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Abstract

This paper provides a glimpse into the world of p-adic numbers, which encom­
passes a different way to measure the distance between rational numbers. Defining a new 
non-Archimedean norm on the field Q allows us to form a new completion as a metric 
space, which we call Qp, the field of p-adic numbers. This paper will explicitly construct 
and define along with other relevant, unfamiliar topics that arise. Simple calcula­
tions and surprising results are examined to help familiarize the reader to the new space. 
Standard algebraic and analytical exercises are performed and discussed in the new set­
ting, such as fcth roots of unity, Hensel’s Lemma, which is the p-adic analog of Newton’s 
Method, Cauchy Sequences, Convergence, the Mean Value Theorem, the Intermediate 
Value Theorem and the Chain Rule. This paper then relates these results to their more 
familiar real counterparts.
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Chapter 1

Introduction

1.1 Non-Archimedean Norms

The concept of p-adic numbers arises from the fact that there exists more than 
one way to (naturally) measure the distance between rational numbers. The Euclidean 
distance, or the standard absolute value, allows us to form a completion of Q as a metric 
space, which is JR. Defining a new norm on Q, particularly a non-Archimedean norm, 
forms a new completion of Q, wliich we call that is distinct for each prime p. This 
norm considers two numbers “close” if their difference is a power of p; the liigher the 
power of p, the “closer” the numbers are considered to be.

We start with the definition of a non-Archimedean norm, which is a fourth 
condition added to the definition of a standard norm on a field. Refer to [KatOZ] (page 
6) for the definition of a norm. Refer to [Fra67] (page 259) for the definition of a field.

Definition 1. Let | ■ | be a norm on a field, F. Then | ■ | is non-Archimedean if

|a; + y| < max(]a;|, |y|) for all x,y 6 F.

This fourth, condition that makes a norm non-Archimedean is referred to as 
the the “strong triangle inequality”. We also say that a metric space endowed with a 
non-Archimedean norm is an ultrametric space.

Working with a non-Archimedean norm yields surprising results in our new 
space.
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Exercise 2. If | ■ | is a non-Archimedean norm on a field, F, then any point of an open 
ball

B(a,r) = {re : |rr — a| < r}

in F is its center, i.e., if b is in B(a,r), then B(b,r) — B(a,r). The same is true for 
closed balls.

Proof. Let | • | be a non-Archimedean norm on an ultrametric space, M. Let B(a, r) C M 
be the open ball of radius r with center a, and let b G B(a, r). Additionally, let x G B(d, r). 
Then |$ — 6| < r and [t> — a| < r by assumption. It follows that

|a; — a| = [(a? — &) + (& — a)| < maxQrr — b\, |d — a|)

by the strong triangle inequality. Since max(|ac — &|, [6 — a|) < r, we have |® — a| < r. 
Thus, we have shown that x G B(a,r).

Since x G B(b,r) was arbitrary, we conclude that B(b,r) C B(a,r). However, since 
|& — a| < r, then a G B(b,r). Now, we choose a point y G B(a,r) and by the same 
argument we can show that y G B(b,r). It follows that B(a, r) C B(b,r). Therefore, 
B(a,r) = B(b,r). Since b was arbitrary, we have established that any point in an open 
ball in an ultrametric space is its center.

Note that the same argument holds for closed balls when we replace “<” with “<”. □

We can use the result of Exercise 2, particularly the case of closed balls, to prove 
another suprising result. However, we need to introduce a definition.

Definition 3. The sphere of radius r and center a in a metric space M is the set

S(a,r) = {a; G M | |rc — a| — r}.

Exercise 4. In an ultrametric space, every triangle is isosceles and the length of the two 
equal sides is greater than or equal to the length of the third side.

Proof. Let A ABC be a triangle in an ultrametric space, M. Consider the longest side 
and label the endpoints A and B. Construct the closed ball with center A with radius 
equal to the length of side AB. Since we have assumed that AB > AC, we know that
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C G B[A,AB]. By our previous result that all points included in a closed ball are its 
center, we have B[A, AB] = B[C, AB]. Since B is contained in the sphere of B[C, AB], 
then BC is the radius of B[C, AB]. Since AB is also the radius of the ball, we conclude 
that AB = BC. Thus, our arbitrary triangle is isosceles. The second part is immediate 
from our assumption, that AB > AC. If AC was indeed the longer side, we would 
construct the closed ball with center A with that length as its radius and obtain the same 
result. □

1.2 The Construction of - The Underlying Structure

We now begin the construction the new space we will examine in this study, the 
field Qp. To do this, we will begin working with general elements in order to build our 
structure. Once our structure is complete and sound, we will rename our players and 
prove that they indeed fit our mold. The following procedure outlines the completion of 
a field with respect to any norm, not necessarily a non-Archimedean norm.

Let F be a field and let | ■ | be a norm on F. We denote {B} as the set of 
all Cauchy sequences with elements in F. For the definition of a Cauchy sequence, see 
[AbbOl] (page 39). We say that two Cauchy sequences are equivalent, {an} ~ {M, if 
d(an, bn) —> 0.

Lemma 5. The equivalence of Cauchy sequences is an equivalence relation.

Proof. The properties follow easily from the definition of the equivalence of Cauchy se­
quences. Let {an}, {&n} and {^} be Cauchy sequences.
Since d(an,an) —> 0, then {an} ~ {an}. Thus, the relation is reflexive.
Assume {an} ~ {6n}- Then, d(an, bn) -> 0. Clearly, d(bn, an) —> 0, and thus, {dn} ~ {an}. 
Thus, the relation is symmetric.
Assume {an} ~ {bn} and {6n} ~ {cn}. Then, d(an,bn) -> 0 and d(6n,Cn) -> 0. Then,

lim d(an,Cn)< lim (d(an, bn) + d(bni Cn)) = 0

by the triangle inequality and the properties of real limits. Thus, d(an,Cn) —> 0 and 
{an} ~ {c^}. Thus, the relation is transitive. □

Let F be the set of equivalence classes of all Cauchy sequences in F. Our goal 
at this juncture is to prove that F is a field. Before we prove this, we must carefully 
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consider the elements and operations in F. The addition and multiplication of Cauchy 
sequences are defined pointwise. Let {an} and {&„} be Cauchy sequences in F.

If {«n} = {«o, «i, 02, • • - } and {£>„} = {bOi bt, b2,...}, 

then define {an + 6n} = {a0 + &o, fli + &i, «2 + &2, ■ • • }

and {an ■ 5n} = {ao ■ &0; ai • ,a2 ■ 62? • ■ •

Lemma 6. If{an] and {bn} are Cauchy sequences, then {an4-6n}> [an—bn} and {an-bnj 
are Cauchy sequences.

Proof. Since {an} and {6n} are Cauchy sequences, fix e > 0. For that value of e, there 
exist integers TVi and N2 such that m,n > TVi implies |ara — am| < | and m.n > N2 
implies |6n — 6m| < |. Let IV = max{7Vi,N2}. Then, m,n> N implies

|(on + 6n) (®m 4~ 6m)| — |(On ^m) 4“ (bn 6m) |

< |an am14" |6n bm\

Thus, {an + 6n} is a Cauchy sequence. We use a similar argument to show {an — bn] is 
a Cauchy sequence.

Finally, to show that {an • 6n} is a Cauchy sequence, we use the fact that all Cauchy 
sequences are bounded, or if {an} is a Cauchy sequence, then |an| < C for all n and some 
C > 0. Choose positive constants Ci and C2 such that |an| < Cj and [6n| < C2 for all n. 
Given e > 0, There exist integers IVi nad N2 such that n,m> 1\\ implies |an — am| < 
and n,m > N2 implies |6n — brn\ < Let N = maxfJVi,-^}. Then, m,n > N implies

|om - bm an • 6n| —

\am ’ 6m) bn ' (On Om)|

< |Om| ' \bn bm\ 4“ \bn| ' [on O>m|
< May+MA)

_ e e
~ 2 + 2



5

Thus, {an • bn} is a Cauchy sequence. [Fail3] □

We now show that our operations in F are well-defined. The elements of F are 
equivalence classes of Cauchy sequences. We need to define what it means to add and 
multiply equivalence classes.

We now introduce the notation that we use for equivalence classes. We denote 
equivalence classes of Cauchy sequences by capital letters: A. We may also refer to 
an equivalence class of a particular Cauchy sequence by placing parentheses around the 
Cauchy sequence: ({««})■

Let A and B be equivalence classes of Cauchy sequences with representative 
Cauchy sequences {an} and {&nJ, respectively. Now, we define addition and multiplication 
of equivalence classes as the addition and multiplication of their representative Cauchy 
sequences:

A + B = ({an + bn}) and A-B = ({an ■ bn})

We now need to show that the addition and multiplication of equivalence classes do not 
depend on the representatives.

Lemma 7. If {an} ~ {a/} and {bn} ~ {6/} are two pairs of equivalent Cauchy sequences, 
then {ara ± bn} ~ ± 6'J and {an - ~ ’&!»}-

Proof. From the definition of the equivalence of Cauchy sequences, we know that

lim d(an,a'n) = 0 and lim d(bn,bfn) — 0.
n~>oo n—>oo

By the triangle inequality and the properties of real limits, we know

lim d(an ± bn, a! ± b'n) < lim d{an, a'n) + lim d(bn, 6'J = 0.
n—>-oo n—^oo 71—>00

To show that the multiplication of equivalence classes of Cauchy sequences does not 
depend on the representatives, we have

d(an - bn, an • bn) = |an ■ bn an • &n|

= |on ■ bn - a'n -bn^-a^-b^- afn ■

— jbn||an anl "b |anl &nl'

Taking the limit as n approaches infinity, we have

lim |6n||an - + K||6n - = lim |6n| - 0 + lim • 0.
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Since {6n} and {a^} are Cauchy sequences, by definition, their limits exist. We also use 
the fact that all Cauchy sequences are bounded to say that the entire limit is zero. □

This establishes that our operations in F are well-defined and we are now ready 
to prove that J? is a field. Many of our properties of a field will follow immediately 
from the fact that each individual element of any Cauchy sequence belongs to the field 
F. We will begin by showing that F is a commutative ring with unity under addition 
and multiplication of equivalence classes of Cauchy sequences. Finally, we will show the 
existance of multiplicative inverses, which will complete the proof.

Theorem 8. ^F, +, • is a field.

Proof. Let A, B and C be equivalence classes of Cauchy sequences in F with the ad­
dition and multiplication operations defined above, and let {an}, {&n} and {c^} be the 
representative Cauchy sequences, respectively.

• We have shown that F is closed under the addition of equivalence classes of Cauchy 
sequences. A + B G. F: closure under addition is satisfied.

• We next need to show that the addition of equivalence classes of Cauchy sequences is 
commutative, saving us work in later steps. Since we add the representative Cauchy 
sequences pointwise and each element of each Cauchy sequence is from the field F 
where commutative addition is established, we know that the addition of equivalence 
classes of Cauchy sequences is commutative. AyB = By A: commutative addition 
is satisfied.

• Similarly, we know that the addition of equivalence classes of Cauchy sequences is 
associative. (A 4- B) + C — A + (B + C): associative addition is satisfied.

• Consider the constant sequence {0,0,0,...} where 0 is the additive identity in F. 
Clearly, this is a Cauchy sequence. Adding this sequence pointwise to a representa­
tive Cauchy sequence {an} = {aoj ai, aa • ■ •} for the equivalence class A will yield 
{ao + 0, ai + 0, a2 + 0,...} = {ao, ai, a2, • • •} = {an}- Thus, our additive identity 
in F is the equivalence class containing the constant squence {0,0,0,which 
we will denote as (0). A + (0) = A: the existence of an additive identity in F 
is satisfied. We also say that any sequence {24} 6 (6) is a null sequence because 
limn_>oo |.zn| = 0.
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• If {an} = {ao, ai, d2 - • •} is a Cauchy sequence, then it is clear there exists a sequence 
{—do, —di, —d2 • •.} made up of the addititive inverses of each an. Each — an exists 
because it is in the field F. Call this sequence {—anJ where

{an} 4- {—dn} = {0,0,0---}.

We already know that the constant sequence {0,0,...} a Cauchy sequence. We 
need to show that {—dn} is a Cauchy sequence. Since {d«} is a Cauchy sequence, 
we know that for any s > 0, there exists an integer N such that for integers

n, m > N, d(dn, am) < e.

Then, it is clear that for the same n, m that d(—an, —am) < e and {—an} is a Cauchy 
sequence. Let A1 be the equivalence class containing the Cauchy sequence, {—dn}, 
and we have that A 4- A' = (0) : The existence of additive inverses is satisfied.

• We have shown that F is closed under the multiplication of equivalence classes of 
Cauchy sequences: A - B 6 F: closure under multiplication is satisfied.

• The commutivity of multiplication follows from the addition case. A - B = B ■ A: 
commutative multiplcation is satisfied.

• The associativity of multiplication follows from the addition case.
(A ■ B) • C = A ■ (B • C): associative multiplication is satisfied.

• The distributive property of multiplication and addition follows similarly because 
the operations are computed pointwise and the elements of the representative Cauchy 
sequences are from the field F where the distributive property is established.
A • (B 4- C) = A • B 4- A • C: the distributive property is satisfied.

• Consider the constant sequence {1,1,1,...}, where 1 is the multiplicative identity
in F. This is clearly a Cauchy sequence. Multiplying this sequence pointwise to a 
representative Cauchy sequence {an} = <22 • • •} for the equivalence class A
will yield {ao -1, ai • 1,02 ’ 1,...} = {no, a2, - - ■} = {dn}- Thus, our multiplicative 
identity in F is the equivalence class containing the constant sequence {1,1,1,...}, 
which we will denote as (1). A • (1) = A: the existence of a multiplicative identity 
in F is satisfied.
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In order to complete the proof that F is a field, we need to show the existence of mul­
tiplicative inverses. That is, for an equivalence class A G F that is not the zero class, 
(0), there exists an equivalence class A-1 G F such that A • A"1 = (1). To begin, we 
need to prove a lemma. Since our arbitrary equivalence class, A is not the zero class, 
(0), its representative Cauchy sequence {an} is not a null sequence. However, {ara} still 
could contain one or more zero elements. Nonetheless, we can show at some point in the 
sequence that there must be no more zero elements.

* f 0 if l<n<TV —1,

-L if n > TV.
dn —

Lemma 10. Let {a„} be a Cauchy sequence that is not a null sequence. Let {a*} be as 
defined above. Then {a*} is a Cauchy sequence.

Lemma 9. Let {an} be a Cauchy sequence, but not a null sequence. Then, there exist a 
number c > 0 and a positive integer N such that for all n > N, |an| > c.

Proof. Let {an} be a Cauchy sequence, but not a null sequence. Then there exists £ > 0 
such that for all TV, there exists n > TV such that |an| > e. Thus, for TV — 1, there 
exists an element ani such that [ani| > e. For TV = 2 there exists an element a„2 such 
that |an21 > £ and n2 > «i- It is clear that we can construct a subsequence {a«x} where 
|anJ > e for all i.
Since {an} is a Cauchy sequence, there exists an TV such that > TV and n > TV imply 
|o« — Onil < f- Using the following property of a norm; |re — y| > ||®|-bl| > k|-|y| for 
all x, y G F, we have that

= |anf — (ct/i, an

> 1- |an ani

> £
£ —

£
3

> —
2

Thus, we can choose c= | and the statement is proven. □

We have what we need to show the existence of multiplicative inverses in F. Let 
A e F and A (6). Let {an} be the representative sequence for A. Since A (6), that 
implies {on} is not a null sequence. Define a new sequence, {a*},  by
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Proof. It follows from Lemma 9, there exist a number c > 0 and a positive integer N 
such that |an| > c for all n > N. Let e > 0 be fixed. Since {an} is a Cauchy sequence, 
there exists a positive integer N such that n.m> N implies |an — am| < c2^. Then,

<

<

I—-—I
I I
]dn am|
|an| ■ [o-ml

— • — ■ 0>ml 
CC

e.

Thus, {a*}  is a Cauchy sequence. □
Let the equivalence class with representative Cauchy sequence {a*}  be A"1.

Now we perform the needed multiplication, A • A-1. To do this, we multiply our repre­
sentative Cauchy sequences pointwise:

fan} • {a* } = {o,0,0,...,0,1,1,1,...},

where the first IV — 1 terms are each 0 and each nth term is 1 for n > IV. It is clear that 
{0,0,0,..., 1,1,1,... } is a representative for the equivalence class (X). Thus, A • A”1 = 
(1): the existence of multiplicative inverses is satisfied.

We have previously shown that ^F, is a commutative ring with iden­

tity. Now, we have shown that every nonzero element of F has a multiplicative inverse. 
Therefore, we have shown that (f, is a field. □

Our next step is to extend the norm | - ] from F to F.

Definition 11. Let A G F and let {an} be a representative Cauchy sequence for A. 
Define || ■ || by

1141 = Ijm |o»l-
n—>oo

To show that [| -1[ is well-defined, we must show that || • || also does not depend 
on the choice of representative of the equivalence class. We use this property of a normed 
field: | [sc| — \y[ | < |rc — y\ for all x, y G F. By this fact, we can say that

| |&n| |®m| | < ]an
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and thus the sequence of real numbers {|un|} is a Cauchy sequence with respect to the 
usual norm on Q, which is the standard absolute value. Since JR is complete, then the 
Emit defining 11 • 11 exists, and thus, 11 -11 is well defined. Now take a different representative 
sequence of A, call it By the same inequality above, we get that

0 < lim | |an| — |a£j | < lim |an — a^| — 0
n->oo n—>oo

and thus, lim^oo |a£J = limn-^oo |an| — ||A||. Therefore, || ■ || does not depend on the 
choice of representative of the equivalence class.

Theorem 12. 11 • 11 is a norm on F.

Proof. We need to verify the three properties of a norm. Let A and B be equivalence 
classes of Cauchy sequences and let {an} and {6n} be the representative Cauchy sequences, 
respectively.

Property 1: We need to show:
m|| = 0 if and only if A = (0), and ||A|| > 0 if and only if A (0).
If mil — 0, then limn._>oc |an| = 0 and {an} is a null sequence. Thus, A = (6). 
Similarly, if A = (0), then {an} is a null sequence and mil — bm^-^ laj = 0.
If mil > 9, then {an} is not a null sequence and A (6). If A (0), then there 
exist positive numbers c and TV such that for all n > TV, we have |a„| > c > 0. 
Thus, mil >0-

Property 2: We need to show: ||A ' -®ll = mil * 11^11
Since || • || yields a positive real number, we use the properties of real limits and the 
fact that | • [ is a norm.

||A - B|| = lim |On • bn| = lim |an| • |bn| = lim |an| ■ lim |6n| = mil ' ll^ll-
n—>oo n—>oo n—>oo n—>oo

Property 3: We need to show: ||A + -®ll — ||A|| + ll^ll-
Again, we use the properties of real limits, the fact that | ■ | is a norm.

m + sll= bm |an + &n|< bm (|an| + |6n|) = lim |on|-|- lim |bn| = mil + 11^11-

□
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Theorem 13. F is a dense subset of F and F is complete with respect to the norm || ■ ||. 

Proof. It is clear that there is a subset of F that is isomorphic to F. This is the set of 
equivalence classes that have a representative of a constant Cauchy sequence, which we 
will denote by {({an})}- To show that F is a dense subset of B, we will show that this 
set of equivalence classes contains a representative constant Cauchy sequence is dense in 
B or for any A G B, there exists a constant Cauchy sequence {an} such that

lim ||A — (an)|| = 0.
n—>oo

Let A G B and let {am} be a representative Cauchy sequence of A. For each an G {am}, 
construct the constant sequence {an} For each fixed positive integer n, consider the 
sequence {am — an}m=i- This is a Cauchy sequence because {am} is a Cauchy sequence 
and an is a constant. We denote the equivalence class of {an} as (an). Hence, the 
equivalence class for the Cauchy sequence, — an}m=i is A — (an) by the definition 
of our operations on equivalence classes of Cauchy sequences. From the definition of the 
extension of [ ■ | to B, we have

lim 11A - (an)11 — lim |am - an| = 0.
n—>oo n,m—>oo

To show completeness, we need to show that any Cauchy sequence in B has a limit in 
B. Let {An} be a Cauchy sequence in B. Since we have shown that B is a dense subset 
of B, we can say that for any A„ € {An}, there exists an element an G B such that 
||An — (dn)|| < ®0’ Mn — (®n)} is by definition a null sequence, and thus, a Cauchy
sequence in B. Now, {(dn)} = {An} — {An — (a„)} anfi {(dn)} is the difference between 
two Cauchy sequences which we have already shown is a Cauchy sequence. Since all of 
the elements of {An — (fin)} are members of B (or the subset of B isomorphic to B), then 
we can say that {an} is a Cauchy sequence in F. Let A be the equivalence class of {a„} 
in B. From our earlier results, we can say that {A„ — (an)} and {A — (an)} are both 
null sequences in B, and it is clear that the difference of two null sequence is also a null 
sequence. Since

{A - An} = {A - (dn)} - {An - (an)},

it follows that {A — An} is a null sequence. This implies that limn->oo 11A — A„|| — 0, or 
that the limit of a Cauchy sequence {An} in B has limit A in B. Thus, B is complete 
with respect to the norm || • ||. □
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Finally, we have shown that every element of A G F contains a representative 
that is a constant sequence {an}. Thus, we can say that the operations in F are extended 
from F by continuity.

Theorem 14.
If A = lim (an) and B = lim (6n)

n—too n—>oo

then A + B= lim (an + bn) and A- B = lim (dn • bn).
n—>oo n—>oo

Proof. Let A — limn_>oo(dn) and B = limn_>oo(6n). Fix s > 0. Since there exists a 
positive integer N such that n > N implies that ||A — (an)|| < | and |[73 — (£>„)[( < j. 
Then,

| |A + B — ({an + 6n}) 11 —

<

<

11 (A-(«„)) + (B- (6n))|| 

||A-(an)|| + ||B- (6„)||

Thus,
A + B = lim (6^ + bn).

n—>oo

We now show that multiplication is extended.

Fix e > 0. Then there exists a positive integer N such that n> N implies that

||.A- (Sn)ll < e and ||B - (&n)|| < e.

Hence, we can say that limn_,oo ll-A — («n)11 = 0 and limn-too ||B — (6n)|| = 0. Thus,

= ton ||A-B-A-(6n)+^.(&n)_ ({a„-b„})ll

< lim ||A||-||B-(6„)|| + lim ||(6n)|| • ||4 - (a„)|| 
71—rOO 71—>OO

= lim ||A[| -0 + lim |[(6n)|[ -0.

Since A and (bri) are equivalence classes of Cauchy sequences, their limits exist and are 
bounded. Thus, the entire limit is zero and we have that

A-B = lim (an • bn).
n—>oo

□
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1.3 The Construction of - Naming Our Elements

As expected, our field F is the field of rational numbers Q under usual addition 
and multiplication. If we take our norm to be the standard absolute value, | ■ |, we can 
form the completion of Q with respect to that norm, which is R. However, we can endow 
Q with many different norms, resulting in many different completed fields. We begin this 
section by stating the definition of the norm that will create the field of p-adic numbers 
Qp as a different completion of Q.

It is a fact that Q is not complete with respect to any nontrivial norm, that is, 
we can construct a Cauchy sequence of rational numbers that converges to an element 
not in Q with respect to any nontrivial norm. We will prove in Chapter 3 that Q is not 
complete with respect to the p-adic norm as defined below when we are more familiar 
with Cauchy sequences featuring our new norm.

Definition 15. Let p G N be any prime number. Define a map | ■ |p on Q by:

if Xy^O, 
if x = 0.

Define ordp x (the p-adic order) as the highest power ofp which divides x ifxE'f, 
or ordp x = ordp a — ordp b, ifx = where a,b GZ, b / 0.

Note that |a:|p < 1 for all x e Z, as the integers will play a large role in this study.

Theorem 16. | • ]p is a non-Archimedean norm on Q.

Proof. We need to verify the four properties of a non-Archimedean norm. Let | ■ [p be as 
defined above.

Property 1 : We need to show that:
|ir|p = 0 if and only if x = 0, and > 0 if and only if x 0.
This property follows immediately from the definition of | ■ |p. If x G Q and x ^0, 
then it is clear that |a:|p > 0.
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Property 2 : We need to show that:
I^Z/Ip = |z|p|y|P for all x,y e Q.
If x — 0 or y = 0, the result is trivial. Let x = | and y = where a, b, c, d G Z, 
b 0,d 7^ 0. Then, |ajy|p — |^|P = p-ordp (fd). Note that ordp (ac) is the highest 
power of p that divides ac. Suppose that the highest power of p that divides a is n 
and the highest power of p that divides b is m, then it is clear that the highest power 
of p that divides ac is n + m. Thus, we can say that ordp (ac) = ordp a + ordp c. 
Then

bl? lac I
I bd\p

—(ordp ac—ordp bd)
IT 

p—(ordp a+ordp c—(ordp &+ordp d)) 

p—((ordp a—ordp 6)+(ordp c-ordp d))

p~ordp I . p—ordp %

Property 3 : We need to show that:
|xd + y\P < |z|p + |y|p for all x, y G Q. Again, if x = 0 or y ~ 0, the result is trivial.
Let x = | and y = where a, b, c, d G Z, b 0, d 0. Then

k + y|P = p-ordp (x+y)

—(ordp (ad4-&c)—ordp (fed))P

We claim that ordp (ad-pbc) > min{ordp(ad), ordp(Z>c)}. Let n be the highest power 
of p that divides ad and let m be the highest power of p that divides be. Then, if 
we factor out the highest power of p that divides ad + be, we can see that it is at 
least the minimum of n and m.
Thus, we know

Suppose that min{ordp(ad),ordp(6c)} = ordp(ad). Then,

min {ordp (ad), ordp(&c)} — ordpd — ordpd = ordpa + ordpd + ordpd — ordpd 

— ordpa — ordp&.
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Similarly, suppose that min{ordp(ad), ordp(6c)} = ordp(bc). Then, 

min{ordp(ad), ordp(6c)} — ordp6 — ordpd = ordp5 + ordpc — ordp6 — ordpd

= ordpc — ordpd.

Thus,

min{ordp(ad). ordp(bc)} — ordp6 — ordpd = min{(ordpa — ordp6), (ordpc — ordpd)}.

Finally, we have that

p— [min{ordp(ad),ordp(6c)}— ordp6-ordpdj = — min{(ordpa—ordpfc), (ordpc—ordpd)}

_ - min{ordpx,ordpy}

max{p"ord^,p-°rd^}

= max{|.T|p, |p|p}

< |re|p + |y|P-

This proves the triangle inequality, that |x + y\p < + |p|p. Additionally, we have
proven the fourth condition, the strong triangle inequality: |a: + p|p < max{|a;|P) |y|p}. 
Thus, we have shown that | - |p is a non-Archimedean norm on Q. □

Finally, we define Qp (which is our F in Section 1.2) as the completion of Q 
with respect to the p-adic norm, | • |p. As earlier, we extend the p-adic norm to Qp. Let 
a G Qp. Then,

[a|p = lim |an|p

where {an} is a Cauchy sequence in Q representing a. Note that | • |p can take on only 
a discrete set of values. We see that if x G Q, then |x|p 6 {0} U {p71, n G Z}, and the 
sequence of norms, {|on|p} will converge as n —> oo.

Now, consider the series:

^ + ^ + - + * + diP + ^2 + --,

where each is an integer in the set {0,1,2,... ,p — 1} and 0.



16

Theorem 17. Any partial sum of the above series is a Cauchy sequence.

Proof. Fix an e > 0 and choose an N such that p~N < s. Let k> n> N. Then,
k tl k

I V diP1 - y dipA =| y < max{|dip1|p}<p_N<e.
i=—m i——m t=n+l

So, each partial sum of the series above represents an element of Qp. □

The converse of the statement is also true. Each equivalence class of Cauchy 
sequences in Q contains a unique canonical representative Cauchy sequence, which can 
be expressed by the sequence of partial sums of the series above.

Theorem 18. Every equivalence class a in Qp satisfying |a|p < 1 has a unique represen­
tative Cauchy sequence {a$} such that
(1) ai G Z, 0 < ai < pz for i = 1,2,..., and
(2) ai = ai+i (mod p1) for i = 1,2,....

Proof. Let {&$} be a Cauchy sequence representing a G Q. We want to find an equivalent 
sequence satisfying the two properties. Since |&i|p -> |a|p as i gets larger, we can disregard 
a finite number of initial terms if necessary. Then, given £ > 0, we can say that |p < l+e 
for i large enough. Since {^} is a Cauchy sequence, for every j G N, let be a 
positive integer such that |&i — bi>\p < p_J', for all i,il > N(j'). We may take the sequence 
of numbers, N(j), to be strictly increasing with j, so we can say that 2V(j) > j. At this 
point, we need a lemma.

Lemma 19. If x 6 Q and |a;|p < 1, then for any i there exists an integer a such that 
fa — x\p < P~l- a can be chosen from the set {0,1,2,... ,p*  — 1} and is unique if chosen 
in this range.

Proof. Let x = | where gcd(a, b) — 1. Since fa|p < 1, we know that
— (ordp a—ordp b)

P < I-

Note that if p divides b, then ordp 6 > 1, and since gcd(a, b) — 1, then ordp a = 0. Thus, 
if p divides b, then p“ordP apOTdp = p°pk for some k G N, which is clearly greater than 1. 
Thus, we know that p does not divide b and we can say that gcd(b,pl) = 1. Hence, we 
can find integers m and n such that mb + npz = 1. Let a = am. Then,

a 
bfa - x|p = a | am — —

o Ip
\mb - l|p < \mb - l[p = |npl|p = \n\pp z <p *.  

p
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Using the strong triangle inequality, |a — a?|p < max{|a|p, |.t|p}, we can add or subtract a 
multiple of p*  for which the above inequality still holds and obtain an integer in the set 
{0,1,2,. ..,p-l}. □

So, from Lemma 19, we can find integers aj, where 0 < aj <pi, such that

]aj — |p < p i -

We claim that aj = aj+i mod p7 and (b,) ~ (of).

The first assertion is true because

|ay+! - tZjlp = |aj+1 - bjvo+i) + &jr(j+i) “ bN(j) ~ (ai ~

< max{|aj+i - 6^+1)I?, l&JVtf+i) ~ bN(j)\pi \aj - fyvyjp
J 1 1 u

“ lp7+1 p7 p7/
- Jl
~ p7’

Thus, aj = aj+i (mod p7).

Now, we show that (b$) ~ (a,). Fix any j. Then, for i > N(j) we have

[aj — bi |p = [a, — aj + aj — b^^y — (b{ — fyv(j))|p

< max{|ai bi|p, |aj ^N(j) Ip? l^i &2V(j)|p}
J1 1= max s —, —, —Lpj p3 p3 J

_ 2.
” P7"

Thus, |a< — bi|p —> 0 as i -> oo and (b;) ~ (aj).

Finally, we prove that {an} 6 {Q} is the unique Cauchy sequence representing a 6 Qp. Let 
{<4} be a Cauchy sequence such that {aj} {aj} and let {aj} satisfy the two requirements 
of the theorem. Thus, az-0 0 a'o for some io- Then, we have a^ a'o mod pt0 since both 
ai0 and a'o are between 0 and pl°. Then from requirement (2), for i> io,

at = Oi0 a'o = a< mod p*° .
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Therefore, ai a\ mod p’°. However, this means that |ai — a-|p > for all i > ?o, 
which implies that (<Zf) / (a£), and thus {af} is unique. □

By Theorem 18, if a G Qp and |a|p < 1, then each Oj of the sequence can be 
expressed by

ai = dQ + dip 4------ 1- ip1"1

where each di is from the set {0,1,2,... ,p — 1}. The condition that = a$+i(mod p*)  
gives us

ai+i = do + dip 4------ 1- di_ipl_1 4- dip2

where each of the p-adic digits up to di _i are the same for each expansion. Then we can 
see that a G Qp is the following series, which is convergent in the p-adic norm:

oo

22 dnPn-
71=0

This can be thought of as a number written in base p with the p-adic digits expanding 
infinitely far to the left, and we can write this number in the more convenient form:

a== ... dj}dfi—i... d^d^do.

We call this the canonical form of a, and we can see that this form mimics our 
usual decimal form in R. Instead of our numbers being closer together as the decimal 
form extends to the right, we can see that the p-adic norm makes our numbers closer 
together by higher powers of p extending to the left. That is why our ellipses replace our 
higher powers of p as they replace our “less significant” digits, just as they replace the 
digits to the right in the infinite decimal expansion of the elements of R.

We can also see that the cardinality of Qp is the same as the continuum or 
the same cardinality as R. We can mimic Cantor’s proof for showing that the set of 
real numbers from [0,1] is uncountable to show that Qp is uncountable. We use the 
“diagonalization method” to attempt to create a one-to-one map from N to Qp. However, 
just as in the real case, we create a new element that is not on the list that is the diagonal 
of the list of numbers. Thus, we conclude that Qp is uncountable.

In the cases when |a|p > 1, we can multiply a by a high power of p, to obtain 
a new p-adic number a1 = apm that satisfies [a'lp = 1, and we can apply Theorem 18.
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Thus,
co

a= 52
n=—m

where d_m 0 and our canonical form becomes

■ ■ ■ dn... d2d1.do.d-1. • ■ d.~Ta.

We note that the canonical form can never have infinitely many digits to the right because 
if x 6 Q, then the highest power of p that divides the denominator of x must be some finite 
integer m that will translate to a p-adic canonical form ending with d_m and terminating.

In the next chapter, we will explore our new space perform arithmetic and 
examine some of the algebraic properties.
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Chapter 2

Algebra of

2.1 Arithmetic

Let us begin by showing some examples of expressing numbers in canonical form.
For example, in Qs, let us write the canonical form of 37, —1 and —37. To do this, we 
will need to find the coefficients di in the series

d0 d" di • 5 4~ <^2 ■ 5^ d* ■ *' ■

Exercise 20. Find the canonical forms of 37, —1 and —37 in Q5.

Since we are working in Q5, we know that each di G {0,1,2,3,4}. We see that

37 = 1.52 + 2 ■ 51 + 2 - 5°.

Thus, our canonical form of 37 in Qs is ... 0122.
To find the canonical form of —1, we need to think about what we really seek. 

Clearly, our series above is the sum of positive powers of p, all of whose coefficients are 
either positive or zero. However, we know that Q5 is a field, so we know that every element 
has an additive inverse. Thus, instead of “—1”, what we really seek is the additive inverse 
of 1. Thus, we would like to find the df’s such that

... 0001 + ... dsdadido-d-i... d-m = ... 0000.

Clearly the d’s with a negative index are all zeros since 0 and 1 have all zeros in those 
positions. Now, we see that 1 + do = 0 (mod 5), and since do G {0,1,2,3,4}, the only 
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choice that we have is 4, noting that we will have to regroup a 1 into the di term because 
4+1 creates an extra multiple of 51. Now, we need to find dj such that

0 + (di + 1) = 0 ( mod 5).

Again, di must be 4, carrying another 1 into the term, which continues infinitely to 
the left. Thus,

—1 in Qg = ... 4444.

Similarly, to find —37, we seek the additive inverse of 37 in Qg, or the additive inverse of 
... 0122. We start with do first. Noting that 2 + do = 0 (mod 5), we find that do = 3, 
regrouping a 1 to the di term. Solving for di, we have

2 + (di +1) = 0 ( mod 5) => di = 2,

regrouping a 1 to the d# term. Solving for d2, we have

1 + (d2 +1) = 0 ( mod 5) d2 = 3,

regrouping a 1 to the term. Solving for d%, we have

0 + (1 + d3) = 0 ( mod 5) => d3 = 4,

regrouping a 1 to the d^ term. Just as in the case with finding the canonical form of — 1, 
the digit 4 will now repeat, so dj = 4 for i > 2. Thus,

-37 in Qg = ...444323.

We perform arithmetic in Qp in the expected way. We use the canonical form of our ele­
ments and perform arithmetic base p, regrouping when needed. Here are some examples 
of addition and multiplication in Q5.

... 4104
+ ... 1432

77. 1041"

4104
x ... 1432

3213
23120

143100
... 4104000

3433
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Exercise 21. Find the canonical forms of | and | in Q5.

This is similar to the method to find —1 e Q5, as we have no fractions in our canonical 
form. So we again use the fact that Q5 is a field. We know that we seek the multiplicative 
inverses of 3 and 7 in Q5. Again, we find that we do not need the negative indexes of d. 
Let the canonical form of the multiplicative inverse of 3 in be ... ^3^2dido- Then, we 
know that

d^d2dido
x ... 0 0 0 3

... 0 0 0 1

Solving for do, we know that 3do = 1 (mod 5), and since do € {0, L2,3,4}, the only 
choice will be do = 2, and we will have to regroup a 1 to the dx digit. Solving for di, we 
have 3di + 1 = 0 (mod 5) => 3dx = 4 (mod 5) => di = 3. Now, we’ll have to regroup a 2 
to the d2 digit. Solving for d2, we have 3d2+2 = 0 (mod 5) => 3d2 = 3 (mod 5) => d2 = 1. 
We regroup a 1 to the d% digit. We see that the digits will repeat, in a way analagous to 
the infinite decimal expansion of some fractions in R. Thus,

| in Q5 is ...1313132.

Finding | in Q5 is slightly more difficult. We seek the multiplicative inverse of 7 in Q5, 
or the multiplicative inverse of ... 0012. Now, the computation will require regrouping 
from multiplication and addition.

x
d3 d2 di do
0 0 12 

2d3 2d2 2di 2do 
d2 dx do 0 

~0 0 0 1
We begin solving for our ^adic digits on the right. 2do = 1 (mod 5) => do = 3. Solving 
for di, we have a regrouping of 1 from the multiplication of 2 • do. Thus we get

(2dx + 1) + 3 = 0 ( mod 5) => 2dx = 1 ( mod 5) => dx = 3.

So far, our multiplication looks like
d3 d2 3 3

x ... 00 1 2
2d3 2d2 2 1

... d2 3 3 0

... 0 0 0 1
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Solving for d2, we have a regrouping from the multiplication and addition.

((2d2 + l) + l) + 3 = 0( mod 5) => 2d2 + 5 = 0 ( mod 5) => 2d2 = 0 ( mod 5) => d2 = 0.

We continue to solve for our p-adic digits in this way, and we find that

| in Q5 is ... 412032412032412032.

There are six repeating digits, just as there are six repeating digits in the infinite decimal 
expansion of | in R. Later in this chapter, we pose the question, “Is isomorphic to 
R?”

2.2 Polynomials in

Now, we begin to see that <Q>P contains elements not in Q. We know that 
contains every element in Q because we can construct a constant Cauchy sequence for 
any x G Q, which we know has a representative in Qp. We know that Q with respect to 
the standard absolute yields a completion, R that properly contains Q. Similarly, we will 
see that Qp properly contains Q.

Exercise 22. Find \/G and y/7 in Q5.

Note that the canonical form of 6 in Q5 is ...0011. Now, let us consider this in polynomial 
form, or that we are looking for roots of the equation x2 — 6 — 0 in Q5. Let a be such 
that a2 = ...0011 = l + l- 5 + 0-52 + -- -. Let the canonical form of a be ... d2dido. We 
solve for our d/s by equating coefficients in corresponding terms of the expansion. We 
know that d§ = 1 (mod 5). We must examine the two cases, do = 1 and do = 4.

Case 1 : do = 1. When expanding the square of a, we see that our “5” term is dodi + 
dodi = 2dod\ — 2di. Setting this equal to the coefficient of 5 in the canonical form 
of 6, we get that 2di = 1 (mod 5) => di = 3.
Now, we solve for d2. We know that (1 + 3 • 5+d2 • 52 +... )2 = 14-1-5 + 0- 52 +.... 
Now, we will have a regrouping into the 52 term:

(1 + 3• 5 + d2 -52 + ■ ■ ■ )2 = 1 + (3 + 3)5 +((l)d2+ 3 *3  +(l)d2)52 + •*■

= 1 + 6 - 5 + (2d2 + 9)52 4- c...

= 1 + 1 ■ 5 + 5 ■ 5 + (2d2 + 9)52 + • ■ •

— 1 + 1*5  + (2d2 + 10)52 + ■ ■ ■ .
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Equating coefficients, we get that

2d2 +10 = 0 mod 5 => 2d2 = 0 ( mod 5) => d2 = 0.

Proceeding on, we find d# = 4. Thus, a = ... 4031.

We see that there will be regrouping of terms for each di and each one would have to 
be found separately. As we solve for more terms, the question arises of the form of 
the canonical expansions square roots in Qp. We saw that some canonical expansions 
of fractions (multiplicative inverses) had repeating digits and infinite expansions to 
the left in their respective canonical expansions. Finding the first three terms 
of the canonical expansion of Vo in Qs and noticing that further regroupings are 
present for each term, we suspect that square roots in Qp have infinite nonrepeating 
canonical expansions to the left. We will approach this subject in a future study.

Case 2 : do = 4. Let a' denote this expansion of V6. Note that in this case, we have a 
regrouping of 3 to the d] term:

(4 + di • 5 + • • ■ )2 = 16 T (4di + 4di) • 5 + ■ * •

= 1 + 3-5 +(8di)5 + ---

= 1 + (8di + 3)5 + - ■ ■ .

Equating coefficients, we get that

8di + 3 = 1 ( mod 5) => 3di = 3 ( mod 5) => di = 1.

Solving for d2, we have several terms to regroup:

(4 + 1 ■ 5 + d2 • 52 + ... )2 = 16 + (4 +4) • 5 + (4d2 + 1 -1 + 4d2) ■ 52 + • • ■

— 1 + 3- 5 + 8- 5 + (8d2 + 1) • 52 + ■ * * 

= l + l- 5 + 2-52 + (8d2 + 1) • 52 + ■ ■ •

— 1 + 1*5  + (8d2 + 3) • 52 + • ■ ■ .

Equating coefficients, we get 8d2 + 3 = 0 (mod 5) =» 3d2 = 2 (mod 5) => d2 = 4. 
Solving for d3 in a similar way, we get d^ = 0.
Thus, a! = ... 0414. It is no surprise that a1 is the additive inverse of a in Qs, so we 
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can think of a as x/6 and a! as — a/6 just as the additive inverses To and — \/6 are 
both roots of the equation x2 — 6 — 0.

Now, we must find a/7 in Qg. Note that 7 in Qg is ... 0012. Thus, if a = \/7, 
and the canonical form of a is ... dg^dido, then

(do 4~ dj •54-d2'52-|--*-) 2 = 2 + l*5'-|-0*52 .

We continue in the same way as before, equating coefficients, but when we solve for our 
first digit, doj we get that d^ = 2 (mod 5). However, there is no 5-adic digit whose square 
is equivalent to 2 (mod 5). Thus, we say that 77 £ Qs, and we have that

712,717,722,--- and 7=3,a/=8,7=13,■ • - 0Qs

because we similarly cannot solve for do in their respective expansions.
Note that in Qp where p is an odd prime, once we solve for do in the expansion 

of an irrational square root from the set {1,... ,p — 1}, we will always be able to solve 
for the subsquent digits. This is because the equations to solve for the subsequent digits 
are always of the form 2dodfc + m = n (mod p) where m is a combination of previously 
solved p-adic digits and n G {0,1,2,... ,p — 1}. It is clear that these equations can be 
solved for each d^ since we know that do / 0. This is not the case in Qa. The 2dodt term 
will always be supressed because it is equivalent to 0 (mod 2) and we will be left with

m = n ( mod 2)

which may lead to a contradiction.

Exercise 23. Find a polynomial with integer coefficients that has a root modulo 2 but 
has no roots in <Q>2-

Working in Q>25 we find that the first integer that does not have a square root in Q2 is 
3. The canonical form of 3 in Q2 is .., 0011. Letting a be such that a2 = 3 in Q2, and 
letting the canonical form of a be ... dsd2dido we get that

(do + di • 2 4- d2 • 22 + ■ • •) (do y d [ • 2 y d.2 • 22 y ■ ■ •) ~ 14'1-24_O*2 2-|-*' ’-

We have d§ = 1 (mod 2) => do = 1, but we cannot solve for dy

dodi 4- dodi = 1 ( mod 2) => 2di = 1 ( mod 2).
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Thus, i/3 Q2 and x2 — 3 = 0 does not have a solution in Q2- Clearly, 1 is a root modulo 
2 because l2 — 3 = — 2 = 0 (mod 2).

Now, we will see that Qp contains a representative element that is not in R. 
Since we have no negative numbers in Qp, we interpret negative numbers as additive 
inverses.

Exercise 24. Show that y/l—p G Qp where p is an odd prime.

Working in Qp where p is an odd prime, we see that 1 — p is the additive inverse of 
p — 1, which has a canonical form of ... 000(p — 1). Thus, the canonical form 1 — p is 
... (p —l)(p—l)(p—1)1. We claim that the equation d2 = 1 (mod p) always has a solution 
in the set {0,1,2,... ,p — 1}. Clearly 1 is a solution. Also, p — 1 will always be a solution 
since (p — l)2=p2 — 2p + l = l (mod p). As we solve for each dfc, we have seen that all 
equations to solve for subsequent coefficients will be of the form

2dk + m = n ( mod p), m, n G {0,1,2,... ,p — 1},

which can always be solved as long as p is an odd prime. The ability to solve for subsequent 
terms is not guaranteed when p = 2. We saw in Exercise 22 that the ability to solve for 
do does not guarantee that we can solve for later terms in Q2. Note that in Q2, 
y/l—p = a/^T. The canonical form of —1 is ... 1111. We can easily solve for do because

dg = 1 ( mod 2) => do = 1.

However, the problem arises when we attempt to solve for dy.

2di = 1 ( mod 2)

which has no solutions.
We now introduce a theorem that will play an important role in the solvability 

of polynomials in Qp.

Theorem 25. (Hensel’s Lemma) LetF(x) = co + cirr-l----- kCnXn be a polynomial whose
coefficients are p-adic integers. Let

Ff(x) = ci + 2C2X + Sc^x2 +... ncnXn 1 
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be the derivative of F(x). Suppose ao is a p-adic integer that satisfies F(oq) = 0 (mod p) 
and jFz(do) 0 (mod p). Then there exists a unique p-adic integer a such that F(a) = 0 
and a = do (mod p).

Proof We prove the theorem by induction on k in the statement, “There exists a p-adic 
integer of the form

~ bo + bip + b2p2 -I------ 1- bkpk,

where each bk E {0,1,2,... ,p — 1}, such that F(ak) = 0 (mod pfc+1) and
ak = ao (mod p).”

Initial step : We take bo equal to the first p-adic digit of do- Then «o = (mod p) 
and F(ao) = 0 (mod p).

Induction step : Assume that ak_± = bo + bip + b2p2 + ■ • • + 6fc_ipfc_1 is such that 
F(ak-i) = 0 (mod pfc+1) and ak-i = do (mod p). Let ak = ak-i + bkpk for some 
bk E {0,1,2,... ,p — 1} to be determined. We expand F(ak) ignoring the terms 
divisible by pfc+1 because we only need to consider the terms that are not congruent 
to zero modulo pfe+1 -

F(ak) = F(ak_i + bkpk)
n

= ^Cf(aA;_i + &fcPfe)1
i=0

n
= co + 23ci(o^i+iajl116fcpfc + ---)

i=l

= F(ak_1 + fefcpfc)F'(at_i) ( mod p* +1).

Since F(ak-i) = 0 (mod pk) by the assumption, we can say that

F(ak) = akpk + dfcp^'tafc-i) ( mod p* +1)

for some integer ak E {0,1,2,... ,p — 1}. Thus, we come to the following equation, 
which we can solve for bk:

ak + 6fcF1/(aA;-i) = 0 ( mod p).

Since = do (modp) from the assumption, we know F'(afc_i) 0 (modp). 
Therefore, we can divide by F'(ak~i). Thus,

(mod+
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Substituting our value for bk in our earlier equation for the equivalence of F(ak) 
mod pfc+1, we get F(ak) = 0 (mod pfc+1), which concludes the induction step.

To prove that the p-adic integer a is unique, let

a = bo 4- bip 4- b2p2 4----

Then F(a) = 0 since for all k we have F(a) = F(a,k) = 0 (mod pfc+1). It immediately 
follows that a is unique because the sequence is unique from Theorem 18. □

Hensel’s Lemma allows us to construct a Cauchy sequence where finding each 
term is analagous to approximating a root of a polynomial. This method of approximation 
is the p-adic analog to Newton’s method of finding a root of a polynomial with real 
coefficients. In Newton’s method, having a particular approximation, an_i, we solve for 
the next approximation, On by

On — On—1

The value ,,, \ is very similar to the “correction term” in the proof of Hensel’s
f (®n—1)

Lemma when we solve for bk in the induction step. However, the initial conditions on 
the approximate solution ao guarantee that the Cauchy sequence {ofc} will converge to 
a root, a, while the initial guess of Newton’s method must be “sufficiently close” to an 
actual root for the sequence of approximations, {on} to converge to that root.

2.3 Algebraic Structure of Qp

We can also consider the algebraic properties of a particular subset of Qp, called 
the p-adic integers, which we will denote Zp.

Definition 26. The p-adic integers or Zp are the set of all a G where the canonical 
form of a contains only nonnegative powers ofp. Thus,

oo

k i—0

From our earlier arithmetical computations, we can see that Zp is still closed 
under addition and multiplication. All other proprties of a commutative ring with unity 
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are inherited from Qp. Clearly, Zp has no zero divisors because it is a subset of Qp, which 
also has no zero divisors. However, Zp is not a field because it has nonzero elements that 
do not have multiplicative inverses. In fact, any a G Zp where ao — 0 does not have a 
multiplicative inverse because in this case,

... d3d2dido
x ... ti3a2ai 0

~ 0 0 0 1
we cannot solve for do- Thus, we have that Zp is an integral doman, just as Z is an 
integral domain. We can also say that Zp ~ {a G Qp | |a[p < 1} because, by definition of 
Zp, we know that the canonical form of a cannot contain any negative powers of p. Thus, 
ordp a > 0 and |a|p < 1. Reverse containment follows.

Since we know that Zp has some elements that do have multiplicative inverses, 
we can form a new set of just the elements of Zp that are invertible.

Definition 27. The set of invertible elements of%p, denoted by %p, is the set

oo 

sp = | «o 7^o}.
k i=0

It is clear that Zp Z. We see that Zp has infinitely many units, while Z only 
has two, 1 and —1. We also see that Z*  is an Abelian group under multiplication. The 
multiplicative identity, 1, is clearly in Q*.  Associativity and commutivity are inherited 
from Qp and inverses are included by the definition of the set. Finally, the set must be 
closed under multiplication because we know that two elements of Z* , say a and b, will 
have p-adic digits «o and bo from the set {1,2,... ,p — 1}. Since p is prime, we know that 
ao&o 0 mod p and a& G Zp. The set Z*  is referred to as the group of p-adic units.

We know that Qp is a field, as is R. It is natural to check if the two fields are 
isomorphic. We expect that they are not isomorphic, as we have shown that \/7 Qg 
and G Qg- If R and Qp were isomorphic, the study of p-adic numbers would be 
trivial. We will begin by assuming that the two fields are isomorphic and hope to reach 
a contradiction.

Exercise 28. Show that R and Qp are not isomorphic.

Proof Assume that R and Qp are isomorphic. Then there exists a field isomorphism 
99: R —> Qp such that

<p(a + b) = (p(a) + <p(b) for all a, b G R,
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(p(a • b) — (p(a) ■ <p(b) for all a, & 6 R,

p(0) — 0 and <p(l) = 1.

Note that

^(p) = ^(J + H------F1) = <p(l) + <X1) H------ F ^(1) = 1 + 1-1------ F 1 = p.s V ■ z
p addends p addends P addends

Let us consider tp(yfp). Clearly y/p G R. By the properties of isomorphisms, we know 
that <p(y/p) = y/(f>(p). Thus, we need to find the element a G Qp such that a2 = p. Let 
... d2dido-d-i... d-m be the canonical expansion of a. Then,

... d^d^dido-d—i... d_Tn
x ... d^d^dido.d—* * - d_~777

“ 0010.0 ... 0

We know that each di G {0,1,2,... ,p—1}. We start from the right, solving for d_m. The 
only way we can get d~m • d-m = 0 is to have d~m — 0. Since p is prime, no digit from 
the set {0,1,2,... ,p — 1} squared can be a multiple of p. We continue in this manner, 
finding each p-adic digit is zero until we get to di. By equating coefficients, we see that

dodi + dodi = 1( mod p) -■=> Odi -F Odi = 1( mod p) => 0 = l(modp),

which is a contradiction. Thus, y/p Qp and R is not isomorphic to Qp. □

We next show that Qp is riot isomorphic to for any two distinct primes, p 
and q. The proof will require the following lemma.

Lemma 29. For any prime p and any positive integer m that is relatively prime to p, 
there exists a primitive mth root of unity in Qp if and only if m | (p — 1).

Proof. Let m | (p — 1). Then p — 1 — km for some k>l. Thus, every mth root of unity 
is also a (p — l)th root of unity. Let f(x) = xp_1 — 1, so ff(x) = (p — 1).tp_2. Choose

E Qp to be any integer in the set {1,2,... ,p — 1}. Then f(%o) = 0(mod p). (Using 
the usual notation of Zp being the field of the integers from 0 to p — 1, we know that 
ap_1 = i(mod p) for all a G Zp because Zp is cyclic.) Also, ff(xo) =£ 0(mod p) because 
|/z(^o)|p = 1- These are exactly the condtions that we stated for Hensel’s Lemma, The­
orem 25. Thus f(x) has exactly p — 1 solutions, the (p — 1) roots of 1, which we have 
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seen are also mth roots of 1. We know that at least one of the mth roots of 1 will be a 
primitive root because the roots will be in the form c27ri™, k = 1,... , m. We know that 
the case for k = 1 or any k relatively prime to m will be a primitive root of 1.

Conversely, let a be a primitive mth root of unity in Qp. Thus am = 1 and by the 
properties of a norm, |a|p = 1, which tells us that a € Zp. Let ceo be the terminating 
digit on the right in the canonical form of a. Then, a™ = 1 (mod p). However, we also 
know that Oq_1 = 1 (mod p) for any choice of oq- It follows that m | (p -1). □

Theorem 30. Qp and are not isomorphic for any two distinct primes, p and q.

Proof. We will proceed by assuming Qp = for two distinct primes p and q. then we 
constuct an isomorphism <p : Qp —> as in Exercise 28. Let us choose an m such that 
m divides p — 1 and m does not divide q — 1. We claim that there always exists an m 
such that the previous statement is true for distinct primes p and q.
Choose m = p — 1, then m clearly divides p— 1. (If we find that our chosen m also divides 
q — 1, then we choose m instead to be q — 1 without loss of generality. Since p^q, then 
we know that m = q — 1 does not divide p — 1.)
By Lemma 29, we know that there exists a primitive mth root of unity in Qp, which we 
will denote as a. We have that a 6 Qp and we have shown that a G Zp. Thus,

9?(a) = 99(1 + 1 + • ■ • + 1) = 9^(1) + ¥>(1) + • • • ¥>(1) = 1 + 1 + ‘‘+1 = q:-■ ■ ■■S s z
a addends addends or addends

We know that a171 = 1 in Qp. It follows that <p(am') = 1 in Qg. By the properties of an 
isomorphism, we know that (<p(a))m = 1 in and finally am = 1 in However this 
means that a is an mth root of unity in Qg. Since we know that a is a primitive mth root 
of unity in Qp, that implies a is also a primitive mth root of unity in by the properties 
of an isomorphism. Thus, by Lemma 21, m | q — 1, which is a contradiction. Thus, Qp is 
not isomorphic to Qg. □
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Chapter 3

Analysis in Qp

3.1 Convergence and Cauchy Sequences

We recall that Qp is the completion of Q with respect to the p-adic norm. Thus, 
Qp is a complete metric space, and by definition, every Cauchy sequence in Qp converges 
to some element in Qp. Thus, we need to characterize Cauchy sequences in Qp in order 
to study convergence.

Theorem 31. A sequence {an} in Qp is a Cauchy sequence if and only if it satisfies

lim an|p — 0.

Proof. We assume that {an} is a Cauchy sequence in then, by definition,

lim [tlm ®n|p = O'

77i,n—>oo

Thus, we obtain the desired result for m = n + 1.

Conversely, we assume that lim7i,_>oo |an+1 — an|p = 0. Then we know that for any £ > 0, 
there exists a positive integer N such that for any n > N, |un+i — an\P < e. Now, 
taking m > n > N, consider |am — an|p. Using the strong triangle inequality of a non- 
Archimedean norm, we have

[am an|p = |am am—i 4" 0>m—l ®m-2 T O"m—2 fyn—S + * ■ ■ + Un+1 an|p

< max-Qajn Gm_i|p, |am_i am_2lp> • • ■, |an+i ^nlp} < e

Thus, {an} is a Cauchy sequence in Qp. □
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We are now ready to prove our assertion from Chapter 1 that Q is not complete 
with respect to the p-adic norm, | ■ |p. To accomplish this, we will construct a Cauchy 
sequence of rational numbers that will converge to an element not in Q, namely the square 
root of some integer, a, which is not a perfect square. We will need to do this proof twice, 
once for | • |p where p is an odd prime and once for | - |2- The reason we need two cases 
follows from the results of Exercise 22. When p is an odd prime, we know that if we can 
solve for do in the canonical form of a square root, we are guaranteed to be able to solve 
for each subsequent d^. However, this result will not hold in Q2- Solving for di will yield 
an equation of the form 2dodi + m = n (mod 2) which may not have a solution.

First, we prove a lemma that establishes the existence of the sequence we need.

Lemma 32. A p-adic integer

x — a0 4- aip + a2p2 4----

is a solution in Qp of an equation X2 = m if and only if the sequence

(a0, ao 4- aip, ao 4- aip 4- a2p2,...)

is a coherent sequence of solutions of the congruences x2 = m( mod pn).

Proof. Assume that x e Zp is a solution in Qp of an equation X2 = m. Then

m = 4- (2aoai)p 4- (2aoa2 4- a.2)p2 4---- -

We prove the statement via mathematical induction.

Initial Step: n = 1. The first solution of our sequence is xq — Go- Note

Xq — Oq = m( mod p).

Induction Step: Assume that rrn_i = go + 4- a2p2 4------ 1- Gn-ip”"1. Then

= (°o 4- aip 4- a2p2 4- ■ • • + an-i?"’1)2

= a^ + (2aoai)p 4------F (2GOan-2 4- 2a1an_3 4---- )pn_2 4----- .

= m(modpn_1).
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Let xn = ao + aiP 4- &2P2 H------ F a>nPn- Then

xn ~ aQ + (2aoai)p 4------ F (2a0an-2 + 2aian_3 4---- )pn~2

4-(2doGn-i + 2aian_2 4- • * • )pn 1 4*  ■ ■ •

= Xn-i + (2aoan„i 4- 2«i«n_2 4- • • ■ )pn_1( mod pn)

= m( mod pn)

Conversely, let x = ao 4- aip 4- aip2 4---- and let (ao, Go 4- aip, clq 4- ayp 4- «2P2? ■ • •) be
a coherent sequence of solutions of the congruences x2 = m(mod pn). Then, we have

lim xn = m( mod pn)n—>oo

implies x is a solution to X2 = m in Qp. □

Theorem 33. Q is not complete with respect to the p-adic norm, | - |p.

Proof. Let p be an odd prime. Let a € Z be such that y/d Q, p does not divide a, 
and d is a quadratic residue modulo p, or there is an integer solution to the equation 
x2 = a mod p. In other words, if we choose a such that a is not a perfect square but 
a is some multiple of p plus some perfect square, that will satisfy the above conditions. 
Now, we will construct a Cauchy sequence, {dn}, with respect to the p-adic norm that 
will converge to a number that is not in Q, namely y/d.

By the way we chose a, we are guaranteed to find at least one solution the equation

x2 = a( mod p).

We choose x G Qp to be any solution to that equation. Then, we construct the sequence 
{dn} of coherent solutions in Lemma 32. We saw in Exercise 22 that if p is an odd prime, 
we are guaranteed to be able to solve for subsequent digits of the canonical form of square 
roots once we solve for the initial digit, do- The construction of this sequence is done in a 
similar way because once we know that do is a solution to sc2 = a( mod p). We choose 
each subsequent dn, noting that

dn = dn_i( mod pn) and d2 = a( mod pn+1).
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Now, we need to show that {dn} is a Cauchy sequence with respect to the p-adic norm. 
From the way that we constructed our sequence, we have

|dn - dn_i|p = [knpn|p < p~n for some kn G Z

and

lim p“n = 0.n—>oo
Thus, {d„} is a Cauchy sequence. However, we also know that

|d„ “ a\p ~ lKn?n+1 Ip < p~(n+i) for some Kn gZ

and

lim p-("+1) = 0.n—>oo
This implies that the sequence {dn} converges to y/a, which is not in Q, and thus, we 
have shown that Q is not complete with respect to the p-adic norm where p is an odd 
prime.

To show that Q is not complete with respect to the 2-adic norm, we mimic the above proof 
to construct a Cauchy sequence with elements in Q that converge to A3 with respect to 
| -12 - In Exercise 22, we saw that finding square roots of elements in Q2 lead to problems 
when we tried to find dx in the canonical form. When finding a cube root, we will not 
have have coefficients disappear that are congruent to 0 (mod 2). Thus, we will be able 
to find the needed sequence.

We choose a = 3 and note that 3 ~ 1 (mod 2). We can certainly find an x G Q'2 such 
that x3 = 1 (mod 2). Considering the p-adic expansion of x, we have

x3 — «o + (3gqGi) • 2 + (3(Zoa2 + 3aoax) • 22 -|---- .

As in the case where p is an odd prime, we have a sequence of coherent solutions to 
x3 ~ 3 (mod 2n),

(qq, Oq + (3a§ai) -2, Gq + (3aQ<ii) • 2 + (3a2G2 + 3aoa2) - 22,...)
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This sequence satisfies

dn = dn-i( mod 2") and = 3( mod 2n+1).

We next show that this sequence is a Cauchy sequence with respect to the 2-adic norm.

|dn — dn~. 1I2 = [fcn2n|2 < 2-n for some kn G Z

and

lim 2_n = 0.
71—>OO

Thus, is a Cauchy sequence. However, we also know that

|d„ — 3|a = |k+2"+1|2 < 2~(n+1) for some G Z

and

lim 2“(n+1) = 0.
71—>OO

Thus, Q is also not complete with respect to the | • |p and Q is not complete with respect 
to | ■ |p for any prime, p. □

It is now clear why we had to construct Qp as the completion of Q with respect 
to the p-adic norm in the way that we did. We know that there exist Cauchy sequences 
with elements in Q that do not converge to an element in Q with respect to the p-adic 
norm. Thus, to form the compeltion of Q with respect to the p-adic norm, we must 
consider all sequences that are Cauchy with respect to that norm and form the new field 
that contains all of Q together with all the limits of Cauchy sequences.

We continue with a closer analysis of Cauchy sequences in Qp.
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Exercise 34. Decide if the following sequences converge in Op; and find the limit of those 
that do.

a. an = n!

b. an = n

c. an = pn

, -1Ct. — n
a. The sequence an = n! will converge. Note

1(71 + 1)! - n!|p = |n!(n + 1 — l)|p = |n! • n|p.

As n gets larger, n! • n will be divisible by a very high power of p and thus |n! • n|p will
converge to zero, thus the sequence converges. We see that limn_>oo |n!|p = 0.

b. The sequence an — n will diverge. We notice that for any n,

|(n +1) - n|p = 11 |p = pQ = 1.

In order for the sequence to converge, we need lim^oo |a„+1 — an|p — 0. Thus, an = n
will diverge.

c. The sequence an = pn will converge. Note

lpn+1 -P"lp=lpn(p+1)IP = lpnlplp+lip=lp"lp • 1-

Clearly, |pn| approaches zero as n gets larger, thus the sequence converges to zero.

d. The sequence £ will diverge. Note

1 1 n n +1
n +1 n n(n +1) n(n +1)

p
n — (n + 1)
n(n +1)

p
-1 

n(n + 1)
p

Note that as n —> oo,
I -1 l
ln(n+ 1) Ip

could be large if pfc|n or pfc|n + 1 for large k. Thus, the sequence diverges.
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3.2 Convergence of Series

We now look at the convergence of series in Qp and see that a particular series 
that is clearly divergent in R is convergent in Q.

Definition 35. We say that the series Yli=i ai € converges in Qp if the sequence of 
partial sums, Sn = Qi converges in Qp. The series converges absolutely if Iadp 
converges in JR.

Theorem 36. If a series ^2 ladp converges in JR, then converges in Qp.

Proof. Assuming that 52lai|p converges in ]R, then by definition, the sequence of its 
partial sums converges and, thus, is a Cauchy sequence. Therefore, for any e > 0, there 
exists an integer N such that for all n, m with m > n > N, we have

m

j [ai|p <
i=n+l

Now, we want to show that is a Cauchy sequence in Qp. We use the triangle 
inequality property of a norm to see that

m m
I'S'm *Sn|  = | |ai|p < £•

i=n+l P i=n+l

Thus, {5n} is a Cauchy sequence in Qp and 52^ converges in Qp. □
oo

Exercise 37. Prove that n2 • (n + 1)1 = 2 in Qp for any p.
71=1

Proof. Fix a prime, p. In order to show that the series converges, we will show that
oo
^2 In2 • (n+1)11

converges in JR.

Fix £ > 0. Let {Sn} be a sequence of partial sums of the above sequence. Choose m G N 
such that < £. Then, for all n > pm we will have

|5n -Sn_i|p = |n2 • (n + l)!|p < -i-.
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Thus, {*$y  is a Cauchy sequence and |n2(n + l.)!|p converges in JR. Thus, by The­
orem 33, we know that that n2 • (n 4- 1)1 converges in Qp.

Note that
oo era

y^n2 • (n + 1)1 = 2 + ^~^n2 ■ (n + 1)1- 
n=l n=2

We claim
N 

n2 • (n 4- 1)1 = (N + 2)!(AT - 1).
n=2

We prove this via mathematical induction.

Initial Step : When N = 2, we have
2 

• (n+ 1)! = 22 • (3!) = 4! • (1) = (2 + 2)! • (2 - 1).
n=2

i

Induction Step : Assume
x-i 

n2 ■ (n +1)! = ((N - 1) + 2)! ■ ((TV - 1) -1) = (N +1)! ■ (TV - 1).
n=2

Then,
N

22"2 (n + l)! = (JV +1)! • (N - 2) + N2 • (TV +1)1
n=2

= (N + 1)!-(7V2 4-AT-2)

= (2V + l)!-(W4-2)-(W-l)

= (AT + 2)!-(AT-l).

It now follows that for N > pm,
N N

= |(TV + 2)1 ■ (TV-l)|p

< |TV2 • (TV + l)l|p

< pm
< e.
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which we can guarantee choosing N large enough.
Thus, we have

lim 
TV—>oo

N

• (n+ 1)1 — 2
n=l

= 0, and
p

oo

n2 ■ (n + 1)! = 2 in Qp for any p.
n=l

□

3.3 Functions and Derivatives

In this section, we consider such topics from Real Analysis such as the Inter­
mediate Value Theorem, the Mean Value Theorem and the Chain Rule, and examine if 
these results hold in Qp. We will begin with the Intermediate Value Theorem, but it will 
be helpful to first look at additional topological properties of Qp as a complete metric 
space.

We will begin by showing that open balls in Qp are both open and closed. The 
proof will require the following lemmas.

Lemma 38. If |rc — a|p < |a|p, then |rc|p = |a|p.

Proof Let |a? — a|p < |a|p. Using the strong triangle inequality of the p-adic norm, we 
have that

|a?|P = |ic — a + a\p < max{|rr — a|p, |a|p} = |a|p.

Now, to prove the inequality in the other direction, we have that

|a|p = |a — x + a;|p < max{|a — rr|p, |a;|p} = max{|x — a|p, |rr|p}.

We want to show that max{|x — a|p, |a;|p} = |a;[p. Assume that [rc — a|p > |k|p. One 
property that holds for all norms is |a; — a|p < |rr|p + |d|p. (This is true from the triangle 
inequality |rc + a|p < |x|p + |a|p and the fact that [—a|p = |a|p.) Then, if we have 
|x — a|p->. |te|p, that would imply that |a|p < |rc — a|p. However, this contradicts our 
assumption that |rc — a|p < |a|p. Thus, we know that

|ic — a|p < |a;|p => max{|rr — a|p, |a;|p} = |a;|p

|^|p < |^|p-

Since we have shown |a|p > |a;|p and |a|p < |jc|p, we conclude that |a|p = |te|p. □
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Lemma 39. The sphere S(a,r) in Qp is an open set.

Proof. Let x E S(a.r) and let e <r. In order to show that 5(a,r) is open, we will show 
that B(x,e) C S(a,r). Let y E B(x,e). Then, |ac — y\p < |a; — a\p = r because e < r. 
Then, |a; — y + a — a|p < |x — a\p and |(a; — a) — (y — a)|p < |rc — a|p. By Lemma 38, 
this implies |y — a\p = |rr — a|p = r. But this implies y E S(a,r) and we have that the 
sphere, 5(a, r) is an open set in Qp. (This is certainly not true in R, where any sphere is 
closed.) □

Theorem 40. Open balls in Qp are both open and closed.

Proof. Let B(a, r) be an open ball in Qp. In order to prove that B(a, r) is also closed, we 
will show that its complement is open. By definition, B(a,r) = {rr G Qp | |a? — a\p < r}. 
Let C be the complement of B(a,r). Then, we have that C is the union of the sphere 
S(a, r) and the set D = {.t G Qp | |rr — a|p > r}. We have shown that 5(a, r) is open. 
Now, we need to show that D is open.

(ri — r\y, —-—J. We 
(n — r\ / ri — rxy, —~—j is open in D. Let z E Byy, —-—j. By the triangle in equality, 

(7*1  — rx—-—J . Thus,

= r.

Thus, z E D by the definition of D and B (y, is open in D. Hence, D is open.
This is what we needed to show that C is open, as the finite union of open sets in any
metric space is open. Finally, we have that the complement of B(a, r) E Qp is open, and 
thus B(a, r) is both open and closed. □

This is a surprising result, as there are no nonempty proper subsets in R that 
are both open and closed.
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Now, in order to approach the subject of the Intermediate Value Theorem in 
the p-adic context, we need to examine what it means for points and sets to be connected 
in

Definition 41. A set S is said to be disconnected if there exist two open sets Ui and 
U2 such that

(1) UiDU2 = 0}

(2) s = {snt7i}u{sn<72},

(3) S C\Ui 0 and S C1U2 0*

Theorem 42. Qp is a totally disconnected set. That is, the connected component of 
any point x G Qp is the set consisting of only x.

Proof. Let x, y G Qp and let |:r — y\p = r. We seek the sets U± and t/2 from Definition 
39. Let Ui = B(x, g) and let U2 be the complement of Ui. Clearly U[ is open, and 
therefore also closed. Thus, H2 is open. By definition of a complement, U\ C U2 ~ 0- 
Also, we know that Qp = U\ U J72 = {Qp n C7i} U {Qp nt^}- Finally, since x G Qp n 
and y G Qp Pl ?Z2, neither set is empty, which satisfies our three conditions. Since x 0 172 
and y U\ we have that Qp is a totally disconnected set. □

Now, we are finally ready to approach the subject of the Intermediate Value 
Theorem in the p-adic context. The Intermediate Value Theorem states that the image 
of an interval under a continuous function f : R —> R is an interval. This is actually 
just a special case of a broader version of the theorem that is true in any metric space: 
the image of a connected set under a continuous function is a connected set. Since Qp is 
a metric space, this theorem also applies, but the only connected sets in Qp are the sets 
consisting of only one point. Thus, the Intermediate Value Theorem for Qp would be: 
“The image of a point under a continuous function is a point!”

However, we will see that the Mean Value Theorem in the p-adic context does 
not hold, even in a trivial sense.

Proposition 43. It is not the case that:
If a function f(X) is differentiable with continuous derivative on Qp then for any two 
numbers a, b G Qp, there exists an element, £ 6 Qp of the form £ — at 4-6(1 — t) for some
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t, where |t|p < 1 for which we have f(b) — f(a) = f(£)(b — a).
In other words, the p-adic Mean Value Theorem is false.

Proof. Let x G Qp and let f(x) = xp — x. In addition, let a — 0 and 6 = 1. We defined 
the derivative of a function in Qp in Theorem 22 (Hensel’s Lemma), which is what we 
would expect the derivative to be. Thus ff(x) = pxp_1 — 1 and f(a) — f(b) = 0. So, for 
the theorem to be true, we would need to find a £ such that p^p_1 — 1 = 0. We know that 
£ = at + 5(1 — t) = 1 — t for some |t[p < 1. This means precisely that t G Zp. Thus, we 
have seen from our arithmetic that £ itself must belong to Zp. We consider the canonical 
form of p£p_1 — 1. Since this number is one less than some multiple of p, we know that 
the p-adic digit ao /- 0- Thus, from Definition 24 of Zp from Chapter 2, we know that 
p£p_1 — 1 is in the group of p-adic units, and clearly p£p_1 — 1 7 0 for any £ G Qp. □

This counterexample is.heavily dependent on the choice of f. We found a 
function whose derivative resulted in values that are one less than a multiple of p, and 
we found that those numbers were in a multiplicative subgroup of our field that does not 
contain zero.

Now, we consider the Chain Rule in Qp to see if we see similar problems when 
computing derivatives.

Theorem 44. Let f,g : Qp —> Qp be two functions where g is differentiable at a, point 
x and f is differentiable at a point y = g(x). Then (f o gf = f(g(x)) • g'(x).

It is clear that the standard proof of the Chain Rule in JR. will hold in Qp because the 
Chain Rule is dependent on the limit definition of the derivative and the facts that f and 
g are differentiable at those particular points. We see that the problem function from 
our Mean Value Theorem, f(x) = xp — x, is certainly differentiable at any point x G Qp 
because f'(x) G Qp.

We have seen different results in analytical properties of Qp. We have examined 
standard results of Real Analysis and found that one result held, one result was entirely 
false, and one was only true in a trivial sense. In a future study, we will examine more 
closely how the p-adic norm affects analysis.
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Chapter 4

Conclusion

In this study, we examined some of the fundamentals of the space Qp. We defined 
a non-Archimedean norm and looked at how the strong triangle inequality affects our new 
space. We found that Qp is the completion of Q as a metric space with respect to the p-adic 
norm. We constructed the completion of Q with respect to a norm. When constructing 
Cauchy sequences of rational numbers, we can see that most Cauchy sequences with 
respect to the standard absolute value will not be Cauchy sequences with respect to the 
p-adic norm and vice versa.

The algebraic structure of does hold silimarities to its real counterpart. We 
have seen that Qp and R are nonisomorphic fields while Z and Zp are nonisomorphic 
integral domains. There are differences, however. For example, we saw that there exists 
a nontrivial subset of Zp that is an Abelian group under multiplication, which is certainly 
not true for Z.

In the study of the analysis of Qp, we saw large differences in comparison with 
real analysis. This is because the p-adic norm is a much different way to measure the 
distance between two points than the standard absolute value. This creates open sets in 
Qp that are also closed, which is not the case in the topology of R. In fact, since we have 
seen that Qp is a totally disconnected set, topologically, the only useful balls to consider 
would be those with radii that are powers of p.

The study of p-adic numbers does provide a deeper understanding into the fields 
of analysis and algebra. It provides new and complex examples of familiar topics and 
structures, allowing for deeper learning from a different perspective.
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