. We see that the orbits of 
TV(01) on {0,1,2,0,1,2} are {0}, {1}, {2},{0},{l}, {2}. When we apply a representative 
ti from each orbit to the coset representative TVto we see the following results:
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1. N*o*i*o  — N*o*o*i  ~ N*o*i  which means this orbit extends Nio*i  to a new double 
coset N*o*iN,  denoted [01].
We have proven that [01] = [02], so this orbit extends Ntph to [02].

2. N*o*i*i=  N*o*i  which means this orbit extends N*o*i  to a new double coset NtohN, 
denoted [01].

3. N* o*i*2  which means this orbit extends Ntoti to a new double coset Ntot^N, 
denoted [012].

4. N*o*i*o  = N*i,  £ [0].

5. N*o*i*i  = Nto, which means this orbit extends N*o*i  back to the double coset 
NtoN, denoted [0].

6. Nio*i*2>  which means this orbit extends Ntoti to a new double coset Ntotit^N, 
denoted [012].
We have proven that [012] = [012], so this orbit extends Ntoti to [012].

Ntot2N

We now will determine the number of single coset in the double coset [02] by 
this formula which gives | = 3. The coset representative for [02] is JV*o*2-  We now
identify the orbits of N^02) and determine where they go. We see that the orbits of N^02) 
on {0,1,2,0,1,2} are {0}, {1}, {2},{0},{l}, {2}. When we apply a representative ti from 
each orbit to the coset representative N*o* 2 we see the following results:

1. N* o*2*o = N* o*2 which means this orbit extends N*o* 2 to a new double coset 
N*o* 2N, denoted [02].

2. N* o*2*i= N* o*i*2 which means this orbit sends N*o* 2 to the double coset N*o*i* 2N, 
denoted [012].

3. N*o*2* 2 — N*o* 2) which means this orbit extends N*o* 2 to a new double coset 
N*o* 2N, denoted [02].

4. N* o*2* o — N*o*o*2  = N*2 j € [0].
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5. Ntot2<i = Ntotit2, which means this orbit extends Ntot2 to a new double coset 
NtotiN, denoted [012].

6. Ntot2t2 = Nto, which means this orbit sends Ntot2 back to the double coset [0].

NtotiN

We now will determine the number of single coset in the double coset [01] by 
this formula which gives us | = 3. The coset representative for [01] is Ntoti. We
now identify the orbits of A^01) and determine where they go. We see that the orbits of 

on {o, 1,2,0,1,2} are {0}, {1}, {2},{0},{1}, {2}. When we apply a representative 
ti from each orbit to the coset representative Ntoti we see the following results:

1. Ntotito = Ntoti which means this orbit extends Nto to a new double coset NtoN, 
denoted [0].

2. Ntotiti —Nto which means this orbit takes Ntoti back to the double coset [0].

3. Ntotit2, which means this orbit extends Ntoti to a new double coset NtotiN, 
denoted [012].

4. Ntotito = Nfy, which takes this coset back to the double coset [0].

5. Ntotiti = Ntoti, which means this orbit takes Ntoti back to a the double coset 
[01].

6. NtotiN, which extends Ntoti to a new double coset [012] = [012].

Nt0t2N

We now will determine the number of single coset in the double coset [02] by 
this formula which gives us | = 3. The coset representative for [02] is Ntot2. We
now identify the orbits of M02) and determine where they go. We see that the orbits of 
7V(°2) on {0,1,2,0,1,2} are {0}, {1}, {2},{0},{l}, {2}. When we apply a representative 
ti from each orbit to the coset representative Nto^ we see that the following results:

1. Ntot2to = Nt0i2 which means this orbit extends Ntot2 to a new double coset 
Ntoi2N, denoted [02].
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2. Ntot2ti ^Ntotit2 which means this orbit extends Ntot2 to a new double coset 
Ntotit2N, denoted [012] G [0l2].

3. Ntot2t2 = TVto, which means this orbit sends Ntot2 back to [0].

4. NtQt2to = Nt2, which takes this coset back to the double coset [0].

5. Ntot2ti = Ntoriri, which means this orbit takes Ntot2 to a new double coset [012].

6. NtQt2f2 = IVtori, which means this orbit extends Ntori to the double coset [02].

We now will determine the number of single coset in the double coset [01] by

NtgtiN

now identify the orbits of A7^1) and determine where they go. We see that the orbits of 
on {0,1,2,0,1,2} are {0}, {1}, {2},{0},{l}, {2}. When we apply a representative 

ti from each orbit to the coset representative Ntoti we see the following results:

1. Ntotito = Nil which means this orbit takes Ntoti back to the double coset [0].

2. Ntotiti = Ntot\, which means this orbit takes Ntoti to the double coset [01].

3. Ntotit2, which means this orbit extends IVtori to a new double coset Ntotit2N, 
denoted [012] = [012].

4. Ntotito = Ntoti, which takes this coset back to the double coset [01].

5. Ntotiti = Nio, which means this orbit takes Ntoti back to the double coset [0].

6. Ntotiri) which means this orbit extends Ntgii to a new double coset Ntotit2N,
denoted [012] — [012].

Nt0t2N

We now will determine the number of single coset in the double coset [02] by

now identify the orbits of N^02) and determine where they go. We see that the orbits of 
on {0,1,2,0,1,2} are {0}, {1}, {2}, {0}, {1}, {2}. When we apply a representative 

ti from each orbit to the coset representative Ntot2 we see the following results:
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1. Ntffato — Nt2 which means this orbit takes Ntot2 back to the double coset [0].

2. NiQt2ti = Ntotit2, which means this orbit extends Ntot2 to the double coset [012] = 
[012].

3. Ntot2t2 — Ntot2, which means this orbit takes Ntot2 to the double coset [02].

4. Ntot2to = Ntot2, which takes this coset back to the double coset [02].

5. Ntot2ti = Niotit2, which means this orbit extends Ntot2 to a new double coset 
[012].

6. Ni0t2i2 = Nto, which means this orbit takes Ntot2 back to the double coset [0].

NtotiN

We now will determine the number of single coset in the double coset [01] by 
this formula which gives us | = 3. The coset representative for [01] is Ntoti. We
now identify the orbits of N^01) and determine where they go. We see that the orbits of 
N^) on {0,1,2,0,1,2} are {0}, {1}, {2}, {0}, {1}, {2}. When we apply a representative 
ti from each orbit to the coset representative Ntoti we see the following results:

1. Ntotito = Nti which means this orbit takes Ntoti back to the double coset [0].

2. Niotiti = Nto, which means this orbit takes Ntoti to the double coset [0].

3. Ntotit2, which means this orbit extends Ntoti to a new double coset Ntotit2N, 
denoted [012].

4. Ntotito = Ntoti, which takes this coset back to the double coset [01].

5. Ntotiti = Ntoti, which means this orbit extends Ntoti to a new double coset 
NtotiN, denoted [01] = [02].

6. Ntotit2, which means this orbit extends Ntoti to a new double coset Ntotit2N, 
denoted [012].
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Nt0t2N

We now will determine the number of single coset in the double coset [02] by 
this formula which gives us | = 3. The coset representative for [02] is Nt$t2. We
now identify the orbits of N^02) and determine where they go. We find that the orbits of 
_M°2) on {0,1,2,0,1,2} are {0}, {1}, {2}, {0}, {I}, {2}. When we apply a representative 
ti from each orbit to the coset representative Nto^2 we see the following results:

2. Nioii^i = Ntotit2 which means this orbit extends Nfotit2 to the double coset 
[012].

1. Ntot^to — Nt2 which means this orbit takes Nto^ back to the double coset [0].

2. Ni^h = Nio^h, which means this orbit extends Nttofy to a new double coset 
NtotiN, denoted [012].

3. Ntot2t2 — Nto, which means this orbit takes Nto<2 to the double coset [0].

4. NWo — Ntot2) which means this orbit extends Ntot2 to a new double coset 
Nto^N, denoted [02].

5. Nt0t2ti = NtotiN) which means this orbit extends Ntot2 to a new double coset 
NtotitijN, denoted [012].

6. Ntot2t2 — Ntot2; which means this orbit extends Ntot2 to a new double coset 
Ntot2N, denoted [02] = [01].

Ntotit2N

We now will determine the number of single coset in the double coset [012] by 
this formula which gives us | = 1. The coset representative for [012] is Nto^it2-
We now identify the orbits of N^012) and determine where they go. We find that the 
orbits of N(°12) on {0,1,2,0,1,2} are {0}, {1}, {2}, {0}, {I}, {2}.

When we apply a representative ti from each orbit to the coset representative 
Ntotit2 we see the following results:

1. Ntot-fato ~ Ntot]t2 which means this orbit takes Niotit2 to the double coset 
[012] = [012].
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3. Ntotit2t2 = Ntotit2 which means this orbit extends Ntotit2 to a new double coset 
Ntotii2N, denoted [012] = [012].

4. Ntotit2to = Ntit2, E [01].

5. Ntotit2ti = Ntot2, which means this orbit takes Ntotit2 back to the double coset 
[02] = [01].

6. Ntotit2t2 = Ntoti, which means this orbit takes Ntotit2 back to the double coset 
[01].

Nt0tit2N

We now will determine the number of single coset in the double coset [012] by 
this formula which gives us | = 3. The coset representative for [012] is Ntotit2. We
now identify the orbits of N^012) and determine where they go. We see that the orbits of 
7V(°12) on {0,1,2,0, T, 2} are {0}, {1}, {2}, {0}, {1}> {2}. When we apply a representative 
ti from each orbit to the coset representative Ntotit2 we see the following results:

1. Ntotit2to = Ntotit2 which means this orbit takes Ntotit2 to the double coset 
[012] = [012].

2. Ntotit2 which means this orbit takes Ntotit2 to the double coset [012] = 
[012]-

3. Ntotit2t2 = Ntoti which means this orbit takes Ntotit2 back to the double coset 
[01].

4. Ntotit2to = Ntit2, € [01]

5. Ntotit2ti = Ntot2, which means this orbit takes Ntotit2 back to the double coset 
[02].

6. Ntotit2t2 = Ntotit2, which means this orbit takes Ntotit2 back to the double coset
[012]-
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NtotitaN

We now will determine the number of single coset in the double coset [012] by 
this formula which gives us | = 3. The coset representative for [012] is Ntotit2. We
now identify the orbits of A^012) and determine where they go. We see that the orbits of 
Ad0*2) on {0,1,2,0,1,2} are {0}, {1}, {2}, {0}, {I}, {2}. When we apply a representative 
ti from each orbit to the coset representative we see that the following results:

1. Ntotitzto = Ntohh which means this orbit takes Ntotit2 to the double coset [012].

2. Ntotit2ti= NtQt2 which means this orbit takes NtQt\t2 to the double coset [02] = 
[01].

3. NtQtit2t2 = Ntotit2 which means this orbit takes Ntotit2 to the double coset 
[012] = [012].

4. Nt0iit2iQ = Ntoi]t2, G [012].

5. Ntotit2ti — which means this orbit takes NtQt]t2 back to the double coset
[012].

6. Ntotit2t2 = Ntoti, which means this orbit takes back to the double coset
[01]-

Nt0tit2N

We now will determine the number of single coset in the double coset [012] by 
this formula |J(oi2)| which gives us | = 3. The coset representative for [012] is Ntotit2. 
We now identify the orbits of ;V(Oi2) and determine where they go. We see that the orbits 
of [012] on {0,1,2,0,1,2} are {0}, {1}, {2}, {0}, {!}, {2}. When we apply a representative 
U from each orbit to the coset representative Ntot]t2 we see the following results:

1. NtQtit2tQ = Ntit2 which means this orbit takes Ntotit2 back to the double coset 
[01].

2. = Aftg, which means this orbit takes NtQt\t2 to the double coset [0].

3. Ni^tit2t2. which means this orbit extends Ntot-fa to a new double coset NtotiN, 
denoted [012],
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4. Ntotitzto = Ntoti, which takes NtotiN back to the double coset [01].

5. Ntotiti = Ntotih, which means this orbit takes Ntotit2 to the double coset 
[012] = [012].

6. Ntot]t2t2 = Ntoti, which means this orbit takes Ntotit2 back to double coset [01].

Ntotit2N

We now will determine the number of single coset in the double coset [012] by 
this formula which gives us | = 1. The coset representative for [012] is Ntotit^. We
now identify the orbits of N^012) and determine where they go. We find that the orbits of 
7V(oi2) on {q, i, 2,0,1,2} are {0}, {1}, {2}, {0}, {I}, {2}. When we apply a representative 
ti from each orbit to the coset representative Ntotit2 we see the following results:

1. Ntotit2to — Ntit2 which means this orbit takes Ntotit2 back to the double coset 
[51].

2. Ntotiti = Ntot2, which means this orbit takes Nl()l\t2 to the double coset [02] = 
[01].

3. Ntotit2t2 = Ntoti, which means this orbit takes Ntotit2 back to the double coset 
[01].

4. Ntotit2to = Ntotit2, which takes NtotiN back to the double coset [012] = [012].

5. Ntotit2ti = Ntotita, which means this orbit takes Ntotit2 to the double coset 
[012] = [012].

6. Ntotit2t2 = Ntotit2, which means this orbit takes Ntotit2 back to double coset 
[012].

As we continue this process, we determine that we have a total of eleven double cosets 
that survive the enumeration via the aforementioned relation. Those double cosets are 
[*],  [0], [0],[01],[0l], [02], [01], [012], [012], [0l2],and [012]. The results are summarized in 
the following Cayley graph Figure 3.2:
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Figure 3.2: Cayley diagram of G over A3 Factored by *0*1 = *1*0

Factoring this group by the center yields us the following Cayley diagram Figure 3.3:

Figure 3.3: Cayley diagram of G over A3 Factored by the Center
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Chapter 4

Construction of (M21 x 4):S3

We have a computer-based proof that G is isomorphic to (M2i x 4):S3. This 
proof is obtained as follows: We first use MAGMA to obtain the composition factors of 
a permutation representation of G. This is done as follows:

f,G1,k:=CosetAction(G,sub<G|x,y>);
CompositionFactors(Gl);

gives

The below results indicate a semi direct product:
G
] Cyclic(3)
*
I Cyclic(2)
*
1 A(2, 4) = L(3, 4)
*

I Cyclic(2)
*
I Cyclic(2)
1

Note: The above progenitor has produced another group in addition to the 
presentation we will construct below. From MAGMA, we have
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for a in [0..10] do for b in [0..10] do for c in [0..10] do
for d in [0..10] do
for e in [0..10 ] do
G<x,y,t>:=Group<x,y,t|x"8 , y"2 , (x*y)"3  , (x,y)"4,t"3,(t,y), (t,x"3 * 
y * x~3 * y * x''-l),(t,y * x"-2 * y * x"3 * y * x"-2) , (x*t)"a,  
(x"3*t)~b,(x"-2  * y * x~2 * y*t~(x"6))"c,(x"4  * y*t)~d,(x~2*t)~e> ;
if Index(G,sub<G|x,y>) ge 3 then a,b,c,d,e,
Index(G,sub<G|x,y>); end if; end for; end for; end for; end for; end 
for;
G<x,y,t>:=Group<x,y,t|x'‘8 , yA2 , (x*y)~3  , (x,y)-4,t~3, (t,y), (t,x~3 * 
y * x"3 * y * x~-l),(t,y * x~-2 * y * x"3 * y * x"-2),(x*t)"0,
(x"3*t) "0,(x"-2 * y * x~2 * y*t"(x"6) )"0,(x"4 * y*t) "6,(x~2*t)"0> ;

CompositionFactors(Gl);
G

1

1 Cyclic(3)
*

1 Cyclic(2)
*

1 A(2, 4) = L(3, 4)
*

1 A(l, 7) = L(2, 7)
*

1 Cyclic(2)
*

1 Cyclic(2)

which gives rise to the group £3(4),
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We now write a presentation of the group (IW21 x 4) :S3 (obtained based on the 
composition factors above) and verify that G = (M21 x 4) : S3.
We will perform a double coset enumeration of the group (M21 x 4): S3 factored by the 
relation t3tst2 given by:

G =< x,y,t\x3,y2, (xy)3, (xy)\ t3, (t,y), (t,x3yx3yx~ly), (t,yx~2yx3yx~2), (x3t)5 > 

where

N =< x,y >= PGL2(7) 
x - (8,2,5,4,6,1,7,3) (8,2,5,4,6,1,7) 
y ~ (1,6)(2,5)(3,4)(1,6)(2,5)(3,4).

We know N = PGL2(7) has 168 elements , or |N| = 168.
We have a computer-based proof that G = C3 x C2 x A2(40) = £3(4) x C2 x C2

4.1 Relations

Since this group has eight generators, we let t = tg-
The first relation we must expand is

(re3*) 6 = 1

Let ir = xs, then our relation becomes

= 1

expanding our relation, we have
7r6t’r5t’r4t’r3t’r2t’rt = 1

= x

since we are using this relation becomes
X2tx7txitxltxl!tx3t = 1

The permutation representation of our group is

f(x) — xx — (1,7,3,8,2,5,4,6)(1,7,3,8,2,5,4,6)
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So, using xx, we have
n

x tsririririis — 1
Using right-hand multiplication and the property t"1 = ri, we obtain the fol­

lowing

ririri ~ ririri (4.1)

4.2 Double Coset Enumeration

NeN

We start our double coset enumeration by evaluating our first double coset, 
denoted [*],  containing words of length zero. This double coset has one single coset, 
which is the identity NeN = N. Since t = tg and t has eight conjugates, there are two 
orbits that extend from [*].  The first orbit includes the generators {1,2,3,4,5,6,7,8}, 
and the second orbit includes the generators {1,2,3,4,5,6,7,8}.

Now we examine the double cosets containing words of length one. We do this 
by taking a representative ri from each orbit and apply right hand multiplication to the 
coset N.

N • i8 = Nig 6 NtgN

Denote this double coset as [8]

N • tg — Nig G NtgN

Denote this double coset as [8]

NtgN

Consider the double coset [8]. We now compute the coset stabilizer N^ . Note 
that in this case the coset stabiliser equals the point stabilizer N8. Using MAGMA we 
found the order of the coset stabiliser, |N^ | = 42. Next, we find the number of cosets 
in the double coset [8] by using the formula

|N<8)| (4.2)|NrijN| =
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Hence, |NisN| = ^ = 8 .
Now we compute orbits for the double coset [8] using MAGMA. It tells us that 

there are four orbits on [8]. The first orbit contains the generator {8}, the second orbit 
contains the generator {§}, the third orbit contains the generators {1,2,3,4,5,6,7} and the 
fourth orbit contains the generators {1,2,3,4,5,6,7,8}. We will now examine the two 
’’singleton” orbits containing the generators 8 and 16. We will take a representative if 
from each of these two orbits and apply right hand multiplication to the double coset [8].

Nig • tg = N?8 G NtgN
So this orbit takes one generator over to the double coset [8].

Nt& • tg = Ne 6 NeN

So this orbit takes one generator back to the double coset [♦]. Now we examine the 
remaining two orbits in this double coset:

Nts • ti — Ntgti G Ntgti N

Denote this double coset as [8,1].

Ntg • ti = Ntgti € N/gtiN

Denote this double coset as [8,1].

NtgN

Consider the double coset [8]. We now compute the coset stabilizer N^ . Note 
that in this case the coset stabiliser equals the point stabilizer N8. Using MAGMA we 
found the order of the coset stabiliser, |N^ ] = 42. Next, we find the number of cosets 
in the double coset [8] by using the formula

W = (4.3)

Hence, |NtgN| = = 8
Now we compute orbits for the double coset [8] using MAGMA. It tells us that 

there are four orbits on [8]. The first orbit contains the generator {8}, the second orbit 
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contains the generator {8}, the third orbit contains the generators {1,2,3,4,5,6,7} and 
the fourth orbit contains the generators {1,2,3,4,5,6,7}. We will now examine the two 
’’singleton” orbits containing the generators {8} and {8}. We will take a representative 
ti from each of these two orbits and apply right hand multiplication to the double coset 
[8],

Ni8 • ts = Ne G NeN
So this orbit takes one genrator back to the double coset [*].

Nri ■ ri = Nri G NtgN

So this orbit takes one generator to the double coset [8]. Now we examine the remaining 
two orbits in this double coset.

Ntg ■ ti — Ntgii G NtgtiN

Denote this double coset as [8,1].

Nri ■ ti = Ntgti G NrifyN

Denote this double coset as [8,1].
We have four new double cosets with words of length two. Note that the orbits 

not only extend the generators to double cosets with words of increased length, they also 
take the generators back to double coests with words of reduced length. They can also 
take generators to other double cosets with words of equal length. We will now consider 
these four double cosets.

NtgtiN

Consider the double coset [8,1]. We now compute the coset stabilizer N^81) . 
Note that in this case the coset stabiliser equals the point stabilizer N81. Using MAGMA 
we found the order of the coset stabiliser, |N^81^] = 42. Next, we find the number of 
cosets in the double coset [8,1] by using the formula

|7V<81)||Wi N| = (4-4)
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Hence, |ArAAiAr| — — 56 . Therefore, we have 56 cosets in NtsiiN. This
implies that we have 56 equal names for these cosets. Please note

Ntit2 = Nt2ti =>12 — 21

Thus we have the following 56 relations for NtJyN = {A'(tg^i)n|n G N}:

12 13 14 15 16 17 18
— 21 — 23 — 24 — 25 — 26 — 27 — 28
— 31 — 32 — 34 — 35 — 36 — 37 — 38
— 41 — 42 — 43 — 45 — 46 — 47 — 48
— 51 — 52 — 53 — 54 — 56 — 57 — 58
— 61 — 62 — 63 — 64 — 65 — 67 — 68
- 71 - 72 - 73 - 74 - 75 - 76 - 78
— 81 — 82 — 83 — 84 — 85 — 86 — 87

MAGMA confirms these relations, which we will use to find equal double cosets with
words of length three and greater within this group.

Now we compute orbits for the double coset NtstjN by conjugating elements in 
NtstjN by the coset stabilizer A7^81L Note that the permutation for NtgtiN is

JV(81) =< (265734) (265734) >

1. 1N<81) = {1}

2. 2W(S1) = {6,5,7,3,4,2}

3. 8W<81> = {8}

4. Iw<81) = {1}

5. 2n<81) = {6,5,7,3,4,2}

6. gw<81) = {§}
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To examine these orbits we take a representative t{ from each of these orbits and 
apply right hand multiplication to the double coset [8,1]. We will now examine orbits 1 
and 4:

N*g*i  • *i  = N*8* i G NigfyN

So this orbit takes one generator over to the double coset [8,1].

N*8* i • *i  = N*8  G Nts-N

So this orbit takes one genrator back to the double coset [8].
We will now consider the remaining four orbits, which extend the generators to new 
double cosets with words of length three.

N*8* i ■ *2  = N*8*l*2  G NtgtifaN

So this orbit extends 6 generators to the double coset [8,1,2].

N*s*i  • *8  = N* s*i*8  G NtstitgN

So this orbit extends one generator to the double coset [8,1,8].

N*8*i  • *2  = Nis*i*2  £ N* s*1*2N

So this orbit extends six generators to the double coset [8,1,2].

Ntgti • *8  = N*8* i*8  € NtstitaN

So this orbit extends one generator to the double coset [8,1,8].

NtgtiN

Now we consider the double coset [8,1]. We now compute the coset stabilizer 
7V(81) . Note that in this case the coset stabiliser equals the point stabilizer N81. Using 
MAGMA we found the order of the coset stabiliser, | = 42. Next, we find the
number of cosets in the double coset [8,1] by using the formula

JN|_
|N(8i)| (4.5)|W1N| =
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Hence, |Nt8tiN| = = 56 .
Now we compute orbits for the double coset NtgtiN by conjugating elements in 

NtgtiN by the coset stabilizer
1.1^8I> = {1}

2. 2w<8I) = {2,4,3,7,5,6}

3. 8"<8i> = {8}

4. lJV(8l) = {1}

5. 2W<8” = {2,4,3,7,5,6}

6. §w<81> = {8}

We repeat the process to examine the above orbits:

Ntgti • ti = Ntg € NtgN

So this orbit takes one generator back to the double coset [8].

Ntgti • ti = Ntgti G NtgtiN

So this orbit takes one generator over to the double coset [8,1].

Ntgti • tg = Ntgtitg & NtgtytgN

So this orbit extends one generator to the double coset [8,1,8].

Ntgti' tg = Ntgtitg G NtgtitgN

So this orbit extends one generator to the double coset [8,1,8].

Ntgti ■ t2 = Ntgtit2 G Ntgtit2N

So this orbit extends six generators to the double coset [8,1,2].

Ntgti • t2 = Ntgtit2 G Ntgtit2N

So this orbit extends six generators to the double coset [8,1,2],
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NtgtiN

Consider the double coset [8,1]. We now compute the coset stabilizer N^81) . Note that 
in this case the coset stabiliser equals the point stabilizer N81. Using MAGMA we found 
the order of the coset stabiliser, |?A81)[ = 42 Next, we find the number of cosets in the 
double coset [8,1] by using the formula

=jSi (4-6)

Hence, |NritiN| = — 56 .
Now we compute orbits for the double coset [8,1] by repeating the same process detailed 
in the prior two double cosets. Our results tells us that there are six orbits on [8,1]:

1. the generator {1}

2. the generator {8}

3. the generator {1}

4. the generator {8}

5. the generators {2,3,4,5,6,7}

6. the generators {2,3,4,5,6,7}

We repeat the process of right hand multiplication to examine the above orbits:

Ntgti ■ ti — Ntgti G Nt^tyN

So this orbit takes one generator over to the double coset [8,1].

Ntgti ■ ti = Nig G Nt$N

So this orbit takes one generator back to the double coset [8].

Nriri ■ ri = Nririri £ NriiiriA"

So this orbit extends one generator to a new double coset [8,1,8].

Nriti • ii6 — Nririri G NriririN
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So this orbit extends one generator to a new double coset [8,1,8].

Ntgti • t2 = Ntgtit2 G Ntgtit2N

So this orbit extends six generators to a new double coset [8,1,2].

Ntgti • h = Ni8txi2 G Nt8tit2N

So this orbit extends six generators to a new double coset [8,1,2].

NtgtiN

Consider the double coset [8; 1]. We now compute the coset stabilizer M81) . Note that 
in this case the coset stabiliser equals the point stabilizer TV81. Using MAGMA we found 
the order of the coset stabiliser, |N^81^ | = 42. Next, we find the number of cosets in the 
double coset [8,1] by using the formula

wi=jSi
Hence, |Nt8iiN| = = 56 .

Now we compute orbits for the double coset [8,1] using the aforementioned process. It 
tells us that there are six orbits on [8,1]:

1. the generator {1}

2. the generator {8}

3. the generator {1}

4. the generator {8}

5. the generators {2,3,4,5, 6,7}

6. the generators {2,3,4,5,6,7}

repeating our process to examine the above orbits, we note the following:

Ntgii ■ ii = Nig G Nt8N

So this orbit takes one generator back to the double coset [8].
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Ntsii • <i = Ntsti G NtgtiN

So this orbit takes one generator over to the double coset [8,1].

TVt8ti • A = Nig Ms € NtstitgN

So this orbit extends one generator to a new double coset [8,1,8].

TVtsU • is = AfrgMs G AfrgMsN

So this orbit extends one generator to a new double coset [8,1,8].

Aftgti • t2 = G Nts,tit2N

So this orbit extends six generators to a new double coset [8,1,2].

Ntgti • t2 — Ntgtitv G Ntgtit^N

So this orbit extends six generators to a new double coset [8,1,2].

We have sixteen new double cosets with words of length three. Again, note 
that the orbits not only extend the generators to double cosets with words of increased 
length, they also take the generators back to double cosets with words of reduced length. 
They can also take generators to other double cosets with words of equal length. We 
will apply the process described in the relations section of this chapter to find any equal 
double cosets with words of length three. By using our relations, we find that six of of 
the sixteen ’’new” double cosets are equivalent to existing double cosets. Thus, we have 
ten double cosets with words of length three:

[8,1,2],  [8,1,2], [8,1,8], [8,1,2], [8,1,2], [8,1,8], [8,1,8], [8,1,8], [8,1,8], [8,1,8]

We will now examine these ten double cosets.

NtgtjtaN
Consider the double coset [8,1,2]. We now compute the coset stabilizer 7V^812\ 

Using MAGMA we found the order of the coset stabiliser, |A^812)| = 2. Next, we find the 
number of cosets in the double coset [8,1,2] by using the formula
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\m^N\ = JAL (4.8)

We then calculate the number of cosets in the double coset [8,1,2] to be

|Nt8tit2N| = — = 168 (4.9)
Now we compute orbits for the double coset Ntst-faN by conjugating elements 

in Ntgtit2N by the coset stabilizer A^812). Our resulting sixteen orbits contain a single 
generator in each:

{1}. {2}, {3}, {4}, {5}, {6}, {7}, {8}, {I}, {2}, {3}, {4}, {5}, {6}, {7}, {S}.

We will take a representative ti from each of these orbits and apply right hand multi­
plication to the coset Nt%tit2- Note that we will use our relations to determine which 
double coset the orbits take their generators to:

Ntstit2 • ti = Nt&tit2ti = Ntst2tit2 = Ntstit2 — Ntstit2 G Ntstit2N

So this orbit takes one generator over to the double coset NtstitzN denoted [8,1,2].

Ntstit2 • t2 = Ntgtit2 G Ntgtit2N

So this orbit also takes one generator over to the double cQsetNtstit2N denoted [8,1,2].

Ntgtit2 • ts — Ntstit2t3 — Ntst]t2ti = Nt&titgti = Ntgtititg = Ntgtitg G NtgtitgN

So this orbit takes one generator to the double coset Ni8tii8N denoted [8,1,8].

Nt8tit2 • *4  = Ntgtitrfi = Ntstit2ti = Ntstitsti = Ntgt-itits = Nt^titg G Ni8tli8N

So this orbit takes one generator to the double coset Nt8tii8N denoted [8,1,8].

Nt$tit2 • is = Ni8tit2i5 = Nt$tit2ti — Ni8iii8ti = Nisisiiii = Ni8ti G Ni8i"]N

So this orbit takes one generator back to the double coset NtgtiN denoted [8,I].

Ntstit2 • to = .Ntstit2t6 — Ni8iii2ii = Ntgtitsti = Nt8t8iiii = Ni8ii G NtgtiN

So this orbit takes one generator back to the double coset Ni8iiN denoted [8,1].

Nt8tit2 • t7 = Nt8tit2i7 = Ntstit2ti — Nt8t2ilt2 = Nt8t_ii2 = Ni8tit2 G Ntgtit2N
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So this orbit takes one generator over to the double coset denoted [8,1,2].

Ntstit2 • fy = NtgtitJs = Nt8tit2ti = Nt8t2t]t2 = — Ntstito, G Nt$tit2N

So this orbit takes one generator over to the double coset Ntgt^N denoted [8,1,2]. Us­
ing a similar process with their inverse counter parts, the remaining orbits behave in a 
similar fashion:
{1} takes one generator to the double coset Nt^tiisN denoted [8,1,8]
{2} takes one generator to the double coset Nigt^N denoted [8,1]
{3} takes one generator to the double coset Nt&tit2N denoted [8,1,2]
{4} takes one generator to the double coset NtstitzN denoted [8,1,2]
{5} takes one generator to the double coset denoted [8,1,2]
{6} takes one generator to the double coset NtaiitzN denoted [8,1,2]
{7} takes one generator to the double coset Nt3t]_N denoted [8,1]
{8} takes one generator to the double coset NtsfatsN denoted [8,1,8]

Showing Equal Double Cosets

We now have double cosets consisting of words of at least length three. Since 
our relation is based on three letters, we must now apply the relation to our double cosets 
to verify the existence of equal cosets.

We derived our original relation

from our symmetric presentation. Through conjugation by elements of our control sub­
group PGL2(7) we obtain the relation

tsUs = titati

By using this relation, we will now verify that the double coset NtgtitstiN, 
denoted [8,1,8,1], is equal to the double coset NtgtiN, denoted [8,1].

t&titsti = iitstJi = iit8

Now we must show that the coset Nt]t§ belongs to NttfiN
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Lets examine the double coset [81]:

NtgtiN = {N(tgti)n]n G N}

Recall: N =< x,y >=< (17382546)(17382546), (16)(25)(34)(16)(25)(34) >.
We must find a permutation, n, in N such that

N(t8ti)n = Ntitg

or n takes the coset Ntgti to Ntitg. We found the desired permutation to be:

n = (xv)4 = (65)(72)(43)(18)(65)(72)(43)(18)

So, N(tgti)n = Ntitg. Hence, the single coset Ntitg belongs to the double coset NtgtiN. 
Since two different double cosets are disjoint, we can conclude that NtitsN = NtgtiN. 
Hence,

Ntgtit8tiN = NtitgtitiN = NtiigN = NtgtiN
Thus, we have verified the following double coset equality

NtgtitgtiN = NtgtiN.

Repeating this process, we can verify the existence of other equal double cosets 
within our group.

[8,1,8,1] = [8,1]
[8,1,8,8] = [8,1,8]
[8,1,8,1] = [8,1,8]
[8,1,8,8] = [8,1]
[8,1,8,2] = [8,1,2]
[8,1,8,2] = [8,1,8]

Due to times constraints, we were not able to finish the manual construction of 
this group. However, we have utilized algorithms in MAGMA that provided us with an 
accurate Cayley diagram, which is provided in Figure 4.1 below:
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Figure 4.1:: Completed Cayley diagram of (M21 x 4):53
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4.3 Factoring by the Center

Due to times constraints, we were not able to manually construct this group 
factored by its centralizer. However, we have utilized algorithms in MAGMA that provide 
us with an accurate Cayley diagram as seen in Figure 4.2. This illustrates the efficiency 
in finding and factoring larger groups by their center:

[*]

[8i]

[812]

Figure 4.2: Completed Cayley diagram of x 4):S3 Factored by the Center

The MAGMA algorithms used to generate the figure above are listed in Appendix C.
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Chapter 5

Construction of Us(3) : 3 as a
Homomorphic Image of 2* 14 : £3(2)

We have a computer-based proof that

G ~ 2*3^ 2) u3(3): 3

This proof is obtained as follows: We first use MAGMA to obtain the composition factors 
of a permutation representation of G. This is done as follows:

f,G1,k:=CosetAction(G,sub<G| x, y>) ;
CompositionFactors(Gl);

which gives the following results.

G
I Cyclic(2)
*
I 2A(2, 3) «= U(3, 3)
1
We now write a presentation of the group 6*3  (3) : 3 hom°) 2* 14 : £3(2) (obtained based on 
the composition factors above) and verify that G = 6*3(3)  : 3 ■/lonio> 2* 14 : £3(2).
We will perform a double coset enumeration on the group £3(3) : 3 2* 14 : £3(2)
factored by the relation *3*2  = *7*1,  denoted by the following group representation:
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G =< x, y, t\x\ y2, (xy)3, (x,y)\t2, (t,x~3yx2), (t,y),txt(xy\ (xyiT1)3, (xytx2)6 >

We have a computer-based proof that G = C2 x 2A2(3) = Us(3).

where |G[ = 12096 and N =< x,y £3(2).
The generators are represented by:

and
y ~ (1,1)(3,7)(2,6)(4,5)(4,5)(2,6).

We know N £3(2) has 168 elements , or |N| = 168.

5.1 Relations

The relation we must expand is

(^t1-1)8 = 1

Let 7T = xy. We then expand our relation

(xytx~1)(xytx~1)(xytx~l)(xytx~1)(xytx~1)(xytx T)(xytx ^(xyP X) = 1

We also know that t ~ and t?1 = $14. We use the insertion of identity inverses
7r-1t7T = i*  to convert our relation to a relation involving the t^s:

= 1

Now, we consider our permutation xy which we have transformed into 7r which becomes

7T = xy - (1234567) (1234567)(11)(37)(26)(45)(45)(26).

We then apply our permutation 7r to our relation which gives us our permutations

7F2 = (1357246)(1357246),

7T3 = (1473625) (1473625),
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7T4 = (1526374) (1526374).
7T5 = (1357246) (1357246),

7F6 = (1473625) (1473625),
7F7 = (1526374) (1526374).
7T8 = (1473625) (1473625),

We then convert our permutations back into t^s to get our relation

7T4t3t2^1i7 = 1

Utilizing right multiplication of our £'s . we have a relation based on two letters

7T4t3t2 = fytl-

We can use this relation to evaluate cosets and double cosets within our group.

5.2 Double Coset Enumeration

NeN

We start our double coset enumeration by evaluating our first double coset, 
denoted [*],  containing words of length zero. This double coset has one single coset, 
which is the identity NeN = N. Since our presentation group is £73(3), we have t = £7 
and /j-1 ~ £7. This means our first orbit contains all fourteen generators

{1,2,3,4,5,6,7,1,2,3,4,5,6,7}.

When we apply a representative ti from this orbit, say .£7 to the coset representative Ne 
to get a new coset Nt?. We see that all fourteen generators extend to a new double coset 
Nt?N, denoted [7]. This double cosets will be made up of words of length one.

Nt7N

We now consider the double coset Nt?N = {N£? |n G N}. We must first deter­
mine the coset stabilizer, denoted N^7). We look at permutations in N = £3(2) and find 
those that ’’fix” the the element (7) and permute all others. We determine
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N7=< (11)(26)(33)(45)(62)(45), (165)(243)(432)(516) > .

Since there are no additional relations, our point stabilizer is our coset stabilizer. Thus 
we have

N7 = N(7\
Please note that

|1V7| = pv(7’| = 22 • 3 = 12

We now determine the number of cosets in [7] by using our equation

1^1 = s (5J)

which gives us
|M7W| = S = 7'

This is true, since each coset in [7] has two equal names. We now determine the orbits 
on [7], which are

{7}, {7}, and {1,2,3,4,5,6,1,2,3,4,5,6}.

We will take a representative ti from each of these orbits and apply right hand multipli­
cation to the coset Nt-?:

1. Ntjtj = Nt?1 = Ntjtj G NeN denoted [*],  so this orbit takes 1 generator to the 
double coset [*].

2. Nt^t? = Ne G NeN denoted [*],  so this orbit takes 1 generator to the double coset 
[*]■

3. Nt^ti = Nfyti G NfyiiN denoted [7,1], so this orbit takes 12 generators to the 
double coset [7,1].

NtytiN

We now consider the double coset NtytiN. Through Magma, we determine 
there are 8 equal names in this double coset:

[1,71, [7,1], [7,1], [1,7], [7,1], [1,7], [7,1], [1,7]
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We must determine the coset stabilizer, denoted We look at permutations in
N = £3(2) and find those that ’’fix” the the elements 7 and 1 while permuting all others. 
We determine the coset stabilizer by using our relations:

A^7’1) =< (1717)(2456)(33)(4562), (167)(22)(432)(46)(55)(71)(46) > .

We determine |AM7,1)| = 8. Thus, we may now determine the number of cosets within 
the double coset [7,1]:

=pSi (5-2)

which gives us
1 HRI W1N| = = 21.

We now determine the orbits on [7,1], which are

{3,3}, {1,7,1,7}, and {2,4,5,6,2,4,5,6}.

We will take a representative from each of these orbits and apply right hand multipli­
cation to the coset Nt?ti:

1. Ntjiiti — Nt? 6 Nt?N denoted [7], so this orbit takes 4 generators back to the 
double coset [7].

2. TV*7* i*3  = N*7* i*3  G N*7* i*3?7  denoted [7,1,3], so this orbit extends 2 generators 
to a new double coset [7,1,3].

3. N*7* i*2  = N*7* i*2 Ntrt^N denoted [7,1,2], so this orbit extends 8 generators 
to a new double coset [7,1,2].

Nt7tit2N

We now consider the double coset N*7* i*2N.  As in the prior double cosets, there 
are eight equal names:

[5,9,8], [8,14,9], [14,8,5], [5,9,8], [9,5,14], [12,2,7], [1,7,12], [2,12,1]

We must determine the coset stabilizer, denoted N^7,1,2\ We look at permutations in 
N = £3(2) and find those that ’’fix” the the elements 7, 1, and 2 while permuting 
all others. We determine the coset stabilizer by utilizing our relations to increase the 
stabilizer:
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^(7,1,2) =< (i7)(25)(44)(52)(66)(17),(1572)(33)(4646)(5721),(15)(27)(33)(44)(72)(15) > .

We determine |TV^7,1>2)j = 8. We now calculate the number of cosets within 
[7,1, 2] by using our equation:

(5.3)

which gives us
168IWiMq = — = 21.

Again, we have 21 cosets in [7,1,2]. We now determine the orbits on [7,1,2], which are

{3, 3}, {4,6,4,6}, and {1, 2, 5, 7,1,2, 5, 7}.

We will take a representative ti from each of these orbits and apply right hand multipli­
cation to the coset Nt7i\t2:

1. = Nt7tit2t3 G Nt7tit2tzN denoted [7,1,2,3], so this orbit extends 2 
generators to a new double coset [7,1,2,3].

2. Nfftits = Nt7tit3 G Ntjt&N denoted [7,1,3], so this orbit extends 2 generators 
to a new double coset [7,1,3].

3. Nt7tit2 = Nt7tit2 G Nt7tit2N denoted [7,1,2], so this orbit extends 8 generators 
to a new double coset [7,1,2].

Nt7tit3N

We now consider the double coset NtJitzN. There are 24 cosets within [7,1,3] 
having equal names:

[1,10,14],  [14,3,8], [1,14,10], [8,10,7], [14,8,3], [8,3,14], [7,8,10], [1,3,7],
[10,8,7], [7,10,8], [3,7,1], [7,3,1], [3,1,7], [10,7,8], [14,1,10], [10,14,1],

[3,8,14],  [8,14,3], [7,1,3], [8,7,10], [14,10,1], [1,7,3], [3,14,8], and [10,1,14],

We then increase our coset stabilizer to account for the equally named cosets. The 
permutation that achives this is:
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(1,3,8,10) (2,12,13,11) (4,9,5,6) (7,14) (1,10,7)(2,13,5) (3,14,8)(6,12,9)

We must determine the coset stabilizer, denoted TV^7,1*3\ We look at permutations in 
TV = 2^3(2) and find those that ’’fix” the the elements 7, 1, and 3 while permuting 
all others. We determine the coset stabilizer by utilizing our relations to increase the 
stabilizer:

^(74,3) =< (1313)(2564)(4256)(77),(137)(265)(371)(652) > .

We determine |TV(7»1,3)| = 24. We now calculate the number of cosets within [7,1,3] by 
using our equation:

(5-4)
which gives us

I Nhht3N\ = — = 7.
We now determine the orbits on [7,1,3], which are

{1,3,7,1,3,7} and {2,4,5,6, 2,4, 5,6}.

We will take a representative ti from each of these orbits and apply right hand multipli­
cation to the coset Nt^tits:

1. Nt?tit3t3 — Nt?ti(t3)2 = Nt?ti G NfytiN denoted [7,1], so this orbit takes 6 
generators backto the double coset [7,1].

2. Nt?tit3t2 = Nt?tit3t2 G Nt?tit3t2N denoted [7,1,3,2], so this orbit extends 8 
generators to the new double coset [7,1,3,2].

We now consider the double coset Ntftii^N,. There are 24 cosets within
[7,1,3,2] having equal names:

[10,1,14,9].

We then increase our coset stabilizer to account for the equally named cosets. The relation 
that we achive this with is:
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(1, 3, 8, 10)(2, 12, 13, U)(4, 9, 5, 6)(7, 14)(1, 10, 14)(2, 4, 13)(3, 7, 8)(6, 9, 11)

We determine |N^7,1’3>2)| = 24. We now calculate the number of cosets within [7,1,3,2] 
by using our equation:

I = jiv&i <5-5)

which gives us
1ARIWAIVI = — = 7.

We have 7 cosets in [7,1,3,2]. We now determine the orbits on [7,1,3,2], which are

{1,3,7,8,3,7} and {2,4,5,6,2,4,5,6}.

We will take a representative ti from each of these orbits and apply right hand multipli­
cation to the coset Ntytit3\

1. Ntqt\t3t2t\ = Nt,ytii3 — Ntytit2t3 G Nt7tit2t3N denoted [7,1,2,3], so this orbit 
extends 6 generators to the double coset [7,1, 2,3].

2. Nt7tit3t2t2 = Ntytit3 G Nt-fat^N denoted [7,1,3], so this orbit takes 8 generators 
back to the double coset [7,1,3].

We now use MAGMA to confirm that we have an increase in the total count of single cosets 
thus far in our group. We determine that the total count of cosets do not increase with
[7,1,3,2],  which indicates that we have equal double cosets. We now confirm and identify 
our equal double cosets by conjugating the double coset [7,1,3,2] by the permutation that 
stabilizes the coset, and compare the result to existing double cosets. We find that

(JVt7tlt3t2N)(1’3A10)(2,12,l3,ll)(4,9,5,6)(7,14)(l,10,7)(2,13,5)(3,14,8)(6,12,9)

= Ntytit2t3N.

Thus, the double coset [7,1,3,2] = [7,1,2,3]. Therefore, the orbit {2,4,5,6,2,4,5,6}. 
takes 6 generators back to the double coset [7,1,2],

Nt7tit2t4N

We now consider the double coset Ntyt^Nt^. There are 24 cosets within 
[7,1,2,4] having equal names:
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We then increase our coset stabilizer to account for the equally named cosets. The 
permutation that we achieve this with are:

(l,8)(2,7)(3,ll)(4,10)(5,12)(9,14)J 
(1,7J3)(2,4,5)(8,14,10X9,11,12),

(1,2,5,14) (3,11,10,4) (6,13) (7,8,9,12).

We must determine the coset stabilizer, denoted N^7,1,2,4\ \vc look a£ permutations in 
N = £3(2) and find those that ’’fix” the the elements 7, 1, 2and 4 while permuting 
all others. We determine the coset stabilizer by utilizing our relations to increase the 
stabilizer:

N(7,i,2,4) =< (n)(27)(34)(43), (55)(27), (173)(245), (173)(245), (1257)(3434)(66)(7125) >

We determine |Ari7,1>2 *’4) | = 24. We now calculate the number of cosets within [7,1,2,4] 
by using our equation:

2. Nfytiririri — Ntyiiririri G NNt7tit2t4tsN denoted [7,1,2,4,6], so this orbit ex­
tends 2 generators to a new double coset [7,1,2,4, 6].

|Nt7tlt2t4JV| = (5.6)
which gives us

| NWihti N| = = 7.
We now determine the orbits on [7,1,2,4], which are

{1,2,3,4,5,7,1,2,3,4,5,7} and {6,13}

We will take a representative ti from each of these orbits and apply right hand multipli­
cation to the coset Ntft^ti:

1. Nfytiririri = Ntit^it^)2 = Nt7tit2 6 Nt7tit2N denoted [7,1,2], so this orbit 
sends 12 generators back to the double coset [7,1,2].
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Nt7tit2t4t6N

We now consider the double coset Nfytifyt^tQ. There are 168 cosets within 
[7,1,2,4,6] having equal names. Utilizing MAGMA, we obtain the permutation that 
increase the order of our coset stabilizer to 168:

(1,6,10)(3,8,13)(4,7,12)(5,11,14), (1,2,6)(4,7,5)(8,9,13)(11,14,12),
(1,3,11,14,6,12,2)(4, 7,13,5,9,8,10).

We must determine the coset stabilizer, denoted N^7,1,2i4,6\ We look at permutations in 
N = £3(2) and find those that ’’fix” the the elements 7, 1, 2, 4 and 6 while permuting 
all others. We determine the coset stabilizer by utilizing our relations to increase the 
stabilizer:

^(77,2,4,6) =< (163)(316)(475)(547), (126)(475), (126)(475), (1347652)(4765213) > .

We determine IN^7’1’2’4,6) | = 168. We now calculate the number of cosets within [7,1,2,4,6] 
by using our equation:

|Nt7iii2^t6A’] = (5.7)
which gives us

168
| Ntrt^te 1V| = = 1-

We have 1 coset in [7,1,2,4,6], We now determine the orbits on [7,1,2,4, 6], which are

{1,2,3,4,5,6,7,1,2,3,4,5,5,7}

Thus, all the generators are within a single orbit. We will take a representative ti from 
this orbit and apply right hand multiplication to the coset Nt7tit2t4to:

1. Ntitit^tote — Nt^titit^ts)2 = Nt^tit2t4 E Nt^tit^N denoted [7,1,2,4], so this 
orbit sends all 14 generators back to the double coset [7,1,2,4].

Since we have no orbits extending generators to new double cosets, this group is closed 
under right hand multiplication. Thus, we have completed the double coset enumeration 
process for U3 (3) : 3 as a homomorphic image of 2* 14 : £3(2). The results are submarized 
in the following cayley diagram Figure 5.1:
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4

[712]

[7124]

[71246]

Figure 5.1: Cayley diagram of 6/3(3) : 3 as a Homomorphic Image of 2* 14 : £3(2)
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Chapter 6

Construction of A7 as
a Homomorphic Image of the
Monomial Progenitor 3* 7 :m £3(2)

We have a computer-based proof that

3>7:mL3(2) homo ,
t3t2^t7tl 7

This proof is obtained as follows: We first us MAGMA to obtain the composition factors 
of a permutation representation of G. This is done as follows:

f,G1,k:=CosetActionfG,sub<G|x,y>);
CompositionFactors(Gl);

give

G
I Alternating(7)
1

We now write a presentation of the group A? as a Homomorphic Image of the Progenitor 
3* 7 :m £3(2) (obtained based on the composition factors above) and verify that G is 
isomorphic to A7 as a Homomorphic Image of the Progenitor 3* 7 :m £3(2).
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X7 homo'l ____ _ _
tzt2 = fyii

I will perforin a double coset enumeration on the group G homo). , de­
noted by the following group representation:

G =< x, y,t\x7, y2. (zy)3, (x, y)4, t3, (t, x~3yx2\ (t, y), txtxy, (xt)4 >

We have a computer-based proof that G = A?.

where |G| = 2520 and N =< x, y >= 163(2).
The generators are represented by:

x v (1,2,3,4,5,6,7)(I,2,3,4,5,6,7)
and

V ~ (1,1)(3,7)(2,6)(4,5)(4,5)(2,6).
We know N ^2 163(2) has 168 elements , or |N| = 168.

6.1 Relations

The first relation we must expand is

(xf)4 = 1

Let 7r = x, then our relation becomes

(TTt)4 = 1

We then expand our relation, giving us

= 1.

Note in this particular group, t ~ and A-1 ~ F7. This transforms our relation to
7T4t?3^2t?t7 = 1-

Now, we consider our permutation x which we have transformed into 7r which becomes

7T = x - (1234567) (1234567).
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We then apply our permutation 7r to our relation which gives us our permutations

tt2 = (1357246) (1357246),

7T3 = (1473625) (1473625),
7T4 = (1526374)(1526374).

We then convert our permutations back into t^s to get our relation
7T4£3£2£1£7 = 1

Utilizing right multiplication of our t^s , we have a relation based on two letters
7r4£3£2 = Ml-

We will use this relation to evaluate cosets and double cosets within our group.

6.2 Double Coset Enumeration

NeN

We start our double coset enumeration by evaluating our first double coset, 
denoted [*],  containing words of length zero. This double coset has one single coset, 
which is the identity NeN = N. Since our presentation group is A?, we have t — t? and 
t7_1 t7. This means our first orbit contains all fourteen generators

{1,2,3,4, 5,6, 7,1,2,3,4, 5,6,7}.

When we apply a representative ti from this orbit, say t? to the coset representative Ne 
to get a new coset Nt?. We see that all fourteen generators extend to a new double 
cosetNt?N, denoted [7]. This double cosets will be made up of words of length one.

Nt7N

We now consider the double coset Nt7Ar = {N£7|n G N}.We must first deter­
mine the coset stabilizer, denoted N^7\ We look at permutations in N = L8(2) and find 
those that ’’fix” the the element (7) and permute all others. Using Magma, we found

N7 =< (11)(26)(33)(45)(62)(45),(165)(243)(432)(516) > .
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Since there are no additional relations, our point stabilizer is our coset stabilizer. Thus 
we have

N7 = N^.

We note that
|N7| = |AT(7)| = 22 • 3 = 12

We now determine the number of cosets in [7] by using our equation

|jvt7jv|=iA (6j)
whic gives us

17Vt7JV| = — = 14.
Now we compute orbits of M7) on {1,2,3,4,5,6,7,1,2,3,4,5,6,7} by conjugating ele­
ments in Nt7N by the coset stabilizer TV(7\

1. 7jv(T) = {7}

2. 7n{7) = {7}

To determine the next orbit, we assign variables to the generators of N = £3(2) :
Let A = (11)(26)(33)(45)(62)(45) be the first permutation and let B = (165) (243) (432) (516) 
be the second permutation.
Next, we multiply and conjugate the remaining elements by A and B to construct our 
orbit:

l-4 = {1}
1A2 = {1}
1B = {6} 
I* 2 = {§} 
1BA = {2}

Now all the above generators are in the same orbit as 1. Since 1 and 1 share the same 
cycle within A, any generator within a cycle containing 1 or 1 will be in the same orbit. 
Similarly, any generator sharing the same cycle within B will also be in the same orbit. 
Having said that, we can finish the construction of this orbit.

1<bA)2 = {4}
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1AB = {3,3} 
P = {6} 
P2 = {5} 
PA = {2} 
1<"A)2 = {4}

Thus, we have all the above elements in the final orbit:
{1,2,3,4,5,6,1,2,3,4,5,6}

Now we have three orbits for Nt?N:
1- {7}
2. {7}

3. {1,2,3,4,5,6,1,2,3,4,5,6}
We will examine orbits 1 and 2: We will take a representative t{ from each of these two 
orbits and apply right hand multiplication to the coset Nt?:

Nt? • t? = Nt? = Nt? G Nt?N
So this orbit takes one generator back to the same double coset Nt?N denoted [7].

Nt? -t? - Ne G NeN
So this orbit takes one generator back to the double coset NeN denoted [*].

Nt? • *i  = Nt?ti G Nt?tiN
At first glance, one would assume that this orbit extends the twelve generators to a 
new double coset Nt?tiN. but we must remember that the cosets N*i  G Nt?N and 
Nt? G IVfyN. This implies that Nti = Nt?. By substitution, we have

Nt? • *i  = Nt? ■ t? = Nt? = Nt? G Nt?N
so the third orbit also takes the twelve generators back to the same double coset Nt?N 
denoted [7]. Since we have no orbits extending generators to new double cosets, this 
group is closed under right hand multiplication. Thus, we have completed the double 
coset enumeration process for A? as a homomorphic image of the progenitor 3* 7 :m £3(2). 
The results are submarized in the following cayley diagram Figure 6.1:
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Figure 6.1: Cayley diagram of A7 as a Homomorphic Image of 3* 7 : £3(2)
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Chapter 7

Finite Homomorphic Images of 
the Monomial Progenitor 7* I 2 :m S%

I Xi —
y = \ I 0 otherwise.

Monomial matrices thus have only one nonzero entry in any row or column. Of course, a 
monomial matrix in which each Xi — 1 is a permutation matrix over K.
We say Gx is a monomial character of G if % = XG, where A is a linear character of a 
subgroup ( not necessarily proper) of G. Note: For a linear character A, A(l) = 1.
Induced linear characters of H become monomial characters of G. All linear characters 
of G are monomial, therefore a single entry in the monomial matrix.
To induce a progenitor from another group, we must utilize their respective character 
tables. Tables 7.1 and 7.2 are the character tables for both groups:

7.1 An Irreducible Monomial Representation of S3

We define the monomial representation of a group G as a homomorphism 
from G into GLn(F). the group of non-singular nxn matrices over the field F, in which 
the image of every element of G is a monomial matrix over F.
We define a monomial matrix as follows: An n x n matrix M = [m-ij] over a field K is 
monomial if there is a 6 Sn and (not necessarily distinct) nonzero elements ...,xn G 
K such that
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Table 7.1: Character Table for S3
X Cl, c2 c3

x(1J 1 1 1
x(2) 1 -1 1
x(3) 2 0 -1

Table 7.2: Character Table for Z3
X Cl c2 C3

1 (123) (123)2 = (132)
x(2) 1 w w2
x(3) 1 w2 w

In this example, we will induce from the third character of the Z3 table and 
write the permutations that generate S3 in matrix form. We have:

S3 =< (123)(12) >,

where the permutations (123) and (12) are represented respectively in this manner:

xx (123) 
yy (12)

We find the right transversals through magma, which are:

e,(12)

Since the right transversal contains two elements, we a have a 2 x 2 matrix. We want the 
four possible entries based on xx using our right transversals e, (12).

, x I exxe-1 exx(12) 
A(xx) = I (12) rive-1 (12)mm(12)—1

Now we substitute xx = (123) and evaluate the four matrix entries by multiplying the 
permutations and comparing to the elements in A3 = {e, (123), (132)}:

e(123)e_1 e(123)(12)
(12)(123)e_1 (12)(123)(12)"1
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which gives rise to the following matrix:
AM = f (123) s As (13) )

( (13)£A3 (213) = (132) = (123)2 6 A3 J

These entries must be in A3, else the entries = 0. Then we have the resulting matrix: 
AM=((103) (123)2 )

Now we will substitute the entries from the third row of the character table Z3
(see Table 7.2) to find the final matrix configuration denoted A:

AJw2 °)

y 0 w I

. We must now determine the second matrix, denoted B which pertains to the permuta­
tion yy = (12). Using the same right transversals and matrix template, we have:

BM=[ ey’A2) )
\ (12)yye 1 (12)3/3/(12) 1 J

Now we substitute yy = (12) and evaluate the four matrix entries by multiplying the
permutations and comparing to the elements in A3 = {e, (123), (132)}:

. ( e(12)e_1
( (12)(12)e_1

which gives rise to the following matrix:
- ( n 

\ (e) € A3

e(12)(12) \

(12)(12)(12)-1 J

These entries must be in A3, else the entries = 0. By using the same steps as in deter­
mmining A(xx), we have the resulting matrix, denoted B:

So we now have the following matrices A and B:

a= r2 0
0 w
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We must now verify that we have a monomial representation of S3 by checking the order 
of A, B, and their product, A • B. From MAGMA, we have: |A| = 3, |B| = 2, [A • B| = 2. 
Thus, A, B, given a monomial representation of S3.
Now, w is a cube root of unity. We must find the smallest finite field with cube roots 
of unity. In other words, a finite field which has elements of order 3 in its multiplicative 
group. Since the matrices have cube roots of unity, we replace these by the cube root of
1 in the smallest field with cube roots of unity. Consider the field

Z7 = {0,1,2,3,4,5,6}.

We take a group H = {1,2,3,4,5,6}, which is a group under multiplication modulo seven.
Then:

|2| = 3, (since 23 = 8 = l(mc»d)7)
|4| = 3, (since 43 = 64 = l(mod)7)

So we let w = 2, and w2 = 4. Now, we substitute those values into the matrix A to 
generate out t/s, which will generate our permutations for xx and yy.
Since we have 2x2 matrices over a field of seven elements, we will have 2ijs of order 7. 
Thus, our progenitor will will be expressed as:

7* 2 :m S3.

The m typifies this as a monomial presentation. We use our matrix A to generate per­
mutations where each if goes:

ii h
1/^4 0
2 y 0 2

For the A matrix, we see that entry fy = 4 and t2 = 2, which implies:

tl —>
t2 *2-
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We now determine the action on the remaining by multiplying the exponents of all 
the tfs by 4, and the exponents of all the *2/-s by 2. Note that we evaluate each new 
exponent by modulo 7. We now set up our */s  based on two sets of six elements (six 
elements for *i  and six elements for *2)  = 12 letters:

Table 7.3: Labeling for Matrix A(xx) to Determine if s
1 2 3 4 5 6 7 8 9 10 11 12

*1 tl2 *i3 *i4 *i5 *2 *22 *23 *24 *25 *26
4 4 4 4 4 4 4 4 4 4 4 4
tl4 h1 tl5 *i2 tl6 tl3 t22 «24 «26 *2X «23 t25

The results of Table 7.3 give rise to our permutation

xx = (1,4,2)(3,5,6)(7,8,10)(9,12,11)

We use a similar method for determining the permuation for yy: We examine the matrix 
for B{yy):

*1 *2

Since the B matrix has lzs for all entries for and *2> wc see that

*1 *2
*2 ~t *1

for each respective exponent. As with the A matrix, we now set up our labeling table
based on the action of the B matrix:

Table 7.4: Labeling for Matrix B(yy) to Determine tfs
1 2 3 4 5 6 7 8 9 10 11 12

*1 tl2 *i4 *i5 *i6 *2 *22 *24 *25 *26
4 4 4 4 4 4 4 4 4 4 4

*2X *22 *23 *24 *25 t26 *12 *i3 ti4 *i5 *i6

The results of Table 7.4 give rise to our permutation

yy = (1,7) (2,8)(3,9)(4,10)(5,11)(6,12) 



72

We are now ready to write our progenito S3, which is represented by the progenitor

S3 =< rr3,y2, (xy)2 >.

Since our matrices are over Zy, we add £7 to our progenitor which gives us:

7* 2 :m S3 =< x3,y2, (xy)2,t7 >

We must now find the normaliser for t in N (or, the permutation that takes the set < t > 
back to itself). Then we must find the relations which commute with t. To find the 
normaliser for £ we must first assign t to one of the t/s. We let t = t\. So by inspection, 
we want to determine the permutation cycles that keeps £7 and its powers together, or 
fixes the t^s. We find

xx = (1,4,2)(3,5,6) (7,8,10) (9,12,11), e, sa;"1

satisfies that condition. First we must determine the action within the 3-cycle permuta­
tion that contains £}. We see that if we permute by xx, we get £4. Note also that if we 
permute £1 by (xx)~1, we get £2. Thus, these two actions represent the normaliser of £. 
Thus far, we have a progenitor:

7‘2 :m S3 =< x3, y2, (xy)2, t7, tx = t4, t1'1 = t2 >.

We need to find relations that represent what £ commutes with. From MAGMA, we have 
the relation

(:r£y)3 = 1

So we add this relation to our progenitor to get the following:

7* 2 :m S3 =< a:3,y2, (xy)2,t7,P = = £2, (xty)3 = 1 >.

Having completed this monomial progenitor, we can now look at its composition factors. 
MAGMA tells us that the composition factors of this progenitor is:

A(1,7) = L(2,7)

which is a computer-based proof that we verify by constructing the following group.
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7.2 The Construction of 7* 2 :m S3: The Relations

We will now construct our new progenitor

7‘2 :m S3 =< x3,y2, (xy)2,t7,e = = t2, (xty)3 = 1 >.

by first expanding our relation

(xty)3 = 1

=> (xty)(xty)(xty) = 1

We now use the identity principle
7T7T"1 = 1

and the property of conjugation
7F-1£7T = 1

to expand our relation, which gives us

(ary)3^)2^®^ = 1.

Since we have the relation

O?/)2 = i

we now have

(xy)tt^t = 1.

We now examine the permutations x and y to further define our tfs. Recall that we 
let t = £i. We need to determine what the permutation (xy) does to 1, then assign 
the results to the corresponding ti. The permutation (xy) takes 1 to 10. Therefore, our 
relation becomes

/(rry)£l£io£i = 1.

We have two generators, each of order seven. Therefore
ti7 = l

=> ti1 = tr6-
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Using right hand multiplication, we can determine other relations:

/(zy)ririori = 1 
=> /(x2/)titioti ■ ti-1 = 1 • ri-1

=> f (xy)tirio = ri-1

We will expand on these relations to determine other relations as needed when we con­
struct and perform double coset enumeration on this group.

7.3 Double Coset Enumeration

We have a computer-based proof that G is isomorphic to
7*2  . Q< -m 03

. This proof is obtained as follows: We first us MAGMA to obtain the composition factors
of a permutation representation of G. This is done as follows:

f,G1,k:=CosetAction(G,sub<GIx,y>);
CompositionFactors(Gl);

G
I A(l, 7) = L(2, 7)

We now write a presentation of the group 7* 2 :m S3 (obtained based on the composition 
factors above) and verify that G is isomorphic to 7* 2 :m S3.

We will perform a double coset enumeration on the group 7* 2 :m S3 factored by
the relation tiriori = 1, denoted by the following group representation:

7* 2 :m S3 =< x3, y2, (xy)2, t7, I*  = I4, t*' 1 = t2, (xty)3 = 1 >.

where N =< x, y S3, x (1,2,3) and y ~ (1,2). We know N S3 has 6 elements , 
or|N| = 6.

Consider the following notation of our t/s:

ti = /(«), t2 = tl2, ti = tl3, ti = ti4, ts = ti5, t6 = ti6 
t2 = f(tv), ti = ti2, tg = t23, tio = t24, til = t25, t,2 = t2«
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which gives rise to:

ti, *2  = ii2, t3 = ii3, i4 = i3_1 = ii4, is = 1 = ti5, is ii”1 = ii6

is = i22, *9  = i23, tio = i9_1 = *2 4, ill = is”1 = is5, ii2 = i7_1 = i26

Based on the above notation,

S3 =< (1,14,2)(16, l3,15)(17,22,24)(26,25,23) >.

We conjugate our relation = e =4*  1241 = e by the elements in S3 to obtain our
remaining relations:

1151 - 1141 - 1261 - 1251 - 1241

— 121612 — 121412 — 122612 — 122512 — 122412

- 131613 - 131513 - 132613 - 132513 - 132413

- 16216 ~ 161316 ~ i6216 - 162216 - 162316

— 15115 — 151315 ~ 15215 — 152215 — 152315

— 14114 — 141214 — 14214 — 142214 — 142314

— 26126 — 26226 - 261326 - 262226 — 262326

- 2162 - 2152 - 2142 - 2252 - 2242

~ 221622 — 221522 — 221422 — 222622 — 222422

— 231623 — 231523 — 231423 — 232623 — 232523

— 25125 — 251225 — 251325 — 25225 — 252325

— 24124 — 241224 — 241324 — 24224 — 242224

MAGMA confirms these relations, which we will use to find equal double cosets 
with words of length two and greater within this group.
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NeN

NeN is a double coset made up of words of length zero. We know NeN — {N}, 
which is the first double coset [♦]. The coset representative for [*]  is N. The number of 
cosets in [*]  is 1. We find that the orbits of N on {1, l2, l3, l4, l5, l6,2,22,23,24,25,26} 
are {1, l2, l4,2,22,24} and {l3,l5,l6,23,25,26}. When we apply a representative ti 
from each orbit to the double coset representative N we see that the elements in or­
bit {1, l2, l4,2,23,24} extend to a new double coset NtiN, denoted [1], and the elements 
in the orbit {l3, l5, l6,23,25,26} extend to another new double coset Nt®N, denoted [l6]. 
These double cosets will be made up of words of length one;

NtiN

We now will determine the number of single coset in the double coset [1] by 
this formula which gives us ® = 6. The coset representative for [1] is Nti. We 
now identify the orbits of N^1^ and determine where they go. We see that the orbits 
of N on {1,2, l4,2,22,24} are{ 1,l3},{16},{12,14,15,24},{2,23}, {22},{25} and{26}. When 
we apply a representative tj from each orbit to the coset representative Nil we see the 
following results:

1. Ntiti = N(tj)2 = Ni2 G NtjN, so this orbit sends 2 joins back to the same double 
coset Nt]N, denoted [1].

2. Nti£®= Nti-1 = Nti6 6 NtieN which means this orbit sends 4 joins to a new 
double coset Nti6N, denoted [l6].

3. Ntit3 = NeN, so this orbit sends 1 join back to the doublecoset [*].

4. Nt\t2 G Ntit2N, which means this orbit extends 2 joins to a new double coset 
Ntit2N, denoted [1,2].

5. Ntit22 G Niit22N, which means this orbit extends 1 join to a new double coset 
Nt\t22N, denoted [1,22].

6. Ntit25 G Ntit25N, which means this orbit extends 1 join to a new double coset 
Ntjt25N, denoted [1,25].
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7. N* i*2 6 7 € Nti*2 6N, which means this orbit extends 1 join to a new double coset 
N* i*2 6N, denoted [1,26].

6. Nti6*2 = N*i*26 G Nt^N, so this orbit sends 1 join to the double coset Ntii25N, 
denoted [1,25].

7. ArA% = Ntyt26 G Nht2GN, so this orbit sends 1 join to the double coset N*i*26N, 

denoted [1,26].

We have now completed all double cosets with words of length one.

Nti6N

We now will determine the number of single coset in the double coset [I6] by 
this formula which gives us y = 6. The coset representative for [l6] is Ntg. We now 
identify the orbits of A^6) and determine where they go. We see that the orbits of N on 
{13,15,16,23,25,26} are {1}, {I2, l3, l5,23}, {I4,16},{2},{22},{24,26}, and {25} . When 
we apply a representative tj from each orbit to the coset representative AAj6 we see the 
following results:

1. NtiGti = NeN so this orbit send 1 join back to [♦].

2. NtiGtg= = Nti 6 NtjN, so this orbit sends four joins back to the double
coset NtiN, denoted [1].

3. ATG*i6 = N(*i 6)2 = N*i 5 € Nti6N, so this orbit sends two joins back to itself.

4. N* i6*2 6 = Nt]t2 G NtitzN, so this orbit sends two joins to the double coset 
NtitsAT, denoted [1,2].

5. A’*i6*2 5 = Nti6t25 = A7] *8  6 NtiigN, so this orbit sends 1 join to the double coset 
N*i* 22Ar, denoted [1,22].
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We will now determine the double cosets with words of length two. We will now
utilize our relation

(zy)titioti - 1

to determine the orbit paths for our joins within our double coset enumeration. We 
will also utilize MAGMA to determine the existence of equal double cosets, which may 
collapse part of our Cayley diagram by reducing the number of distinct double cosets.

Ntit2N

We now will determine the number of single coset in the double coset [1,2] by 
this formula which gives us | = 6. The coset representative for [1,2] is Ntit2. We
now identify the orbits of A^l, 2) and determine where they go. We see that the orbits 
ofW on {3, l5, l6,23,25,26}

are {l4,26}, {1,23}, {l5,22},{16,7},{2,24 } and{3,25}. When we apply a repre­
sentative ti from each orbit to the coset representative Ntit2 we see the following results:

1. Ntit2t2Q = Ntit2t2 1 = Nti G Nt±N so this orbit send two joins back to the double 
coset NtiN, denoted [1].

2. Ntit2ti= Ntit^s-1 = NtQ G Nt^N which means this orbit sends four joins back 
to the double coset Nt3N, denoted [6].

3. Ntitrfs = Ntit2 G Ntit2N. So this orbit sends these two joins back to itself.

4. Nt]t2t2 ~ Ntit22Ntit3 G Ntit&N. So this orbit sends these two joins to the double 
coset NfyitsN, denoted [1,22].

5. Nfyt2^24 = Ntit25 G Ntit25N, which means this orbit sends these two joins to the 
double coset Nt]t25N, denoted [1,25].

6. Ntit2t3 — Ntit26 G Ntit2BN, which means this orbit sends these two joins to the 
double coset Nt)t2GN, denoted [1,26].

Ntxt22N

We now will determine the number of single coset in the double coset [1,22]
by this formula which gives us | = 3. The coset representative for [1,22] is 
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Nt]t22. We now identify the orbits of 7\d1,22) and determine where they go. We see that 
the orbits of N on {3,l5,l6,23,25,26} are {1,2}, {l5,25}, {2,22}, {l6,26},{3,23}, and 
{l4,24}. When we apply a representative ti from each orbit to the coset representative 
Nt]t22 we see that the following results:

6. N£i£22fy4 = Ntito6 G Nt!t26N, so this orbit sends 2 joins to the double coset
denoted [1,26].

Ntit25N

We now will determine the number of single coset in the double coset [1,25] by 
this formula which gives us | = 3. The coset representative for [1,25] is NtJ^.
We now identify the orbits of N^1’25) and determine where they go. We see that the orbits 
of A^1’25) on {3,15,16,23, 25,26} are {l4,22}, {l5,26}, {l6,23},{ 1,24}, {2,7} and {3,25} 
. When we apply a representative ti from each orbit to the coset representative we 
see that the following results:

1. ATM2 = Ntit22 Xt22 = Afii NtjN so this orbit send 2 joins back to the double 
coset NiiN, denoted [1].

2. Aiji/i = G NtfN which means this orbit sends 2 joins back to the double 
coset NtfN, denoted [l6].

1. Nt±t22ti = Ntit22t=NtiNt22t22~1t1tY1t22 = Nt^h2 6 Nt±t2N so this orbit send 
two joins back to the double coset Ntit2N, denoted [1,2].

2. Ntit22t25 = = Nti G NtjN so this orbit send two joins back to the
double coset NfyN, denoted [1].

3. Ntjt22t22== Ntjt222 = Nti6 G Nti6N which means this orbit sends two joins back 
to the double coset Nti6N, denoted [l6].

4. Ntit22t2& = Ntitz = Ntit2 C Ntit2N, So this orbit sends these two joins to the 
double coset Nt±t2N, denoted [1,2].

5. Ntit22t23 = Ntit25 G Our relations indicate this orbit sends these two
joins to the double coset Ntit25N, denoted [1,25].
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3. Nfyi^3 = Nt^t2 G Ntit2N. So this orbit sends 2 joins to the double coset Ntit2N, 
denoted [1,2].

4. = Ntit22 Ntit22N. Our relations indicate this orbit sends 2 joins to 
the double coset Ntit22N, denoted [1,22].

5. Ntit^h ~ Ntit3 e NM2N. so this orbit sends 2 joins to the double coset Ntit%N, 
denoted [1,26 *].

6. = N£i£^| = Nt^t^ — Ntit22 G Ntit2N, so this orbit sends 2 
joins to the double coset Ntit2N, denoted [1,2].

6. N£i£26£2 = Wifyt8)2 = Nfytl € N£i£|N, so this orbit sends 2 joins to the double
coset NiiijN, denoted [1,26].

Ntit26N

We now will determine the number of single coset in the double coset [1,26] by 
this formula which gives us | = 3. The coset representative for [1,26] is Ntyl^-
We now identify the orbits of N^1,26) and determine where they go. We see that the orbits 
of N^6) on {3, l5,16,23,25,26} {1,24}, {2,7}, {3,25}, {I4,22,},{16,23}, and {15,26}. 
When we apply a representative ti from each orbit to the coset representative Ntit% we 
see that the following results:

1. Ntit2Gti = Ntit^ti = Ntit2 G Nt±t2N so this orbit send 2 joins back to the double 
coset Ntit2N, denoted [1,2].

2. Ntit26t2 = Ntit2t^ 1 = Nil € NiiN so this orbit send 2 joins back to the double 
coset N£iN, denoted [1].

3. N£i£26£2 = G NtgN which means this orbit sends 2 joins back to the double 
coset NtgN, denoted [l6].

4. N£i£26£22 = Ntit2 G Nfy£2N. So this orbit sends 2 joins to the double coset 
N£i£2N, denoted [1,2].

5. Nfy£26£23 = Nfy£22 G Nfy£22N. Our relations indicate this orbit sends 2 joins to 
the double coset N£i£22N, denoted [1,22].
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This concludes all words of length two. Since we did not extend any of the orbits to new 
double cosets, this group is closed under right hand multiplication. Thus, our double 
coset enumeration of 7* 2 :m S3 is complete.

The results are submarized in the following cayley diagram Figure 7.1:

Figure 7.1: Cayley diagram of 7*2 :m S3
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In Table 7.5, we first label each single coset. We then compute the action of 
xx, yy and tti to determine f(x), f(y), and /(£):

f(x) = (2,4,6)(3,7,9)(5,11,10)(8,15,14)(12,21,23)(13,24,25)
(16,20,26) (17,27,18) (19,28,22)

f(y) = (2,5) (3,8)(4,10)(6,11)(7,14)(9,15)(12,17) (13,25)
(16,26) (18,21) (19,28) (23,27)

/(t) = (1,2,6,7,4,9,3) (5,12,22,17,8,16,13)
(10,14,23,26,28,25,18) (11,19,15,24,21,27,20)
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Table 7.5: Labeling of and Actions on the Single Cosets
Labeling Single Cosets XX yy tty

1 N 1 N 1 N 2 Nfy
2 Nil 4 Nti 5 Nt2 6 Ntl
3 Ntl 7 Ntl 8 Nt2 1 N
4 Ntl 6 ml 10 Nt* 9 Ntl

5 Nt2 11 Nt22 2 Nti 12 Ntjt2
6 Ntl 2 Nti 11 Nil 7 Ntl
7 Ntl 9 ml 14 Ntj 4 Nti
8 Nt62 15 Nt52 3 Ntl 16 Ntffl
9 Nil 3 Nt, 15 Nt3 3 Ntf
10 Nt42 5 Nt2 4 Ntl 14 Ni?2
11 Nt22 10 Nt4 6 Ntl 19 Nt*t 4
12 Ntit2 21 m*$ 17 Nt2t± 22 Ntiti
13 24 ml^2 25 Nix^ 5 Nt2
14 Ntj 8 me2 7 JVt? 23 Ntlt42
15 Nt52 14 Ni?2 9 Nt, 24 Ntit$
16 m4t32 20 Nt%$ 26 13 Nt4t2
17 Nt2ti 27 Nt2t4 12 Ntjt2 8 me2
18 Ntfal 17 Nt2ti 21 Nt4tl 10 Nt4
19 m*4 28 Nt2t^ 28 Nt2tl 15 Nt52
20 Ntjtl 26 Nii^ 20 Ntjtl 11 Ntl
21 Ntffi 23 Ntl4 18 Ni^tl 27 Ntiti
22 Ntiti 19 m4t4 22 Nhtl 17 Nt2ti
23 Ntffi 12 Nt]t2 27 Nt22t4 26 Ntiti
24 Ntjtl 25 24 Ntffi 21 Ntiti

25 Nh4 13 13 m*tl 18 Nt4tl
26 16 7Vt4t| 16 Ntft% 28 Nt2t%
27 JVi2t4 18 Nt*tl 23 Ntlt4 20 Ntiti
28 22 Ntrtl 19 Nt4t4 25 Nt^l
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7.4 Additional Finite Homomorphic Images of the Mono­
mial Progenitor 7* 2 :m S3

We found five other homomorphic images of the monomial progenitor 7* 2 :m S3, 
which can be further examined as we have done in the above chapter. From MAGMA, 
we have the following:

a:=0;b:=0;c:=0;d:=4;e:=0;f:=0;g:=0; //Index = 168 //
G<x,y,t> :=Group<x,y,t |x~3,y~2, (x*y)"'2,t''7,t"x=t''4 Jt'' (x'‘-l)=t"2, 
(x*t*t~x*t~  (jCS)) "a, (x*y*t)  "b, (x',2*y*t"x)"c ,
(x*y*t “y)~d,(x*t*t “(x~2))~e,
(x*t*t~  (x"2))-"e, (y*t*t~y*t''x*t"y*t"2*(t"x) "3)"f, (t*t"x)  "g>;

G;

Finitely presented group G on 3 generators
Relations

x"3 = Id(G)
y"2 = Id(G)
(x * y)"2 = Id(G)
t"7 = Id(G)
t"x = t"4
x * t * x~-l = t~2
(x * t * y)"4 = Id(G)

#G;

1,008 

f,G1,k:=CosetAction(G,sub<G|x,y>);
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CompositionFactors(Gl);

I A(l, 7) = L(2, 7)
*
[ Cyclic(2)
*

I Cyclic(3)
1

a:=0;b:=0;c:=6;d:=7;e:=0;f:=3;g:=0; //Index = 224 //
G<x,y,t>:=Group<x,y,t |x''3,y"2, (x*y)  "2,t"7,t"x=t''4,t' (x"-l)=t''2, 
(x*t*t"x*t~(x"2) )“a,(x*y*t)"b ,(x"2*y*t"x) “c,
(x*y*t"y)"d,(x*t*t"(x"2) )"e,
(x*t*t~(x~2) )"e, (y*t*t “y*t"x*t"y*t"2*(t"x) "3)"f,(t*t “x)"g>;

G;

Finitely presented group G on 3 generators
Relations

x~3 = Id(G)
y"2 = Id(G)
(x * y)~2 = Id(G)
t"7 = Id(G)
t~x = t"4
x * t * x"“l = t~2
(x"2 * y * x~“l * t * x)"6 = Id(G)
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(x ♦ t * y)"7 = Id(G)
(y * t * y~-l * t * y * x"-l * t * x * y“-l * t * y * t"2 
x)"3 = Id(G)

#G;

1,344

f,Gl,k:=CosetAction(G,sub<G|x,y>);

CompositionFactors(Gl);

G
I A(l, 7) = L(2, 7)
*
I Cyclic(2)
*

I Cyclic(2)
*
I Cyclic(2)
1

x"-l * t"3 *

a:=0;b:=0;c:=0;d:=0;e:=0;f:=2;g:=0; //Index = 343 //
G<x,y,t>:=Group<x,y,t |x''3,y"2, (x*y)''2,t''7,t''x=t''4,t~(x'' “l)=t"2 
(x*t*t"x*t~(x~2) )"a,(x*y*t)~b,(x “2*y*t"x)"c,
(x*y*t~y)  '“d, (x*t*t~  (x~2)) ~e,
(x*t*t~  (x~2)) "e, (y*t*t''y*t~x*t''y*t"'2*(t"x)  "3) "f, (t*t~x)''g>;

G;
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Finitely presented group G on 3 generators
Relations

x‘3 = Id(G)
y~2 = Id(G)
(x * y)'s2 = Id(G)
t"7 = Id(G)
t“x = t~4
x * t * x"-l = t~2
(y * t * y"-l * t * y * x"-l * t * x * y"-l * t * y * t"2 * x"-l * t"3 *
x)~2 = Id(G)

#G;

2,058

f,G1,k:=CosetAction(G,sub<G1x,y>);

CompositionFactors(Gl);

CompositionFactors(Gl);
G
I Cyclic(2)
*
I Cyclic(3)
*

Cyclic(7)
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*
I Cyclic(7)
*
[ Cyclic(7)
1

a:=0;b:=0;c:=0;d:=5;e:=0;f:=4;g:=0; //Index = 420 //
G<x,y,t>:=Group<x,y,t |x"3,y"2, (x*y)  "2,t"7,t''x=t'~4,t" (x"-l)=t''2, 
(x*t*t"x*t"(x"2) )"a,(x*y*t)"b,(x~2*y*t~x)"c ,
(x*y*t"y)"d,  (x*t*t~(x"2))~e,
(x*t*t~(x~2) )"e, (y*t*t"y*t"x*t"y*t''2*(t"x) "3)"f,(t*t~x)"g> ;

G;

Finitely presented group G on 3 generators
Relations

xA3 = Id(G)
y"2 = Id(G)
(x * y)~2 = Id(G)
t"7 = Id(G) '
t~x = t"4
x * t * x"-l = t~2
(x * t * y)"5 = Id(G)
(y * t * y"-l * t * y * x"-l * t * X * y~-l * t * y * t"2 * 
x)',4 = Id(G)

xA-l * t"3 *
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#G;
2,520

f,G1,k:=CosetAction(G,sub<G|x,y>);

CompositionFactors(Gl);

CompositionFactors(Gl);
G
I Alternating(7)
1

a:=0;b:=0;c:=6;d:=7;e:=0;f:=0;g:=0; //Index = 1792 //
G<x,y,t> :=Group<x,y,t [x"3,y"2J (x*y)"2,t"7,t"x=t~4,t''  ,
(x*t*t' ,x*t"  (x"2))"a, (x*y*t)  ~b, (x~2*y*t'"x)''c,
(x*y*t"y)"d,(x*t*t"(x"2) )"e,
(x*t*t"(x~2))"e,  (y*t*t"y*t"x*t~y*t"2*(t"x) "3)"f,(t*t"x)~g>;

G;

Finitely presented group G on 3 generators 
Relations

x"3 = Id(G)
y"2 = Id(G)
(x * y)"2 = Id(G)
t~7 = Id(G)
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t"x = tA4
x * t * x~-l = t"2
(x"2 * y * x"-l * t * x)~6 = Id(G)
(x * t * y)"7 = Id(G)

#G;

// 10,752 //

f,G1,k:=CosetAction(G,sub<GIx,y>);

CompositionFactors(Gl);

CompositionFactors(Gl);
G
I A(l, 7) = L(2, 7)
*
[ Cyclic(2)
*
[ Cyclic(2)
*
1 Cyclic(2)
*
[ Cyclic(2)
*
I Cyclic(2)
*

Cyclic(2)
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1

Lastly, we discovered another progenitor 25 : S3 which gives rise to a Symplectic group 
51(5), as seen in our MAGMA code below:

G<x)y,t>:=Group<x,y,t|x''3 , y“3 , (x*y)"2,  t"5, (t,x),

> (x*y*t)~0,  (y*t*(t~y)  “ (x''2))"4>;

> #G;
4680000
> f,Gl,k:=CosetAction(G,sub<G|x,y>);
> CompositionFactors(Gl);

G
I C(2, 5) = S(4, 5)
1

The construction of this presentation gives us 53 : S3.
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Appendix A: MAGMA Code for
3*:A 3

toU=Mo

Group 3 "*3:  A3/t0tl=tit0
N:=Sym(6);
xx:=N!(1,2,3)(4,5,6);
N:=sub<N|xx>;
G<x,t>:=Group<x,t|x"3,t~3,t*t"x=t"x*t> ;
Index(G,sub<G|x>);
f,G1,k:=CosetAction(G,sub<G|x>);
IN:=sub<Gl|f(x)>;

ts:=[Id(Gl) : i in [1..6]];
ts[3]:=f(t); ts [1]:-f(t^x); ts[2]:=f(t"(x"2));
ts [4] :=ts [1] '‘-I; ts [5] :=ts [2] "-1; ts [6] :=ts [3] “-1;
cst := [null : i in [1 .. 27]] where null is [IntegersO | ];
prodim := function(pt, Q, I)
/*
Return the image of pt under permutations Q[I] applied sequentially.
*/
v := pt;
for i in I do
v v~(Q[i]) ;
end for;
return v;
end function;
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CompositionFactors(Gl);
G
I Cyclic(3)
*
I Cyclic(3)
*
I Cyclic(3)
*
I Cyclic(3)
1

N3:=Stabiliser(N,3);
S:={[3]>;
SS:=S"N;
SSS:=Setseq(SS) ;
for i in [l..#SSS] do
for n in. IN do
if ts[3] eq n*  (ts [(Rep(SSS [i] )) [1] ] ) 
then print Rep(SSS[i]);
end if;
end for;
end for;
T3:=Transversal(N,N3);
for i in [l..#T3] do
ss: = [3] "T3 [i] ;
cst[prodimd, ts, ss)l := ss;
end for;
m:=0;
for i in [1. .27] do if cst[i] ne [] 
then m:=m+l; end if; end for; m; 
Orbits(N3);
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N6:=Stabiliser(N,6) ;
S:={[6]};
SS:=S"N;
SSS:=Setseq(SS);
for i in [l..#SSS] do
for n in IN do
if ts[6] eq n*(ts[(Rep(SSS[i])) [1]]) 
then print Rep(SSS[i]);
end if;
end for;
end for;
T6:=Transversal(N,N6);
for i in [l..#T6] do
ss: = [6] ~T6[i] ;
cst[prodim(l, ts, ss)] := ss;
end for;
m:=0;
for i in [1..27] do if cstfi] ne [] 
then m:=m+l; end if; end for; m; 
Orbits(N6);

N31:=Stabiliser(N3,1);
S:={[3,1]};
SS:=S~N;
SSS:=Setseq(SS);
for i in [l..#SS] do
for g in IN do if ts[3]*ts[l]
eq g*ts  [Rep (SSS [i] ) [1] ] *ts  [Rep (SSS [i]) [2] ] 
then print SSS [i];
end if; end for; end for;
T31:=Transversal(N,N31);
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for i in [l..#T31] do
ss: = [3,l] "'T31 [i] ;
cst [prodim(l, ts, ss)] := ss;
end for;
m:=0; for i in [1..27] do if cst[i] ne [] 
then m:=m+l; end if; end for; m;
Orbits(N31);

N34:=Stabiliser(N,[3,4]);
S:={ [3,4]};
SS:=S"N;
SSS:=Setseq(SS);
for i in [l..#SS] do
for g in IN do if ts[3]*ts[4]
eq g*ts[Rep(SSS[i] )[1] ] *ts  [Rep(SSS [i] )[2]] 
then print SSS[i];
end if; end for; end for;
T34:=Transversal(N,N34);
for i in [l..#T34] do
ss:=[3,4]"T34[i];
cst[prodim(l, ts, ss)] := ss;
end for;
m:=0; for i in [1..27] do if cst[i] ne [] 
then m:=m+l; end if; end for; m;
Orbits(N34);

N32:=Stabiliser(N, [3,2] ) ;
S: ={ [3,2]} ;
SS:=S"N;
SSS:=Setseq(SS);
for i in [l..#SS] do
for g in IN do if ts[3]*ts  [2] 
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eq g*ts  [Rep(SSS[i] )[l]]*ts[Rep(SSS[i]  )[2]] 
then print SSS [i];
end if; end for; end for;
Orbits(N32);
T32:=Transversal(N,N32);
for i in [l..#T32] do
ss:=[3,2]"T32[i] ;
cst[prodim(l, ts, ss)J := ss;
end for;
m:=0; for i in [1..27] do if cst[i] ne [] 
then m:=m+l; end if; end for; m;
Orbits(N32);

N35:=Stabiliser(N,[3,5]);
S:={[3,5]
SS:=S"N;
SSS:=Setseq(SS);
for i in [l..#SS] do
for g in IN do if ts[3]*ts[5]
eq g*ts  [Rep (SSS [i] ) [1] ] *ts  [Rep (SSS [i] ) [2] ] 
then print SSS [i];
end if; end for; end for;
Orbits(N35);
T35:=Transversal(N,N35) ;
for i in [l..#T35] do
ss: = [3,5] "T35[i] ;
cst[prodim(l, ts, ss)] := ss;
end for;
m:=0; for i in [1..27] do if cst [i] ne [] 
then m:=m+l; end if; end for; m;
Orbits(N35);
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N61:=Stabiliser(N,[6,1]);
S: ={ [6,1] };
SS:=S"N;
SSS:=Setseq(SS);
for i in [1..#SS] do
for g in IN do if ts[6]*ts[l]
eq g*ts[Rep(SSS  [i])[1]]*ts[Rep(SSS[i] )[2]] 
then print SSS [i];
end if; end for; end for;
T61:=Transversal(N,N61);
for i in [l..#T61] do
ss: = [6,l] ~T61[i] ;
cst[prodim(l, ts, ss)] := ss;
end for;
m:=0; for i in [1..27] do if cst [i] ne [] 
then m:=m+l; end if; end for; m;
Orbits(N61);

N64:=Stabiliser(N, [6,4] );
S: ={ [6,4] >;
SS:=S"N;
SSS:=Setseq(SS) ;
for i in [l..#SS] do
for g in IN do if ts[6]*ts[4]
eq g*ts  [Rep (SSS [i] ) [1] ] *ts  [Rep (SSS [i] ) [2] ] 
then print SSS [i];
end if; end for; end for;
Orbits(N64);
T64:=Transversal(N,N64);
for i in [l..#T64] do
ss: = [6,4]"T64[i];
cst [prodim(l, ts, ss)] := ss;
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end for;
m:=0; for i in [1..27] do if cst[i] ne []
then m:=m+l; end if; end for; m;
Orbits(N64);

N62:=Stabiliser(N,[6,2]);
S:={ [6,2]};
SS:=S~N;
SSS:=Setseq(SS);
for i in [l..#SS] do
for g in IN do if ts[6]*ts[2]
eq g*ts  [Rep (SSS [i] ) [1] ] *ts  [Rep(SSS [i] ) [2] ] 
then print SSS[i];
end if; end for; end for;
T62:=Transversal(N,N62);
for i in [l..#T62] do
ss:=[6,2]"T62[i];
cst[prodim(1, ts, ss)] := ss;
end for;
m:=0; for i in [1..27] do if cst [i] ne [] 
then m:=m+l; end if; end for; m;
Orbits(N62);

N65:=Stabiliser(N,[6,5]);
S:={ [6,5]};

SS:=S"N;
SSS:=Setseq(SS);
for i in [l..#SS] do
for g in IN do if ts[6]*ts[5]
eq g*ts  [Rep (SSS [i] ) [1] ] *ts  [Rep (SSS [i] ) [2] ] 
then print SSS [i];
end if; end for; end for;



99

T65:=Transversal(N,N65);
for i in. [l..#T65] do
ss:-[6,5] ~T65[i] ;
cst[prodim(l, ts, ss)] := ss;
end for;
m:=0; for i in [1..27] do if cst[i] ne [] 
then m:=m+l; end if; end for; m;
Orbits(N65);

N642:=Stabiliser(N,[6,4,2]);
S:={[6,4,2]

SS:=S"N;
SSS:=Setseq(SS);
for i in [l..#SS] do
for g in IN do if ts[6]*ts[4]*ts[2]
eq g*ts  [Rep (SSS [i] ) [1] ] *ts  [Rep (SSS [i] ) [2] ] *ts  [Rep (SSS [i] ) [3] ] 
then print SSS [i];
end if; end for; end for;
T642:=Transversal(N,N642);
for i in [l..#T62] do
ss: = [6,4,2] ~T642[i] ;
cst[prodim(l, ts, ss)] := ss;
end for;
m:=0; for i in [1..27] do if cst [i] ne []
then m:=m+l; end if; end for; m;
Orbits(N642);

N312:=Stabiliser(N,[3,1,2] );
S:={[3,1,2]};
SS:«S~N;
SSS:=Setseq(SS);
for i in [l..#SS] do
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for g in IN do if ts[3]*ts[l]*ts[2]
eq g*ts[Rep(SSS[i] )[1]] *ts[Rep(SSS[i] )[2]]*ts[Rep(SSS[i] )[3]] 

then print SSS[i];
end if; end for; end for;
for n in N do if [3,1,2]~n eq [1,2,3]
then N312:=sub<N|N312,n>; end if; end for;
// Determines equal double cosets //
for n in N do if [3,1,2]~n eq [2,3,1]
then N312:=sub<N|N312,n>; end if; end for;
T312:=Transversal(N,N312);
for i in [l..#T312] do
ss:=[3,l,2]"T312[i];
cst[prodim(l, ts, ss)] := ss;
end for;
m:=0; for i in [1..27] do if cst[i] ne []
then m:=m+l; end if; end for; m;
Orbits(N312);

N342:=Stabiliser(N,[3,4,2]);
S:={ [3,4,2]};
SS:=S"N;
SSS:=Setseq(SS);
for i in [l..#SS] do
for g in IN do if ts [3]*ts [4]*ts [2]
eq g*ts  [Rep (SSS [i] ) [1] ] *ts  [Rep (SSS [i] ) [2] ] *ts  [Rep (SSS [i] ) [3] ] 
then print SSS [i];
end if; end for; end for;
T342:=Transversal(N,N342) ;
for i in [i..#T342] do
ss: = [3,4,2] ~T342[i];
cst[prodim(1, ts, ss)] := ss;

end for;
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m:=O; for i in [1..27] do if cst[i] ne []
then m:=m+i; end if; end for; m;
Orbits(N342);

N3421:=Stabiliser(N,[3,4,2,1]);
S:={[3,4,2,1]};
SS:=S"N;
SSS:=Setseq(SS);
for i in [l..#SS] do
for g in IN do if ts [3] *ts  [4] *ts  [2] *ts  [1]
eq g*ts  [Rep,(SSS [i] ) [1] ] *ts  [Rep (SSS [i] ) [2] ] *ts  [Rep (SSS [i] ) [3] ] *ts  [R\ 
ep (SSS [i] ) [4]]
then print SSS[i];
end if; end for; end for;
T3421:=Transversal(N,N3421) ;
for i in [l..#T342] do
ss:=[3,4,2,l]"T3421[i] ;
cst[prodim(l, ts, ss)] := ss;
end for;
m:=0; for i in [1..27] do if cst [i] ne []
then m:=m+l; end if; end for; m;
Orbits(N3421);

N3424:=Stabiliser(N, [3,4,2,4] ) ;
S:={[3,4,2,4]};
SS:=S"N;
SSS:=Setseq(SS);
for i in [l..#SS] do
for g in IN do if ts [3] *ts  [4] *ts  [2] *ts  [4]
eq g*ts[Rep(SSS[i])  [l]]*ts  [Rep(SSS [i] ) [2]] *ts  [Rep(SSS [i] ) [3]]*ts[R\  
ep (SSS Ci] ) [4]]
then print SSS[i] ;
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end if; end for; end for;
// determines equal cosets //
for n in N do if [3,4,2,41"n eq [1,5,3,5] 
then N3424:=sub<N|N3424,n>; end if; end for;
for n in N do if [3,4,2,4]"n eq [2,6,1,6] 
then N3424:=sub<N|N3424,n>; end if; end for;
T3424:=Transversal(N,N3424);
for i in [l..#T3424] do
ss: = [3,4,2,4]''T3424[i] ;
cst[prodim(l, ts, ss)] := ss;
end for;
m:=0; for i in [1..27] do if cst [i] ne [] 
then m:=m+l; end if; end for; m;
Orbits(N3424);

N3426:=Stabiliser(N,[3,4,2,6]);
S:={ [3,4,2,6]};
SS:=S“N;
SSS:=Setseq(SS);
for i in [l..#SS] do
for g in IN do if ts [3] *ts  [4] *ts  [2] *ts  [6]
eq g*ts  [Rep (SSS [i]) [1] ] *ts  [Rep (SSS [i] ) [2] ] *ts  [Rep (SSS [i] ) [3] ] *ts  [Rep (SSS [i] ) [4] ] 
then print SSS[i];
end if; end for; end for;
T3426:=Transversal(N,N3426);
for i in [l..#T3426] do
ss: = [3,4,2,6]"T3426[i];
cst[prodim(l, ts, ss)] := ss;
end for;
m:=0; for i in [1..27] do if cst[i] ne []
then m:=m+l; end if; end for; m;
Orbits(N3426);
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N3423:=Stabiliser(N, [3,4,2,3] ) ;
S:={[3,4,2,3]};

SS:=S"N;
SSS:=Setseq(SS);
for i in [1..#SS] do
for g in IN do if ts [3] *ts  [4] *ts  [2] *ts  [3]
eq g*ts  [Rep (SSS [i] ) [1] ] *ts  [Rep (SSS [i] ) [2] ] *ts  [Rep (SSS [i] ) [3] ] *ts  [Rep (SSS [i] ) [4] ] 
then print SSS [i];
end if; end for; end for;
T3423:=Transversal(N,N3423);
for i in [l..#T3423] do
ss: = [3,4,2,3]"T3423[i] ;
cst[prodim(l, ts, ss)] := ss;
end for;
m:=0; for i in [1..27] do if cst[i] ne []
then m:=m+l; end if; end for; m;
Orbits(N3423);

N645:=Stabiliser(N,[6,4,5]);
S:={[6,4,5]};
SS:=S~N;
SSS:=Setseq(SS);
for i in [l..#SS] do
for g in IN do if ts[6]*ts[4]*ts[5]
eq g*ts  [Rep (SSS [i] ) [1] ] *ts  [Rep (SSS [i] ) [2] ] *ts  [Rep (SSS [i] ) [3] ] 

then print SSS[i];
end if; end for; end for;
// determines equal cosets //
for n in N do if [6,4,5]"n eq [5,6,4]
then N645:=sub<N|N645,n>; end if; end for;
for n in N do if [6,4,5]~n eq [4,5,6]
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then N645:=sub<N|N645,n>; end if; end for;
T645:=Transversal(N,N645);
for i in [1..#T645] do
ss:=[6,4,5]~T645[i];
cst[prodim(l, ts, ss)] ss;
end for;
m:=0; for i in [1..27] do if*cst[i]  ne [] 
then m:=ni+l; end if; end for; m;
Orbits(N645);
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Appendix B: MAGMA Code for

£o£iO£i=e

G<x,y>t>:=Group<x,y,t|x*3,y"2,  (x*y)~2 ,t"7,t''x=t"4,t"(x"-l)=t''2, (x*y*t)~3>;

//168//

Index(G,sub<GIx,y>);

// 28 //

f,G1,k:=CosetAction(G,sub<G|x,y>); 

f ((y*x)  ((y*x)  "2) *t"  (y*x)  *t) ;

f((x*y)"3*t “((x*y) "2)*t~(x*y)*t) ;

CompositionFactors(Gl);
/*

G
I A(l, 7) = L(2, 7)
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*/

IN:=sub<Gl|f(x),f(y)>;
ts:=[Id(Gl) : i in [1..12]];
ts[l]:=f(t); ts[2] : = (ts [1] ) "2; ts [3]: = (ts[1])"3;
ts[4] : = (ts [1] )~4; ts[5] : = (ts[i])~5; ts[6] :=(ts[1])~6;ts[7] :=f(t"y) ;
ts[8] : = (ts[7])''2;ts[9] : = (ts [7])''3;ts [10] : = (ts [7])"4;ts[11] : = (ts [7])"5;ts

[12] : = (ts[7])-6;
S:=Sym(12);
xx:=S! (1,4,2) (3,5,6) (7,8,10)0,12,11);
yy:=S!(1,7)(2,8)(3,9)(4,10)(5,11)(6,12);
N:=sub<S|xx,yy>;
xx*yy ;

// (1, 10)(2, 7)(3, 11)(4, 8)(5, 12)(6, 9) //
f (x*y)  *ts  [1] *ts  [10] *ts  [1] ;
// Id(Gl) //

f (x*y)  *ts  [7] *ts  [2] *ts  [7] ;

if f(x*y)*ts [1]*ts [10] eq ts[l]"“l then print true;end if;
if f(x*y)*ts[l]  eq ts[1]"-l*ts [10]"-1 then print true;end if;

cst := [null : i in [1 .. 28]] where null is [Integers() | ];
prodim := function(pt, Q, I)

v := pt;
for i in I do
v := v"(Q[i] ) ;
end for;
return v;
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end function;
#DoubleCosets(G,sub<GIx,y>,sub<GIx,y>);

// 7 //
DoubleCosets(G,sub<G|x,y>,sub<G]x,y>);
/*
{ <GrpFP, Id(G), GrpFP>, <GrpFP, t * y * x * t, GrpFP>, <GrpFP, t * y * t, 
GrpFP>, <GrpFP, t, GrpFP>, <GrpFP, t''-l, GrpFP>, <GrpFP, t * y * t~-l, GrpFP>, 
<GrpFP, y~t, GrpFP> }
*/
Setseq(DoubleCosets(G,sub<G|x,y>,sub<GIx,y>));
/*
[ <GrpFP, Id(G), GrpFP>, <GrpFP, t * y * x * t, GrpFP>, <GrpFP, t ♦ y * t, 
GrpFP>, <GrpFP, t, GrpFP>, <GrpFP, t~-l, GrpFP>, <GrpFP, t * y * t~-l, GrpFP>, 
<GrpFP, y‘t, GrpFP> ]
> { <GrpFP, Id(G), GrpFP>, <GrpFP, t * y * x * t, GrpFP>, <GrpFP, t * y * t,
> GrpFP>, <GrpFP, t, GrpFP>, <GrpFP, t"-l, GrpFP>, <GrpFP, t * y * t"-l, GrpFP\ 
>,
> <GrpFP, y"t, GrpFP> }
*/
----------------- ti’s and inverses -----------------------
ts [1] *ts  [6] ;
// Id(Gl) implies ts [1] - ts[6]"-l //

ts [2] *ts  [5] ;
// Id(Gl) implies ts[2] = ts[6]"-l //

ts [3] *ts  [4];
// Id(Gl) implies ts[3] = ts[4]"'-l //

ts[4]*ts[3]  ;
//Id(Gl) implies ts[4] = ts[3]''-l//
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ts [5] *ts  [2] ;
//Id(Gl) implies ts [5] = ts[2]"-l// 

ts [6]*ts  [1] ;
//Id(Gl) implies ts[6] = ts[l]“-l //

ts [7] *ts  [12] ;
// Id(Gl) implies ts[7] = ts[12]"-l//

ts [8] *ts  [11] ;
//Id(Gl) implies ts[8] = ts[ll]"-l//

ts [9] *ts  [10] ;
//Id(Gl) implies ts[9] = ts[10]"l//

ts [10] *ts  [9] ;
//Id(Gl) implies ts[10] = ts[9]"l// 

ts [11] *ts  [8] ;
//Id(Gl) implies ts[ll] = ts[8]"-l//

ts [12] *ts  [7] ;
//Id(Gl) implies ts[12] - ts[7]'’-l//

Checking orbits paths from DC to DC 

checking orbit paths from DC [1]
if ts[l]*ts[6]  eq Id(Gl) then print true; end if;
// true so ts[6] takes 1 to [*]//
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if ts[l]*ts[3]  eq ts[l] then print true; end if;
// ?? so either ts[l] or ts[3] takes 2 back to itself//
if ts[l]*ts[5]  eq ts[6] then print true; end if;
// so ts[5] takes 4 to [6]//
if ts[l]*ts[7]  eq ts[l]*ts[7]  then print true; end if;
// so ts[7] takes 2 to [1,7]//
if ts[l]*ts[]  eq ts[l]*ts[8]  then print true; end if;
// true so ts[8] takes 1 to [1,8]//
if ts[l]*ts[]  eq ts[l]*ts[ll]  then print true; end if;
// true so ts[ll] takes 1 to [1,11]//
if ts[l]*ts[]  eq ts[l]*ts[12]  then print true; end if;
// true so ts[12] takes 1 to [1,12]//

checking orbit paths from DC [6]
if ts[6]*ts[l]  eq Id(Gl) then print true; end if;
// true so ts [1] takes 1 to [*]//
if ts[6]*ts[6]  eq ts[6] then print true; end if;
// ?? so either ts[4] or ts[6] takes 2 back to itself//
if ts[6]*ts[2]  eq ts[l] then print true; end if;
// true so ts [2] takes 4 to [1]//
if ts[6]*ts[10]  eq ts[l]*ts[7]  then print true; end if;
// ?? so either ts[10] or ts[12] takes 2 to [1,7]//
if ts[6]*ts[ll]  eq ts[l]*ts[8]  then print true; end if;
// true so ts[8] takes 1 to [1,8]//
if ts[6]*ts[]  eq ts[l]*ts[ll]  then print true; end if;
// true so ts[ll] takes 1 to [1,11]//
if ts[6]*ts[]  eq ts[l]*ts[12]  then print true; end if; 
// true so ts[12] takes 1 to [1,12]//

checking orbit paths from DC [1,7]
if ts[1]*ts [7]*ts [12] eq ts[l] then print true; end if; 
// true so ts[12] takes 2 to Cl]//
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if ts [1] *ts  [7] *ts  [9] eq ts[l]"(-l) then print true; end if;
// ?? so either ts[l] or ts[9] takes 2 to [6]//
if ts[l]*ts[7]*ts[8]  eq ts[l]*ts[7]  then print true; end if;
// ?? so either ts[5] or ts[8] takes 2 back to itself//
if ts[l]*ts[7]*ts[7]  eq ts[l]*ts[8]  then print true; end if;
// true so ts[7] takes 2 to [1,8]//
if ts[l]*ts[7]*ts[10]  eq ts[l]*ts[ll]  then print true; end if;
// true so ts[10] takes 2 to [1,11]//
if ts[l]*ts[7]*ts[ll]  eq ts[l]*ts[12]  then print true; end if; 
// true so ts[ll] takes 2 to [1,12]//

checking orbit paths from DC [1,8]
if ts[1]*ts [8]*ts [12] eq ts[l]*ts[7]  then print true; end if; 
// true //
if ts[l]*ts[8]*ts[ll]  eq ts[l] then print true; end if;
// true //
if ts[l]*ts[8]*ts [8] eq ts[l]"-l then print true; end if;
// ?? //
if ts[l]*ts[8]*ts[9]  eq ts[l]*ts[ll]  then print true; end if;
// true //
if ts[l]*ts[8]*ts[10]  eq ts[l]*ts[12]  then print true; end if;
// true //

checking orbit paths from DC [1,11]
if ts[l]*ts[ll]*ts[8]  eq ts[l] then print true; end if;
// true //
if ts[1]*ts [11]*ts [12] eq ts[6] then print true; end if;
// ?? //
if ts [1] *ts  [11] *ts  [9] eq ts[l]*ts[7]  then print true; end if;
// true //
if ts[l]*ts[ll]*ts[10]  eq ts[l]*ts[8]  then print true; end if;
// true //
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if ts[l]*ts[ll]*ts[7]  eq ts[l]*ts[12]  then print true; end if;
// true // 

checking orbit paths from DC [1,12]
if ts[l]*ts[12]*ts[7]  eq ts[l] then print true; end if;
// true //
if ts[l]*ts  [12] *ts  [11] eq ts[6] then print true; end if;
// ?? //
if ts[l]*ts[12]*ts[8]  eq ts[l]*ts[7]  then print true; end if;
// true //
if ts[l]*ts[12]*ts[9]  eq ts[l]*ts[8]  then print true; end if;
// true //
if ts[i]*ts[12]*ts[12]  eq ts[l]*ts[ll]  then print true; end if;
// true //

//-------------------DC [u -----------------------
S:=<[1]>;
SSr-S^N;
SSS:=Setseq(SS);
for i in [l..#SS] do
for g in IN do
if ts[l] eq g*ts[Rep(SSS[i])  [1]]
then print SSS [i];
end if;
end for;
end for;

/*
{

[ 1 J

//

*/
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Nl:=Stabiliser(N,1);
#N1;
Nl;
/*
Permutation group Nl acting on a set of cardinality 12
Order = 1
*/
TI:=Transversal(N,Nl);#T1;

// 6 transversals //
TI;
/*

Id(N),
(1, 4, 2) (3, 5, 6)(7, 8, 10)(9, 12, H),
(1, 7) (2, 8)(3, 9)(4, 10)(5, 11)(6, 12),
(1, 2, 4) (3, 6, 5)(7, 10, 8)(9, 11, 12),
(1, 10) (2 , 7)(3, 11)(4. 8)(5, 12)(6, 9),
(1, 8) (2, 10)(3, 12)(4, 7)(5, 9)(6, 11)

0}
*/
for i in [l..#Tl] do
SS:-[1] ~Tl[i] ;
cst [prodim(l,ts,SS)J:=SS;
end for;
m:=0; for i in [l..#cst] do if cst[i] ne [] then m:=m+l; end if;
end for; m;
// 6, so 6 cosets in the DC [1] //

Orbits(Nl);
/*
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[
GSet{ 1 },
GSet{ 2 },
GSet{ 3 },
GSet{ 4 },
GSet{ 5 },
GSet{ 6
GSetf 7 },
GSet{ 8
GSet{ 9
GSetf 10
GSet{ 11
GSet{ 12 }

]
*/
//-------------------DC [6]= [1"6]------------------------ //
N6:=Stabiliser(N,6) ;
S:={[6]};
SS:=S"N;
SSS:=Setseq(SS);
for i in [l..#SS] do
for g in IN do
if ts[6] eq g*ts[Rep(SSS[i]  )[1]] 
then print SSS [i];
end if;
end for;
end for;
/*
<

[ 6 ]
}

*/
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#N6;
// 1 //

N6;
/*
Permutation group N6 acting on a set of cardinality 12
Order = 1
*/
T6:=Transversal(N,N6);#T6;
// 6, so 6 transversals //
T6;
/♦

Id(N),
(1, 4, 2)(3, 5, 6)(7, 8, 10)(9, 12, 11),
(1, 7)(2, 8)(3, 9)(4, 10)(5, 11)(6, 12),
(1, 2, 4)(3, 6, 5)(7, 10, 8)(9, 11, 12),
(1, 10)(2, 7)(3, 11)(4, 8)(5, 12)(6, 9),
(1, 8)(2, 10)(3, 12)(4, 7)(5, 9)(6, 11)

©}
*/
for i in [l..#T6] do
SS: = [6] ~T6 [i] ;
cst [prodim(l,ts,SS)]:=SS;
end for;
m:=0; for i in [l..#cst] do if cst[i] ne [] then m:=m+l; end if;
end for; m;
// 6, so 6 cosets in DC [6] //

Orbits(N6);
/*
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GSet{ 1 },
GSet{ 2 },
GSetf 3 },
GSet{ 4 },
GSet{ 5 },
GSet{ 6 },
GSet-C 7 },
GSet-C 8
GSet{ 9 },
GSet{ 10 },
GSet{ 11 },
GSet{ 12 }

*/
-------------------DC [1>7]
N17:=Stabiliser(N,[1,7]);
S:={[1,7]};
SS:=S"N;
SSS:=Setseq(SS) ;
for i in [l..#SS] do 
for g in IN do
if ts[l]*ts[7]  eq g*ts  [Rep(SSS[i] ) [1] ]*ts[Rep(SSS  [i] ) [2]] 
then print SSS[i];
end if;
end for;
end for;
/*

[ 1, 7 ]

*/



116

#N17;
// 1 //

N17;

/*
Permutation group N17 acting on a set of cardinality 12
Order = 1
*/
T17:=Transversal(N,N17);
for i in [l..#T171 do
ss: = [l,7] "T17[i] ;
cst[prodim(l, ts, ss)] := ss;
end for;
m:=0; for i in [1..28] do if cst[i] ne []
then m:=m+l; end if; end for; m;
// 18-12=6, so 6 cosets in DC [1,7] //
#T17;
// 6 //

T17;
/*

Id(N),
(1, 4, 2)(3, 5, 6)(7, 8, 10)(9, 12, 11),
(1, 7)(2, 8)(3, 9)(4, 10)(5, 11)(6, 12),
(1, 2, 4)(3, 6, 5)(7, 10, 8)(9, 11, 12),
(1, 10)(2, 7)(3, 11)(4, 8)(5, 12)(6, 9),
(1, 8)(2, 10)(3, 12)(4, 7)(5, 9)(6, 11)

*/
Orbits(N17);
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/*
[

GSet-C 1 },
GSet{ 2 I,
GSet-C 3 },
GSet{ 4 },
GSet{ 5
GSet{ 6 },
GSet-C 7 },
GSet-C 8 },
GSet-C 9 },
GSet{ 10 },
GSet{ 11
GSet-C 12 }

*/

-------------------DC [1>8]--------------------

S:={[1,8]>;
SS:=S“N;
SSS:=Setseq(SS);
for i in [l..#SS] do
for g in IN do
if ts[l]*ts[8]  eq g*ts[Rep(SSS[i] )[1]]*ts[Rep(SSSCi] )[2]] 
then print SSS[i];
end if;
end for;
end for;
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<
£1,8]

1

<
£7,23

}

N18:=Stabiliser(N,[1,8]);

/*  Enter [1,8] " [7,2]*/
for n in N do if l“n eq 7 and 8~n eq 2
then N18c:=sub<N|N18,n>; end if;end for;
[1,8]~N18c;

#N18c;
// 2//
N18c;
/*

Permutation group N18c acting on a set of cardinality 12 
Order = 2

(1, 7)(2, 8)(3, 9)(4, 10)(5, 11)(6, 12)

*/

T18:=Transversal(N,N18c);
for i in [l..#T18] do
ss: = [l,8]~T18[i] ;
cst[prodim(l, ts, ss)] := ss;
end for;
m:=0; for i in [1..28] do if cst[i] ne []
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then m:=m+l; end if; end for; m;
// 21-18=3, so 3 cosets in DC [1,8] //

#T18;
// 6 //
T18;
/*

Id(N),
(1, 4, 2)(3, 5, 6)(7, 8, 10)(9, 12, 11),
(1, 2, 4) (3, 6, 5)(7, 10, 8)(9, 11, 12)

0}

*/

Orbits(N18);
/*

[
GSet{ 1,71,
GSet{ 2, 8 >,
GSet{ 3, 9 >,
GSet{ 4, 10 },
GSet{ 5, 11
GSet{ 6, 12 }

]

So our orbit paths are:
1) Nt_lt_8t_7=
2) Nt_lt_8t_8=
3) Nt_lt_8t_
4) Nt_lt_8t_
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5) Nt_lt_8t_
6) Nt_lt_8t_

*/

------------------- DC [1,!!]

S:={ [1,11]};
SS:=S"N;
SSS:=Setseq(SS);
for i in [l..#SS] do
for g in IN do
if ts[l]*ts[ll]  eq g*ts[RepCSSS[i] )[1]]*ts[Rep(SSS[i] )[2]] 
then print SSS [i];
end if;
end for;
end for;

/*

[ 1, 11 ]
}
<

[ 10, 3 ]
}

*/
Nlll:=Stabiliser(N, [1,11]);

/*  Enter [1,11] " [10,3]*/
for n in N do if l"n eq 10 and ll"n eq 3
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then Nlllc:=sub<N|Nlll,n>; end if;end for;
[1,11]"Nlllc;

#Nlllc;
// 2//
Nlllc;
/*
Permutation group Nlllc acting on a set of cardinality 12
Order = 2

(1, 10)(2, 7)(3, 11)(4, 8)(5, 12)(6, 9)

*/
Till:=Transversal(N,Nlllc);
for i in [l..#Tlll] do
ss: = [l, 11]-'Till[i] ;
cst[prodim(l, ts, ss)] := ss;
end for;
m:=0; for i in [1..28] do if cst[i] ne []
then m:=m+l; end if; end for; m;

// 24 - 21 = 3, so 3 cosets in DC [1,11] //

#T111;
// 3 //
Till;

/*

Id(N),
(1, 4, 2)(3, 5, 6)(7, 8, 10)(9, 12, 11),
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(1, 2, 4) (3, 6, 5) (7, 10, 8) (9, 11, 12)
©}

*/

Orbits(Nlllc);
/*
[

GSetf 1, 10 },
GSet{ 2, 7
GSet{ 3, 11
GSet{ 4, 8 },
GSet{ 5, 12 },
GSet{ 6, 9 }

*/

DC [1,12]

S:={[1,12]};
SS:=S"N;
SSS:=Setseq(SS);
for i in [l..#SS] do
for g in IN do
if ts[l]*ts[12]  eq g*ts[Rep(SSS  [i] ) [1] ] *ts  [Rep (SSS [i] ) [2]] 
then print SSS [i];
end if;
end for;
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end for;
/*
<

[ 10, 5 ]

<
L 1, 12 ]

}

*/
N112:=Stabiliser(N,[1,12]);

/*  Enter [10,5] “ [1,12]*/
for n in N do if 10~n eq 1 and 5"n eq 12
then N112c:=sub<N|N112,n>; end if;end for;
[1,12]"N112c;

#N112c;
// 2//
N112c;
/*
Permutation group N112c acting on a set of cardinality 12
Order = 2

(1, 10)(2, 7) (3, 11)(4, 8)(5, 12)(6, 9)
*/

T112:=Transversal(N,N112c);
for i in [1.,#T112] do
ss: = [1,12] "'T112 [i] ;
cst[prodim(l, ts, ss)] := ss;
end for;
m:=0; for i in [1..28] do if cst[i] ne []
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then m:=m+l; end if; end for; m;
// 27-24 =3, so 3 cosets in DC [1,12] //

#N112;
// 1 //
N112;
/*
Permutation group N112 acting on a set of cardinality 12
Order = 1
*/
#T112;
// 3 //
T112;

/*

Id(N),
(1, 4, 2)(3, 5, 6)(7, 8, 10)(9, 12, 11),
(1, 2, 4)(3, 6, 5)(7, 10, 8)(9, 11, 12)

*/

Orbits(N112C);
/*

GSet{ 1, 10 },
GSet{ 2, 7 },
GSetf 3, 11 },
GSet< 4, 8 },
GSet-C 5, 12 },
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GSet{ 6, 9 }
]
*/
—process for finding relations used in determining equal double cosets— 
NN<a,b>:=Group<a,b|a"3,b~2, (b*a)  "2>;
Sch:=SchreierSystem(NN,sub<NN| Id(NN)>) ;
ArrayP:=[Id(N): i in [1..6]];
for i in [2..6] do
P:=[Id(N): 1 in [1.,#Sch[i]]];
for j in [l..#Sch[i]] do
if Eltseq(Sch[i]) [j] eq 1 then P[j] :=xx; end if;
if Eltseq(Sch[i]) [j] eq -1
then P[j]:=xx"-l; end if;
if Eltseq(Sch[i]) [j] eq 2
then P[jl:=yy; end if;
end for;
PP:=Id(N);
for k in [1..#P] do
PP:=PP*P[k];  end for;
ArrayP[i]:=PP;
end for;
for n in IN do if ts[l]*ts[8]  eq n*ts  [7] *ts  [2] then n; end if; end for;
/*
(2, 4, 6) (3, 7, 9)(5, 11, 10) (8, 15, 14) (12, 21, 23) (13, 24, 25) (16, 20, 26X17,

27, 18)(19, 28, 22)
*/
for i in [1..20] do i, cst[i]; end for;
/*

1 []
2 E 1 1
3 [ 6 ]
4 [ 4 ]
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5 [ 7 ]
6 [ 2 ]
7 [ 3 ]
8 [ 12 ]
9 [ 5 ]
10 [ 10 ]
11 [ 8 ]
12 [ 7, 1 ]
13 [ 7, 6 ]
14 [ 9 ]
15 [ 11 ]
16 [ 7, 5 ]
17 [ 1, 7 ]
18 [ 2, 10 ]
19 [ 8, 1 ]
20 [ 8, 6 ]

So (2,6,4)—>(1,2,4): (3,9,7)—>(6,5,3) : (5,10,11)—>(7,10,8)
: (8,14,15)—>(12,9,11): enter that into next loop.
We use [1..61 since S_3 has 6 elements...
*/
for i in [1..6] do if ArrayP[i] eq N!(1,2,4)(6,5,3)(7,10,8)(12,9,11) 
then Sch[i] ; end if; end for; // a"-l , so we use (x"-l) as relation 
that proves [1,8]=[7,2]//
ts[l]*ts[8]  eq f (x"-l)*ts [7]*ts [2] ;
// true , so $t_lt_8=(x"-l)t_7t_2$ //

NN<a,b> :=Group<a,b| a"3,b"2, (b*a)"2>;
Sch:=SchreierSystem(NN,sub<NN|Id(NN)>);
ArrayP:=[Id(N): i in [1..6]];
for i in [2..6] do
P:=[Id(N): 1 in [1..#Sch[i]]J;
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for j in [i..#Sch[i]] do
if Eltseq(Sch[i])[j] eq 1 then P[j]:=xx; end if;
if Eltseq(Sch[i]) [j] eq -1
then P[j]:=xx~-1; end if;
if Eltseq(Sch[i] ) [j] eq 2
then P [j1:=yy; end if;
end for;
PP:=Id(N);
for k in [1.. #P] do
PP;=PP*P[k];  end for;
ArrayP[i]:=PP;
end for;
for n in IN do if ts[l]*ts[ll]  eq n*ts[10]*ts[3]  then n;
end if; end for;

/*
(2, 6, 4)(3, 9, 7)(5, 10, 11)(8, 14, 15)(12, 23, 21)
(13, 25, 24)(16, 26, 20)(17,18, 27)(19, 22, 28)
*/
for i in [1..20] do i, cst[i]; end for;
/*
1 [J
2 [ 1 ]
3 [ 6 ]
4 [ 4 ]
5 [ 7 ]
6 [ 2 ]
7 [ 3 ]
8 [ 12 ]
9 [ 5 ]
10 L 10 ]
11 [ 8 ]
12 [ 7, 1 ]
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13 [ 7, 6 ]
14 [ 9 ]
15 [ 11 ]
16 [ 7, 5 ]
17 [ 1, 7 ]
18 L 2, 10 ]
19 E 8, 1 ]
20 [ 8, 6 ]

So (2,6,4)—>(1,2,4): (3,9,7)—>(6,5,3): (5,10,11)—>(7,10,8) :
(8,14,15)—>(12,9,11): enter that into next loop.

We use [1..6} since S_3 has 6 elements...*/
for i in Cl..6] do if ArrayPEi] eq N!(1,2,4)(6,5,3)(7,10,8)(12,9,11) 
then Sch[iJ; end if; end for;

// a"-l , so we use (x"-l) as relation that proves [l,ll] = [10,3]// 
ts[l]*ts[ll]  eq f (x"-l)*ts [10]*ts [3] ;
// true , so $ti_lt_ll=(x''-l)t_10t_3$ //

NN<a,b>:=Group<a,bIa"3,b~2,(b*a)"2> ;
Sch:=SchreierSystem(NN,sub<NN|Id(NN)>);
ArrayP:=[Id(N): i in [1..6]];
for i in [2..6] do
P:=[Id(N): 1 in [1..#Sch[i]]];
for j in [l..#Sch[i]] do
if Eltseq(Sch[i]) [j] eq 1 then P[j]:=xx; end if;
if Eltseq(Sch[i])[j] eq -1
then P[j]:=xx"“l; end if;
if Eltseq(Sch[i]) [j] eq 2
then P[j]:=yy; end if;
end for;
PP:=Id(N);
for k in [l..#P] do
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PP:=PP*P[k];  end for;
ArrayP[i]:=PP;
end for;
for n in IN do if ts[10]*ts[5]  eq n*ts [1]*ts [12] then n;
end if; end for;
/*
(2, 6, 4)(3, 9, 7)(5, 10, 11)(8, 14, 15)(12, 23, 21)(13, 25, 24)
(16, 26, 20)(17, 18, 27)(19, 22, 28)
*/
for i in [1..20] do i, cst[i]; end for;

/*

1 []
2 [ 1 ]
3 [ 6 ]
4 [ 4 ]
5 [ 7 ]
6 [ 2 ]
7 [ 3 ]
8 [ 12 ]
9 [ 5 ]
10 [ 10 ]
11 [ 8 ]
12 [ 7, 1 ]
13 [ 7, 6 ]
14 [ 9 ]
15 [ 11 ]
16 [ 7, 5 ]
17 [ 1, 7 ]
18 [ 2, 10 ]
19 [ 8, 1 ]
20 [ 8, 6 ]
so we usle this table's labeling to convert the above permutation



130

to another permutation and use the resulting permutation to determine 
the relation: (2,6,4)->(l,2,4): (3,9,7)->(6,5,3): (5,10,ll)->(7,10,8):
(8,14,15)->(12,9,11) . We use [1..6} since S_3 has 6 elements...*/  
for i in Cl..6] do if ArrayP[i] eq N!(1,2,4)(6,5,3)(7,10,8)(12,9,11) 
then Sch[i]; end if; end for; // a"-l , so we use (x~-l) as relation 
that proves [10,5] = [1,12]// ts[10]*ts[5]  eq f(x"-l)*ts  [1]*ts  [12];
// true , so $t_10t_5=(x"'-l)t_lt_12$ //

// SO THE RELATION (x"-l) IS USED TO PROVE ALL EQUAL DOUBLE COSETS //
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Appendix C: MAGMA Code for 
(M21 x 4):S^ Factored by Center

MAGMA CODE 3*8  : PGL _2 (7)
FACTORED BY NEW RELATIONS :

((t~(x"6))"-1)*3,  x"-l * y * x~2*(t"(x"3))"-l*t"(x"6)*t “(x~3)*(t
"(x"6))“-l, (x"-l * y * x~2)''-l*t"(x"3)*t~(x"6) *(t'* (x"3))“-1* (t~(xT))~-l>;

S:=Sym(16);
xx:=S!(8,2,5,4,6,1,7,3)(16,10,13,12,14,9,15,11);
yy:=S! (1,6) (2,5) (3,4) (9,14) (10,13) (11,12) ;
N:=sub<S|xx,yy>;
G<x,y,t>:=Group<x,y,t|x"8 , y"2 , (x*y)"3,
(x,y)"4,t"3,(t,y),
(t,x"3 * y * x"3 * y * x~-l) ,
(t,y * x~-2 * y * x"3 * y * x~-2),
(x'S+t)"6,
((t"(x"6))‘-l)"3,
x"-l * y * x~2*(t"(x"3))~-l*-t"(x''6)*t"(x'~3)*(t''(x"6))''-l,
(x"-l * y * x"2)''-l*t"(x''3)*t' ,(x"6)*(t “(x"3))'‘-l*(t"(x"6))"-l

>;
IndexG:=Index(G,sub<G|x,y>);
f,G1,K:=CosetAction(G,sub<G|x,y>);
Gl;
/*
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Permutation group G1 acting on a set of cardinality 360
Order = 120960 = 2"7 * 3"3 * 5 * 7
where 360 is the number of double cosets.
*/
IN:=sub<Gl1f(x)>;
ts: = [Id(Gl) : i in [1..16]];
ts[8]:=f(t);

ts [2]:=f(t'x);
ts[5]:=f(t~(x"2));
ts[4]:=f(t"(x"3));
ts[6]:=f(t"(x"4));
ts[1]:=f(t"(x"5));
ts[7]:=f(t"(x"6));
ts[3]:=f(t"(x"7));
ts[9] :=ts[l] ''-1;

ts [10]:=ts[2]"-1;
ts [11]:=ts[3]"-1;
ts [12] :=ts [4] "-1;
ts [13] : =ts [5] "-1;
ts [14] :=ts [6] "-1;
ts[15] :=ts[7]*-l;

ts [16]:=ts[8]-“1;
prodim := function(pt, Q, I)
v := pt;
for i in I do
v := v"(Q[i]) ;
end for;
return v;
end function;

cst := [null : i in [1 .. 360]] where null is [Integers() I ];
for i := 1 to 16 do
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cst[prodim(l, ts, [i] )] := [i];
end for;
m:=0; for i in [l..#cst] do if cst[i] ne [] then m:=m+l; end if;
end for; m;
// 16 so the origional 16 SC’s in [8] and [16] ///////
for a in [8,16] do
Stabil := Stabilizer(N,[a]);
trans := Transversal(N, Stabil);

for i := 1 to #trans do
ss := [a] "trans [i];
cst[prodim(l, ts, ss)] : = ss;

end for;
n:=m;m:=0;for i in [l..#cst] do if cst[i] ne [] then m:=m+l; end if; end for; 
if m-n ne 0 then "Number of Cosets in DC [",a,"]",m-n,m; end if;
if m-n ne 0 then Orbits(Stabil); end if;
end for;

// now we fix [8] & [16] and check all words of length two //

for a in [8,16],b in [1..16] do
Stabil := Stabilizer(N,[a,b] );
trans := Transversal(N, Stabil);

for i := 1 to #trans do
ss := [a,b]"trans[i];
cst[prodim(l, ts, ss)] := ss;

end for;
n:=m;m:=0;for i in [l..#cst] do if cst[i] ne [] then m:=m+l; end if; end for; 
if m-n ne 0 then "Number of Cosets in DC [",a,b,"]: ",m-n;
"Total Cosets filled out of 360:",m; end if;
if m-n ne 0 then Orbits(Stabil); end if;
end for;
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// below are all DC’s, SC’s and orbits of length two//

/*
Number of Cosets in DC [ 8 1 ]: 28
Total Cosets filled out of 360: 44
[

GSet{ 1 },
GSet{ 8 },
GSetf 9 },
GSet{ 16
GSetf 2, 3, 4, 5, 6, 7 },
GSet{ 10, 11, 12, 13, 14, 15 }

1
Number of Cosets in DC [ 8 9 ] : 56
Total Cosets filled out of 360: 100
[

GSet{ 1 },
GSet{ 8 },
GSet{ 9 },
GSet{ 16 },
GSet{ 2, 3, 4, 5, 6, 7 },
GSet{ 10, 11, 12, 13, 14, 15 }

]
Number of Cosets in DC [ 8 16 ] : 1
Total Cosets filled out of 360: 101
[

GSet{ 8 },
GSet{ 16 },
GSet{ 1, 2, 3, 4, 5, 6, 7
GSet{ 9, 10, 11, 12, 13,, 14, 15 }

]
Number of Cosets in DC [ 16 9 ] : 28
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Total Cosets filled out of 360: 129
[

GSet{ 1 },
GSet{ 8
GSet{ 9
GSet{ 16 },
GSet{ 2, 3, 4, 5, 6, 7 },
GSetf 10, 11, 12, 13, 14, 15 }

]
♦/

/*  Now, we fix the third elements [1],[9],[16] & check for DC’s of length three
*/

for a in [8,16],b in [1,9,16], c in [1..16] do
Stabil := Stabilizer(N,[a,b,c]);
trans := Transversal(N, Stabil);

for i := 1 to #trans do
ss := [a,b,c]"trans[i];
cst[prodim(1, ts, ss)] ss;

end for;
n:=m;m:-0;for i in [l..#cst] do if cst[i] ne [] then m:=m+l; end if; end for;
if m-n ne 0 then "Number of Cosets in DC [" ,a,b,c,11 ] : ",m-n;
"Total Cosets filled out of 360:",m; end if;
if m-n ne 0 then Orbits(Stabil); end if;
end for;

// below are the results of that search /////////

/*
Number of Cosets in DC [ 8 1 2 ]: 42
Total Cosets filled out of 360: 171
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GSet-C 1 },
GSet{ 2 },
GSet{ 3
GSet{ 4 },
GSet-C 5 },
GSet{ 6 },
GSet{ 7 },
GSet-C 8
GSetl 9 },
GSet-C 10 },
GSet-C 11 },
GSetf 12
GSet{ 13 },
GSet{ 14 },
GSet-C 15 },
GSet{ 16 }

]
Number of Cosets in DC [ 8 1 10 ]:
Total Cosets filled out of 360: 255
[

GSet{ 1 },
GSet-C 2 },
GSet{ 3
GSet-C 4 },
GSet{ 5 },
GSetf 6 },
GSet-C 7 },
GSet-C 8 },
GSet-C 9
GSet-C 10 },
GSet-C 11

84
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GSetf 12 },
GSet{ 13 },
GSet-C 14 },
GSet-C 15 },
GSet-C 16 }

]
Number of Cosets in DC [ 8 9 10 ] : 84
Total Cosets filled out of 360: 339
[

GSet{ 1 },
GSet{ 2
GSet{ 3
GSetf 4 },
GSet-C 5 },
GSet-C 6 },
GSet-C 7 },
GSet{ 8 },
GSet-C 9 },
GSetf 10 },
GSet-C 11 },
GSet{ 12 },
GSet-C 13 },
GSet{ 14 },
GSet-C 15 },
GSet{ 16 }

]
/*

Now, we fix the fourth elements [2],[10] & check for DC’s of length four
*/
for a in [8,16],b in [1,9,16], c in [2,10], d in [1..16] do
Stabil := Stabilizer(N,[a,b,c,d]);
trans := Transversal(N, Stabil);
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for i := 1 to #trans do
ss := [a,b,c,d] ''transCi];
cst [prodim(l, ts, ss)] := ss;

end for;
n:=m;m:=0;for i in [l..#cst] do if cst[i] ne [] then m:=m+l; end if; end for; 
if m-n ne 0 then "Number of Cosets in DC [",a,b,c,d,"]: ",m-n;
"Total Cosets filled out of 360:",m; end if;
if m-n ne 0 then Orbits(Stabil); end if; end for;

//Our resulting final DC, it’s SC’s and orbits are below //////

Number of Cosets in DC [ 8 1 10 12 ] : 21
Total Cosets filled out of 360: 360
[

GSet{ 1
GSet-C 2
GSetf 3 },
GSet{ 4 },
GSet{ 5 },
GSet{ 6
GSetf 7 },
GSet{ 8 },
GSetf 9
GSet{ 10 },
GSetf 11 },
GSet{ 12
GSet{ 13
GSet{ 14
GSet{ 15 },
GSet{ 16 }

]
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The below code is to check the extensions from Double coset to 
connected double cosets. By inputting a specific DC, the below program 
compares the two lists and based on my input DC, outputs all the orbit 
paths to their respective DC’s. From this information, I’m able to 
complete my Cayley diagram.
/*

List of the Names of my Double Cosets
*/

mlist:=[
[8],
[16],
[8,1],
[8.9] ,
[8,16] ,
[16.9] ,
[8,1,2] ,
[8,1,10],
[8,9,10] ,
[8,1,10,12]
];
restore pkm;
a :=16;b:=9;
for c in [1..16]do
Stabil := Stabilizer(N,[a,b,c] );
trans := Transversal(N, Stabil);

for i := 1 to #trans do
ss := [a,b,c]"trans[i];
cst[prodim(l, ts, ss)] := ss;

end for;
n:=m;m:=0;for i in [i..#cst] do if cst[i] ne [] then m:=m+l; end if; end for; 
if m-n ne 0 then ’’Number of Cosets in DC [” ,a,b, c, ”] : ”,m-n;
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end if;
end for;
load pk;

"[",a,b,c,"]";
nlist:=[null : i in [1..10]] where null is [Integers() | ];
i:=l;j:=1;k:=l;
repeat
if mlist[i] eq dlist[j] then i:=i+l; j:=j+l; end if;
if mlist[i] ne dlist[j] then nlist[k]:=mlist[i]; k:=k+l; i:=i+l; end if; 
until i gt 10 or j gt 10;
for i in [1..10] do if nlist[i] ne [] then nlist[i]; end if; end for;
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