
California State University, San Bernardino California State University, San Bernardino

CSUSB ScholarWorks CSUSB ScholarWorks

Theses Digitization Project John M. Pfau Library

2013

Gradebadge: Development of a cloud-based reward application Gradebadge: Development of a cloud-based reward application

Erwin Toni Soekianto

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project

 Part of the Databases and Information Systems Commons

Recommended Citation Recommended Citation
Soekianto, Erwin Toni, "Gradebadge: Development of a cloud-based reward application" (2013). Theses
Digitization Project. 4205.
https://scholarworks.lib.csusb.edu/etd-project/4205

This Project is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has
been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks.
For more information, please contact scholarworks@csusb.edu.

https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd-project
https://scholarworks.lib.csusb.edu/library
https://scholarworks.lib.csusb.edu/etd-project?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F4205&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F4205&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd-project/4205?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F4205&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

GRADEBADGE:

DEVELOPMENT OF A CLOUD-BASED REWARD APPLICATION

A Project

Presented to the

Faculty of

California State University,

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

Computer Science

by

Erwin Toni Soekianto

June 2013

GRADEBADGE:

DEVELOPMENT OF A CLOUD-BASED REWARD APPLICATION

A Project

Presented to the

Faculty of

California State University,

San Bernardino

by

Erwin Toni Soekianto

June 2013

Approved by:

David Turner, Advisor, Computer Science
and Engineering

© 2013 Erwin Toni Soekianto

ABSTRACT

The purpose of this project is to investigate the use of cloud-based services to deliver

cutting-edge applications. For this purpose, a prototype of a reward application using

badges, called GradeBadge, was developed to illustrate and explore this emerging

paradigm. The cloud services utilized by this application include Heroku (for the

application server), MongoLab (for the database), and Facebook (for authentication

and social network integration).

The application server is written in Javascript and runs inside a Nodejs execu­

tion environment. The application is accessed through a Web browser running on

either desktop or mobile computers.. On the client side, this application makes use

of numerous Web technologies, including HTML5, CSS, Bootstrap, and Jquery. The

project also made use of the Git version control system to manage source code and

deployment of the application server to Heroku. The source code repository was

stored remotely through the cloud-based service called GitHub.

The purpose of the GradeBadge application is to help organizations interact with

and motivate their members in a fun way. It keeps the members engaged by giving

badges as rewards for their efforts or achievements. In order to facilitate adoption

among users, GradeBadge is integrated with the social networking site Facebook.

As the result of this implementation in GradeBadge using cloud computing, we

don’t need to spend time on system administration to manage the servers. We also

don’t need to purchase and maintain the hardware. Deployment and re-deployment

are done easily from the local command line. For this reason, our implementation

approach is suitable with student projects or small startup companies.

Cloud computing provides significant cost savings to developers when building

iii

applications that can be scaled up or down almost instantly to accomodate rapidly

changing demand.

ACKNOWLEDGEMENTS

I would like to thank all the people with whom I have worked while pursuing my
master’s degree at California State University, San Bernardino (CSUSB). Studying
in the School of Computer Science and Engineering at CSUSB has been a great
learning experience. I would like to thank the faculty of the School of Computer
Science and Engineering who supported this project by serving on my committee:
Dr. David Turner, Dr. Arturo Concepcion and Dr. Richard Botting.

TABLE OF CONTENTS

Abstract... iii

Acknowledgem en ts v

List of Tables.. x

List of Figures xi

1. Introduction.. 1

1.1 Background.. 1

1.2 Technology Overview... 3

1.2.1 Facebook ... 3

1.2.2 Heroku... 3

1.2.3 MongoDB... 3

1.2.4 MongoLab.................... 4

1.2.5 Git... 4

1.2.6 Bootstrap... 4

1.2.7 Jquery... 4

1.2.8 Nodejs... 4

1.3 Project Purpose.................. .. 5

1.4 Project Scope.. 5

1.5 Related Work.. 6

1.6 Definitions, Acronyms, and Abbreviations 6

vi

2. Software Requirements Specification .. 9

2.1 External Interfaces Requirement..................................... 9

2.1.1 Hardware Interfaces ... 9

2.1.2 Software Interfaces... 9 •

2.1.3 Communication Interfaces.. ' 9

2.2 Functional Requirement.. 10

2.2.1 Create Group... 10

2.2.2 Create Badge................................ 10

2.2.3 Add Member... 11

2.2.4 Issue Badges to Members.. 11

2.2.5 View Badge Earned.. 11

2.2.6 Share Badge to Social Networking... 11

2.3 Performance Requirement... 11

2.4 Design Constraint .. 11

2.5 Software System Attributes 12

3. System Architecture.. 13

3.1 Overview. .. 13

3.2 Deployment Workflow .. 14

3.2.1 Developers/Release Manager.. 15

3.2.2 Heroku... 16

3.2.3 MongoLab... 17

3.2.4 Facebook .. 17

3.2.5 Client Browser 17

4. System Design ..18

4.1 Design Overview.. 18

4.2 Model View Controller Architecture.. 19

vii

4.3 Bandwidth Reduction Strategy . . ,... 19

4.3.1 File Compression.. 19

4.3.2 Content Distribution Network Resources................................. 20

4.3.3 Caching.. 21

4.4 Server-side Design... 23

4.4.1 Request Processing... 23

4.4.2 Configuration.. 24

4.4.3 Nodejs Modules.. 26

4.5 Mapping of Model Classes to MongoDB .. 34

4.6 Request Handler Operation .. 38

4.7 Client-side Architectural Design.. 42

5. Database Design 44

5.1 Overview.. 44

5.1.1 MongoDB... 44

5.1.2 MongoLab... 44

5.1.3 Documents .. 44

5.1.4 Collections... 45

5.2 Data Model.. 45

5.2.1 User Collection... 46

5.2.2 Group Collection... 47

5.2.3 Badge Collection.. 47

5.2.4 Group Admin Links Collection .. 48

5.2.5 Group Member Links Collection.. 48

5.2.6 Badge User Links Collection.. 48

5.2.7 Group Badge Links Collection... 49

viii

6. Project Implementation .. 50

6.1 Loading Screen.. 51

6.2 Login Screen.. 52

6.3 Group Page.. 54

6.4 Add New Group Page ... 55

6.5 Group Page.. 56

6.6 Group Badge Page.. 57

6.7 Add New Badge Page .. 58

6.8 Logging Counters Page.. 59

6.9 Memory Statistic Page.. 60

7. Conclusion and Future Direction .. 61

7.1 Conclusion... 61

7.2 Future Direction ... 61

References... 63

ix

LIST OF TABLES

5.1 User Collection................. 47

5.2 Group Collection .. 47

5.3 Badge Collection... 47

5.4 Group Admin Links Collection... 48

5.5 Group Member Links Collection.. 48

5.6 Badge User Links Collection.. 49

5.7 Group Badge Links Collection... 49

x

LIST OF FIGURES

2.1 Use Case Diagram .. 10

3.1 Deployment Diagram... 14

3.2 System Integration . .. 15

4.1 GradeBadge Model View Controller Architecture 18

4.2 Request Processing Sequence Diagram.. 24

5.1 GradeBadge MongoDB Collections.. 46

6.1 GradeBadge Loading Screen.. 51

6.2 GradeBadge Login Screen................. 52

6.3 Facebook Login Screen.. 53

6.4 GradeBadge Group Page.. 54

6.5 GradeBadge Add New Group Page.. 55

6.6 GradeBadge Group Page Added.. 56

6.7 GradeBadge Group Badge Page..................... 57

6.8 GradeBadge Add New Badge Page...................................... 58

6.9 GradeBadge Logging Counters Page... 59

6.10 GradeBadge Memory Statistic Page.. 60

xi

1. INTRODUCTION

1.1 Background

A long time ago, businesses used to produce their own electric power. Due to an

engineering breakthrough in electric generator and transmission methods, it became

easier to produce and transmit electricity to businesses that once produced their

own electricity. As more businesses started buying electric power, the production

of electricity become less expensive, encouraging more companies to purchase rather

than make their own electricity.

And today, just like the utilities, instead of buying servers to run websites and ap­

plications, businesses rent servers and various services from cloud computing providers.

These cloud resources are provided to companies in a way that resembles people rent­

ing apartments in a single building; even though you are in the same building with

other people, you still have your own space. As more people rent and buy computing

service from large-scale providers, the cost of these services is decreasing.

Today there are many cloud computing providers that provide different types of

services. Some provide application hosting, databases, code repositories, authentica­

tion services, social network integration, etc. Some famous providers are Amazon,

Google, Microsoft, Facebook, GitHub and Heroku.

Google App Engine provides infrastructure to build web applications on the same

scalable systems that power Google applications. Google App Engine supports Python,

Java and the Go programming languages. Google App Engine also provides several

options for storing data, including App Engine Datastore, Google Cloud SQL, and

1

Google Cloud Storage. Windows Azure provides similar services as Google App En­

gine but supports a different set of programming languages, including ASP.NET,

VB.NET, Java, Nodejs and Python.

Amazon also provides scalable cloud computing services, which includes the pop­

ular EC2 virtual machine instances, where users choose the type of operating system

and configuration they need. The virtual machine service provided by Amazon is

more flexible than language-specific executation environments such as Google App

Engine and Heroku, but require more time and expertise to set up and manage.

In this project, Heroku is used as a cloud application platform for running Javascript

in the Nodejs executation environment. Heroku also provide alternative execution en­

vironments that support Scala, Ruby, PHP and others. One of the benefits of using

Heroku (and other similar application hosting services) is that the bandwidth and

CPU capacity can be scaled up or down almost instantly to accomodate rapidly

changing demand. Also, by relying on Heroku to manage the hardware and system

and network administration, developers gain the reliability, performance and security

that is provided by a larger company with staff dedicated to these purposes.

Among all the programming language execution environments supported by Heroku,

this project uses Nodejs, which supports server-side programming in Javascript. On

the client side, the application uses HTML5, Javascript, Jquery library and the Boot­

stap framework. The applciation also relies on the MongoDB database as provided

by the MongoLab service provider.

Nodejs and MongoDB are often used together to build scalable web applications.

The following describe the cloud computing service providers used in this project.

2

ASP.NET
VB.NET

1.2 Technology Overview

1,2.1 Facebook

Facebook is a popular social networking website more than one billion users. It has

proven to be a good platform to use for Web applications that take advantage of its

social networking features, such as friend lists, wall posting, etc [5], Facebook also

allows other applications to access user data with their authorization using its API.

1.2.2 Heroku

Application hosting is a form of cloud computing that enables developers to publish

applications that require Internet connectivity. Heroku is one of the first companies

to offer a remote Nodejs executation environment. Nodejs applications are deployed

to Heroku using git [10]. To depoy, or redeploy, an applicaiton, the developer pushes

a branch of a git repository to a remote git repository provided by Heroku. At

deployment, Heroku extracts the application files from the git repository and runs

the main executable, which is a server process. Heroku is a partner of Facebook and

so it is designed to work easily with it.

1.2.3 MongoDB

There are many different types of cloud-based datastore services to choose from.

For this project we used MongoDB because it works well with Nodejs and Heroku.

MongoDB is a scalable, high-performance, open source, NoSQL document-based

database. MongoDB features include document-oriented storage, indexes, replica­

tion, high availability, auto-sharding, and querying [17].

3

1.2.4 MongoLab

MongoLab is the cloud computing provider for MongoDB database that was used in

this project [18]. MongoLab has a free tier service that facilitates experimentation

by developers, and thus was convenient for this project.

1.2.5 Git

Git is a distributed version control system [6]. This project uses GitHub to store and

manage a remote git repository of application source code. Git was convenient for the

project because Heroku uses git as a means to deploy Web applications to its servers.

Heroku’s git-based deployment system allows easy creation of testing, staging, and

production versions of the application.

1.2.6 Bootstrap

Bootstrap is a freely available CSS and Javascript library created by Twitter. It

provides a responsive design framework that works well for applications that run

inside browsers in desktop computers, tablets and smart phones [2j. The application’s

user interface was contructed using Bootstrap.

1.2.7 Jquery

The GradeBadge application uses Jquery for AJAX transactions and DOM manipu­

lation [15], Bootstrap also depends on Jquery.

1.2.8 Nodejs

Cloud-based services support apps written in several different programming lan­

guages, such as Java, Python, PHP, Javascript, Ruby and more. For this project

we used Javascript running in a Node.js context. Nodejs is a platform built on

4

Chrome’s JavaScript runtime. It’s purpose is to allow construction of fast, scalable

network applications. Nodejs uses an event-driven, non-blocking I/O model that

makes it lightweight and efficient when used for I/O intensive applications such as

Web applications [19].

1.3 Project Purpose

The purpose of this project is to explore the current technologies that enable rapid

development and deployment of desktop and mobile Web applications that can scale

to accomodate any number of users. For this reason, a prototype of a reward appli­

cation using badges, called GradeBadge, was developed to illustrate and explore this

emerging paradigm.

The purpose of the GradeBadge application is to help organizations interact with

and motivate their members in a fun way. It keeps the members engaged by giving

badges as rewards for their efforts or achievements. In order to facilitate adoption

among users, GradeBadge is integrated with the social networking site Facebook.

1.4 Project Scope

Project does not include database sharding features of MongoDB, which would allow

a greater degree of scalability.

The GradeBadge application provides the following functionalities:

• Create Group

• Create Badge

• Add Member

• Issue Badges to Members

• View Badges Earned

5

• Share Badges with Social Networking Contacts

1.5 Related Work

There are other similar mobile Web application and cloud computing demonstration

projects that were built as master’s degree projects at CSUSB. One of these projects

was completed by Manoj Kulkarni [26], This project used Google App Engine for an

application hosting provider and Google App Engine datastore and Java programming

language. It also used Jquery Mobile as UI framework. The GradeBadge project uses

different set of technologies, and is the first project at CSUSB that utilizes Nodejs

and MongoDB. Most other similar projects at CSUSB have relied on either Java,

.NET or PHP.

1.6 Definitions, Acronyms, and Abbreviations

The definitions, acronyms, and abbreviations used in the document are described in

this section.

• GradeBadge: The name of this project.

• API: Application Programming Interface, which is a set of routines that an appli­

cation uses to request and carry out low-level services performed by a computer’s

operating system; also, a set of calling conventions in programming that defines

how a service is invoked through the application [7].

• Cloud computing: the use of computing resources (hardware and software) that

are delivered as a service over a network (typically the Internet) [?].

• Jquery: A Javascript library for building web based applications [15].

• DOM: Document Object Model, which is a platform- and language-neutral in­

terface that will allow programs and scripts to dynamically access and update

6

the content, structure and style of documents [4]. item I/O: Input/Output.

• UI: User Interface.

• CSUSB: California State University, San Bernardino.

• HTML: HyperText Markup Language, which is the authoring language used to

create documents on the Web [24].

• HTTPS: Hyper-text Transfer Protocol Secure, which is a secure network protocol

used to encrypt data transferred between server and client [11].

• MVC: Model-View-Controller is an architectural pattern used in software engi­

neering to isolate business logic from user interface considerations [27],

• UML: The Unified Modeling Language, which is the industry-standard language

for specifying, visualizing, constructing, and documenting the artifacts of soft­

ware systems [23].

• Microsoft Azure: Cloud computing platform provided by Microsoft [25].

• Google App Engine: Cloud computing platform provided by Google.

• Amazon Web Services: Cloud computing platform provided by Amazon [28],

• Heroku: Cloud application platform provided by Heroku [10].

• Android: Mobile operating system provided by Google [1].

• IOS: Mobile operating system provided by Apple [3].

• NoSQL: Types of databases that use key-value pairs for storing data unlike

traditional relational databases. [20].

® JSON: Javascript Object Notation, which is a data representation format using

key-value pairs [16].

7

• Ajax: Asynchronous JavaScript and XML, which is a method for Web applica­

tions to communicate between client browsers and servers [13].

• CDN: Content Distribution Network.

• Slug: The binary deployed to Heroku.

8

2. SOFTWARE REQUIREMENTS SPECIFICATION

2.1 External Interfaces Requirement

2.1.1 Hard ware In ter faces

The application is hosted in the Heroku application cloud service. The Web server

communicates over HTTPS to ensure that data transferred between client and server

is untampered and private. The system is a Web based application; users are required

to use a high-speed Internet connection and use an up-to-date Web browser.

2.1.2 Software Interfaces

Javascript will be implemented throughout the website in order to display the correct

feature the user requested. And HTML5 may be implemented throughout the website

in order to display the correct feature the user requested.

2.1.3 Communication In terfaces

This application is designed to be viewed on any Internet Web browser provided that

Javascript and image features are enabled and the browser is HTML5 compatible.

Performance may vary slightly between browsers; however, the functionality of the

site should not be impaired.

In order to access this application, an internet connection is required. On tablets or

smart phones, the-internet can be accessed through Wi-Fi, 3G, 4G or LTE networks.

9

2.2 Functional Requirement

The functions specified in this section directly correspond to work that will be con­

ducted in this project as shown in the use case diagram in Figure 2.1.

2.2.1 Create Group

This functionality allows organizers or badge issuers to create groups, which will have

a set badge collection.

2.2.2 Create Badge

This functionality allows badge issuers to create badge to be added to badge collection.

A badge would have at least badge name and description.

10

2.2.3 Add Member

This functionality would allow organizers or badge issuers to add members into the

groups as badge recipients. Member would have at least email address and name.

2.2.4 Issue Badges to Members

This functionality would allow badge issuers to issue badges to members.

2.2.5 View Badge Earned

This functionality would allow badge recipients to view all the badges that they have

earned.

2.2.6 Share Badge to Social Networking

This functionality would allow badge recipients to share the badge to their social

networking site such as Facebook

2.3 Performance Requirement

This application is internet based, so the down time of the application server is a

factor. Because we are using Heroku cloud service, the down time of the server

application is a function of Heroku down time. Heroku has reputation of reability,

and during the testing of this project, no down time of Heroku was observed.

The speed of page loads is another performance issue. We are expecting page loads

to be under 2 seconds consistently.

2.4 Design Constraint

This application requires internet-enabled devices and internet connection to perforin.

And every user must have Facebook account to be able to use this.

11

2.5 Software System Attributes

The code will be written to adhere the Google Javascript style guide [9].

12

3. SYSTEM ARCHITECTURE

3.1 Overview

There are three main server entities in this application, which are Heroku, Facebook,

r tabletand MongoLab. When the client browser, either from desktop computer c

or smart phone, runs the application, it will hit the Heroku server, then the

server will connect to Facebook server to check user authentication. And if th

Heroku

e user is

not logged-in, the user will be prompted with the Facebook login screen and submit

the login data to Facebook server.

After the user is authenticated to use the application, the application server will

connect to MongoLab server to read and write the data. The application ser ver may

occasionally go to Facebook server to check the users’ friend list or post to ussr’s wall

or check whether the user is still logged-in.

This application uses HTTPS exclusively for security reasons, except in the local

developer environment, where we use unencrypted HTTP, as shown in Figure 3.1.

13

Fig. 3.1: Deployment Diagram

3.2 Deployment Workflow

lopment,There are three type of environments used in the deployment workflow: devel

staging and production.

Developers work on new features or bug fixes in development branches then only

minor updates are committed directly to the stable development branch. Once the

features are implemented and/or set of bugs are fixed, they are merged in tc staging

branch and deployed to staging environment for testing and quality assurance. After

testing is completed, the snapshop of staging branch is kept for production deploy-

14

ment, otherwise the process will repeat until the testing is completed. On the release

date, the working staging branch is deployed to production environment.

Figure 3.2 illustrates the deployment workflow.

[De veI opers / IRelease]Ma riag er _ _ |

Facebook

M o n g o La b

1
-J. J

Client Browser
Fig. 3.2: System Integration

On this project, git is used as code repositories, to manage developments, staging

and production branch. And Heroku toolbelt is also used to set the enviroment config

variable for each deployment. Heroku allows users to use git to deploy automatically

from local repositories.

3.2.1 Developers/Release Manager

In this project, developers first do unit testing in their local machines, then after the

system reaches a certain point, the developer himself or assigned release manager will

15

use git to push the changes to staging or production repositories that are connected

to respective Heroku servers.

Below are the commands the developer/release manager uses to start the applicar

tion in the staging enviroment.

$ foreman start

18:43:16 web.1 : started with pid 5540

18:43:16 web.1 : listening on 5000

Below are the commands for developer/release manager commits changes to master

branch of the local repository, then followed by a push to master branch of the remote

repository.

$ git status

$ git add .

$ git commit -m ’’message here”

$ git push origin master

Below are the commands for developer/release manager uses to push to staging

environment.

$ git push staging master

3.2.2 Heroku

In this project there are two sets of heroku instances used: staging and production.

The application running in Heroku connects to a database server running inside Mon-

goLab using the MongoDB protocol to read and/or write data to database. Heroku

also talks to Facebook servers via Facebook’s Open Graph API.

Below is the sample command in Heroku to create staging environment

$ heroku create —remote staging

16

Below are the sample commands in Heroku to add environmetal variables in remote

environment

$ heroku config : set S3_KEY=XXX —remote staging

$ heroku config : set S3_SECRET=YYY —remote staging

3.2.3 MongoLab

In this project there are three sets of mongo databases used: development, staging

and production. It is important to keep the versions of databases since new versions

of changes may include changes in database structure, so rolling back or forward the

application version would not cause any error.

Below is the command on how to connect to remote Mongo Database that is hosted

in MongoLab

$ mongo <servername >.mongolab . com:<portno>/<dbname> —u <

dbuser> —p <dbpassword>

3.2.4 Facebook

Facebook is playing an important role in this project. Facebook provides user authen­

tication and social media integration. Facebook allows connection using the Facebook

API and Open Graph API.

3.2.5 Client Browser

Client browser uses HTTPS GET for static content, and HTTPS POST for AJAX

request to Heroku. And client browser also connects to Facebook server directly using

Facebook API and Open Graph API in HTTPS.

17

4. SYSTEM DESIGN

4.1 Design Overview

The GradeBadge application uses a client-server architecture model, and it uses the

Model View Controller (MVC) architecture model for both client and server, as shown

in Figure 4.1. All communication between client and server is done through AJAX

requests submitted through HTTP POST and containing data encoded using JSON.

Client Web Browser
IF

Fig. 4.1: GradeBadge Model View Controller Architecture

18

4.2 Model View Controller Architecture

This application is based on the Model View Controller (MVC) architecture, which is

a software design pattern for separating different components of a software application

[27]. There are three main components in the MVC architecture as follows.

• Model: The model includes data in the application and the business rules that

apply to it.

• View: The view includes the VI components in the application. The UI compo­

nents are responsible for presenting the model and for collecting user input.

• Controller: The controller is responsible for updating the data in the model and

notifying the view about changes in the model.

4.3 Bandwidth Reduction Strategy

The following sections, describe the three strategies used in this project to reduce

consumption of bandwidth. Bandwidth is one of the major costs to consider when

building a scalable application using cloud computing services, so minimizing band­

width consumption becomes critical.

4.3.1 File Compression

In this application, in order to reduce the bandwidth consumption, files that are

transferred from the application server will be compressed in the gzip format if the

client browser supports it, which will result in smaller files. The following code shows

how browser requests for static resources are tested to see if the browser supports

gzip compression. This code appears in the req_file module.

if (file, gzip !== undefined &&

req . headers [’ accept—encoding ’] !== undefined &&

19

req . headers [’ accept—encoding ’]. indexOf (’ gzip ’) !== — 1)

{
return app.http . replyCached (res , file, gzip , file, type , file

. etag , ’gzip ’) ;

} else {

return app_http . reply Cached (res , file, data , file . type , file

■ etag);

}

In addition to checking whether the browser supports gzip compression, the above

code also checks for any etag value sent by the browser. The etag functions as a

version identifier, which the browser sends to the server with the request message to

see whether the file is different from what is in the browser cache and what the server

would return. If the etag indicates that the file is current, the server doesn’t need to

return the file; it simply returns a code indicating that the browser’s cached version

of the file is current. The following shows how this is done in code.

if (req . headers [’i f—none—match ’] ■ -= file.etag) {

return app^http . replyNotModified (res) ;

}

4.3.2 Content Distribution Network Resources

In this application, we rely on content distribution networks (CDNs) to deliver some

static resources to browsers without consuming bandwidth to the application server.

For example, the application relies on the Bootstrap UI framework. The files for this

framework are available through a CDN provided for free to application developers.

The following code shows how GradeBadge loads the CSS component of the Bootstrap

system.

20

< 1 i n k href=”//netdna .bootstrapcdn. com/ twitter—bootstrap/

2.2.2 / css/bootstrap . css” rel=”stylesheet”>

4.3.3 Caching

In this application, we implemented a caching strategy in which every request is

checked to see whether a needed file has been modified or is cached in the client

browser. This is done by examining an etag value that identifies a version of the

requested file. If the browser’s version of the file is current, then the server replies

with a code of 304, which indicates that the file is current. If the etag does not identify

the current version of the file, then the server return the current version of the file.

This strategy is implemented to reduce unnecessary consumption of bandwidth.

The following describes the four possible responses from the server when the

browser requests a file. The source code is taken from the appJittp modul.

• Reply Not Found: This is the response when the requested file is not found; the

server returns the code 404, as shown in the following code snippet.

res . writ eHead (404 , {}) ;

• Reply Not Modified: This is the response when the requested file is not modified

as determined by comparing the browser’s etag with the server’s etag. The

following shows how this is done in the code. Note that the server takes this

opportunity to reset the expiration time of the requested file to one year later,

res . writ eHead (304 , {

’Connection’ : ’keep-alive’,

’Proxy—Connection ’ : ’keep-alive ’ ,

’Cache—Control ’ : ’max—age=31536000 ’,

21

’ Expires ’

31536000000)

});

: new Date (Date . now () 4-

• Reply Not Cached: This is the response when the requested file is not cached in

the client browser. The following shows how this is done in the code, where the

server responds by returning the requested file.

res . writ eHead (200 , {
’text/html ’,

buffer . length ,

’keep-alive ’ ,

’keep-alive ’ ,

’no-cache ’ ,

’no—cache, no—store ’

’ Content—Type ’

’ Content—Length ’

’ Connection ’

’Proxy—Connection ’

’Pragma ’

’Cache—Control ’

■});

• Reply Cached: This is the response when the requested file is cached in the client

browser, in which case the server will reset the expiration date of the file to one

year later. The following shows how this is done in the code.

res . writeHead (200 , {

’ Content—Type ’ : contentType ,

’ Content—Length ’ : * buffer . length ,

’ Connection ’ ’keep-alive ’ ,

’ Proxy—Connection ’ ’ keep-alive ’ ,

’Pragma ’ ’ public ’ ,

’Cache—Control ’ ’max—age = 31536000 ’,

’Vary’ ’ Accept—Encoding ’ ,

22

’ Expires 5

31536000000)

: new Date (Date. now () 4-

’ ETag ’ : etag ,

’ Content—Encoding ’ : contentEncoding

});

4.4 Server-side Design

4.4.1 Request Pro cessing

In Nodejs, components are organized into modules, which can function as namespaces.

In this project, all Nodejs modules that start with req_ are request handlers that get

requested from the router module. All Ajax requests will go through the req.op

module, which verifies that the user is logged into Facebook and the application

version is current. Every request passing through req_op must contain a Facebook

access token and application version identifier. If the user is not logged into Facebook,

then req_op returns the JSON document login:true. If the application version is not

current, then req.op returns the JSON document ver:true, as shown Figure 4.2

23

P. Main ’! Operation j ?,J' Facebook j) Operation ' J Model TT Ajux ’I i L Router___ J yV'Modulo j Module I_ Module { j__ Module____ j
handle **!

request U__
Icheck \
■ https J

i

I

I
handle request

I
parse JSON I------------------------r
-v check !

) application I
.J version ; !

i

I

I check login

| handle operation I
J perform
; operation
b—------------ —

I

I
send reply

Fig. 4.2: Request Processing Sequence Diagram

4.4.2 Configuration

The following are the list of configuration files required on the server side.

• .env: This is the setup file that contains environmental variables. This file only

exists in the developer local environment. The same environmental variables

need to be present in the Heroku execution environment, however, they are

specified through another mechanism, namely through executing the Heroku

config command for both staging and production environments.

The following is an example of the environmental variable values that could be set

in the development environment. In this example, FB_A.PP„ID is the Facebook

application ID and FB-SECRET is the Facebook application secret. (For each

environment, we are using a different Facebook application instance.) PORT is

the HTTP port number that the server will listen to for connections. APP-VER

is the current application version. MONGO-URI is the mongo database connec­

tion string. (We use different database instances for each environment.)

24

FBJYPPJD=466760923387961

FBJSECRET=75e7a042473a989a3b876d3ec8749920

PORT=5000

APPJVER=2

MONGO_TJRI=mongodb: // app : gradebadgel23@

ds045757 . mongolab . com:45757/gb—d

• .gitignore: This is the setup file that contains matching patterns that tell git

which files should be ignored (not placed under version control) when committing

to a branch of the local repository.

• .slugignore: This is the setup file that contains a list of files or folders that will

be ignored when calculating the slug limit in Heroku.

• package.json: This is the setup file that contains a list of Nodejs dependencies

and engine version to use when deploying the application. This file also contains

the application name, version and description, as shown in the following.

{
’’name” : ” gradebadge” ,

’’version”: ”0.0.1”,

’’description”: ’’Grade Badge System”,

’’ dependencies ” : {

’’mongodb”: ”1.2.13”

},

” engines ” : {

’’node”: ”0.8.21”,

”npm”: ”1.2.12”

}

}

25

• Procfile: This is the setup file that tells Heroku how to launch the application,

as shown in the following.

web: node main . j s

4.4.3 Nodejs Modules

Below are the list of files that are used when the server executes.

• main.js: This is the main module in Nodejs, which contains code that verifies

all necessary environmental variables are set correctly. It also invokes initializa­

tion functions of other modules to start the application. After initialization is

complete, the main module starts the HTTP request handling loop.

The following is the part of the code in the main module where it initializes the

model, router and fb modules and runs them asynchronously.

var n = 3;

function done() {

if (—n = 0) {

router.start () ;

}

}
model . init (done) ;

router .init(done);

fb .init(done);

• router.js: This module routes incoming requests to the appropriate module.

The following is the part of the code in the router module where it checks for

pathname of the incoming request and routes the request to a corresponding

module request handler.

26

function route(req, res) {

var pathname = url . parse (req . url). pathname ;

if (pathname ----- ’/’) req_root . handle(req , res)

else if (pathname ■ verpath) req_app . handle (req , res)

else if (pathname issuerpath) req,issuer . handle(req

, res)

else if (pathname ■ ’/mem’) req.mem . handle (req , res)

else if (pathname = ’/counters’) req_counters . handle (

req , res)

else req_rootdir .handle (req , res) ;

}

• app_ajax.js: This module contains the application-wide AJAX handling routines.

The following is a sample function of the Ajax module, which is used to send

data back to the browser in J SON format in the utf8 character encoding.

exports.data = function (res , data) {

if (data = undefined) {

data = {};

}
var buf = new Buffer (JSON. stringify ({’data ’ : data}), ’

utf8 ’) ;

res . writeHead (200 , {

’ Content—Type ’: ’application / json ; charset=UTF— 8 ’,

’ Content—Length ’: buf. length ,

’Pragma ’: ’ no—cache ’ ,

’Cache—Control ’no—cache , no—store ’

});

27

res.end(buf);

• app_http.js: This module contains all of the HTTP protocol routines for the

application. The use of caching headers, compression headers and other HTTP

based optimizations are implemented in this module. This file was discussed in

the caching strategy section.

• fb.js: This module contains all code that interacts with Facebook. The following

is a sample initialization function, which will check the Facebook App ID and

secret.

exports, init = function(cb) {

var options = {

hostname: ’graph.facebook.com’,

path.: ’/oauth/access_token ? ’ +

’ client_id = ’ + process . env .FB_APP„ID +

’&client_secret=’ + process . env .FBJSECRET +

’&grant_type=client_credentials ’ ,

method: ’GET’

};

send (options , function (data) {

if (data instanceof Error) {

throw data;

}
if (data . accessokcn = undefined) {

throw new Error (

’fb.init: access-token not returned by facebook. ’

+

28

http://http.js

’\nfb.init: Facebook returned: ’ + JSON. stringify

(data)

);

}

appToken = data. access-token ;

cb (appToken) ;

});

};

• logger.js: This module contains application-wide logging functionalities. The

following is a sample of error logging in this module. The application limits the

number of error messages printed to avoid server slowdown in the case when

there are many errors. A single error is cause for concern and study; recording

a continuous stream of errors would be counter-productive and may expose the

application more easily to denial of service attacks.

exports . errors = function (msg, opt.msg) {

if (errorsPrinted < process . env .LOGGERJVIAXJERRORS) {

-H-errorsPrinted ;

print (’ERROR’, msg, opt.msg);

if (errorPrinted = process . env .IOGGERMAXERROR) {

console, log (’MAX ERROR HIT’) ;

}

}

-H-exports . errorsReceived ;

};

• model.js: This module initializes the database connection pool during server

start up. The following is the code used to establish this connection pool. Note

29

that it uses the MONGO-URJ value from an environmental variable. It also uses

the connection options that were set in the model module.

MongoClient. connect (process . env .MONGOJJRI, connect Options

, function (err , db) {

i f (err) throw err;

exports . db = db;

cb();

});

• req-app.js: This module handles requests for the application’s HTML template

for badge earners. The following is the initialization function of the req_app

module, where it returns the app.html template, replacing FB_APP_ID with

the Facebook application ID prodived through an environmental variable. To

conserve bandwidth, the code uses a gzip compressed version of the file and sets

the etag value.

exports, init = function(cb) {

fs . readFile (’app . html ’ , ’utf8’, function (err , file) {

if (err) throw err;

html = new Buffer (f i 1 e . replace (/FB_APP_ID/g ,

process . env.FB.APPJD) , ’utf8’) ;

etag = app.http . etag (html) ;

zlib . gzip (html, function(err, result) {

if (err) throw err ;

ghtml = result ;

cb() ;

});

});

30

};

• req_counter.js: This module handles request for the logging counter. The follow­

ing is the request handler function of the req-counter module, where it constructs

the page with logging information and sends it back to the browser in the utf8

character encoding and not cached.

exports . handle = function (req , res) {

var page =

’<p>logger errors: ’ + logger . errorsReceived

+ ’</p>’ +
’<p>logger warnings : ’ + logger .

warningsReceived 4- ’</p>’ +

’<p>logger info: ’ + logger. infoReceived

4" ’ </p>’ 4-

’<p></p>

page = new Buffer (page , ’ utf8 ’) ;

app_http . replyNotCached (res , page) ;

}

• req_file.js: This module handles requests for static content. The request han­

dler function of this module is discussed in the Bandwidth Reduction Strategy

chapter where it handles the etag and gzip file compression.

The following is the sample function where it calculates and displays memory

consumption resulting from loading all static resources and compressing them.

These resource are kept in memory at all times to eliminate access to the disk

drive.

function displayStats (files) {

31

var uncompressed = 0, compressed = 0;

for (var i = 0; i < fi 1 es . length ; -H-i) {

uncompressed += files [i]. data, length;

if (files [i]. gzip !== undefined) compressed += files [

i] . gzip . length ;

}

console . log (’memfile bytes, uncompressed: ’ +

Math, ceil (uncompressed / 1024 / 1024) + ’ MB’);

console . log (’memfile bytes, compressed: ’ +

Math, ceil (compressed / 1024 / 1024) + ’ MB’);

}

req-issuer, js: This module handles request for application HTML template for

badge issuers. The following is the initialization function of the req-issuer mod­

ule, where it returns the issuer.html template, replacing FB_APP_ID with the

Facebook application ID prodived through an environmental variable. To con­

serve bandwidth, the code uses a gzip compressed version of the file and sets the

etag value.

exports, init = function(cb) {

fs . readFile (’ issuer . html ’ utf8 ’ , function(err, file)

{
i f (err) throw err ;

html = new Buffer (file . replace (/FB-APP-ID/g ,

process . env . FB_APP_ID) , ’ utf8 ’) ;

etag = app.http . etag (html) ;

zlib . gzip (html, function (err , result) {

i f (err) throw err ;

32

ghtml = result;

cb() ;

});

});

};

• req_mem.js: This module handles request for memory usage. The following is

the request handler function of reqanem module where it contruct the page with

memory usage information and send it back to client in utf8 format and not

cached.

exports . handle = function (req , res) {

var usage = process . memoryUsage () ,

page = ’<p>Heroku limit = 512 MB</p>’ +

’<p>rss = ’ + Math, ceil (usage . rss

/ 1024 / 1024) 4- ’ MB</p>’ +

’<p>heapTotal = ’ + Math. cei 1 (usage .

heapTotal / 1024 / 1024) + ’ MB</p>’ +

’<p>heapUsed = ’ + Math. cei 1 (usage . heapUsed

/ 1024 / 1024) + ’ MB</p>’;

page = new Buffer(page, ’utf8 ’) ;

app_http . replyNotCached (res , page) ;

}

• req_root.js: This module handles request for static content under the root URL.

The following is the request handler function of req_root module where it contruct

the html page that will redirect the page to the correct path with current version

number.

33

var html = new Buffer (’<script >location . replace (”/’ T

process . env . APP.VER + ’/”);</script >’, ’ utf8 ’) ;

exports . handle = function (req , res) {

app_http . replyNotCached (res , html) ;

};

• req-op.js: This module handles all AJAX request from client and routes to ap­

propriate modules. The following is the part of request handler function where it

checks the pathname of incoming request and call the apporiate module handler,

exports . handle = function (req , res) {

app„ajax . parse (req, function(data) {

var pathname = url . parse (req . url) . pathname ;

if (pathname = ’/op/save—group ’) {

op .save-group . handle (data , res) ;

}else if (pathname ’/op/read—groups—by—admin ’)

{
op_read-groups_by.admin . handle (data , res) ;

});

});

}

4.5 Mapping of Model Classes to MongoDB

There will be one Nodejs module to represent the mongoDB collection, named model_(

collection name).js. And many-to-many relationships are represented by linking

documents, named (a)-(b)-links.

The following list below are the list of files that are used to Model to represent

MongoDB.

34

• modeLgroup.js: this Nodejs module represents Groups collection. The following

is one of functions in the modeLgroup to get group document by given id.

exports . getBylds = function (group.ids , cb){

model .db. collection (’ groups ’) . find ({ ’ _id ’ : {Sin:

group _ids} }) . to Array (function(err , groups){

model. db. close () ;

if (err) return cb(err);

cb(groups);

});

};

• model-badge.js: this Nodejs module is used to manage the database collection

of badges. The following is one of the functions in the model-badge module to

create badge documents in the badge collection from a given document.

exports . create = function (badge , cb) {

model .db. collection (’ badges ’). insert (

badge,

function (err) {

model. db . close () ;

if (err) return cb(err);

cb() ;

}

);

};

• modeLuser.js: this Nodejs module represents the Users collection. The following

is one the functions in the model-user module; it records the login activity of the

user by updating the last login timestamp in the user document.

35

exports, login = function(user, cb) {

model .db. collection (’users ’) . save (

user ,

function (err) {

model. db . close () ;

if (err) return cb(err);

cb() ;

}

);

};

modeLgroup.admin, js: this Nodejs module represents the group^admin Jinks col­

lection, which is used to associate groups and admins through a many-to-many

relationship. (A group has one or admins and an admin has one or groups.) The

following is one of the functions in the model_group_admin module; it gets the

array of group ids from a given admin user through their id.

exports . getGroupIdsByAdminld = function (admin , cb) {

model .db. collection (’group.admin .links ’ , { ’gid ’ : true})

. find (admin) . to Array (function (err , group, ad min .links)

{

model. db . close () ;

if (err) return cb(err);

var group.ids = group.admin.links .map(function (

group.admin.link) {return group.admin.link . gid ;}) ;

cb (group.ids) ;

});

};

36

• model_group_member.js: this Nodejs module represents the group_member_links

collection. The following is one of the functions in this module; it gets the users

that are members of a group.

exports . getMemberldsByGroupId = function (group , cb) {

model .db. collection (’ group_admin_links ’ , { ’ uid ’ : true})

. find (group).toArray(function(err , group .admin Jinks)

{

model. db. close () ;

if (err) return cb(err);

console . log (’ model_group_admin getMemberldsByGroupId

group.admin Jinks = ’+ JSON. stringify (

group _adm in Jinks)) ;

var memberJds = group_admin Jinks .map(function (

group _admin_link) {return group, admin-link, uid;});

cb (member.ids) ;

});

};

• model_user_badge.js: This Nodejs module represents the user_badgeJinks collec-

tion. The following function of the model .user-badge module is used to create

the document that links user with badges (through their ids) to show which

badges are own by a given user.

exports, create = function(user-badge, cb) {

model .db. collection(’user_badgeJinks ’) . insert(

user-badge ,

function (err) {

model. db . close () ;

37

if (err) return cb(err);

cb() ;

}

);

};

• model-group-badge.js: This Nodejs module represents the group_badge_links col­

lection. The following function from this module creates the documents that link

groups with badges.

exports . create = function (group.badge , cb) {

model .db. collection (’group .badge-links ’) . insert (

group.badge ,

function (err) {

model. db. close () ;

if (err) return cb(err);

cb() ;

}

);

};

4.6 Request Handler Operation

There will be one Nodejs module to handle Ajax requests from browsers, named

op_(request-type).js. Every request may read, write or update to and from more than

one collection.

The following are the list of files that define the request handler modules.

• op_read_badges_by_group.js: This operation is for requesting all badges in a given

38

group. The following shows how this is done in the code, where the operation

gets the array of badge ids for a given group id through a group.badge linking

document. After getting the badge ids, it gets the badge documents the array

of badge ids.

exports. handle = function (data, res) {

var group — { gid: data, gid };

model-group.badge . getBadgeldsByGroupId (group , function (

bids) {

if (bids instanceof Error) {

return app.ajax.error(res);

}

model-badge .getByIds(bids, function(badges) {

if (badges instanceof Error) {

return app.ajax .error(res);

}

return app.ajax . data (res badges);

});

});

};

• op_read_groups_by_admin.js: This operation is for getting the group documents

for a given group admin user. The following shows how this is done in the code,

where the operation gets the array of group ids for a given admin id through

the group_admin linking document. After obtaining the group ids, the operation

gets the group documents from the array of group ids.

exports. handle = function (data, res) {

var admin = { uid : data.uid }; i

39

model_group_admin . getGroupIdsByAdminld (admin , function (

gids) {

if (gids instanceof Error) {

return app.ajax.error(res);

}

modeLgroup . getBylds (gids , function (groups) {

if (groups instanceof Error) {

return app_ajax.error(res);

}

return app.ajax . data (res , groups);

});

});

};

• op_save_badge.js: This operation is for creating a new badge. The following

shows how this is done in the code, where the operation adds the badge document

in memory to badge collection in the database. After creating a new badge, the

operation creates the linking document that associates the badge with a group,

exports. handle = function (data, res) {

var badge = { name: data.name, desc: data.desc, pict :

data.pict, gid: data, gid };

model-badge .create (badge , function(err) {

if (err) {

return app_ajax.error(res);

}
var group.badge = { bid : badge.-id, gid : badge, gid

40

model-group-badge . create (group.badge , function(err) {

if (err) {

return app.ajax.error(res) ;

}

});

});

return app.ajax . data (res , {gid : badge. _id});

};

• op_save.group.js: This operation is for creating new groups. The following shows

how this is done in the code, where operation adds a group document to group

collection and creates the linking document that associates the group with an

initial admin user.

exports . handle = function (data, res) {

var group = { name: data.name, desc: data.desc, uid:

data . uid };

model.group . create (group , function (err) {

if (err) {

return app.ajax.error(res) ;

}

var group.admin = { gid : group. .id, uid : group. uid

};
model.group .admin . create (group.admin , function(err) {

i f (err) {

return app.ajax.error(res) ;

}

});

41

return app_ajax. data(res , {gid : group, -id});

});

};

4.7 Client-side Architectural Design

The following is the list of files that are used on the client-side.

• app.html: This is the html template for generating the badge earners Web page.

This file contains the HTML skeleton of the HTML page. The following is a list

element appearing in the template; this list element will be populated by data

after page load by Javascript, which gets the data through an Ajax call to the

application server.

<ul id=” groups-list ” class =” thumb nails”>

<!— auto generated —>

• issuer.html: This is the HTML template for the badge issuer Web page, which

is a skeleton from which the page is constructed. The following is a sample of

HTML code from this template; it is the list element that contains the logged

in user’s name. This name is determine after login, and inserted as content by

Javascript.

<div class —’nav-c oil apse collapse ”>

<ul class=”nav”>

<li id=”name”> <1— auto generated —>

<1 i id=” login” style=” display : none;”x/li >

. . . other menu items . . .

42

</div>

• public_root/channel.html: This file is static content required by Facebook. The

following is the content of this file.

<script src=”//connect. facebook . net/en_US/ all . js”></

script >

• public-joot/favicon.ico: This is the favicon image requested by browsers; it is

static content.

• public_ver/app.js: This is the client-side Javascript. The following is a sample

function, which performs screen transition. When transitioning to a screen, this

function calls the screen’s init function. The init function may use Ajax to

retrieve data from the server needed to present current information to the user.

a.screen = function(screenName , speed) {

if (speed - undefined) speed — 300;

var newScreen = screens [screenName];

if (newScreen . init) newScreen . init () ;

currentScreen . transitionTo (speed , newScreen) ;

currentScreen = newScreen;

};

43

5. DATABASE DESIGN

5.1 Overview

5.1.1 MongoDB

MongoDB is a scalable, high-performance, open source, NoSQL document-based

database. MongoDB provides a document-oriented storage paradigm, including' in­

dexes for fast queries, replication for increased reliability, and auto-sharding for scal­

ability [17].

5.1.2 MongoLab

MongoLab is a cloud computing provider for the MongoDB database that was used

in this project [18]. MongoLab has a free tier service, which was used for the purposes

of this project.

5.1.3 Documents

Data in MongoDB is stored in documents. Every document must have a primary

key named _id and reside in a document collection. Compared to SQL databases,

documents in a collection are like rows in a table. Unlike SQL databases, MongoDB

documents don’t adhere to a schema, other than the requirement they have a _id field

that serves as a primary key. When creating a new document, if you don’t specify an

_id field, mongoDB will add it automatically [17].

Although document structure is not enforced in MongoDB, different data models

44

and structure may have significant impacts on MongoDB and application perfor­

mance. So it is good to keep some kind of structure or pattern in the data model

[17]-

5.1.4 Collections

Documents in MongoDB are organized into collections, and basic database operations

are performed relative to collections. Indexes can be assigned to any field or subfield

contained in documents within a MongoDB collection; they are defined on a per-

collection level. Indices are need to perform queries that run faster than linear time.

[17]

5.2 Data Model

In this project, there are three main collections: User, Group and Badge. There

are four linking collections to represent the many-to-many relationships between the

main collections that are needed by the application. These collections are described

in the following, and shown in the Figure 5.1.

• user: This collection contains the user information.

• group: This collection contains the group information.

• badge: This collection contains the badge information.

• group_admin_links: This linking collection contains pairs of group ids and user

ids, which represent the many-to-many relationships between groups and their

admins.

• group_memberJinks: This linking collection contains pairs of group ids and user

ids, which represent the many-to-many relationships between groups and their

members.

45

• badge-user-links: This linking collection contains pairs of badge ids and user

ids, which represent the many-to-many relationship between badges and their

earners.

• group_badge_links: This linking collection contains pairs of group ids and badge

ids, which represent the many-to-many relationships between groups and their

badges.

Badge Collection

Document Attribute

id
lastjogin

Group Badge Links Collection

User Collection

Group Collection

Group Member-Links Collection

Fig. 5.1: GradeBadge MongoDB Collections

Group Admin Links Collection

5.2.1 User Collection

The user collection contains user documents, which contain the information shown in

Table 5.1.

46

Thb. 5.1: User Collection

Document Attribute Sample Data Description

Jd 34728373 Facebook user ID

last-login 12/1/13 12:34:56 PM User last login timestamp

5.2.2 Group Collection

This collection contains of group documents, Table 5.2

Tab. 5.2: Group Collection

Document Attribute Sample Data Description

_id 51466591b95b2b5023000001 Auto-generated Group ID

name Yoga CSUSB Group name

desc This is Yoga group in CSUSB Group description

5.2.3 Badge Collection

The badge collection contains badge documents. Table 5.3 shows the information

contained in badge documents.

Ihb. 5.3: Badge Collection

Document Attribute Sample Data Description

Jd 514e34507075ae0c0f000001 Auto-generated Badge ID

name Attended 10 classes Badge name

desc This is badge description Badge description

pict pict 1.png Badge Picture Reference

47

5.2.4 Group Admin Links Collection

The group-admin link collection contains documents that define the admin users

of groups. Table 5.4 shows the information contained in the group-admin linking

document.
Thb. 5.4: Group Admin Links Collection

Document Attribute Sample Data Description

_id 514e34507075ae0c0f000001 Auto-generated Document ID

gid 514e34507075ae0c0f000123 Group ID

uid 514e34507075ae0c0f000456 User ID as Admin

5.2.5 Group Member Links Collection

The group-member link collection contains documents that define the member users

of groups. Table 5.5 shows the information contained in the group-member linking

document.
Tab. 5.5: Group Member Links Collection

Document Attribute Sample Data Description

_id 514e34507075ae0c0f000002 Auto-generated Document ID

gid 514e34507075ae0c0f000123 Group ID

uid 514e34507075ae0c0f000675 User ID as Member

5.2.6 Badge User Links Collection

The badge-user link collection contains documents that define the earner users of

bagdes. Table 5.6 shows the information contained in the badge-user linking docu­

ment. '

48

Thb. 5.6: Badge User Links Collection

Document Attribute Sample Data Description

_id 514e34507075ae0c0f000005 Auto-generated Document ID

bid 514e34507075ae0c0f000975 Badge ID

uid 514e34507075ae0c0f000456 User ID as Earner

5.2.7 Group Badge Links Collection

The group-badge link collection contains documents that define the badges of groups.

Table 5.7 shows the information contained in the group-badge linking document.

Tab. 5.7: Group Badge Links Collection

Document Attribute Sample Data Description

-id 514e34507075ae0c0f000004 Auto-generated Document ID

gid 514e34507075ae0c0f000158 Group ID

bid 514e34507075ae0c0f000953 Badge ID

49

6. PROJECT IMPLEMENTATION

The GradeBadge application is designed to work on mobile, tablet devices and desktop

computers. The UI of the application is developed using Bootstrap. When a page

requires the data to be loaded from server or modified or deleted, a request is sent to

the Web server over HTTPS. The requests are sent to the Web server using Ajax. For

handling Ajax requests and responses, this application uses JQuery Ajax API. All UI

components are dynamically created or initialized in response to the data received

from the Web server.

50

6.1 Loading Screen

When the GradeBoard application is loaded, a loading screen is presented to the user

as shown in the Figure 6.1. The loading screen shows application logo and loading

progess bar, and the screen is automatically redirected after the loading completed.

Fig. 6.1: GradeBadge Loading Screen

51

6.2 Login Screen

GradeBadge uses Facebook account for users to login. When the user is not logged-in

to Facebook, the screen is automatically redirected to the Facebook login screen as

shown in Figure 6.2. Every user in the system can be badge issuer and badge earner.

52

Q httpi:/Avww.facebook.com(,login.php'api kty=-l27r-S3243998077&5Hp apiJo

£/•

Facebook - Google Chrome

Log in to use your Facebook account with Staging,

Email or Phone: you@example.com

Password:

Forgot your password?

Sign up for Facebook Cancel

Fig. 6.3: Facebook Login Screen

53

mailto:you@example.com

6.3 Group Page

Badge issuers have access to list of groups that they manage as shown in Figure 6.4.

GradeBadge My Badges My Groups Eiwih Soetaanto

Add New Group

YogaXYZSB
This is YOGAXYZSB Description

©Grade Badge 2013

Fig. 6.4: GradeBadge Group Page

54

6.4 Add New Group Page

Badge issuers can add new group by clicking at ” Add New Group” button in group

page, then the pop-up modal window to create new group will appear as shown in

Figure 6.5.

Fig. 6.5: GradeBadge Add New Group Page

55

6.5 Group Page

New groups have been added to group page as shown in Figure 6.6.

GradeBadge nyw

Group List I manage:
AM Group

YogaASDF YogaASDFGHKJ

ThsisYraaASCF TteisVogaASDFGHJ

YogaCSUSB

This Is Yoga place iiM

YogaRC

This is Yog3 Rancho Cucamonga

Yoga Riverside

Tlis is Yoga Riverside

Yoga Upland

Ths is h best Yoga place tnUpland

i Badges I Badges

?-GradeBadge20i3

Fig. 6.6: GradeBadge Group Page Added

56

6.6 Group Badge Page

Badge issuers have access to list badges in a group by clicking at ’’Badge” button in

a group thumbnail, then the application will display the list of badges in the selected

group as shown in Figure 6.7.

GradeBadge iWPaga wps

Yoga CSUSB

Add ties Badge

Attend 10 classes Attend 15 Attend 5
Tits is tor peopfe who attended it) classes This is attend 15 This is amended 5

pEH pkl3 pict2

Beach Session
this is beach session

pkt 4

©Grade Badge 2013

Fig. 6.7: GradeBadge Group Badge Page

57

6.7 Add New Badge Page

Badge issuers can add new badge by clicking at ’’Add New Badge” button in badge

page, then the pop-up modal window to create new badge will appear as shown in

Figure 6.8.

Fig. 6.8: GradeBadge Add New Badge Page

58

6.8 Logging Counters Page

The application also keeps track of errors, warnings and number of times a function

is being callled. It can be accessed through web page as shown in Figure 6.9.

<-[C 0 local hostiSOOO/counters

Number of limes login messages were returned for ajax requests: 0

save-group requests: 0

read-admin-group requests: 2

save-user requests: 0

unknown op requests: 0

logger errors: 0

logger warnings: 7 .

logger info: 0

Fig. 6.9: GradeBadge Logging Counters Page

59

6.9 Memory Statistic Page

The application also monitors the memory and bandwidth usage of the application

server. It can be accessed through web page as shown in Figure 6.10.

t C D localhost:5000/mem

Heroku limit = 512 MB

rss=23MB

heapTotal = 13 MB

heapUsed=8MB

Fig. 6.10: GradeBadge Memory Statistic Page

60

7. CONCLUSION AND FUTURE DIRECTION

7.1 Conclusion

GradeBadge is a cloud-based Web application that is hosted in Heroku, uses Nodejs

and MongoDB, and that uses a responsive Web page design that works well inside

browsers in desktop, tablet and smart phone computers. GradeBadge enables users

to login with their Facebook account to simplify authentication and provide social

networking features such as wall posting of badges earned and friend badge informa­

tion.

This implementation in GradeBadge uses cloud computing, so developers don’t

need to spend time on system administration to manage the servers. They also don’t

need to purchase and maintain hardware. Deployment and re-deployment are done

easily from the local command line. For this reason our implementation approach is

suitable with student projects or small startup companies.

Cloud computing provides significant cost savings to developers when building

applications that can be scaled up or down almost instantly to accomodate rapidly

changing demand.

7.2 Future Direction

The GradeBadge application can be used as a sample to showcase the development of

cloud-based cross-platform applications. This application can also be extended and

enhanced in the future as follows.

61

• Auto-sharding: Add auto-sharding to the Mongo database in order to support

greater scalability. When the data in a collection gets very large, sharding

will partition the collection into seperate sections that are stored on different

servers. The MongoDB sharding feature automatically distributes and balances

data across shard servers.

• Other social networking: Implement authentication and integration with other

social networking applications such as Twitter, Tumblr, Googled-, etc. This will

better serve users who prefer to use other social networking systems.

• Native App: Develop native versions of the application for iOS, Android and

Windows Mobile. Even tough GradeBadge application can be accessed via Web

browser from tablets or smart phones, it is also important to have a native version

of the application, because a native application would provide more responsive

user interface.

• API: Develop an API to enable other applications to integrate a reward system

module. This will allow GradeBadge to used by larger number of users that are

using other established applications such as forums, blogs, and other content

management systems.

62

REFERENCES

[1] Android Mobile Computing Platform, (undated). [Online], Viewed 2013

February 14. Available: http://developer.android.com/about/index.html .

[2] Bootstrap, (undated). [Online]. Viewed 2013 March 12. Available:

http: //twitter.github.com/bootstrap/.

[3] Developer for IOS - Apple Developer, (undated). [Online]. Viewed 2013 March

22. Available: https://developer.apple.com/technologies/ios/.

[4] Dom Document Object Model, (undated). [Online]. Viewed 2013 February 6.

Available: http://www.w3.org/D0M.

[5] Facebook Developers, (undated). [Online]. Viewed 2013 March 8. Available:

https: / / developers.facebook.com.

[6] Github. (undated). [Online]. Viewed 2013 March 23. Available:

https://github.com/.

[7] Glossary, (undated). [Online]. Viewed 2013 March 1. Available:

http://technet.microsoft.com/en-us/library/bb742416.aspx.

[8] Google Developers Academy, (undated). [Online]. Viewed 2013 January 31.

Available https://developers.google.com/appengine/training/intro/whatisgae/ .

[9] Google Javascript Style Guide, (undated). [Online]. Viewed 2013 March 14.

Available:

http: //google-styleguide.googlecode.com/svn/trunk/javascriptguide.xml.

63

http://developer.android.com/about/index.html
file:////twitter.github.com/bootstrap/
https://developer.apple.com/technologies/ios/
http://www.w3.org/D0M
developers.facebook.com
https://github.com/
http://technet.microsoft.com/en-us/library/bb742416.aspx
https://developers.google.com/appengine/training/intro/whatisgae/

[10] Heroku How It Works, (undated). [Online]. Viewed 2013 March 6. Available:

http://www.heroku.com/how.

[11] Http secure node.js. (undated). [Online], Viewed 2013 March 7. Available:

http://nodejs.org/api/https.html.

[12] Index overview - mongodb, (undated). [Online]. Viewed 2013 March 2.

Available: http://docs.mongodb.org/manual/core/indexes/.

[13] Jquery ajax, (undated). [Online]. Viewed 2013 March 2. Available:

htt p://api. j query, com/j Query, a j ax/.

[14] Jquery Mobile 1.2 Reference Document, (undated). [Online]. Viewed 2013

February 23. Available:

http://www.jquerymobile.eom/demos/l.2.0/docs/about/features.html .

[15] Jquery Official Document, (undated). [Online]. Viewed 2013 March 2.

Available: http://www.jquery.com/.

[16] Json. (undated). [Online]. Viewed 2013 March 3. Available:

http://www.json.org/.

[17] Mongodb Agile and Scalable, (undated). [Online]. Viewed 2013 March 13.

Available: http://www.mongodb.org/.

[18] Mongolab. (undated). [Online], Viewed 2013 March 14. Available:

http://www.mongodb.org/.

[19] Node.js Manual and Documentation, (undated). [Online], Viewed 2013 March

8. Available: http://nodejs.org/api/ .

[20] Nosql database, (undated). [Online]. Viewed 2013 March 2. Available:

http://nosql-database.org/.

64

http://www.heroku.com/how
http://nodejs.org/api/https.html
http://docs.mongodb.org/manual/core/indexes/
http://www.jquerymobile.eom/demos/l.2.0/docs/about/features.html
http://www.jquery.com/
http://www.json.org/
http://www.mongodb.org/
http://www.mongodb.org/
http://nodejs.org/api/
http://nosql-database.org/

[21] Official Documentation of Google App Engine Java Datastore. (undated).

[Online]. Viewed 2013 March 15. Available:

https://developers.google.com/appengine/docs/java/datastore/.

[22] Official Java Technology Document, (undated). [Online]. Viewed 2013 March 1.

Available: http://www.java.com/en/download/faq/whatis_java.xml.

[23] Unified Modeling Language, (undated). [Online]. Viewed 2013 March 10.

Available: http:// www- 01 .ibm.com/software/rational/uml/.

[24] W3C community, (undated). [Online]. Viewed 2013 February 21. Available:

http://www.w3.org/TR/REC-html40/.

[25] Windows Azure, (undated). [Online], Viewed 2013 March 11. Available:

http://www.windowsazure.com/en-us/develop/overview/.

[26] Manoj Kulkarni. GradeBoard: A Cloud-Based Solution for a Student Grading

System. CSUSB - Masters Project, 2013.

[27] Ph.D Steve Burbeck. Mvc How to use Model-View-Controller, (undated).

[Online], Viewed 2013 March 4. Available:

http://st-www.cs.illinois.edu/users/smarch/st-docs/mvc.html.

[28] Amazon Web Services, (undated). [Online]. Viewed 2013 March 3. Available:

http://aws. amazon .com/.

65

https://developers.google.com/appengine/docs/java/datastore/
http://www.java.com/en/download/faq/whatis_java.xml
ibm.com/software/rational/uml/
http://www.w3.org/TR/REC-html40/
http://www.windowsazure.com/en-us/develop/overview/
http://st-www.cs.illinois.edu/users/smarch/st-docs/mvc.html
http://aws

	Gradebadge: Development of a cloud-based reward application
	Recommended Citation

