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ABSTRACT

Cloud-based systems have become increasingly popular because of their scalability 
and resource management techniques. It is now possible to build a huge online system 
in a short time without investing too much on computer hardware. Cloud systems 
provide a subscription-based model and efficient resource management where nodes 
are automatically shutdown when there is less or no traffic and automatically scaled 
up as traffic increases. Some of the very popular cloud platforms include Amazon 
Web Services, Microsoft Azure and Google App Engine. The student grading system 
implemented in this project (GradeBoard) uses Google App Engine for cloud storage 
and application hosting. This application allows students and instructors to interact 
using desktop or mobile platforms.

GradeBoard uses the JQuery Mobile library, which enables deployment to multi­
ple mobile platforms, such as Android and IOS operating systems, and on desktop 
systems without having to build separate applications for each of these platforms. 
This reduces the cost of development and maintenance when supporting multiple 
platforms.

The GradeBoard application is developed using the Model View Controller ar­
chitecture. It consists of server side and client side components that interact with 
each other using HTTP and HTTPS protocols. The data is stored in Google App 
Engine Datastore. The server side components are developed using Java Servlets, 
which connect to Google App Engine Datastore for retrieving and updating the data. 
The client side components are developed using JQuery Mobile library. They mainly 
consist of User Interface(UI) components and a Javascript library for interacting with 
the server side components using Asynchronous JavaScript and XML (Ajax).
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Overall, cloud platforms such as Google App Engine provide advantages by reduce 
the cost of hardware, facilities, and human resources. As a result, there will likely be 
a lot of applications migrated to, or built on top of, cloud platforms in coming years. 
Additionally, with the increasing number of mobile and tablet users, applications 
such as GradeBoard that run on both mobile and desktop platforms are becoming 
essential.
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1. INTRODUCTION

1.1 Background

Hosting a web site and maintaining servers requires a lot of resources such as hard- 
ware, air conditioned facilities, networking, electricity, human resources for system 
maintenance, etc. When a website is initially hosted, there are very few users using 
the system. But as the number of users increase, hardware needs to be upgraded 
along with building new facilities to accommodate the systems and human resources 
to maintain these systems. Sometimes, this new requirement of upgrading resources 
has to be met in a very short amount of time, which may be practically impossible. 
Also, if the demand drops suddenly after upgrading, then the entire investment on 
upgraded resources becomes wasted.

Cloud computing has evolved to overcome some of these problems. Cloud comput­
ing involves providing the software and hardware services based on the subscription­
based model. These services are provided over the Internet.

Hosting of a website on a cloud platform requires subscribing into these services 
based on the number of users and resources. These subscriptions can be upgraded 
within a short of amount time as opposed to days waiting for the shipment and 
installation of new hardware. Also, subscriptions can be downgraded without having 
to waste additional resources. The sudden spike in demand or drop in demand can 
be immediately addressed by using the auto scaling feature of a cloud platform. The 
auto scaling features of cloud platforms allow the spawning of new system resources 
as demand increases within minutes and at the same time shutting down resources 
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as demand decreases. This saves lot of time, hardware costs and electricity.
Some of the popular cloud system platforms include Amazon Web Services, Google 

App Engine, Microsoft Azure, and Heroku, to name a few.
Nowadays web applications need to be supported on multiple platforms such as 

desktops, laptops, mobile devices and tablets: Building a native application for each 
of these platforms is very time consuming and expensive. On the other hand, ap­
plications that are built using mobile development frameworks, such as PhoneGap 
and JQuery Mobile, work on multiple platforms without having to develop applicar 
tions using native APIs. This provides developers with a cost effective way to create 
applications that work on multiple devices.

The GradeBoard project is built by using Google App Engine for the Java platform 
and JQuery Mobile.

1.2 Google App Engine

Google App Engine is a cloud-based system that provides an application hosting 
environment that includes auto scaling, load balancing, security, a backend data store, 
and various other useful services. Google App Engine provides an API for languages 
such as Python, Java, and Go. Typically developers build and test their applications 
locally, before deploying into the Google App Engine hosting environment. Google 
App Engine provides an Eclipse IDE plug-in for Java developers to debug and test 
their applications. Google App Engine also provides an administrative console for 
monitoring performance, traffic and errors, etc [10],

The GradeBoard application uses the Google App Engine Datastore to take ad­
vantage of object data stores, query engines and atomic transactions [23].
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1.3 JQuery Mobile

JQuery mobile is an HTML5 mark up language built on top of JQuery and JQuery 
UI foundations. The primary purpose of JQuery Mobile is to support applications on 
various platforms such as desktops, mobile phones, and tablets. JQuery Mobile pro­
vides an API for developers to create rich HTML web pages using the JQuery markup, 
eventing model, AJAX API for asynchronous communication with Web servers and 
other useful features such as page transitions, accessibility, touch and slide support, 
etc [18].

The GradeBoard application uses JQuery Mobile API as the front end to interact 
with the Google App Engine.

1.4 Java Servlet Application Program Interface

Java Servlet Application Program Interface (API) is a Java extension to process re­
quests and responses from a Java Servlet Engine running inside a Web server. The 
communication between a client and the Web server is done using the HTTP or 
HTTPS protocol. Google App Engine internally uses Jetty Web server for processing 
HTTP and HTTPS requests. The GradeBoard is developed using Java Servlet API 
for handling requests and responses on the server side.

1.5 Purpose

The purpose of the GradeBoard application is to develop a Mobile application as a 
front end to interact with data stored in a cloud-based system. It leverages cloud 
computing features such as auto-scaling, load-balancing and NoSQL data stores. The 
GradeBoard application helps instructors keep track of student activities and gives 
students an opportunity to know how they are performing by comparing their grades 
with other students through a game-like leader board interface, thus creating a com­
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petitive environment in the class. The goal is to encourage students to spend more 
time in studies and score better grades.

.1.6 Project Scope

The primary users of this system are instructors and students. Instructors use the 
system to maintain or keep track of student activities and students use the system 
to view the grades of students in the course and compare their grades with those of 
their classmates. There is also an admin user for overall management of the student 
grading system.

The Gradeboard application provides the following functionalities:

• Admin manages courses and instructor access to them.

• Instructors login to the system to populate courses with registered students.

• Courses can have more than one instructor.

• Instructors create gradable components for their courses.

• Instructors record student grades on gradable components.

• Instructors email links of public grade sheets to students after grade changes.

• Instructors mask the student ids with randomly generated strings of length 2-3 
characters.

• Grade sheets are public; students do not authenticate to view their grades.

• Instructors and admin authenticate using the Google authentication service.

• Students can view the grade sheet on mobile devices or desktop computers.

• The grade sheet is designed to function well on mobile devices.

• Instructors can set letter grade point ranges.
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1.7 Related Work

Currently there are not many solutions available that provides a student grading 
system along with a Mobile interface for accessing the data in the cloud. The Grade- 
Board application is robust because of the use of Java Servlet technology. Java Servlet 
technology is a widely adopted technology. Most of the student grading systems that 
are currently available in the market are not designed to scale easily to match de­
mand, and lack UI interfaces that are developed for mobile devices and tablets. The 
GradeBoard application provides both cloud and mobile based solutions along with 
a leader board interface for students to evaluate their performance.

1.8 Project Limitations

This project provides a UI design for mobile devices and tablets. A responsive design 
spanning from desktop to mobile devices with screen resizing and scaling can not be 
fully provided because of the limitations of the JQuery Mobile API. Monitoring an 
application hosted on a Google App Engine is not available for free for developers.

1.9 Definitions, Acronyms, and Abbreviations

The definitions, acronyms, and abbreviations used in the document are described in 
this section.

• GradeBoard: Name of this project

• API: Application Programming Interface is a set of routines that an application 
uses to request and carry out low-level services performed by a computer’s oper­
ating system; also, a set of calling conventions in programming that defines how 
a service is invoked through the application [9].
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• Cloud computing: Cloud computing is the use of computing resources (hard­
ware and software) that are delivered as a service over a network (typically the 
Internet) [6].

• Google App Engine: Cloud computing platform provided by Google [10].

• JQuery: A javascript library provided by JQuery for building web based appli­
cations [19]-

• UI: User Interface

• JQuery Mobile : A Mobile API built using JQuery and JQuery UI foundation 
[18]-

• Java: An Object Oriented Language developed by Sun Microsystems in 1995 
[25].

• Java Servlet: Java Servlet technology provides Web developers with a simple, 
consistent mechanism for extending the functionality of a Web server and for 
accessing existing business systems [24],

® CSUSB: California State University, San Bernardino.

• HTML: HyperText Markup Language is the authoring language used to create 
documents on the World Wide Web [29].

• HTTPS: Hyper Text Transfer Protocol Secure is a secure network protocol used 
to encrypt data transferred between server and client [13].

• J2EE: Java 2 Platform Enterprise Edition is a platform-independent, Java­
centric environment from Sun Microsystems, Inc., for developing, building, and 
deploying Web-based enterprise applications online. The J2EE platform con­
sists of a set of services, APIs, and protocols that provide the functionality for 
developing multitiered, Web-based applications [30].
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• JDBC: Java Database Connectivity is an API for the Java programming language 
that defines how a client may access a database. It provides methods for querying 
and updating data in a database. JDBC is oriented towards relational databases
[16].

• MVC: Model-View-Controller is an architectural pattern used in software engi­
neering to isolate business logic from user interface considerations [21].

• UML: The Unified Modeling Language is the industry-standard language for 
specifying, visualizing, constructing, and documenting the artifacts of software 
systems [28].

• Microsoft Azure: Cloud Computing platform provided by Microsoft [32].

• Amazon Web Services: Cloud Computing platform provided by Amazon [3].

• Heroku:Cloud Application platform provided by Heroku [11].

• Android : Mobile Operating System provided by Google [4].

• IOS : Mobile Operating System provided by Apple [15].

• PhoneGap: Open Source Framework for creating Mobile Apps [26].

• Google Cloud SQL: Relational Database Model for Cloud Platform provided by 
Google [23].

• Google Cloud Storage: Cloud Storage Service provided by Google [23].

• Eclipse IDE: Open Source Development Environment provided Eclipse Founda­
tion [7].

• NoSQL: Uses key-value pairs for storing data unlike traditional Relational Database 
Management [22].
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• Jetty (web server): An open source HTTP server and a Java Servlet container
[17].

• JSON : Javascript Object Notation built using key and value pairs [20].

• Ajax: Asynchronous JavaScript and XML/JSON format for communicating from 
client to the server [2].

• Gradable componet: Student work receives grade, quiz exam assignment.

• Grade Sheet: A tablular format with columns representing gradable components 
and rows resprsenting students. Cells contain assigned grades.

• OOP : Object Oriented Programming concept with objects representing real 
world entities. Methods expose state of the object [31].

• Poly Model : Object Oriented Programming concept built into Google App En­
gine Datastore [27].
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2. ARCHITECTURE AND DESIGN

2.1 Design Overview

GradeBoard uses a client-server architecture model. On the server side, it uses the 
Google App Engine Datastore for storing data and Java Servlets running inside Jetty 
Web Server for serving requests and responses sent over HTTP(S). On the client side, 
it uses JQuery Mobile API for building UI components and for communicating with 
the Web server. The requests and responses on the client side are handled through 
Asynchronous Javascript and XML (Ajax).

2.2 Model View Controller Architecture

Model View Controller (MVC) architecture is a software design pattern for separating 
different components of a software application [21]. There are three main categories 
in the MVC architecture:

• Model represents data in the application. All the business rules are handled in 
the model.

• View represents UI components in the application. The UI components are 
responsible for presenting the model and for collecting user inputs.

• Controller is responsible for updating the data in the model and notifying the 
view about changes in the model.

There are several advantages of using an MVC architecture:
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1. Easy to maintain large applications.

2. Easy to identify bugs in the system.

3. Developers can work on different components based on their expertise.

4. Reduces clutter in the application logic as the application grows in size.

In this project, an MVC architecture is used in both server side and in client side 
components.

On the server side, all the business rules are implemented using plain Java classes 
which represent the model. These Java classes are responsible for communicating and 
updating the Google App Engine Datastore. The Java Servlets act as a controller for 
dispatching requests and updating the model. There are no view components on the 
server side.

On the client side, all business rules axe implemented using Javascript objects 
which represent the model. All the Ajax requests are handled through a controller 
class. The rendering of HTML markup is handled through a view class.

In this design, there is a one-to-one mapping between the model represented on the 
client side with the model represented on the server side. Also, there is a one-to-one 
mapping between the model represented on the server side with the data stored in 
the Google App Engine Datastore.
A typical workflow of processing user request is as follows:

• When a page is requested, the controller is initialized and sends an Ajax request 
to the server.

• The request arrives on the server side; the Servlet controller parses the input 
parameters and sends the request to the model.

® The model processes input parameters, connects to the Google App Engine Data­
store and queries the data.
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• The model sends the response back to the Servlet controller.

• The Servlet controller dispatches the response back to the client.

• The controller on the client side receives the response and updates the model 
with new data.

® The controller calls on the view to render the data.

• The view gets the data from the model and renders the data.

• The user views, modifies or inputs new data and submits the request. The 
controller sends the request to the server and the cycle continues.

The MVC architecture used in GradeBoard for processing user requests is shown 
in Figure 2.1.
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Fig. 2.1: Model View Controller Architecture In GradeBoard Application

2.3 Detailed Design

Besides using an MVC model, the GradeBoard application design completely sepa­
rates server and client side components. There are no JSP pages for rendering HTML 
markup from the server side. This gives the flexibility of rendering UI components us­
ing the Javascript libraries such as JQuery Mobile. The data communicated between 
client and server is constructed using JavaScript Object Notation (JSON). JSON 
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provides light weight data communication medium between server and client usually 
through Ajax [20].

2.4 Application Components

The server side components include the controller and model classes. Controller 
classes extend from the Java HTTP Servlet class. There are two main controller 
classes, Student Controller and Instruct or Controller, for handling HTTP and HTTPS 
requests. These controller classes can be thought of as dispatchers for parsing inputs 
from the HTTP Servlet request object and appropriately calling model objects.

2.5 Controller Classes

The InstructorController class processes the following requests:

• Adding, Deleting and Modifying instructors.

• Creating, Modifying and Deleting a course.

• Creating, Modifying, Deleting Gradable components for the course.

• Modifying Grades.

• Generating Grade Sheet.

The Student Controller class processes the following requests:

• Delete, Modify and Update students.

• Allow admin to enter multiple students for a course.

• Email student grades

13



2.6 Mapping of Model Classes to Google App Store Objects

The GradeBoard application uses a one-to-one mapping between Google App Engine 
Datastore object representations to model classes. Besides these mapping, objects in 
Google App Store can be represented in a hierarchical model by having an ancestor 
class. This hierarchical architecture can be easily represented in model classes by 
using inheritance. The Model classes used in this project include:

• Course class for Creating, Modifying and Deleting a course.

• Component class with Course as an ancestor.

• Grade class with Component as ancestor for creating Gradable components.

® Instructor class for storing instructor information.

• Auth class for storing authorized Instructor for a course with instructor as an 
ancestor.

• Student class for adding, modifying and deleting students with Course as ances­
tor.

Internally, the model classes communicate with Google App Engine Datastore 
objects by constructing queries from request objects.

2.7 System Interfaces

GradeBoard application users interact with the system using a Web browser on a 
desktop computer or a mobile device. The requests are sent over the network using 
HTTP or HTTPS protocols. On the server side, GradeBoard application is deployed 
on a Jetty Web server. When a Web server receives the request, it calls appropriate 
application class to process the request. If the request is for data from Google Data­
store, then a connection is established with Google Datastore to retrieve the data.

14



After retrieving the data, a response object is created and the data is transferred 
back to the Web browser through HTTP or HTTPS. The deployment diagram for 
the GradeBoard application is shown in Figure 2.2.

Fig. 2.2: Deployment Diagram

2.8 Product Functions

In the GradeBoard application there are three main users, namely instructor, student 
and admin.

Admin characteristics:
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• Must be logged-in through Google Account as an admin user.

• Authorizes instructor to create courses.

• Admin adds students to specific courses.

The use case diagram for admin user is shown in Figure 2.3.

Instructor characteristics:

• Must be logged-in through Google Account and authorized to modify or create 
courses.

• Creates courses.

• Authorizes another instructor to modify the courses.

• Creates Gradable components.

® Assign Scores to Gradable Component for specific students.

• Emails grade sheet URL to students.

The use case diagram for instructor is shown in Figure 2.4.
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Student characteristics:

• Receives grade sheet URL through email.

• Views Grades for specific course.

The use case diagram for students is shown in Figure 2.5.

17
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3. GOOGLE DATA STORE DESIGN

The Google App Engine Datastore is based on the Big Table architecture. It is es­
sentially a hashmap with keys mapped to multi dimensional arrays. These arrays 
represent columns or collections of columns. The number of columns in a datastore 
is not fixed. For every web application deployed in Google App Engine, it gener­
ates a unique application id (ApplicationlD). The application id (ApplicationlD) is 
associated with a path, which defines the hierarchy of entity keys [12]'.

3.1 Entity and Kind

Every entity must be of a particular kind. For example: To create an entity of kind 
Department, an object of type Entity is created by passing Department as kind: 

Entity department = new Entity(”Department”);
An entity can be associated with a parent entity by providing the entity type in 

the constructor.
Entity location = new Entity (’’Department”, department.getKey());

Each entity may or may not belong to a group. But Google recommends every 
entity should belong to a group so that in a distributed environment, a group of 
entities can be stored in a particular cluster. Deleting a parent, does not guarantee 
deletion of the child. This should be done programmatically by traversing each child
[8],

Each entity can have multiple properties. For example:
location.setProperty(”USA”,
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location. setProperty (’’France”, ” ”);

3.2 Indexes

Indexes are auto generated in the Google App Engine Datastore. Each application 
contains an index table with rows corresponding to entities and columns correspond­
ing to property values. Index entries are added based on the combination of the 
property name and property values. So care must be taken to avoid index explosion. 
For example:

Indexes
kind =Model;

properrties;
name = typel
name = type 2

If there are three values of typel and four values of type2, a combination of the 
these will result in 12 index table entries. Google App Engine datastore allows 200 
entries in the index table for every put operation. To avoid indexing errors, property 
names can be grouped into multiple entities.

Indexes:
kind =Modell:

properties:
name = typel

Indexes:
kind =Model2:

properties:
name = type 2

Custom indexes can be added by updating indexing.yaml file by specifying which 
properties need to be indexed [14].
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3.3 Data Modeling

GradeBoard uses the Google App Engine Datastore API for defining models. The 
attributes of an entity can be updated dynamically since there is no limitation on the 
number of columns. Table 3.1 defines entities identified in the GradeBoard applica­
tion.

Tab. 3.1: Entity Types

Entity Kind Keytype
Quarter int
Course int
Component int
Grade int
Instructor int
Student int
Auth int

Each entity is defined in the datastore with an ApplicationlD (unique across entire 
store) and a Path. The Path defines hierarchy beginning with the root entity until 
the current node is found. The relationship is identified by ancestor path. Path 
defines the ancestor relationships among entities.Table 3.2 defines paths identified in 
the GradeBoard application.

\
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Tab. 3.2: Entity Path

Entity Pathvalue
Quarter
Course Course:Quarter
Component Course: Component
Grade Course: Component: Grade
Instructor » »

Student Course:Student
Auth Auth: Instruct or

Table 3.3 defines Quarter Entity in the GradeBoard application.

Tab. 3.3: Quarter Entity

Attribute Type
Id int
Name str
St art date date
Enddate date

The course entity contains details about the course. Table 3.4 defines the course 
entities in the GradeBoard application.
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Tab. 3.4: Course Entity

Attribute Type
Id int
Coursename str
Description str
Number int
Units int
Totalseats int
Seatstaken int
Classtime date
Location str

Component is a PolyModel Entity. A PolyModel entity can be thought of as an 
abstract class which can be inherited by multiple entities. The query on a parent 
results in the data stored in the inherited child entity. This concept is similar to 
polymorphism in object oriented programming. Table 3.5 defines Component Entity 
in the GradeBoard application.

Tab. 3.5: Component Entity

Attribute Type
Id int
Name str
Deadline date
Points int
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The grade entity inherits from component entity. Table 3.6 defines the grade entity 
in the GradeBoard application.

Tab. 3.6: Grade Entity

Attribute Type
Id int
Score int
Studentld Referenceproperty

Table 3.7 defines Student entity in the GradeBoard application. Student entity 
contains a property named Secretld for masking the Id when a grade sheet for other 
students is constructed. A student who is viewing the grade sheet will see the Secretld 
of the other students not the actual name.

Tab. 3.7; Student Entity

Attribute Type
Id int
Firstname str
Lastname str
Email str
Secretld int

Table 3.8 defines the Instructor entity in the GradeBoard application. Instruc­
tor information is populated from the Google Account that the instructor uses to 
log in. Administrator authorizes and adds the instructor account for GradeBoard 
application.

24



Tab. 3.8: Instructor Entity

Attribute Type
Id int
GoogleUser User

Table 3.9 defines the Admin entity in the GradeBoard application. The Admin 
entity is pre-populated or manually updated by the administrator.

Tab. 3.9: Admin Entity

Attribute Type
Id int
GoogleUser User
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4. PROJECT IMPLEMENTATION

The GradeBoard application is designed to work on mobile devices and desktop com­
puters. The UI of the application is developed using JQuery Mobile API. When a 
page requires the data to be loaded from server or modified or deleted, a request is 
sent to the Web server over HTTP or HTTPS. The requests are sent to the Web server 
using Ajax. For handling Ajax requests and responses, this application uses JQuery 
Ajax API. All UI components are dynamically created or initialized in response to 
the data received from the Web server.
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4.1 Welcome Screen

When the GradeBoard application is loaded, a welcome screen with login button 
is presented to the user as shown in the Figure 4.1. The welcome screen shows 
application logo and login button for users to login to the system.

Fig. 4.1: GradeBoard Welcome Screen
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4.2 Login Screen

GradBoard uses Google accounts for authentication and authorization. When the 
user clicks on the login button, the screen is automatically redirected to the Google 
login screen as shown in Figure 4.2. There are two types of access users can get, 
namely admin and user. For admin access, the user is first authenticated by Google 
and then the user entry is checked in the admin table. For user access, the user 
account is authenticated by Google. After logging in, the quarter screen is shown.

Not logged in
Email: jtest@example.com | 

EJ- Sign In as Administrator 

| Login j| LogOul]

Fig. 4.2: Login Screen
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4.3 Quarter Screen

The quarter screen displays quarter and year information as shown in Figure 4.3. The 
quarter screen is shown after user logins into the system. After selecting quarter and 
year, the instructor clicks on the show courses button, to view the list of courses.

GradeBoard Logout

Quarter

Show Courses

Fig. 4.3: Quarter Screen
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4.4 Courses Screen

The courses screen shows a list of courses as shown in Figure 4.4. Using the courses 
screen, the instructor can add a new course or view the details of the existing course. 
After the user clicks on the course, the course details page is loaded.

I 
j

‘ 1______

Fig. 4.4: Courses Screen
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4.5 Add Course Screen

The add course screen is shown when the user clicks on the add button in the courses 
screen. Using this screen, instructors can add a new course as shown in Figure 4.5. 
This page checks that the course value entered already exists and displays an appro­
priate error message if not. The back button allows users to navigate to the course 
list page.

Fig. 4.5: Add Course Screen

/>, Back GradeBoard Logout

Add Course

[Enter Course Name: .. |
r : . '■ JI

. ■ 1 .. . ■ ■ '

4* Save>n

L; 1.. 1

< • :

-J ■■■■':
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4.6 Course Details Screen

The course details screen allows instructors to view course details such as the number 
of students registered and the number of seats available. The course details screen 
is shown in Figure 4.6. From the course details screen, the user can edit the course, 
edit the grade components, or delete the course.

t

Fig. 4.6: Course Details Screen
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4.7 Edit Course Screen

The edit course screen allows instructors to edit the course details as shown in Fig­
ure 4.7. The instructor can modify the course name, add additional instructors, add 
students and add gradable components.

Back GradeBoard Logout

Edit Course

CSE 330 01 DATA STRUCTURES

c Course Name

r~ Instructors 3
c. Students

. Gradable Components J

1
I
1

Fig. 4.7: Edit Course Screen
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4.8 Edit Course Name Screen

The edit course name screen allows instructors to edit the course name as shown in 
Figure 4.8. A validation is added to check if the course name entered by the user is 
empty or if it already exists. Changing the course name involves passing the current 
course name and new course name to the server. The server searches first the course 
entity with name equal to the current course name and then replaces the course name 
property value with the new course name.

EdtCourseName: \
;[CSE33OO1 DATA STRUCTURES] . J

Back GradeBoard Logout

Edit Course Name

Save

Fig. 4.8: Edit Course Name Screen
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4.9 Instructors Screen

The instructors screen displays a list of instructors for a course as shown in Figure 4.9. 
A course can have multiple instructors. Internally, instructors are stored as auth 
objects with a parent instructor (who created the course). Each auth object will 
contain the id of the course entity.

Joe Walter i i

*) Back GradeBoard Logout
^1 B r

Instructors

1
Sam Rodrigues

•i

j^Add Instructor

Fig. 4.9: Instructors Screen
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4.10 Add Insructor

The add instructor screen allows an instructor to add another instructor as shown in 
Figure 4.10. Only the instructor who originally created the course can add additional 
instructors. The new instructors have restricted access. Permission to change the 
course name or gradable components is not given to new instructors.

Fig. 4.10: Add Instructor Screen
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4.11 Delete Insructor

The delete instructor screen allows the original instructor to remove an instructor 
from the course as shown in Figure 4.11. The instructor who originally created the 
course can not be deleted, so there should always be at least one instructor for the 
course.

V Back GradeBoard Logout

—

Delete Instructor

Andrew Jacobs r

Delete

Fig. 4.11: Delete Instructor Screen
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4.12 Students

The student screen lists all the students registered for the course as shown in Fig­
ure 4.12. New students can be added by clicking on the add student button. There 
is also an option to add multiple students at once.

£ Back GradeBoard Logout.

Students

Adam Smith _ )
Maria Douglas 'I

__________ /

Terry Miller j
.j

Fig. 4.12: Students Screen
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4.13 Add Student

This screen allows instructors to add students to the course as shown in Figure 4.13. 
A validation is added to check for an empty student name or email address. Also, if a 
student with same name and email address already exists, an error message is shown 
to the instructor.

Enter Student Name:

r

Back GradeBoard Logout

Add Student

Enter Student Email:

i

Jh Save

Fig. 4.13: Add Student Screen
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4.14 Add Multiple Students

The add multiple students screen allows instructors to enter multiple student data 
at once as shown in Figure 4.14. This helps the instructor to update student data 
at once when a course is created. To add multiple student data, instructors need 
to provide a comma separated list of student data in an HTML textarea field. The 
student data must contain three fields: first name, last name and email address. The 
instructor is notified if any student record is missing one of these fields.

Back GradeBoard Logout

Add Multiple Students

Input student data in comma seperated list of I
I valuesfcsv format): Each student record should ' 
I have LastName, FirstName and Email address: |

+ Save

Fig. 4.14: Add Multiple Students Screen
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4.15 Edit Student

The edit student screen allows instructors to edit the details of a student as shown 
in Figure 4.15. All of the student information can be changed by the instructor.

Fig. 4.15: Edit Student Screen
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4.16 Grades

The grades screen shows an instructors list of the names of all gradable components 
as shown in Figure 4.16. If a new grade is required, then the instructor needs to add 
the gradable component in the add gradable component screen. Clicking on the grade 
button lists all the students registered for the course.

Back GradeBoard Logout

Grades

i

______ ,_J
Fig. 4.16: Grades Screen
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4.17 Edit Grades

The edit grade screen presents to the instructor a list of students whose grades can be 
edited as shown in Figure 4.17. Instructors can edit the individual grade by clicking 
on the student button. The view grade sheet option allows the instructor to view the 
grade sheet of the entire course.

Adam Smith

*) Back GradeBoard Logout
- -*

Edit Grades

Maria Douglas

Terry Miller

Jji GradeSheet

Fig. 4.17: Edit Grades Screen
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4.18 Edit Student Grade

The edit student grade screen allows instructors to enter grade points of a student as 
shown in Figure 4.18. A validation is provided to check that values are not empty and 
do not exceed the maximum value of grade points entered in the gradable component.

i
. Points:

Back GradeBoard Logout

Edit Student Grade

i czi__

Grade 1 of Admam Smith

]
Save

i

Fig. 4.18: Edit Student Grade Screen
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4.19 Gradable Components

The gradable component screen displays a list of gradable components of a course as 
shown in Figure 4.19. A new gradable component can be added by clicking on the 
add gradable component button.

b Back GradeBoard Logout

Gradable Components

c
c
r

Gradable Component 1

Gradable Component 2

Gradable Component 3

■£, Add Gradable Component

Fig. 4.19: Gradable Component Screen
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4.20 Add Gradable Component

The add gradable component screen allows instructors to add a gradable component 
for the course as shown in Figure 4.20. Name, points and deadline are required fields 
and a validation is added to check for empty values. A check for duplicated entries is 
added to make sure gradable components are unique in a course.

Back GradeBoard Logout

Add Gradable Component

Name:

■ J
Points:
( ............. _

-......... . - 7.- -

Deadline:
/ ............................................ -............. • ■ ...

(_______ J

Fig. 4.20: Add Gradable Component Screen
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4.21 Edit Gradable Component

The edit gradable component screen allows instructors to edit gradable components 
for the course as shown in Figure 4.21. Name, points and deadline are required fields, 
so a validation is performed to check for empty values.

Back GradeBoard Logout

Edit Gradable Component

Name:

Gradable Componet 1

I

Fig. 4.21: Edit Gradable Component Screen
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5. CONCLUSION AND FUTURE DIRECTION

5.1 Conclusion

The GradeBoard application is developed on the Google App Engine cloud platform 
and has a mobile user interface. By combining Java Servlet technology and using 
the auto scaling and load balancing features of the cloud platform, the application is 
robust and built to scale to support large numbers of users. The application is very 
convenient for instructors and students to access because it is works well on mobile 
devices. The use of Javascript technology on the client side gives the advantage of 
building one application that runs on multiple platforms. Using the Bigtable data 
store, attributes of an entity can be dynamically expanded. For example in the Grade- 
Board application, if there is a requirement to add a new visiting instructor from a 
different university, a new attribute named university can be added to the instructor 
entity without changing the structure of the datastore. The GradeBoard application 
provides public grade sheets to students who can view their performance and improve 
their grades during different phases of the course. Overall, the GradeBoard applica­
tion provides scalability, convenient user experience and easier maintenance of the 
system.

5.2 Future Direction

The GradeBoard application can be used as a reference for providing cloud-based 
solutions and mobile user interfaces. The GradeBoard application can be further 
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extended to deploy to other cloud platforms such as Amazon Web Services, Heroku, 
Microsoft Azure, etc. The following is a list of the possible future enhancements to 
the application.

• Provide a responsive design using technologies such as Bootstrap to support 
dynamic screen sizes on multiple devices and desktop systems [5].

• Extend gradable components to incorporate game-like features.

• Add new interfaces to the data model to support alternative database systems 
that could be used at lower cost, such as MongoDB [1].
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APPENDIX A

SERVER SOURCE CODE
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//Auth.java

package gradesys;

}

import java.util.ArrayList;

import java.util.Iterator;

import java.util.List;

import com.google.appengine.api.datastore.Cursor;

import com.google.appengine.api.datastore.DatastoreService;

import com.google.appengine.api.datastore.DatastoreServiceFactory;

import com.google.appengine.api.datastore.Entity;

import com.google.appengine.api.datastore.EntityNotFoundException;

import com.google.appengine.api.datastore.Key;

import com.google.appengine.api.datastore.Query;

import com.google.appengine.api.datastore.QueryResultIterator;

import com.google.appengine.api.datastore.QueryResultList;

import com.google.appengine.api.datastore.Transaction;

import com.google.appengine.api.datastore.Query.FilterOperator;

import com.google.appengine.api.datastore.Query.Filterpredicate;

public class Auth {

private static final String entityKind = "auth";

private static final String namePropertyName = "courseld";

private Entity entity = null;

private Auth(Entity entity) {

this.entity = entity;
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public Long getID() {

return (Long) entity.getKey().getld();

1

public Long getCourseldO (

return (Long) entity.getProperty(namePropertyName);

)

public Key getInstructor() {

return entity.getParent();

)

private void setName(Long courseld) {

entity.setproperty(namePropertyName, courseld);

J

public void save() {

saveOrCreateEntity(entity) ;

J

public static void deleteByName(Long courseld) {

deleteEntityByName(courseld) ;

}

public static Auth create(Long courseld, Key instructorKey)

throws CourseAlreadyExistsException {

return new Auth(createEntity(courseld, instructorKey));

}
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public static Auth getByCourseld(Long courseld) {

Entity entity « getEntityByCourseld(courseld);

if (entity == null) {

return null;

} else {

return new Auth(entity) ;

}

}

// Helper function that runs inside or outside a transaction.

private static Entity getEntityByCourseld(Long courseld) {

Query query = new Query(entityKind);

Query.Filter filter = new FilterPredicate(namePropertyName, 

Filteroperator.EQUAL, courseld);

query.setFilter(filter) ;

DatastoreService datastore = DatastoreServiceFactory 

.getDatastoreService() ;

return datastore.prepare(query).asSingleEntity();

}

public static List<Course> getCoursesBylnstructor(Key instructorKey) 

throws EntityNotFoundException {

Query query = new Query(entityKind);

query.setAncestor(instructorKey) ;

DatastoreService datastore = DatastoreServiceFactory

.getDatastoreService();
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Iterator<Entity> iterator = datastore.prepare(query).aslterator 

0 ;

List<Course> courses = new ArrayList<Course> ();

while (iterator.hasNext()) {

Entity entity = iterator.next();

Long courseld « (Long) entity.getProperty( 

namePropertyName);

Course course « Course.getByCourseld(courseld); 

courses.add(course);

}

return courses;

}

public static Course getCourseDetailsByInstructor(String id,

Key instructorKey) throws EntityNotFoundException {

Query query = new Query(entityKind);

query.setAncestor(instructorKey);

Query.Filter filter = new Filterpredicate(namePropertyName,

Filteroperator.EQUAL, id);

query.setFilter(filter) ;

DatastoreService datastore = DatastoreServiceFactory 

.getDatastoreService();

Entity instructorEntity •» datastore.prepare (query) . 

asSingleEntity();

Long courseld = (Long) instructorEntity.getProperty( 

namePropertyName);

Course course = Course.getByCourseld(courseld);

return course;
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// Helper function that runs inside or outside a transaction.

private static void saveOrCreateEntity(Entity entity) {

DatastoreService datastore = DatastoreServiceFactory

.getDatastoreService(); 

datastore.put(entity);

}

private static void deleteEntityByName(Long courseld) {

DatastoreService datastore « DatastoreServiceFactory 

.getDatastoreService();

Transaction txn = datastore.beginTransaction();

Entity entity = getEntityByCourseld(courseld);

if (entity != null) {

datastore.delete(entity.getKey());

}

txn.commit () ;

)

private static Entity createEntity(Long courseld, Key instructorKey) 

throws CourseAlreadyExistsException {

DatastoreService datastore = DatastoreServiceFactory 

.getDatastoreService();

Transaction txn = datastore.beginTransaction();

Entity entity = getEntityByCourseld(courseld);

if (entity != null) {

txn.commit () ;

throw new CourseAlreadyExistsException ();
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}

entity = new Entity(entityKind, instructorKey); 

entity.setProperty(namePropertyName, courseld); 

datastore.put(entity);

txn.commit () ;

return entity;

}

}

//Course.java

package gradesys;

import com.google.appengine.api.datastore.DatastoreService;

import com.google.appengine.api.datastore.DatastoreServiceFactory;

import com.google.appengine.api.datastore.Entity;

import com.google.appengine.api.datastore.EntityNotFoundExcept ion;

import com.google.appengine.api.datastore.Key;

import com.google.appengine.api.datastore.KeyFactory;

import com.google.appengine.api.datastore.Query;

import com.google.appengine.api.datastore.Query.Filteroperator;

import com.google.appengine.api.datastore.Query.Filterpredicate;

import com.google.appengine.api.datastore.Transaction;

public class Course {

private static final String entityKind = "course";

private static final String namePropertyName = "name";

private Entity entity •» null;
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private Course (Entity entity) {

this.entity = entity;

}

public Long getID() {

return (Long) entity.getKey().getldO;

}

public String getName() (

return (String) entity-getProperty(namePropertyName) ;

}

private void setName(String name) {

entity.setproperty(namePropertyName, name);

}

public void save!) {

saveOrCreateEntity(entity);

1

public static void deleteByName(String name) { 

deleteEntityByName(name) ;

)

public static Course create(String name)

throws CourseAlreadyExistsException {

return new Course(createEntity(name));

}
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public static Course save(String oldCourseName, String newCourseName)

throws Exception {

Course course = getByName(oldCourseName);

if (course == null) {

throw new CourseNotFoundException();

} else {

DatastoreService datastore = DatastoreServiceFactory 

.getDatastoreService();

Transaction txn = datastore.beginTransaction();

course.setName(newCourseName);

datastore.put(course.entity);

txn.commit ();

return course;

}

}

public static Course getByName(String name) {

Entity entity - getEntityByName(name);

if (entity «= null) {

return null;

} else {

return new Course(entity);

}

}

public static Course getByCourseld(Long courseld)

throws EntityNotFoundException {

Entity entity = getEntityByKey(courseld);

if (entity == null) {
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return null;

} else {

return new Course(entity);

}

}

// Helper function that runs inside or outside a transaction.

public static Entity getEntityByKey(Long id) throws

EntityNotFoundException (

/*

* Query query = new Query(entityKind); Query.Filter filter =

new

* FilterPredicate(Entity.KEY_RESERVED_PROPERTY, FilterOperator.

EQUAL,

* id); query.setFilter(filter) ;

*/

Key key = KeyFactory.createKey("course”, id);

DatastoreService datastore = DatastoreServiceFactory

.getDatastoreService();

return datastore.get(key);

}

// Helper function that runs inside or outside a transaction.

private static Entity getEntityByName(String name) {

Query query = new Query(entityKind);

Query.Filter filter = new FilterPredicate(namePropertyName,

FilterOperator.EQUAL, name);

query.setFilter(filter) ;
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DatastoreService datastore = DatastoreServiceFactory 

.getDatastoreService();

return datastore.prepare(query).asSingleEntity();

}

// Helper function that runs inside or outside a transaction, 

private static void saveOrCreateEntity(Entity entity) (

DatastoreService datastore = DatastoreServiceFactory 

.getDatastoreService();

datastore.put(entity);

}

private static void deleteEntityByName(String name) {

DatastoreService datastore = DatastoreServiceFactory 

.getDatastoreService();

Transaction txn = datastore.beginTransaction();

Entity entity = getEntityByName(name);

if (entity != null) {

datastore.delete(entity.getKey());

}

txn.commit () ;

}

private static Entity createEntity(String name)

throws CourseAlreadyExistsException {

DatastoreService datastore = DatastoreServiceFactory 

.getDatastoreService() ;

Transaction txn = datastore.beginTransaction();

Entity entity = getEntityByName(name);
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if (entity != null) {

txn. commit () ;

throw new CourseAlreadyExistsException();

}

entity = new Entity(entityKind);

entity.setProperty(namePropertyName, name);

datastore.put(entity);

txn.commit () ;

return entity;

}

}

//Instructor.java:

package gradesys;

import com.google.appengine.api.datastore.DatastoreService;

import com.google.appengine.api.datastore.DatastoreServiceFactory;

import com.google.appengine.api.datastore.Entity;

import com.google.appengine.api.datastore.Key;

import com.google.appengine.api.datastore.Query;

import com.google.appengine.api.datastore.Transaction;

import com.google.appengine.api.datastore.Query.FilterOperator; 

import com.google.appengine.api.datastore.Query.FilterPredicate;

public class Instructor {

private static final String entityKind = ’’Instructor";

private static final String namePropertyName = "userid";
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private Entity entity = null;

private Instructor(Entity entity) {

this.entity = entity;

)

public Long getIDO (

return (Long) entity.getKey().getld();

}

public Key getKey() {

return entity.getKey();

}

public String getName() {

return (String) entity.getProperty(namePropertyName);

}

private void setName(String name) {

entity.setproperty(namePropertyName, name);

}

public void saved {

saveOrCreateEntity(entity);

)

public static void deleteByName(String name) {

deleteEntityByName(name);
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}

public static Instructor create(String name) throws

CourseAlreadyExistsException {

return new Instructor(createEntity(name));

)

public static Instructor getByName(String name) {

Entity entity = getEntityByName(name);

if (entity == null) {

return null;

} else {

return new Instructor(entity) ;

}

}

// Helper function that runs inside or outside a transaction.

private static Entity getEntityByName(String name) {

Query query = new Query(entityKind);

Query.Filter filter = new FilterPredicate(namePropertyName,

Filteroperator.EQUAL, name);

query.setFilter(filter) ;

DatastoreService datastore = DatastoreServiceFactory.

getDatastoreService();

return datastore.prepare(query).asSingleEntity();

)

// Helper function that runs inside or outside a transaction.

private static void saveOrCreateEntity(Entity entity) {
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DatastoreService datastore = DatastoreServiceFactory. 

getDatastoreService(); 

datastore.put(entity);

}

private static void deleteEntityByName(String name) {

DatastoreService datastore = DatastoreServiceFactory.

getDatastoreService();

Transaction txn = datastore.beginTransaction();

Entity entity = getEntityByName(name);

if (entity != null) {

datastore.delete(entity.getKey());

1
txn.commit () ;

}

private static Entity createEntity(String name) throws

CourseAlreadyExistsException {

DatastoreService datastore = DatastoreServiceFactory.

getDatastoreService();

Transaction txn = datastore.beginTransaction ();

Entity entity = getEntityByName(name);

if (entity != null) {

txn.commit () ;

throw new CourseAlreadyExistsException();

}

entity = new Entity(entityKind);

entity.setProperty(namePropertyName, name);

datastore.put(entity);
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txn.commit();

return entity;

}
1

WlnstructorControllerServlet.java: 

package gradesys;

import java.io.IOException;

import java.util.List;

import java.util.logging.Level;

import java.util.logging.Logger;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import com.google.appengine.api.datastore.EntityNotFoundException;

import com.google.appengine.api.users.User;

import com.google.appengine.api.users.UserService;

import com.google.appengine.api.users.UserServiceFactory;

import com.google.appengine.labs.repackaged.org.json.JSONArray;

import com.google.appengine.labs.repackaged.org.json.JSONObject;

SSuppressWarnings("serial")

public class InstructorControllerServlet extends HttpServlet {
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private static final Logger logger = Logger.

getLogger(InstructorControllerServlet.class.getName());

private String addCourse(HttpServletRequest req, 

HttpServletResponse resp) { 

String courseName = req.getParameter("name"); 

try { 

Course course = Course.create(courseName); 

UserService userService = UserServiceFactory. 

getUserService ();

User user = userService.getCurrentUser ();

Instructor instructor = Instructor.

getByName(user.getUserid());

if(instructor == null) {

instructor = Instructor.create(user.getUserld())

r

Auth.create(course.getID(), instructor.getKey())

r

} else {

Auth.create(course.getID (), instructor.getKey())

f

}

List<Course> courses = Auth.getCoursesBylnstructor 

(instructor .getKey ());

return Util.getCoursesJson(courses);

} catch (CourseAlreadyExistsException e) {

return "( \nerror\": V’Course name already taken.

} catch (EntityNotFoundException e) {
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logger.log(Level.SEVERE, "Error getting courses", e) ; 

return

} catch (Exception e) {

logger.log(Level.SEVERE, "Error adding course", e);

return "{}

}

}

private String saveCourse(HttpServletRequest req,

HttpServletResponse resp) {

String oldCourseName = req.getParameter("oldCourseName");

String newCourseName - req.getParameter("newCourseName");

if(Util.isEmpty(oldCourseName) I I Util.isEmpty(newCourseName)) {

return " {}

}

try {

UserService userService = UserServiceFactory. 

getUserService () ;

User user = userService.getCurrentUser();

Instructor instructor = Instructor.getByName(user. 

getUserld () ) ;

if(instructor == null) {

return "(}";

)

Course.save(oldCourseName, newCourseName);

List<Course> courses = Auth.

getCoursesBylnstructor(instructor.getKey

0);

return Util.getCoursesJson(courses);
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} catch (CourseNotFoundException e) {

logger.log(Level.SEVERE, "Error getting courses", e) ;

return "{ \"error\": V'Course that you are saving does 

not exists.\"

} catch (EntityNotFoundException e) {

logger.log(Level.SEVERE, "Error getting courses", e);

return "{ \"error\": V’Course that you are saving does 

not exists.\" }";

} catch (Exception e) {

logger.log(Level.SEVERE, "Error saving course", e); 

return "{}";

}

}

private String listcourses(HttpServletRequest req, 

HttpServletResponse resp) { 

try {

UserService userService = UserServiceFactory. 

getUserService();

User user = userService.getCurrentUser();

Instructor instructor = Instructor.getByName(user. 

getUserld () ) ;

if(instructor — null) {

return

}

List<Course> courses = Auth.getCoursesBylnstructor 

(instructor.getKey());

if (courses. size () =«=> 0)

return
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JSONArray jsonArray « new JSONArray ();

for (int i - 0; i < courses.size (); i++) {

JSONObject jsonObject = new JSONObject (); 

Course course = courses.get(i);

jsonObject.put("name", course.getName()); 

jsonObject.put("id", course.getID ()); 

jsonArray.put(jsonObject);

1
JSONObject jsonObject = new JSONOb ject () ; 

jsonObject.put("courses", jsonArray);

return jsonObject.toStringO;

} catch (Exception e) {

return "{ \"err\": V’Unable to list courses.\" }";

}

}

private String listcourse(HttpServletRequest req, 

HttpServletResponse resp) { 

try {

String courseld = req.getParameter("id");

if (Util.isEmpty(courseld)) {

return

}

UserService userService = UserServiceFactory. 

getUserService();

User user •= userService.getCurrentUser () ;

Instructor instructor = Instructor.getByName(user. 

getUserld () ) ;
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if(instructor == null) {

return

}

Course course = Auth.getCourseDetailsBylnstructo

r(courseld, instructor.getKey())

r

if (course == null)

return "{}";

JSONObject jsonObject = new JSONOb ject () ;

jsonObject.put("courseName", course.getName());

return jsonObject.toString();

} catch (Exception e) {

return "{ \"err\": \"Unable to list courses.\” }";

}

}

SOverride

protected void doPost(HttpServletRequest req, HttpServletResponse resp) 

throws ServletException, lOException {

String operation = req.getParameter("op");

if(operation != null) { // 1 Util.isEmpty(operation)) (

if(operation.equalsIgnoreCase("courseadd") ) {

resp.getWriter().write(addCourse(req, resp));

}

if(operation.equalsIgnoreCase("coursesave") ) {

resp.getWriter().write(saveCourse(req, resp));

}

if (operation.equalsIgnoreCase("listcourse")) (
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resp.getWriter().write(listcourse(req, resp));

J

} else {

resp. getWrit er () .print (" { \"err\": Vunknown operationV

}");

^Override

protected void doGet(HttpServletRequest req,

HttpServletResponse resp)

throws ServletException, IOException (

String operation = req.getParameter("op");

if(operation != null) { // 1 Util.isEmpty(operation)) {

if(operation.equalsIgnoreCase("listCourses")) {

resp.getWriter().write(listcourses(req, resp));

}

) else {

resp. getWriter () .print (" { \"err\": Vunknown operationV

}") ;

\\LoginFilter.java:

package gradesys;

import java.io.IOException;
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import javax.servlet.Filter;

import javax.servlet.Filterchain;

import javax.servlet.FilterConfig;

import javax.servlet.ServletException;

import javax.servlet.ServletRequest;

import javax.servlet.ServletResponse;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import com.google.appengine.api.users.User;

import com.google.appengine.api.users.UserService;

import com.google.appengine.api.users.UserServiceFactory;

public class LoginFilter implements Filter {

QOverride

public void destroy () {

// TODO Auto-generated method stub

}

QOverride

public void doFilter(ServletRequest req, ServletResponse resp,

FilterChain chain) throws lOException, ServletException 

{

HttpServletRequest httpReq « (HttpServletRequest) req;

HttpServletResponse httpResp - (HttpServletResponse) resp;
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UserService userService = UserServiceFactory.getUserService(); 

User user = userService.getCurrentUser();

if (user null) {

httpResp.sendRedirect(userService.

createLoginURL(httpReq.getServletPath()));

) else {

String csrfToken = CsrfCipher.encryptUserld(user. 

getUserld());

httpReq.setAttribute("csrfToken”, csrfToken); 

httpReq.setAttribute("user", user);

chain,doFilter(req, resp);

)

}

@Override

public void init(FilterConfig argO) throws ServletException {

// TODO Auto-generated method stub

}

}

// LogoutFilter.java:

package gradesys;

import java.io.IOException;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
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import javax.servlet.http.HttpServletResponse;

import com.google.appengine.api.users.UserServiceFactory; 

@SuppressWarnings("serial")

public class LogoutServlet extends HttpServlet {

^Override

protected void doGet(HttpServletRequest req,

HttpServletResponse resp)

throws ServletException, IOException {

resp.sendRedirect(UserServiceFactory.

getUserService().createLogoutURL(

"/instructor"));

}
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APPENDIX B

CLIENT SOURCE CODE
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// app.j s

var app «= {

controller : {},

view : {},

model : {},

util : {}

};

/*** App view for all the classes ***/

(function () {

var courses;

app.view.transfer = function(toPage) {

$.mobile.changePage(toPage,

(

allowSamePageTransition : true,

transition : 'none',

reloadPage : false

1);

}

}) 0;

/*** Course List ****/

app.model.courseList = {);

(function () {
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var courses;

app.model.courseList.update = function(data) { 

courses = data;

};

app.model.courseList.get = function() {

return courses;

);

}) ();

app.view.courseList = {};

(function(mcourseList) {

var courses;

app.view,courseList.render = function() {

//render : new function() {

if(courses ===== null && mcourseList.get() === null) 

return;

if (courses === mcourseList.get())

return;

courses = mcourseList.get();

$(*'#main > p") .remove () ;

$.each(courses.courses, function(i, course) {

77



var $p = $ ('<px/p>' );

var query = "CourseOperations.html"; //?courseName=" + course;

var onclick = "app.model.courseoperations.setName('" + course.name + 

"');app.model.courseoperations.setld(" + course.id + ");app.

view.transfer('" + query +

var $a » $('<a data-role£=!"button" data-transition="slide" onclick--’1' 

+ onclick + '" href="' + query + '"></a>');

$('#main').append($p);

$a.html(course.name);

$p.append($a);

});

$ (' #main') .trigger ('create' ) ;

};

))(app.model.courseList);

app.controller.courseList = ();

(function(jQuery, mcourseList, vcourseList) {

app.controller.courseList.init = function() {

// render : new function () {

//mcourseList.update(vcourseList.render);

$.ajax({

type : 'GET',

url : "/instructor/controller",

data : {
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op : 'listcourses'

},

dataType : "json"

}).done(function(data) {

if (data.err) {

alert(data.err);

} else {

mcourseList.update(data);

vcourseList.render();

}

}),fail(function(jqXHR, textstatus) {

console.log(textStatus);

$.mobile.hidePageLoadingMsg();

});

$('ttcourseList').die().live('pagechange', vcourseList.render);

//};

);

1) (jQuery, app.model.courseList, app.view.courseList);

/***** Course Operations *****/

app.model.courseoperations « {};

(function () {

var name;
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var id;

var courseDetails;

app.model.courseoperations.setld = function(data) {

id = data

app.model.courseoperations.getName « function() {

return name;

};

app.model.courseOperations.setName « function(data) {

name « data;

app.model.courseoperations.getld » function() {

return id;

app.model.courseoperations.setCourseDetails = function(data) { 

courseDetails = data;

app.model.courseoperations.getCourseDetails ~ function() {

return courseDetails;

};

}) ();

app.view.courseoperations = {};
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(function () {

app.view.courseoperations.render = function(coursename) {

$ (' ftcopContent') .empty () ;

$ ("#copContent > p") . remove () ;

var courseDetails = app.model.courseoperations.getCourseDetails();

if (courseDetails ===== null || courseDetails.courseName === null) 

return;

var $pl = $('<px/p>');

var coursename = "Course Name : " + courseDetails.courseName;

$pl.append(coursename);

$ ('#copContent').append($pl);

$ ('#copContent').trigger('create' ) ;

};

DO;

app.controller.courseoperations = {};

(function(jQuery, mcourseList, vcourseOperations) {
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app.controller.courseoperations.listcourse = function () {

var id = app.model.courseoperations.getld();

S.ajax ({

type : 'POST',

url : "/instructor/controller",

data : {

id : id,

op : 'listcourse'

},

dataType : "json"

}).done(function(data) {

if (data.err) {

console.log(data.err);

} else {

app.model.courseoperations.setCourseDetails(data); 

vcourseOperations.render(newCourseName);

}

)).fail(function(jqXHR, textstatus) {

consol.log(textstatus);

$.mobile.hidePageLoadingMsg();

}) ;

};

app.controller.courseoperations.saveCourse » function() {

var newCourseName = $ ('#courseName') . val ();

var oldCourseName « app.model.courseoperations.getName(); 

$.ajax({

type : 'POST',

url : "/instructor/controller",
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data : {

oldCourseName : oldCourseName,

newCourseName : newCourseName,

op : 'coursesave'

>,

dataType : "json"

}).done(function(data) {

if (data.err) {

alert(data.err);

} else {

mcourseList.update(data);

app.model.courseoperations.setCourseName(newCourseName); 

vcourseOperations.render(newCourseName);

}

}).fail(function(jqXHR, textStatus) {

consol.log(textstatus);

$.mobile.hidePageLoadingMsg();

});

};

}) (jQuery, app.model.courseList, app.view.courseoperations);

/*** Course Edit ***/ 

app.model.courseEdit = {);

(function () {
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var courseName;

app.model.courseEdit.update = function(data) { 

courseName = data;

};

app.model.courseEdit.get = function() {

return courseName;

};

}) 0;

app.view.courseEdit = {};

(function () {

var courses;

app.view.courseEdit.render = function(coursename) { 

$ (' tftitle' ) . empty () ;

$ ('#title') .append(coursename);

$(rfrcourseName').val(coursename);

$ (' #header' ) . trigger (' create' ) ;

};

}) 0;

app.controller.courseEdit = {};

/****** utility ******/
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(function () {

app.util.getUrlVars = function() {

var vars - [], hash;

var href = window.location.href;

var queryUrl =href.slice(href.lastlndexOf( '?' ) + 1);

var hashes = queryUrl.split( );

for ( var i = 0; i < hashes.length; i++) {

hash - hashes[i].split( '=' );

vars.push(hash[0]);

vars[hash[0]] = hash[l];

)

return vars;

}

DO;

(function () {

app.view.displayError = function(error) (

$('tfpopupErrorMsg').html(error) ;

$('#popupError').popup('open');

1
DO;
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