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Abstract

A well known concept in mathematics is that of the algebraic closure of a field. 
The algebraic closure of a field K is the smallest algebraically closed extension field 
containing K. For example, by the Fundamental Theorem of Algebra, the algebraic 
closure of the field of real numbers R is the field of complex numbers C. By first looking at 
the algebraic closure of a field we discuss certain properties of algebraic closure that can be 
extended to the integral closure of a ring and integral closure of ideals in a ring. Analogous 
to algebraic closure, the integral closure of a ring R is the smallest integrally closed 
extension of a ring containing R. For example, the ring of integers Z is integrally closed 
in the field of rational numbers Q. Other characterizations and properties of integral 
closure of a ring and integral closure of ideals provide us with background information to 
examine the more general notion of closure operations on ideals and discuss other types 
of closures.
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Chapter 1

Introduction

The most familiar and often most popular types of closures in commutative 

algebra are the algebraic closure of a field and the integral closure of a ring. The algebraic 
closure of a field is an important topic because of its ties to the Fundamental Theorem 

of Algebra. This theorem tells us that each polynomial with complex number coefficients 
has a solution in the complex numbers. The integral closure of a ring is also valuable 

to the study of mathematics and has come up in different branches of mathematics like 

number theory and algebraic geometry. It is a widely used concept because of its useful 
properties and characteristics. However, in the 1930’s, the study of the integral closure of 
a ring was extended to include the ideals of a ring and modernized by Krull and Zariski 

[Swa89]. Thus, closure operations on ideals was formulated.
The goal of this paper is to survey different types of closures and closure op

erations on commutative rings and ideals. This paper will give an overview of closure 
operations, introduce their properties and make comparisons between closure operations 

of ideals and their ring counterparts.

The general arrangement of this paper is as follows. Some important funda

mental concepts from commutative ring theory are first introduced. As well as common 

notation and basic examples. These theorems and definitions are used widely through

out the paper and are often refered back to. This chapter also includes information and 
theorems on modules. The next chapters examine algebraic closure and integral closure. 

These closures explore the concept of viewing elements from their respecitve fields or rings 
as roots of polynomials. Included in the chapter on the integral closure of rings is an ap-
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plication with Dedekind domains. The main result illustrating the relationship between 

Dedekind domains and integral closure. As we analyze the structures and properties of 
these closures, we relate them to their corresponding ideal counterparts, introducing the 

notion of closure operations on ideals in rings in the subsequent chapters. The properties 

of the integral closure of an ideal are then generalized to any type of closure operation 
on an ideal.
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Chapter 2

Foundational Concepts

This chapter gives some of the foundational requirements (definitions, theorems, 

etc.) needed to understand the proofs and theorems written in this paper. The terms 
and concepts in this section should be familiar to most undergraduate students studying 

courses in Abstract Algebra.

2.1 Concepts in Ring Theory

We are all familiar with the operations of multiplication and addition on sets 

of numbers, in fact, we use these operations on the first sets of numbers that we are 

introduced to like the integers and real numbers. An abstract concept that deals with 

these operations acting on sets is a ring.

Definition 2.1. A ring with identity R is a set with two binary operations, addition 
and multiplication, such that R is an Abelian group with respect to addition, multipli
cation is associative and both right and left distributive over addition, and R contains a 

multiplicative identity element lyj (or simply 1) such that ljp’ = r = rljj for all r € R.

If the multiplication in R is commutative, then we say that R is a commutative 

ring. The rings we study in this paper will be commutative rings.

Example (2.1.1). The set of integers, Z, the set of rational numbers, Q, and the set of 

real numbers, R, are all commutative rings under ordinary addition and multiplication.

The next definition introduces a specific type of ring well-known in many algebra 

classes; the ring of polynomials.
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Definition 2.2. Let R be a commutative ring. The set

R[rr] = (anxn + an-jx71”1 + ... 4- aiir 4- ao | G R,n E N}

with the operations of polynomial addition and multiplication is called the ring of poly

nomials over R in the. indeterminate x. If an 0, then we say that the degree of the 

polynomial is n written as deg f(x) = n.

Other specific types of rings include the integers, rational numbers and real 

numbers. These rings exhibit one special feature that rings in general don’t have. They 

satisfy a property called cancellation. That is, if we let a, b, c be elements in one of these 
three rings, we can say that if ab = ac, then b = c. Thus, we present the terms zero-divisor 

and integral domain to classify these rings.

Definition 2.3. Let R be a commutative ring. A zero-divisor is an element r 6 R for 

which there exists y G R with y / Ok such that ry = Ok- If R is non-trivial, then Ok is a 

zero-divisor in R because OkIk = 0#.

Definition 2.4. Let R be a commutative ring. Then R is said to be an integral domain 

precisely when
(i) R is not trivial, that is, 1# Ok and

(ii) Ok is the only zero-divisor in R.

Example (2.4.1). A very familiar and basic example of an integral domain is the ring of 

integers, Z. In the ring of integers, 1^0 and 0 is the only zero-divisor. However, if we 
take a look at the ring Zio of residue classes of integers modulo 10, we see that it is not 
an integral domain because 0, 2, 4, 5, 6, and 8 are zero-divisors.

Example (2.4.2). If R is an integral domain, then the polynomial ring R[jd] is also an 

integral domain. This is shown in Theorem 2.5 below.

Theorem 2.5. If R is an integral domain, then R[x] is an integral domain.

Proof. Let R be an integral domain, then R[ir] is a commutative ring by definition. We 

want to show that R[rc] has unity and no zero-divisors. The unity of R is 1, so /(.?:) = 1 

is the unity of R[rc]. Let

f(x) ~ anxn 4- an„i;rn_1 4-... 4- a^x 4- «o £ 0 for an 0 and ai 6 R and 
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g(x) = bmxm 4- bm-ixm 1 + ... 4- b±x 4- bo 0 for bm =4 0 and bi e R.

Then

/(x)y(x) = (anxn 4- an_ixn_1 4- ... + aix 4- a0)(bmxm 4- bm_ixm~1 + ... + bjx 4- b0).

If we show the leading coefficient of this product is not 0, then f(x)g(x)^0. The leading 

coefficient of this product is anbm. Since an 0 and bm 0, we get anbm 0 0 because 

an, bm € R and R is an integral domain. Thus f(x)g(x) ± 0, and so K[x] is an integral 
domain. □

Within integral domains we distinguish another set of elements called fields. 
Fields are very important to the notion of algebraic closure (studied in the next chapter) 

because of their special attributes. We begin with the definition of unit which is used to 

define a field.

Definition 2.6. Let R be a commutative ring. A unit of R is an element r G R for which 

there exists u € R such that ru = 1#. When r 6 R is a unit of R, then there is exactly 
one element u € R with the property that ru = 1r; this element is called the inverse of 

r, and is denoted r"1.

Definition 2.7. Let R be a commutative ring. Then we say that I? is a field precisely 

when

(i) R is not trivial and

(ii) every non-zero element of R is a unit.

Example (2.7.1). Some common rings that are fields are the set of rational numbers Q, 
the set of real numbers R and the set of complex numbers C. They are fields because 
every non-zero element of these rings is a unit. For r € R, r_1 = £ and for a 4- bi € C,

a — bi
a ~ bi

bi
a2 4- b2 a2 4- b2



6

Example (2.7.2), Another example is the ring Zp where p is prime. For a e %>p, a 1 = 

p — a. In fact, every finite integral domain is a field (proof below).

Proof. Let a G D where D is a finite integral domain. Suppose that a 0. If a = 1, then 
a-1 = 1, and so a is a unit. If a 1, consider the set {a, a2,...} C D. Since D is finite, 

there is some a1 = af for j < i. Then = 1 by cancellation, so a is a unit. Thus every 

non-zero element is a unit, and so D is a field. □

Example (2.7.3), We can also say that every field is an integral domain since every 
nori-zero element of a field is not a zero-divisor because it is a unit.

The succeeding theorem describes a very popular algorithm used in number 

theory with the ring of integers. We extend this concept to include polynomials with 

coefficients from a field. The proof for this theorem can be found in [GallO].

Theorem 2.8 (Division Algorithm). Let K be a field and let f(x)> g(x) G K[x] with 

g(x) 7^ 0. Then there exists unique polynomials q(x) and r(x) in If [a;] such that f(x) = 

g(x)q(x) + r(x) and either r(x) = 0 or degr(x) '< degg(x).

The next definition of an ideal is very significant to the study of ring theory. 

Ideals are an important substructure of a ring and are used to help identify characteristics 
of different types of rings for applications of ring theory. We will use them in our discussion 
of closure operations.

Definition 2.9. Let R be a commutative ring. A subset I of R is said to be an ideal of 

R precisely when the following conditions are satisfied:

(i) 7^0;
(ii) a + b G I for all a, b G I; and
(iii) ra 6 I for all a G I and r G R.

Example (2.9.1). For any ring R, {0} and R are ideals of R. The ideal {0} is called the 

trivial ideal.

Example (2.9.2), For any positive integer n, the set nZ (which can be described as the 

multiples of n) is an ideal of Z.

We can think of ideals as elements from a subset of R that “absorbs” elements 

of R since rl = {ra | a G 7}. Certain ideals, like the ones listed below, require more 

attention because of their properties.



7

Definition 2.10. Let P be an ideal in a commutative ring R. We say that P is a prime 

ideal of R precisely when
(i) Pc.fi that is, P is a proper ideal of R, and

(ii) if ab € P for, some a, b € P, then either a € P or b € P.

Example (2.10.1). Since prime ideals are proper subsets of a ring, the ring R itself is 

not considered to be a prime ideal of R. If we look at specific types of rings, like integral 

domains we see that the trivial ideal, {0} is a prime ideal. This is not necessarily true in 

rings that are not integral domains because elements may be zero-divisors.

Example (2.10.2). The prime ideals of Z are the ideals nZ where n is a prime number. 
For example, let us look at the multiples of 3: 3Z. Let ab be a multiple of 3, that is, 

ab = 3n for n € Z. This means that 3|a6. So 3|a or 3|6 by Euclid’s Lemma. Thus a and 
b are also multiples of 3, and hence a G 3Z or b € 3Z.

Definition 2.11. Let R be a commutative ring and let a € R- The set aR = {ar|r e R} 

is an ideal of R called the principal ideal of R generated by a. Principal ideals are also 

written as (a) and Ra.

Example (2.11,1). The prime ideal 3Z given in Example 2.10.2 is a principal ideal and 
can also be written as (3).

In the case of principal ideals, we only deal with one generator. That is, one 

element that generates the entire ideal. However, ideals can also have multiple generators. 

Ideals that are generated by a finite amount of elements are called finitely generated ideals.

Definition 2.12. Let H C R. We define the ideal of R generated by H, denoted by (H),
RH\ or HF to be:

Example (2,12,1). Let us take a look at (z,2) C Z[x]. This is the ideal generated by x 

and 2 in the ring of polynomials with integer coefficients. Every element in this ideal is 

generated by a linear combination of x and 2. We can write (x, 2) = {a: • f 4-2 • g | f.g € 

Z[x]}. Basically, this generates the set of polynomials in Z[x] whose constant term is 
even. This ideal can also be characterized as a maximal ideal.
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Definition 2.13. An ideal M of a commutative ring R is said to be a maximal ideal if 

and only if

(i) M C R and
(ii) there does not exists an ideal I of R with M c I C R.

Example (2.13.1). The prime ideals of Z are also maximal ideals of Z because there is 

no proper subset of Z that contains a prime ideal and is not equal to a prime ideal.

Example (2.13.2). Another example of a maximal ideal is the ideal generated by x and 
2, (x, 2), which was given in Example 2.12.1. This ideal is maximal in R[x]. We will show 

why this is true using Theorem 2.16 below.

Now if we let I? be a ring and I an ideal of R we can create factor rings which 

are analogous to factor groups in group theory. This gives us important results if I is 

taken to be a prime or maximal ideal.

Definition 2.14. Let R be a ring, and let A be a subring of R. The set of cosets 

{r 4- A | r € 7?}, denoted R/A, is a ring under the operations (s 4- A) 4- (t + A) = s 4-14- A 
and (s 4- A)(i 4- A) = st 4- A if and only if A is an ideal of R.

Example (2.14.1). Let R be the ring of integers, Z and A be the ideal generated by 3, 
i.e. A = (3). Then Z/(3) = {0 4- (3), 1 4- (3), 2 4- (3)}. The operations of this ring are 

inherently addition and multiplication modulo 3.

The proofs for Theorem 2.15 and Theorem 2.16 can also be found in [GallO].

Theorem 2.15. Let R be a commutative ring with unity, and let A be an ideal of R. 
Then R/A is an integral domain if and only if A is prime.

Proof. First let R/A be an integral domain. We will show that A is a prime ideal of R. 

Let ab € A where a,b 6 R. Consider ab 4- A € R/A, ab 4- A = A since ab G A. Hence 

ab 4- A = (a 4- A) (6 4- A) = A = 0 4- A. Since R/A is an integral domain, a 4- A = A or 

b 4- A = A. Thus a G A or b G A, and so A is a prime ideal.

Now let A be a prime ideal of R. We will show that R/A is an integral domain. Let 

a 4-A,64-A G R/A and suppose (a 4-A) (6 4-A) = 04-A. Then (a 4- A) (6 4-A) = ab + A = 

04-A = A. Hence ab G A. Since A is prime, a G A or b G A. If a G A, then a 4-A = 04- A. 

If b G A, then b 4- A = 0 4- A. Thus R/A is an integral domain. □
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Example (2.15.1). In Z, the ideal (3) is a prime ideal. Thus Z/(3) is an integral domain.

If we restrict the ideal A to be a maximal ideal, our factor ring R/A is a field.

Theorem 2.16. Let R be a commutative ring with unity and let A be an ideal of R. 

Then R/A is'a field if and only if A is maximal.

Proof, First, let R/A be a field. We will show that A is a maximal ideal. Suppose 

A C B C R with A =A B. Since A G B and A B, there exists a b G B such that 

b 0 A. Consider b 4- A G R/A. Since b A we have that b + A A, Hence there exists 

c + A € R/A such that (6 4- A)(c4- A) = 1 + A since R/A is a field. Thus 6c 4- A = 1 + A 
and 1 — be 6 A, but since A C B, 1 — be € B. We also have that be G B because 6 G B 

and B is an ideal. Thus 1 = 1 — be + be G B by closure. Therefore, B = R, and so A is 

maximal.
Next, let A be maximal. We will show that R/A is a field. Note that J? is a commutative 
ring with unity, and so R/A is also a commutative ring with unity. Let 0 / HA G R/A, 

so 6 + A A and b 0 A. Consider the set B = {6r 4- a | r G 7? and a G A} hence 
A G B and A/B since 6 G B but 6 £ A. Since A is maximal, B = R and 1GB. Thus 

l = 5r + aforrGJ? and a € A. Consequently,

1 4- A = br + a + A

— br 4- A

= (64-A)(r 4-A).

So (6 4- A)"1 = r 4* A. Hence every non-zero element is a unit, and so R/A is a field. □

Example (2.16.1). Every maximal ideal is a prime ideal; the proof uses Theorem 2.16 

and Theorem 2.15.

Proof. Let A be a maximal ideal of a ring R. Then by Theorem 2.16, R/A is a field. But 

all fields are integral domains so R/A is an integral domain. By Theorem 2.15, if R/A is 

a integral domain, then A is a prime ideal. □

If we are given that a factor ring is either an integral domain or field, we can 

use these theorems to show that an ideal is prime or maximal. For example, we can see 
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that Z[x]/(x, 2) is a finite integral domain since

Z[z]/(a:, 2) = {f(x) + (x, 2) | f(x) G Z[x]}

= {0 + (x, 2), 1 + (x, 2)}.

Thus Z[x]/(x,2) is also a field. Since Z[x]/(x, 2) is a field, (ar, 2) is a maximal ideal and 

hence a prime ideal in Z[x].

Definition 2.17. An integral domain R is said to be a principal ideal domain (or PID 

for short) precisely when every ideal of R is principal.

Example (2.17.1). We have already seen in Example 2.16.1 that every maximal ideal 
is a prime ideal. In a principal ideal domain, the converse is true, all prime ideals are 
maximal ideals.

Proof. Let R be a PID and let A be a prime ideal of R. Suppose A C B C R with A B. 

Since R is a PID, we can write A = (a) and B = (&) for a G R and b $ A. Then there is 
an element r € R such that a = br. However, A is prime so either b G A or r G A, but 

b A, and so r 6 A. Hence r = as for some s G R, and we have a — br = bas which 

implies that bs = 1 G (6) . Thus (d) = B = R. Therefore A is a maximal ideal. □

Example (2.17.2). The ring of integers Z is a principal ideal domain.

Proof. Let I be a non-zero ideal of Z. Let m be the least positive integer in Z, then 
(m) C I since m G I. We want to show that I C (m). Let x G I. By the Division 

Algorithm for integers we can write x = mq 4- r for some m, r G Z where 0 < r < m. 

This gives us that r = x — mq which is in I since x G I and mq G I. We are given that 

m is the least positive element in I so r = 0. Hence x = mq. Therefore x G (m), and so 

I C (m). Consequently, Z is a PID. □

Another example of a principal ideal domain is the ring of polynomials over K 
where K is a field.

Theorem 2.18. Let K be afield. Then K[x] is a principal ideal domain.

Proof. Let I be a nonzero ideal of K[z]. We want to show that I = (p(rr)) for some 

g(x) G Aja;]. Let g(x) G I be of minimum degree. Then (g(x)) C I since g(x) G I.
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We will now show that I C (p(x)). Let J(x) G I. Then f(x) = g(x)q(x) + r(x) where 
r(x) = 0 or degree of r < degree of g (by the Division Algorithm Theorem 2.8). We can 
rewrite this for r so that r(x) = f(x) — g(x)q(x). Since f(x), g(x) G I and I is an ideal, 

f(x) — g(x)q(x) G I which implies that r(x) G I. We assumed that g(x) has minimum 
degree in I so the only way for the degree of r to be less than the degree of g is if r(x) = 0. 

Therefore, J(x) = g{x]q(x'}. Hence I C (g(xf). Thus I = (9(®)) and /<[x] is a PID. □

Definition 2.19. A ring homomorphism from a ring R to a ring S is a mapping from 

R to S that preserves the two ring operations; that is, for all a, b G R

+ b) = 4>(a) + </»(b) and <£(ab) = .

A ring homomorphism that is onto is called a ring epimorphism and a ring homomorphism 

that is both one-to-one and onto is called a ring isomorphism.

A special ideal related to the image of a homomorphism is the kernel of a ho

momorphism.

Definition 2.20. Let be a ring homomorphism from a ring R to a ring S. Then the 

kernel is defined to be

ker = {r G R | </>(r) ~ 0}

Example (2.20.1). Define $ : Z —> Zq by 0(x) = x mod 6. Then the kernel of <$> is:

ker 0 = {r G R | 0(r) = r mod 6 = 0}

= {r G Z ] r mod 6 = 0}

= (6)

Theorem 2.21. Let $ be a ring homomorphism from R to S. Then ker^> is an ideal of 

R.

Proof. Let x,y G ker <£. Then ^(x) = 0 and = 0. Since (!) is a ring homomorphism, 

<j>(x — y) = 0(x) — </>(y) = 0. Hence x — y G ker^. Now let r G R. Then </>(rx) = 

0(r)0(x) = </>(r) -0 = 0, hence rx G kerZ. Therefore ker</> is an ideal. □

The theorem below is the First Isoorphism Theorem for Rings and the proof 

can be found in [Hun74].
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Theorem 2.22. Let $ be a ring homomorphism from R to S. Then the mapping from 

R/ker</> to (/>(R), given by r+ker^ —> <f(r), is an isomorphism. That is, R/ker(f =

Now we focus our attention on factoring by first introducing irreducible elements 

and unique factorization domains.

Definition 2.23. Let R be an integral domain. An element p G R is said to be an 

irreducible element of R precisely when p 0 and p is not a unit of R and whenever 
p = ab with a, b G R, then either a or b is a unit of R. We say that p is prime if p\ab 

implies p|a or p\b.

The definitions for prime and irreducible are very similar but there is a subtle 

difference that the next examples show. Prime elements are irreducible, but only in a 

principal ideal domain are irreducible elements prime.

Example (2.23.1). Prime elements are irreducible elements.

Proof. Let p be a prime element and assume p = ab for some a, b G R. Then by definition, 

p|a or p\b. Without loss of generality, assume that p|a. Then a = pr for some r G R. Hence 

p = ab = prb which implies that rb = 1, and so b is a unit. Thus, p is irreducible. □

Example (2.23.2). In a principal ideal domain all irreducible elements are prime ele
ments.

Proof. Let R be a PID and let x G R be irreducible. We want to show that (x) is 
maximal, which from Example 2.17.1, will imply that it is prime. Suppose (x) C B C R 

and B — (b) ± (x). We have that b|a?, and so x = br for some r G R. Since x is irreducible 

b is a unit or r is a unit. If r is a unit, then (x) = (b) which is a contradiction. Hence b is 

a unit, which means B = R. Therefore (rr) is maximal which implies that it is prime. □

Definition 2.24. An integral domain R is a unique factorization domain (or UFD for 

short) if:

(i) every non-zero, non-unit element of R can be written as pip2-.pn, where pi, p2, Pn 

are irreducible elements of R and

(ii) whenever n, m G N and pi, p2, ... pn, 91, 92- Qm are irreducible elements of R such 

that

PlP2-Pn ~ 
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then m — n and there exists units ui, ... un G R such that, after renumbering Qi we 

get pi = Uiqi for all i = 1,n.

Example (2.24.1). The Fundamental Theorem of Arithmetic tells us that the ring of 

integers, Z, is a UFD.

Example (2.24.2). Any field is a UFD since every nonzero element in a field is a unit.

Other examples of unique factorization domains are given in the theorems below. 

The proof of the next theorem is found in [GallO]. Gallian uses an ascending chain 

condition in the proof to show that every nonzero nonunit in D has at least one irreducible 

factor. The ascending chain condition for PID’s states that in a principal ideal domain, 

any strictly increasing chain of ideals Ii C 1% C • • • must be finite in length.

Theorem 2.25. All principal ideal domains are unique factorization domains.

Proof. Let R be a PID and let 0 «o G R be a non-unit. We will show that ao is a 

product of irreducible elements. If ao is irreducible, then we are done. Assume that ao 

is not irreducible, and so ao = 6i,ai where &i,ai are not units and a± 0. If a± is not 

irreducible, then we can write ai — &2«2 where a2 are not units and a2 0 0. We can 

continue this and obtain a sequence of elements fei, 62, --- that are not units in R and a 
sequence of elements 01,02,... that axe non-zero with an = 6n_|_ion+i for each n. Hence, 
(ao) C (ai) C • ” is a strictly increasing chain of ideals which must be finite since R is a 
PID. So we have (ao) C (aj) C • • • C (ar) where ar is an irreducible factor of ao- Thus 

every non-zero non-unit in R has at least one irreducible factor.
Now we can write ao = P1C1 where pi is irreducible and ci is not a unit. If ci is 

not irreducible, then we can write ci = P2C2, where P2 is irreducible and C2 is not a unit. 
We can continue this just like before and obtain a strictly increasing sequence (ao) C 

(ci) C • • ■ which must be finite because R is a PID. So we have (ao) C (ci) C • • ■ C (cs) 

where cs is irreducible. Then ao = P1P2 ■ • -PrCs where each pi is irreducible. Thus every 
non-zero non-unit element of a PID is a product of irreducibles.

Finally we need to show that the factorization is unique up to associates and the 

order in which the factors appear. Suppose that a G R can be written as a = P1P2 ■ ■ -pr = 

91Q2 • • • Qs where p7 and qi are irreducible elements. We will use induction on r. If r = 1, 

then a = pi = qiQ2 • * • Qs- Since pi is irreducible, s = 1, and so pi = q±. Assume this is 
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true for products with less than r factors. Since pi divides 7172 • • • 7s, it must divide qi 
for some i. Suppose pi divides q±. Then 71 = upi where u G R is a unit. Then

P1P2 • • -pr = upiq2 ■■■qs= pi(uq2) --qs

and so by cancellation we get

p2‘"Pr = (^2) • --7s-

By the induction hypothesis p2’"Pr and (W2) • • • 7s are identical up to associates and 

the order in which the factors appear. Therefore, a = P1P2 • • -pr = 7172 ’ • • 7s- So R is a 
UFD. □

Corollary 2.26. Let K be a field. Then is a unique factorization domain.

Proof. By Theorem 2.18, K[x] is a PID. By Theorem 2.25, all PID’s are UFD’s. Thus 

K[x] is a UFD. □

Theorem 2.16 showed a connection between maximal ideals and fields. The 
proceeding theorem and corollary to the theorem relates these two concepts with irre

ducible polynomials. We will be looking back at this theorem when dealing with algebraic 
extensions in the next chapter.

Theorem 2.27. Let F be a field and letpix) G K[x]. Then-(p(x)) is a maximal ideal in 
F[x] if and only if p(x) is irreducible over F.

Proof. (=>) Let (p(x)) be a maximal ideal in K[a;], and assume p(x) is reducible. Then 

(p(xf) C K[a;] andp(ic) is not a unit. Since p(x) is reducible we can write p(x) = f(x)g(x). 

Thus the ideal generated by p(x) is a subset of the ideal generated by f(x). We know that 

is maximal so this means that (p(a?)) = (/(rc)) or (f(x)) = K[a:]. If (/Qr)) = K[a;], 
then f(x) is a unit, so p(x) is irreducible. If (/(&)) = (p(:r)), then f(x) = p(x)h(x) so 

p(x) = f(x)g(x) = p(x)h(x)g(x). Thus h(x)g(x) = 1, which makes g(x) a unit. If g(x) is 
a unit, then p(x) is irreducible. Therefore if (p(x)) is a maximal ideal in K[a;], then p(x) 

is irreducible.

(<=) Let p(x) be irreducible over K. Then (p(x)) is a proper ideal of /<[rr]. Assume 

(p(z)) C (f(xf) G K[x]. Then p(x) = f(x)g(x). Since p(x) is irreducible, f(x) is a unit 

or g(x) is a unit. If f(x) is a unit, then f(x) = K[a;] and (p(x)) is a maximal ideal of
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K[a:]. If g(x) is a unit, then p(x) = f(x) • a for some a E K. This means (p(x)) = (/(as)) 

and so (p(x)) is a maximal ideal. Either way, ifp(rr) is irreducible over K then (p(x)) is 

maximal. □

Corollary 2.28. Let F be a field and p(x) an irreducible polynomial over F. Then 

P[x]/(p(a:)) is afield.

Proof. By Theorem 2.27, (p(x)) is maximal. So by Theorem 2.16, F[o;]/(p(a:)) is a field.

□

Theorem 2.29. Let f : R—> S be a surjective ring homomorphism with kernel K. If P 
is a prime ideal in R that contains K} then f(P) is a prime ideal in S.

Proof. Let P be a prime ideal in R, and let x,y G S such that xy G f(P)- Then there 
exists a, b G R such that f(a) — x and f(b) — y because f is surjective. Thus

xy =

— f(ab) G f(P) because f is a homomorphism.

There also exsits a p G P such that f(ab) = f(p). This means that f(ab) — f(p) = 0 so 

that f(ab — p) = 0. So we can say that ab — p G K C P hence ab — p G P. Since p G P, 
ab — p + p G P because P is an ideal. Hence ab G P. P is prime so a G P or b G P. 
Thus f(a) G f(P) or f(b) G f(P) which means x G f(P) or y G f(P) Therefore, f(P) is 
prime. □

As I mentioned above, ideals are important to the study of commutative algebra 

because they help identify characteristics of certain rings. The last definitions and the

orems of this section identify different classes of ideals. The construction of these ideals 

are used in our study of closure operations.

Definition 2.30. Let I be an ideal of R. The radical of I denoted x/7 is:

x/7 = {r G R| there exists n G N with rn G 1}

The set of all nilpotent elements of R. that is elements a G R that are of the 

form an = 0 where n is a positive integer, is called the nilradical of R. In other words, 

the nilradical is just \/0h, or the radical of the zero ideal of R.
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Theorem 2.31. The radical of I, y/l, is an ideal of R.

Proof. Vi 7^ 0 since I C \/7 and I ± 0. Now, let x,y G \fl. Then there exists positive 

integers n and m such that xn,ym G I. We want to show that x + y G y/l.

(x + y)n+m - + • • • + amxnym 4- ■ ■ • 4- an+m^1xyn+m-1 4- yn+m

Since every term on the right hand side has a factor of either xn G I or ym G 7, then the 
sum of those terms is in I. Thus (x 4- y)n+m G I so x 4- y G x/T. Next, let r G R.

(rx)n = rnxn G I since rn G R and xn G I.

So rx G Therefore, \/l is an ideal of R. □

Definition 2.32. Let I and J be ideals of a commutative ring R. We define the ideal 

quotient (I: J) by
(7 : 7) = {a G R | a J C 1}

Example (2.32.1). Let R = Z. Then

((12) : (2)) = {a G Z | a(2) C (12)} = (6)

and ((12) : (5)) = {a G Z | a(5) C (12)} = (12)

The ideal quotient is an ideal of R (shown below) and I C (J : 7). If I — 0, 

then the ideal quotient (0 : J) = {a G H|a7 = 0} = {a G R\ab = 0 for all b G J] is called 
the annihilator of J.

Theorem 2.33. The ideal quotient, (I: J), is an ideal of R.

Proof. (7 : 7) 7^ 0 since 7 C (7 : 7) and I 0. Now let x, y G (7 : 7). So xj c I and 

yj G I. So xai G 7 and ya{ G 7 for all aj G J. Hence (x 4- y)ai = xai 4- yat G 7. Thus 

(x4*y)7 C 7 so (x4-y) G (7 : J). Next we will show that the quotient ideal is closed under 

ring multiplication. Let r G R and x G (7 : J). Then xJ Q I. So (rx)7 = x(r J) = xJ 

since J is an ideal. Thus (rx)7 C I so rx G (1: 7). Therefore (7 : 7) is an ideal of R. □

Definition 2.34. Let 7 and 7 be ideals of the commutative ring R. The product of I and 

7, denoted by 77 is defined to be the ideal of R generated by the set {afc|a G 7, b G 7}.

This gives us:

77 = ajbi | a* G I, b{ G 7, n G N
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Lemma 2.35. Let R and S be commutative rings, RQ S and I is an ideal of R. Then

IS is an ideal in S.

Proof. We will use the definition of ideal (Definition 2.10) to show that IS is an ideal in
S. Since I is an ideal in R, 0 G I. Hence 0 G IS which means IS / 0. Now let x,y G IS. 

n m.
Then by definition x = 'fP aibt for G I, bi G S and n G N and y = for

i=l i=n+l
ai G I, bi G S and m G N. Then

n m

x+y = ^2aibi+ 52 aibi
i=l i=n+l

n+m= 52aibi
i=l

G IS

Next, we show that IS is closed under ring multiplication. Let s G S and x G IS. Then

n
sx = sy^ajhi

i=l
n— 5 Safii

i=l
n

= 52a^(s^) where sbi G S
i=l

G IS

Therefore, IS is an ideal of S. □

Lemma 2.36. Let R and S be commutative rings, R C S and I an ideal of R. Then 

IS HR is an ideal of R.

Proof. Just like in the previous lemma, we use Definition 2.10 to show that IS Pl R is an 

ideal in R. We know that 0 G R and from the above lemma we know that 0 G IS, hence 

0 G IS A R, and so IS A R ± 0. Now, let x, y G IS A R. Then x,y G IS and x,y G R. 
We know that x + y G IS since IS is an ideal and x + y G R since R is a ring, thus 

n
x + y G IS A R. Next, we let r G R and x G IS A R. Then x = atbi where a; G I and 

i=l
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bi G S. This gives us
n

rx = r Qf&j
i=i

n

=
i=i

G IS.

Since both r and x are elements of R, rx G R, thus rx G IS OR. Therefore IS D R is an 

ideal of R. □

Note that I C IS Fl R but IS OR does not necessarily equal I. For example, if 

we let R = Z, S = Q and I = (2). Then IS AR — (2)Q fl Z = Z. Hence I C IS D R and 

I/ISOR.

2.2 Modules

Just like the ideals in a ring, modules can convey important information about 

the structure of a ring R. For example, an ideal of a ring as well as the quotient R/I 

are considered to be R-modules. The most basic way of thinking about a module is as a 
generalized abelian group (which are just modules over the integers Z).

Definition 2.37. Let R be a ring. An R-module is an additive abelian group, A, together 
with a function R x A —> A (the image of (r, a) being denoted by r(a)) such that for all 

r, s G R and a, b G A:
(i) r(a + b) = ra + rb

(ii) (r + s)a = ra + sa

(iii) r(sa) = (rs)a

(iv) = a for all a G A

Example (2.37.1). The ring R is an R-module.

Example (2.37.2). A module over a field K is a vector space over K.

Example (2.37.3). Every additive Abelian group, G, is a unitary Z-module, with na 

(n G Z,a G G).
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Example (2.37.4). If S is a ring and R is a subring, then S is an R-module with ra G S 

(r G R, a G S) being multiplication in 5. Note that R is not an 5-module because if 

r G R and a G S, then ar might not necessarily be in R since R is a subring of S.

Example (2.37.5). The set of n-tuples made up of real numbers R” = {(ai,..., an) | G 

R} is an R-module.

To check that this last statement (Example 2.37.5) is true we need all the re
quirements of Definition 2.37 to be satisfied. So let r, s G R and a, b G Rn. Then 
a = (ai, a2,..., an) and b = (bi, b2,..., bn) where a^ bi G R.
(i) We first check that the distribution of a ring element over the sum of group elements 

hold.

r(a 4- b) = r[(ai, a2,..., an) + (bi, b2,..., bn)]

= r(ai + bi, a2 4- b2,..., an 4- bn)

= (r(ai + bx), r(a2 4- b2),r(an + bn))

= (rai 4- rbi, ra2 + rb2,..., ran -I- rbn)

- (rai,ra2, ...,ran) + (rbi,rb2) ...,rbn)

= ra + ba.

(ii) Next we check that distribution of a group element over the sum of ring elements 

hold.

(r + s)a = (r + s)(ai, n2,..., an)

= ((r + s)ai, (r 4- s)a2,(r + s)an)

= (rai 4- sai, rn2 + sa2,..., ran 4- san)

= (rai,ra2,...,ran) + (sai,sn2,..., san)

= ra + sa

(iii) Now we check the associative property.

r(sa) = r(sai,sa2, —,san)

= (rsai,rsa2,...,rsnn)

= rs(ai,n2, ...,an)

= (rs)a
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(iv) Lastly we check that 1 is the identity element.

lji® = 1(^1) an)

= (eq, •••> ®n)

= a

Definition 2.38. Let R be a ring, A an R-module and B a nonempty subset of A. B is a 

submodule of A, or an R-module of A, provided that B is an additive subgroup of A and 

rb G B for all r G R and b E B (B is itself an R-module with respect to the operations of 

A).

A submodule is essentially a subgroup of the original module that is also a 

module under the same operation.

Theorem 2.39 (The Submodule Criterion). Let R be a commutative ring and let B be 
a subset of the R-module A. Then B is a submodule of A if and only if the following 

conidtions hold:

(i) B/tb
(ii) whenever b,b' G B and r, rf G R, then rb 4- rfbf G B.

Proof. (=>) Let B be a submodule, then 0 € B so B 0. By definition of submodule, B 
is closed under addition of A and under scalar multiplication by arbitrary elements of R. 

Thus, whenever b,br G B and r, r' G R, then rb + r'b' E B.

(4=) Let B 0 0 and whenever b, b' G B and r, r! E R, then rb 4- r’b' E B. Let rf = —r, 
then rb 4- r'b — rb ~ rb E B. Thus, B is a sugbroup of A. Also, rb + r'b' G B implies 

rb E B. Therefore, by Defintion 2.38, B is a submodule of A. □

Example (2.39.1). If R is a module over itself, then its submodules are precisely the 

ideals of R.

Example (2.39.2). Let I be an ideal of R. Then if a E A and AC R, the principal ideal 

la = {ra|r G 7} is a submodule of I.

Theorem 2.40 (Quotient Group is an R-module). Let B be a submodule of a module 

A over a ring R. Then the quotient group A/B is an R-module with the action of R on 

A]B given by:

r(a 4- B) — ra + B for allr E R and a E A. 
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Proof. Let A be an B-module and let B be a submodule of A. We want to show that 

A/B is an B-module. First we will show that A/B is an additive Abelian group.

(i) Let x,y G A/B. Then x = ai + B and y = a2 4- B where at G A. Then

x + y = (ai 4- B) 4- (a2 4- B)

— (&i T d2) + B G A/B since uj + a2 G A.

(ii) Let x,y,zE A/B. Then x = ai 4- B, y = a2 + B and z = a3 4- B for all ai G A'. Then

(x + y) + z = (ai 4- B 4- a 4- 2 + B) + a3 + B

= (ai + a2) + B 4- a3 4- B

= (ai 4- a2) 4- a3 4- B 

•= gi 4" (&2 + ^3) + B

= ai 4- B 4- (a2 4- a3) + B

= aj 4~ B 4- (&2 4 B 4- a3 4- B)

= x + (y + z).

(iii) 0 4- B is the additive identity.

(iv) — a 4- B is the additive inverse for a 4- B G A/B.

Thus, A/B is an additive Abelian group.

Now we will show that A/B is a well-defined Abelian group. That is if a 4- B = a! 4- B 

then r(a 4- B) = r(a' 4- B) for all r G R and a G A. Let a 4- B = a! 4- B. Then a — a1 G B 
so r(a — a') = ra — raf since A is an B-module. So ra 4- B = raf 4- B implies that 
r(a 4- B) = r(a! 4- B). Next, we will check that the four conditions of the definition of 

module hold. Let r, s G R and a 4- B G A/B. Then r(a 4- B) = ra 4- B G A/B since 
ra G A and A is an H-module. Let x — y G A/B. Then we can write x = a± 4- B and 

y = a2 4- B, and

r(x 4- p) ’ = r(ai 4- B 4- a2 4- B)

= r((ai 4- a2) + B)

= r(ai 4- 02) + B, by the definition of R on A/B

= (rai 4- ra2) 4- B, since A is an B-module

= rai 4- B 4- ra2 4- B

= rx + ry.
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Thus the first condition is satisfied. Now

(r + s)z = (r + s)(di4-B)

= (r + s)ai 4- B, by the definition of Ron A/B

= (rai 4- sai) + B, since A is an R-module

= rai 4- B 4- sai 4- B

= rx 4- sx.

Hence the second condition is satisfied. Next

r(sx) = r(s(ai 4- Bf)

= r(sai 4- B), by the definition of R on A/B and since A is an R-module 

= rsai 4- B, by the definition of R on A/B and since A is an R-module 

= (rs)x.

Thus the third condition is satisfied. Lastly,

Irx = lR(ai 4- B)

= eq 4- B, by the definition of R on A/B and A is an R-module

— x.

Thus the fourth condition is satisfied. Therefore A/B is an R-module. □
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Chapter 3

Algebraic Closure

A familiar concept in mathematics is that of the algebraic closure of a field. The 

basic idea of algebraic closure is looking at elements of a field as roots of polynomials. 
An important theorem that deals with roots of polynomials is the Fundamental Theorem 

of Algebra. This section will introduce definitions and concepts of algebraic closure and 

use the Fundamental Theorem of Algebra to illustrate how they are used.

3.1 Field Extensions

Before we jump into algebraic closures, we first need to introduce foundational 

notions about fields and their extensions.

Definition 3.1. A field E is an extension field of a field F if F is a subfield of E.

Theorem 3.2 (Fundamental Theorem of Field Theory). Let F be a field and let /(x) be 
a nonconstant polynomial in F[x]. Then there is an extension field E of F in which f(x) 

has a zero.

Proof. F[x] is a unique factorization domain by Corollary 2.26. So /(x) has an irreducible 

factor, call it p(x). We will construct an extension field E of F in which p(x) has a zero. 

Let E = F[x]/(p(x)). Then E is a field by Corollary 2.28. Now, let </> : F —> E defined 

by 0(a) = a+ (p(x)). We will show that & is a ring isomorphism. First we will show that 
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addition is preserved. Let a, beF. Then

</>(a + b) = (a + b) + (p(x))

~ a+(p(z))+ b+(p(rr))

= ^(a) + ^(b).

Next we will show that multiplication is preserved:

^(ab) = (ah) + (p(:c))

= (a + (p(z)))(b+(p(z)))

= 0(a)^(&).

Now, we will show that 0 is injective. Let </>(a) = ^(b), then a+(p(a;)) = b+(p(a;)). Hence 

0 = a — b + and so a — b G This means a and b are in F, and thus a = b.

Finally, we will show p(x) has a zero in E. Let p(x) = anxn + an-izn_1 + ... + airr + ao- 

Then, in F, x + (p(rr)) is a zero of p(z):

p(x + (p(a;))) = anfy +(p(-?0)r +•••+ ai(x’+MrO)+ flo

= an{xn + (p(z))) + - + aAx + (?(*))) + ao

= anxn + ... 4- axa: + ao + (jq(x))

= p(x) + (pW)

= 0 + (p(z)).

□

Example (3.2.1)., Let f(x) = x2 + 1 G Q[a;]. Let E — Q[a:]/(a:2 + 1) so f(x) G E.

f{x + (z2 + 1)) = (z + (x2 + l))2 + 1

= x2 + (x2 + 1) + 1

= x2 + 1 + (x2 +1)

= 0 + (aj2 + l).

Thus f(x) has a zero in E.

Example (3.2.2). Now, let f(x) = x5 + 2x2 + 2a; + 2 G %3[x]. If we factor f(x) as a 
product of irreducibles we get f(x) = (x2 + 1) (rc3 + 2x + 2). By Theorem 3.2, let E be 
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an extension of Z3. Then E\ = Zs[x\/(x2 + 1) or = Zs[x]/(x3 + 2x + 2). Thus, f(x) 

has a zero in E± and Lb.

Example (3.2.3). Lastly, if we let f(x) = 2x+l e %4[x], Theorem 3.2 does not guarantee 

that there is an extension field of Z4 in which f(x) has a zero since Z4 is not a field. In 

fact, f(x) does not have a zero in any ring containing Z4 as a subring. This is because if 
we let fi be a zero in E (an extension of Z4), then 0 = 25 + 1. Which then gives us:

0 = 2(2/3 + 1)

= 2(2/3)+ 2

= (2 • 2)/3 + 2

= 0-/3 + 2

= 2

But 0 7^ 2 in Z4. Thus f(x) does not have a zero in any ring containing Z4 as a subring.

The following theorem describes a field adjoined with an element from its ex

tension field. We can think of F[a] as a ring of polynomials (as in Definition 2.2) but 

evaluated at an element a. In part (iii) of the theorem, we use F(a} to describe rational 
functions evaluated at a.

Theorem 3.3. If E is an extension field of a field F, a,ai 6 E and X C E, then

(i) the subring F[a] consists of all elements of the form f(a), where f is a polynomial 

with coefficients in F;

(ii) the subring F[ai, ...,0^] consists of all elements of the form /(ai,a2, ...,am), where 
f is a polynomial in m indeterminates with coefficients in F;

(iii) the subfield F(a) consists of all elements of the form f(a)/g(a) = /(a)^(a)"1, where 

fig 6 and g(a) 0.

Example (3.3.1). The subring Q[\/2] consists of all elements of the form /(\/2) where 

f is a polynomial with coefficients in Q. We can write it as

Q>[x/2] = {a + bV2 | a, b G Q}.

This is because (V^)2” where n is a non-negative integer will always be a multiple of 2 

and (V^)2-'’1 where m is a non-negative integer will be a multiple of \/2-
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Example (3.3.2). The subring Q[\/2, i/5] consists of all elements of the form /(\/2, \/5) 

where f is a polynomial in 2 indeterminates with coefficients in Q. We can write it as

Q[V^, x/5] = Q[\/2][x/5] = {a + bV$ | a, b e Q[x/2]}.

Definition 3.4. Let E be an extension field of F, and let f(x) G F[e], We say that f(x) 

splits in E if f(x) can be factored as a product of linear factors in 2?[a;]. We call E a 

splitting field for f(x) over F if f(x) splits in no proper subfield of E.

Example (3.4.1). Let f(x) = x2 + 1 G Q[x]. We can factor f(x) as a product of linear 

factors in C[®].
f(x) = (x + i)(x-i)

Thus, f(x) splits in C. We cannot say that C is a splitting field over Q since there is a 

proper subfield F of C such that (rr — i)(x + ?) G F[a;]. That subfield is Q(i).

Example (3.4.2). Now if we let f(x) = x2 -f-1 G R[z], then C is a splitting field for f(x) 

over R.

Theorem 3.5 (Existance of Splitting Fields). Let F be a field and let f(x) be a non

constant element o/F[x]. Then there exists a splitting field E for f(x) over F.

Proof. We "will prove this by the principle of mathematical induction on the degree of 

f(x). Suppose deg f(x) = 1. Then f(x) is linear so f(x) splits in F. Now suppose 
there exists a splitting field for all polynomials of degree less than the degree of f(x) 

over F. We will prove there is a splitting field for f(x} over F. By Theorem 3.2 there 
is an extension field E of F in which /(x) has a zero. Let the zero be ai. Then f(x) — 

(x — ai)(/(x), where g(x) G E[rr] and deg^(rc) < deg/(a;). Since degt^rr) < deg/(rr), by 
the induction hypothesis there is an extension field K of E that contains all the zeros of 

g(xf say a2,...,an. Then a splitting field for f(x) over F is F(ai,a2, Therefore,

by the principle of mathematial induction, for any field F, there exists a splitting field E 

for any polynomial f(x) G F[x]. □

Example (3.5.1). Let f(x) = a?4 —x2—2 G Q[a;]. If we factor f(x) into a product of linear 
factors we get f(x) = (x + x/2) (a; — \/2)(a; + i) (x — ?). The zeros of f(x) are ±\/2, ±i G C. 

So a splitting field for f(x) over Q is Q(\/2, ?').
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Example (3.5.2). Let /(x) = x2 + x + 2 G Zs[xJ. If we factor f(x) into a product of 
linear factors we get f(x) — (x — (1 + i))(x — (1 + *)). Thus Zs(i) is a splitting field for 

/(x) over Z3.

3.2 Algebraic Extensions

This sections deals with sets of elements of a field F and recognizing these 

elements as roots of non-zero polynomials with coefficients from, a subfield of F. Algebraic 

extensions are fundamental in the study of algebraic closure.

Definition 3.6. Let E be an extension field of a field F and let a G E. We say a is 

algebraic over F if there exists a non-zero polynomial /(x) G E[x] such that /(a) = 0.

Example (3.6.1). Let /(x) = 2x — 1 G Q[x]. Then i is algebraic over Q since /(|) = 

2(1) -1 = 0.

Example (3.6.2). Additionally, if we let /(x) = x2 — 2 G <Q>[x] then ±-\/2 are algebraic 

over Q since /(±-\/2) = (±a/2)2 — 2 = 0.

Definition 3.7. An extension E of F is called an algebraic extension of F if every element 

of E is algebraic over F.

Example (3.7.1). If a is algebraic over a field F, then F(a) is an algebraic extension 
(see Theorem 3.11). In a previous example we showed that V2 is algebraic over Q, thus 

Q(x/2) is an algebraic extension of Q.

Definition 3.8. An extension of F of the form F(a), where a is in an extension field of 

F, is called a simple extension of F.

Theorem 3.9 (Characterization of Extensions). Let E be an extension field of the field 

F, and let a e E. If a is algebraic over F, then

(i) F(a) = F[a] and

(a) F(a) = F[x]/(p(x)’), where p(x) G F[x] is of minimum degree such that p(a) = 0. 

Moreover, p(x) is irreducible over F.

Proof. Consider the homomorphism <p : F[x] —> F[a] given by /(x) —> /(a). If a is 

algebraic over F, then there exists some /(x) G F[x] such that /(a) = 0. Hence kertp 
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{0}. Since the kernel of a ring is an ideal (Theorem 2.21) and F[x] is a PID (Theorem 
2.18) we can write ker ip = (p(x)) where p(x)jhas minimum degree among all non-zero 

elements of ker tp. Thus p(a} = 0 and since p(x) is a polynomial of minimum degree with 

this property, it is irreducible over F.

By Theorem 2.22, F[x]/(p(z)) = F[aJ. Since p(x) is irreducible over F, by 

Theorem 2.27 (p(x)) is a maximal ideal in F[x], and so F[x]/(p(x)) is a field by Theorem 

2.16. F[a] is the smallest subfield containing F and a so F(a) C F[a], but we also have 

that F[a]/(p(x)) = F[a] C F(a). Thus F(a) = F[a]. □

Theorem 3.10 (Uniqueness Property). If a is algebraic over a field F} then there is a 

unique monic irreducible polynomial p(x) E F[x] such that p(a) = 0.

Proof. Let p(x) E F[x] satisfy the conditions of Theorem 3.9. Then by Theorem 3.9, p(x) 
is irreducible and of minimum degree. Suppose an is the leading coefficient of p(x). Let 
p1(jj) = ^Lp(x). Then pi(x) is monic, of minimum degree and satisfies pi(a) = 0. Now, 

in order to prove uniqueness, assume there is a monic, irreducible polynomial y(x) such 

that g(a) = 0. Using the division algorithm we get

g(x) =pi(x)g(x) + r(x) where g(x),r(x) € F[x] and r(x) = 0 or degr < degpi.

This tells us that r(x) = g(x) — pi(x)q(x). If r(x) 0 0, then

r(a) = g(a) - Pi(a)q(a)

= 0 — Or/(a)

= 0.

This is a contradiction since degr < degpi and pi has minimun degree. Thus r(x) = 0, 

which means y(x) = pi(x)g(z). We know that y(x) is irreducible, so either pi(x) is a 

unit or y(x) is a unit. If pi(x) is a unit, then pi(a) / 0 which is a contradiction, so q(x) 

is a unit. Since y(x) and pi(x) are monic polynomials, q(x) — 1. Hence y(x) = pi(x). 

Therefore pi(x) is unique. □

If E is an extension field of F we can think of E as a vector space where scalars 

are elements of F. If we think about it this way we can introduce concepts familiar to 

vector spaces like dimension and basis. A vector space that has a dimension n has a basis 



29

consisting of n elements. If an extension field E has dimension n as a vector space over 

F, we say that E has degree n over F, and E is called a finite extension of F.

Theorem 3.11. If E is a finite extension of F, then E is an algebraic extension of F.

Proof. Let E be an extension field of F, and suppose that E has degree n over F. We want 
to show that every element of E is algebraic over F. Let a 6 E. The set {1, a, a2,..., an} 
is linearly dependent over F so there exists elements co, ci, c2,..., Cn E F such that

Cnan + Cn-ia71-1 4------ F cia 4- c0 = 0.

If we let f(x) — CnXn 4- Cn_ia;n_1 4*---- F cix + co, then f(a) = 0. Therefore all a E E is
algebraic over F, hence E is an algebraic extension of F. □

The next theorem is an important property of algebraic extensions and has 

connections to integral extensions. The proof can be found in [Hun74].

Theorem 3.12 (Algebraic over Algebraic is Algebraic). If K is an algebraic extension 

of E and E is an algebraic extension of F, then K is an algebraic extension of F.

Example (3.12.1). Q[\/2] is an algebraic extension of Q and Q[\/2, V5] is an algebraic 
extension of Q[V2]. Thus <Q[x/2, %/5] is an algebraic extension of Q.

Corollary 3.13 (Subfield of Algebraic Elements). Let E be an extension field of the field 

F. Then the set of all elements of E that are algebraic over F is a subfield of E.

The subfield mentioned above has a special name. The elements of E that are 
algebraic over F make a subfield of E called the algebraic closure of F in E. It is defined 

in terms of an algebraically closed field in Definition 3.15.

Definition 3.14. A field F is algebraically closed if every polynomial in F[z] has a root 

in F.

Definition 3.15. An algebraic closure of a field F is an algebraic extension field E of F 

that is algebraically closed.

We can also think of the algebraic closure of a field F as the smallest algebraically 

closed extension field containing F. Now, let us take a look at a familiar theorem and 

see how the previous definitions are used to classify the complex numbers.
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Theorem 3.16 (Fundamental Theorem of Algebra). Let f G C[x] be a polynomial of 

degree at least 1. Then there exists a complex number c G C such that f(c) = 0.

The proof of the Fundamental Theorem of Algebra consists of concepts from the 
study of analysis. [Hun74] gives a sketch of the proof and assumes that every positive 

real number has a real positive square root and every polynomial in R[x] of odd degree 

has a root in R. We can also state The Fundamental Theorem of Algebra as follows:

Theorem 3.17. A polynomial of degree n with complex coefficients has at most n complex 

roots.

This theorem tells us that every element of the complex numbers is algebraic 

over the complex numbers thus making it algebraically closed- Also, the field of complex 
numbers is the algebraic closure of the field of real numbers as is shown in the next couple 

of examples below.

Example (3.17.1), C is algebraically closed because it contains all zeros for any f(x) G 
C[rc]. To illustrate this further, take the polynomial 4,x>2 + 1 which has roots This 

polynomial has real number coefficients but its roots are complex numbers.

Example (3.17.2). The algebraic closure of R is C and the algebraic closure of Q is the 
set of all algebraic numbers, which is described as the set of elements of the complex 
numbers that are roots of non-zero polynomials with rational coefficients.



31

Chapter 4

Integral Closure

As defined in the last chapter, an element of E is alebraic over F if it is a zero 
of a polynomial in Analogously, an element of 3 is integral over R if it is a zero
of a monic polynomial in Both algebraic and integral closures deals with having

an extension field or ring that contains no proper algebraic or integral extensions within 

it. For example, if we look at the extension field C of the real numbers R, every element 
of C is a zero of a polynomial of R[x] and C is algebraically closed. So an algebraically 

closed extension E is the “smallest” extension field of F that contains all the zeros of 

polynomials in F[x). If the rings R and S are fields then integral closure and algebraic 
closure are the same.

4.1 Ring/Integral Extensions

Algebraic closure and integral closure share many similarities. One of them is 
the concept of extensions. Algebraic extensions deal with extension fields and correspond

ingly, ring/integral extensions deal with extension rings.

Definition 4.1. Let S be a commutative ring with identity and R a subring of S con
taining I,?. Then S is said to be an extension ring of R.

Example (4.1.1). Extension fields are extension rings, thus the examples of extension 

fields in the previous chapter are also examples of extension rings.

Example (4.1.2). However, Z is not an extension ring of the set of even integers E since 

1 $ E.
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Definition 4.2. Let S be an. extension, ring of R. An element x G S is said to be integral 

over R if there exists an integer n and elements rq, ...,r„ G R such that

xn + ria:51-1 ------ 1- rn^x irn = 0.

An element that is integral over a ring is comparable to that of an element that 

is algebraic over a field because we are essentially looking at elements of a ring as roots 
of polynomials. But in the case of an integral element, we need the polynomial to be 

monic. In fact, integral elements are algebraic, but algebraic elements are not necessarily 

integral.

Example (4.2.1). Let 6 R. Then is integral over Q since it is the root of 
x2 — | 6 Q[rr]. It is worthy to note that is not integral over Z because there does not 

exist a monic polynomial with integer coefficients in which is a root.

Example (4.2.2). Similarly, the set of elements in a ring R is integral over R since r G R 

is a root of x — r G R[re].

Definition 4.3. If every element of S is integral over R, then S is said to be an integral 

extension of R.

Example (4.3.1). Every algebraic extension field F of a field AT is an integral extension 

ring and Z is an integral extension of Z which will be shown in Example 4.7.1.

The following theorem gives another characterizaion of integral elements in terms 

of modules.

Theorem 4.4. Let S be an extension ring of R and x G S. Then the following conditions 
are equivalent:

(i) x is integral over R

(ii) F[a;] is a finitely generated R-module

(Hi) there is a subring T of S containing Is and B[ir] which is finitely generated as an 

R-module

(iv) there is an B[z] submodule B of S which is finitely generated as an R-module and 

whose annihilator in _R[e] is zero.
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3.71+1 =

G

Proof, (i) => (ii) Let x be integral over R. Then there exists n G No and ri,...,rn G R 

such that
xn + nR1"1 -|------ ]- rn-ix + rn = Q.

R[:r] is generated by the basis G No} by definition. We want to show _R[®] is finitely 
generated, so we need xn+m G R1 4- Rx -F-----F Rxn~x. We have:

0 = x71 + r\xn~x -|------ 1- rn_ix 4- rn

hence we can write

xn = — (ria:"-1 4------ F rn_\x 4- rn).

We will first show ajn+1 G R1 4- Rx 4------ F Rxn~x:

xnx

-{rixn~x 4------ F rn-ix 4- rn}x

-{rixn 4------ F rn-^x1 4- rnx}

---------rn_i% - rn) + • • • + rn-ix2 + rnx)

r2xn~x 4------ F rn_ix2 4- (rirn_i 4- rn)x + nrn

R1 4- Rx + • • ■ 4- Rxn~x.

We can keep doing this m times, and so it will follow by induction that xn+m G R1 4- 
Rx 4------ F Rxn~x. Therefore R[x] is a finitely generated R-module.

(ii) => (iii) Let R[ir] be a finitely generated R-module. If we let T = R[x] then T is a 
subring of S and Is G R[®].
(iii) => (iv) Let T, a finitely generated R-module, be a subring of S and 1$ G T. Now let 
B = T, R C R[x] C T so B is an R[x]-modulc that is finitely generated as an R-module. 

Now, suppose uB = 0 for some u G S. Then since 1$ G B we have that u = uls = 0. 

Thus the annihilator of B is 0.

(iv) => (i) Let B be a R[e]-submodule of S and finitely generated as an R-module, and 

let (0 : B) = 0. Then B is generated over R by bi, b2, ...,bn and since B is an R[z]-module 
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we know xbt G B for i G N. Thus, there exists nj G R such that

aLi = rn&i 4- n262 4------F rlnbn

xb2 = r2ibi 4- r22b2 4------F r2nbn

xbn = rnlbi 4- rn262 H------ \-rnnbn.

Now setting each equation to 0 and combining like terms gives us

0 = (Hi - x)bi 4- ri2&2 4- • ‘ + rlnbn

0 - r2ibi + (r22 - x)b2 4----- PriA 

0 — ^ni^i 4- rn252 4~ • • • 4- (jnn x)bn.

Rewriting these equations in matrix form gives us:

TH — X 7*12 rin o’
r2i r22 - x • • Tin b2 0

rn2 ’ rnn X_ bn_ _0_

Let M =

rn — x

^21

ri2
r22 — x • •

rm
r2n

rn2 ' rnn x_

Let d G R[rc] be the determinant of M. If

0, then we would be able to multiply on the right by M 1 giving us

1 
o

__
_

1

b2
=

• • o
]_

__
__

---------
1

' 
■ °l

But 6i, 62,bn are generators so they cannot be 0. Thus d = 0. Let f be the polynomial 

created by the determinant of M. Then — f is a monic polynomial and x is integral over 

R. □
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Corollary 4.5 (Integral over Integral is Integral). Let T be an integral extension of S 

and let S be an integral extension of R. Then T is an integral extension of R.

This corollary to Theorem 4.4 has a similar structure to that of Theorem 3.12 
which states algebraic extensions over algebraic extensions are also algebraic over the 

original field.

Proof. We axe given that R C S C T, S is integral over R and T is integral over S. Let 

t G T be integral over S. Then for si G S we can write

tn + sn—itn 1 + • • * + + so = 0.

Let /(x) = xn + sn_ixn-1 + • • • + six + so- Then f G B[so, si,..., sn]. By Theorem 

4.4, 7?[so, «i,sn-1][i] is a finitely generated J?[so, si,..., sn-i]-module. Now we want to 

show that 7?[so, si,..., sn-i] is a finitely generated 7?-module. Let R C K[sq] C -R[so, si] C 
• • • C R[so, Sijsn—i]. Each s$ is integral over R since S is integral over R. We know 

that 7?[s0, si,..., s^ = 2?[so, $i,..., s«_i][s$] so P[so, si,..., Sf] is a finitely generated module 

over l?[so, si,..., Sj_i] by Theorem 4.4. We can keep doing this which will eventually 

show that 7?[so, si,sn-i] is a finitely generated P-module. Hence J?[so, si, ...sn_ 1] [*]= 

J?[so, Si,sn_i, t] is a finitely generated .R-module. Since 7?[t] C H[so, sj,..., sn_i,i], t is 
integral over R by Theorem 4.4. □

Definition 4.6. Let R be a ring and S an extension ring of R. The set of all elements 

of S that are integral over R is called the integral closure of R in S and is denoted by R.

Definition 4.7. If R = R, then R is said to be integrally closed in S.

Example (4.7.1). Z = Z, in other words, the integers are integrally closed in the field of 

rational numbers. This means that if we look at all the elements in the rational numbers, 

the only ones that are roots of monic polynomials with integer coefficients are the integers. 

A short proof is included below.

Proof. First we will show Z C Z. Let a G Z, then x — a G Z[x]. Let /(x) = x — a, then 

/(a) = a — a = 0. Hence a G Z.
Next we will show Z C Z. Let G Z, where c, d G Z and gcd(c, d) = 1. Then 

there exists a monic polynomial g(x) G Z[x] such that ^(§) = 0. So

G) +aiG) +-+“»-i $+“»=»•
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Multiplying both sides by dn gives us:

cn 4- aicn 4d 4" • * • 4" a>n~icdn x 4~ ancF — 0.

Then subtracting cn gives:

aicn~4d 4------ F an_icdn_1 4- andn = —cn

=> d(aicn_1 H-------F an_ic(F~2 4- andn~1') = — cn.

Hence d divides cn. So by Euclid’s Lemma, d divides c. But gcd(c, d) = 1, and so d = 1. 

Thus g = y = c € Z. Therefore, Z = Z. □

Note that the integers are not integrally closed in the field of real numbers or 

the complex numbers. This can be seen when taking into account the monic polynomials 
x2—2 and x24-l. Both polynomials have integer coefficients but the roots are not integers. 

Actually, the integral closure of the ring of integers in the field of complex numbers is 

called the set of algebraic integers. Those are the complex numbers that are roots of 

monic polynomials with integer coefficients.

Example (4.7.2). Every UFD is integrally closed. A short proof is provided below.

Proof. Let D be a unique factorization domain. Using the same structure as above we 
can see that D C D. Now we need to show that D C D. Let cd~4 E D where c,dE D and 
assume c, d 0 0. Then c = plfp% ■ --ft and d = qflla^2 -tf' where9i are irreducible 

and pi 0 qj. Since cd“x is integral over D we can write

(cd x)n 4- ai(cd x)n 1 4- • • • 4- an_i(cd x) 4- an = 0 

cnd-n 4- aicn"1d1“n 4------ F an-icd-1 + an = 0.

Multiplying by dn gives us

cn4-aicn-1d4------ F fln-icd71-1 + and71, = 0

=> aicn“1d 4----- F an-icd"-1 4- an(F = — cn

=$> d(a-\cn~1 4------ F an-icd"-2 4- and”~x) = —cn

^^^•••^(ai^ + ’-’ + an-icd^ + and71-1) = -(^•••4Q\

Since pi 0 we have aic11-1 4- • • • 4- an-icdn~2 4- andn-x = (p^p^ ‘ ‘ ‘Pr)n- Thus 

d = q^ag2 = 1. Therefore cd“x = cEDsoDCD. □
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Theorem 4.8. Let R be a subring of the commutative ring S and let R be the integral 

closure of R in S. Then R is integrally closed in S.

In other words, let R be a ring and R be the integral closure of R. If you want to 

find the integral closure of the integral closure (R) you will just end up with the original 
closure of R which is R. So taking the integral closure of the integral closure two, three, 

four, up to n-times, will result in the original integral closure of the ring.

Proof. We want to show that R = R. Let R be the integral closure of R. We know 

R C R C R. By Corollary 4.5 R is integral over R and R is integral over R, and so R is

We can also characterize integral closure in terms of other mathematical con

cepts. The following theorems give us a conncection between the integral closure of a 
ring in terms of ideals.

Theorem 4.9. Let R be the integral closure of R in its quotient field K. Then

R = [|{(Z :k I) \ I is a finitely generated ideal of R}

Proof. First we will show R C |J{(Z :/< Z) | Z is a finitely generated ideal of R}. Let 

x G R, we want to show xl C I for some finitely generated ideal I of R. Let x G IL. We 

can write x = | for some a, b G R and b 0. Since x is integral over R, for G R we 
have the equation

xn + aixn 1 H------ F an_iX + an = Q.

Hence we can write xn = ~a]Xn 1 — • • • — an-ix — an which is in the finitely generated 

ideal J = (l,x, a;2,..., re”"1). Thus J = (1, J, (f )2,..., and xj C J. Lekl = bn.fi

then I = (bn, abn-1,a2bn_1, ...)an~1b) which is a finitely generated ideal of R. Therefore 

xl = xbn J C bnJ = Z, and so xl C Z.

Now we will show [J{ (Z :/< Z) | I is a finitely generated ideal of R} C R. Let 

x G (Z : Z) for some finitely generated ideal I. Then xl Q I where I — (ai, a2, •••, un), 

a7 G R and tq 0. Now we can write xl as x multiplied by each of the generators of I 
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so that for cy G F, we have the equations

xai = cuai 4 ci2^2 +----k cinan

xa2 = C21O1 4 C22®2 +----F c2nan

xan = Cnl^l + Cn‘2a2 4 • * • 4 Cnnan.

Now setting each equation to 0 and combing like terms gives us

0 = (cn - ®)ai 4 C12CI2 H------ F ci„an

0 = C2idi 4 (c22 ~ x)a2 4 * ‘ * 4 C2nOn 

0 — Onl^l 4 CnStyZ 4 • ‘ ' 4 (Cnn

Rewriting these equations in matrix form gives us:

Cll -x Ci2 ’ cln ai o’
C21 C22-X * ' ' ^2n «2 =

0

Cnl Cn2 ‘ Cnn F _dn_ o_

Cnl Cn2

cu - ® C12 cln

Let A =
C21 C22 “ % c2n

Cnn X

If det 4/0 then there exists an A 1 so that

when we multiply on the right by A 1 we get

dl o’
a2

=
0

_&n_ 0.

But ai,a2) -An / 0, so det A = 0. Let f be the polynomial created by the determinant 
of A. Then — f is a monic polynomial and x is integral over R. Thus, x g R. □
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4.2 Applications of Integral Closure: Dedekind Domains

The Fundamental Theorem of Arithmetic states that any integer greater than 

1 is a prime or a product of primes and this product is unique, except for the order 

in which the factors appear. This concept can be extended to rings in general and is 

especially clear in the case of the ring of integers. The ring of integers is a principal 
ideal domain and every ideal is a unique product of prime ideals. This leads us to the 
discussion of Dedekind Domains and shows a connection between prime elements of a 

ring R and prime principal ideals in R. The main result of this section is Theorem 4.16 

which portrays Dedekind domains in several ways.

Definition 4.10. A Dedekind domain is an integral domain 1? in which every ideal (/ 2?) 

is the product of a finite number of prime ideals

Example (4.10.1). Every principal ideal domain is Dedekind.

Proof. Let J? be a PID. Then R is also a UFD by Theorem 2.25. Let A be an ideal of 

R. Then A = (a). Since R is a UFD, (a) = (pip2 * "Pn) were pi,p2, —,Pn are irreducible. 

But in a PID irreducible implies prime so (a) = (pi)(p2) • • • (pn) where (pi), (P2),..., (pn) 
are prime ideals. Thus R is a Dedekind domain. □

From this example we can say that Z is a Dedekind domain since it is a principal 

ideal domain.

Definition 4.11. Let R be an integral domain with quotient field K. A fractional ideal 

of 2? is a non-zero R submodule I of K such that al C R for some non-zero a G R.

Since we have introduced this new definition we need to specify between a frac
tional ideal and ordinary ideal. An ordinary is an ideal that is contained in R, whereas 

a fractional ideal may not be contained in R. We can think of the element a G I as the 

element that divides out the “denominators” of the elements in I so that I becomes an 

ordinary ideal. The element 6 G Z in Example 4.11.1 below does this exact thing.

Example (4.11.1). Let R = Z and K = Q. The set of elements |Z is a fractional ideal 

because 6 (|Z) cZ and 6 G Z.
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Example (4.11.2). Every ordinary non-zero ideal I in an integral domain R is a fractional 

ideal of R, and every fractional ideal of R that is contained in R is an ordinary ideal of R. 

It is good to note that if I is a fractional ideal of a domain R and al c R (0 a G R), 

then al is an ordinary ideal in R and the map I —> al given by x »-> ax is an R module 

isomorphism (a G R “clears the denominator” of I since I C K).

Theorem 4.12. If R is an integral domain with quotient field K, then the set of all 

fractional ideals of R forms a commutative monoid, with identity R and multiplication 

given by Definition 2.34-

Proof. Let A be the set of all fractional ideals of R. We want to show that A is a 

commutative monoid. First we will show that multiplication is closed in A. That is, the 

product of fractional ideals are fractional ideals. Let Ai, A2 G A. Since Ay and A2 

are fractional ideals, there exists ri,r2 G R such that r±Ai c R and r2A2 C R. Then 

rir2AiA2 = riAir2A2 C R. Thus AiA2 is a fractional ideal of R.

Next we will show that multiplication is associative. Let Ai, A2, A3 G A. Then 
Aj(A2Ag) = A1A2A3 = (AiA2)A3 since each of the Aj’s are ideals of the ring K and 

associativity of ideals holds in a ring.

Lastly we show that the identity of A is R. Since each Aj is an R-module we 

know that RAi C Ai and A; C RAf. Thus RAi ~ Ai. Hence, A is commutative monoid 
with identity R. □

Definition 4.13. A fractional ideal I of an integral domain R is said to be invertible if 
IJ = R for some fractional ideal J of R.

Note that the invertible fractional ideals are precisely those that have inverses in 
the, monoid of all fractional ideals. Some properties of fractional ideals are listed below.

Property (4.13.1). The inverse of an invertible fractional ideal I is unique and is defined 

to be Z-1 = {a G K | al C R}. It is unique because if A and B are inverses of I then 
AI — R and BI = R so AI = BI => A = B. The following property is similar to that of 

cancellation. Let I, A, B be fractional ideals of R such that IA = IB and I is invertible, 

then
A = RA = (Z“XZ)A = Z-1(ZB) = RB = B.

Now, if I is an ordinary ideal in R then R C Z_1.
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Property (4.13.2). We can also say that every non-zero principal ideal in an integral 

domain R is invertible. For example, let us look at the principal ideal (2) G Z. The 

inverse of this ideal is
(2)"1 = {a 6 Q | a(2) C Z} = |z.

Property (4.13.3). Lastly, if K is the quotient field of R and I = (b),b / 0, let J = 

Rc C K where c = 1/b. Then J is a fractional ideal of R such that IJ — R.

Lemma 4.14. Let I,Ii,I2, -;In be ideals in an integral domain R.

(i) The ideal IiI2I -“In is invertible if and only if each Ij is invertible.

(ii) If P]_P2 • ■ • Pm = I = Q1Q2' ’ • Qn, where Pi and Qj are prime ideals in R and every 
Pi is invertible, then m = n and (after re-indexing) Pi = Qi for each i = 1,..., m.

Proof, (i) Let I,Ii,I2,...,In be ideals in an integral domain R.

(=>) Let IIiI2 ■•■Inbe invertible and let J be a fractional ideal such that J(IiI2 ■ • ■ In) — 

R. Then Ij(JIi *■ • Ij-ilj+i • --In) — R since R is commutative and associative. Thus Ij 
is invertible. We can do this for each Ij, j G N.

(^=) Let each Ij,j G N be invertible. Then

(/!- ■• InM,1 ■ ■ ■ V) = ' ■ ■ InIn1 = &

Thus Zi • ■ • In is invertible.
(ii) We will prove the second part using the principle of mathematical induction. Let 
m = 1. Then Pi = I = Q1Q2 • • • Qn- So Qi C Pi for some i since Pi is prime. Suppose 

Qi C Px. Then Qi C P1 = QiQ2- "Qn Q Qi- Hence Qi = Pi. Now if n > 1, since 
Pl = Qi is invertible, we get Pi = P1Q2 • ■ • Qn so that R = Q2 - - - Qn- This can’t happen 
since Q2- • • Qn is a proper ideal of R.

If m > 1,
Choose a Pi, say Pi such that Pi does not properly contain Pj for i = 2,

Then QiQ2 - "Qn = P1P2 • • • Pm C Pi- Since Pi is prime there is a Qj C Pi for some 

j = 1,2, ...,n, say Qi C Pi. Similarly, because PiP2"‘Pm — Q1Q2"-Qn C Qi and 
Qi is prime, there is a Pi C Qi for some i. Since Pi does not properly contain Pi, then 

Pi = Pi. Since Pi = Qi is invertible this implies that P2P3 • - • Pm = Q2Q3 • • • Qn- We 
can keep going and thus after reindexing we get Pi = Qi for i = 1,2,..., m. □
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In a principal ideal domain, prime ideals are also maximal ideals and we have 

that every non-zero principal ideal in an integral domain is invertible. Putting these two 

concepts together show that every non-zero prime ideal in a principal ideal domain is 

invertible and maxmal, which leads to the following theorem.

Theorem 4.15. If R is a Dedekind Domain, then every non-zero prime ideal of R is 

invertible and maximal.

Proof. Let R be a Dedekind domain. Hence R is an integral domain and every ideal of R 

is a product of primes. We will first show that every invertible prime ideal P is maximal. 

Let a 6 R,a$. P. Assume that P + Ra R. Since R is a Dedekind domain we can write 

every ideal as a product of primes. P is a prime ideal and Ra and P + Ra are ideals. 

Hence,

P + Ra — PiP2...Pm and

P + Ra2 = Q1Q2—Qn where Pi, Qj are prime ideals.

Let 7F : R —> R/P be the canonical epimorphism. So 7r(a) = a + P, 7r(a2) = a2 + P 

and 7T is a surjective homomorphism. Consider the principal ideals in R/P generated 

respectively by 7r(a) and 7r(a2). We have

(7r(a)) = 7r(Pi...Pm) = 7r(Pi)7r(P2)...7r(Pm) and

(?r(a2)) = 7r(Qi)7r((22)...7r(Qn)

Since ker7r = P C Pi and P c Qi for each i, the ideals 7r(Pf) and 7f(Q$) are 
prime by Theorem 2.29.

R/P is an integral domain since P is a prime ideal, and so every non-zero 

principal ideal in R/P is invertible. Therefore, since (?r(a)) is a principal ideal in R/P, it 
is invertible; which means 7r(Pi)7r(P2)...7r(Pm) is invertible and so each 7r(Pi) is invertible 

(Lemma 4.14(i)). Similarly, each 7r(Qf) are invertible since

7r(Qi)...7r(Qn) = (7r(a2))

= Ha))2
= 7r(Pi)2...7r(Pm)2.
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Using Lemma 4.14(ii), we let n = 2m and reindex to get

%(P<) = 7r(Q2i) = 7r(Q2i-i), i = l,2,...,m

Thus, ker7r = P C Pi and P C Qj for all i,j. Hence

Pi = 7T_1(7r(Pi)) = 7T“1 (7r(Q2$)) = Q2i

and similarly Pi = Qsi-i for i = 1,2,m.

Now, P + Ra2 = Qi...Qn = P?-P™ = (Pi-Pm)2 = (P + Pa)2 and P C P + Ra2 C 

(P + Pa)2 C P2 + Pa. If b = c + ra G P (c G P, r G P), then ra G P. So r G P since P 
is prime and a P. Thus P C P2 + Pa C P which implies P = P2 + Pa = P(P + Pa). 

Since P is invertible

R = P~lP

= P~lP(P + Ra)

= P + Pa

This is a contradiction because we assumed that R^ P + Ra. Therefore, every invertible 

prime ideal is maximal.
Now suppose P is any non-zero prime ideal in P and c is a non-zero element 

of P. Then (c) = PjP2...Pm C P for P$ prime. Then P& c P for some k since P is 

prime. Therefore (c) is invertible because it is a principal ideal. Hence, P& is invertible 
by Lemma 4.14. By the first part, Pfc is maximal so Pfc = P. Therefore, P is invertible 

and maximal. □

Example (4.15.1). Let F be a field. The principal ideals (xi) and (x2) in P[xi,x2] are 

prime but not maximal since (xi) C (xj, x2) C F[xi, x2]. Thus F[xi, x2] is not Dedekind.

Theorem 4.16. The following conditions on an integral domain R are equivalent:

(i) R is a Dedekind domain;
(ii) Every proper ideal in R is uniquely a product of a finite number of prime ideals;

(Hi) Every non-zero ideal in R is invertible;

(iv) Every fractional ideal of R is invertible;

(v) R is integrally closed, every ideal is finitely generated and every non-zero prime ideal 

is maximal.
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This theorem allows us to define a Dedekind domain using different concepts in 

algebra. It relates Dedekind domains not only to prime ideals but to invertible fractional 

ideals and integrally closed, finitely generated prime ideals. Part (v) of this theorem 

supports our claim in the beginning of this section, that the ring of integers, Z, is a 

Dedekind domain. This is because the ring of integers is integrally closed and is a principal 
ideal domain (Example 2.17.2) so every ideal of Z is finitely generated and every non-zero 

prime ideal of Z is maximal (Example 2.17.1). For the proof of this theorem see [Hun74].
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Chapter 5

Integral Closure of an Ideal

The integral closure of an ideal is very similar to that of the integral closure 

of a ring. In fact it seems almost verbatim. We are still dealing with roots of monic 
polynomials however, a noticable difference is that in the integral closure of an ideal the 

coefficients of the polynomials are elements of powers of the ideal. But this can also be 

said of the coefficients of the polynomial in the integral closure of a ring. This is because 
when we take powers of a ring R, we get back the entire ring R. But when we take 

powers of an ideal I in a ring R, the powers are subsets of the ideal I. Another difference 
between integral closure of a ring and integral closure of an ideal in a ring is that integral 
elements over an ideal stay within the ring R while integral elements over a ring R can 

be in an extension of the ring R.

5.1 Definitions

We first define what it means for an element to be integral over an ideal in a 

ring.

Definition 5.1. Let I be an ideal in a ring R. An element r E R is said to be integral 

over I if there exists an integer n and elements tzj G F, i = 1,2,..., n, such that

rn + airn_1 + a2rn~2 4------ F an-ir + = 0.

Definition 5.2. The set of all elements that are integral over I is called the integral 

closure of I and is denoted I.
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Example (5.2.1). Consider the ideal I = (a;2,y2) in the ring R[x, y]. The element 
xy G R[rr, y] is in the integral closure of I because (xy)2 4- 0(xy) 4—x2y2 = 0.

Lemma 5.3. An ideal I is contained in its integral closure, that is I C I.

Proof. Let a G I, then x — a G Z[x]. So for f(x) = x — a we have /(a) = 0, hence a G I. 
Thus I C I. □

Definition 5.4. If I = I, then I is integrally closed. If I C J are ideals, we say J is 
integral over I if J C I.

Example (5.4.1). Radical ideals are integrally closed. See note after Lemma 5.11.

Example (5.4.2). Prime ideals are integrally closed. A short proof is provided below:

Proof. Let P be a prime ideal, we want to show that P = P. We know I C I for any 
ideal I as noted above. Hence, PCP. Now we need to show P C P. Let b G P. Then 

there exists an f(x) G P[x] such that

/(b) = bn 4- aibn_1 4------ 1- an_ibian=Q for ai G P1.

Subtracting an from both sides and factoring out a b gives us

bn 4" aibn 1 -{-••• 4~ an~]b = — an.

b(bn 1 4" aibn 2 4- ■ • • 4- an — 1) = — an.

Since an G P, b(bn_1 4- aibn_2 4- • • ■ 4- an-i) £ P- Since P is prime either b G P or 
bn~1+aibn~24----- Fan-i G P. Ifb G P, then we’re done. If bn“14-aibn"24----- l-On-l €

then bn-1 6 P because each aibn~‘l~1 G P. So b G P. Therefore P = P. □

If we consider the ring R to be an ideal of R then the integral closure of the 

ideal R in the ring R is R, but the integral closure of the ring R may be larger.

5.2 Theorems

The theorem below tells us that the integral closure of an ideal is an ideal in 

the same way that the integral closure of a ring is a ring and the algebraic closure of a 

field is a field. Going further down to Theorem 5.9, we see that the integral closure of an 
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ideal is an integrally closed ideal. The proofs for Theorem 5.8 and 5.9 below follow from 

Swanson and Huneke’s text [SH06]. They use a clever approach via reductions (which is 

defined below) to simplify this proof.

Definition 5.5. Let J Q I be ideals. J is said to be a reduction of I if there exists a 

non-negative integer n such that In+1 ~ JI71.

We can think of the last statement as I • In = JI71. So simply put, a reduction 

of an ideal is a subset of that ideal such that the product stays the same. So we are 

“reducing” the ideal but keeping the product the same. The next lemma uses the idea of 

reduction and relates it to integral closure.

Lemma 5.6. Let R be a ring. For any element r G R and ideal I Q R, r e I if and only 

if there exists an integer n such that (Z + (r))n = Z(Z + (r))n_1.

Proof. (=>) Let r G Z. Then we can write

rn 4- air71-1 4------ F an-1r 4* an = 0 for some G Z1.

So — airn-1---------an_ir — an = rn.

This shows that r71 G Z(Z 4- (r))n_1 and hence (I 4- (r))n = Z(Z 4- (r))n_1. (<=) Let 

Z(Z 4- (r))n_1 = (Z 4- (r))n for some n. Then rn G (Z 4- (r))n = Z(Z 4- (r))n~x. So 
rnG (Z4-(r))n~1. Thus

r71 = xxn 4- xxn_ir 4- xxn_2r2 4------ 1- xxyr71-1

where x G I an x^ G Z1_1 for i = 1,2, ...,n. So each xxt G ZZZ_1 = F. Now, let a* = xxi 
for 7 = 1,2,..., n. Then

rn = air71-1 4- a2rn~1 4------ F + a™ for some ai G Z*.

Now, subtracting rn gives us

—r71 4- airn_1 4- a2r"-1 4------ F an_vr 4- an = 0 for some a; G P.

Thus, r G Z. □

The following lemma is also used to prove Theorems 5.8 and 5.9. It shows that 

the reduction property is transitive.
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Lemma 5.7. Let I C J C K be ideals in R.

(i) If I is a reduction of J and J is a reduction of K, then I is a reduction of K.

W If I is a reduction of K, then J is a reduction of K.

(iii) If K is finitely generated, J = I 4- (ri, r2,rfc) and I is a reduction of K, then I is 

a reduction of J.

Proof (i) Let I C J and J C K be reductions. Then by Definition 5.5 there are integers 

n and m such that IJn = Jn+1 and JKm = We know that = JKm, so
if we increase the power of K by 1 we get Km+2 = J7<rn+1 — J2Km. We can keep 

increasing the power of K so that we get Km+n = JnKm. Hence we can write

So actually K™d-n4-i = IKm+n, thus by Definition 5.5 I is a reduction of K.

(ii) Let I Q K be a reduction. Then there exists an integer n such that Kn+1 = IKn C 

JKn C Kn+1. Thus JKn = Kn+1 so by Definition 5.5, J is a reduction of K.

(iii) Let K be finitely generated, J = I 4- (ri, r2,..., r^) and I a reduction of K. Then 

there exists an integer n such that IKn = Kn+X. By part (ii) I 4- (ri,r2,...,ri_i) is a 

reduction of K for all i = 0,1,..., fc. Since I C I+(n, r2, ...rt) C K. then each ri G K. So

Following this, riKn C (I 4- (ri,r2, ...,7‘i-.i))Kn where Kn = (ai,a2> •••» ®m) since K is 
finitely generated. We can write riKn as ri multiplied by the generators of Kn so that 

for each Xij G R we have

7”f®2 — 2^21^1 4* 2l22®2 4" * ’ ’ d“ •^2m^,m

Tiam — d" 24n2®2 4” * ’ ’ 4“

Now setting each equation to 0 and combing like terms gives us

0 = (aqi - n)ai 4- 2?i2a2 -I------1- ximam

0 = 2:21 ®i 4- (x22 ~ ri)a2 4------F Z2m®m

0 — d" 24n2®2 d- • • • 4" (%mm ri)am‘
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Rewriting these equations in matrix form gives us:

that when we multiply on the right by A 1

a M
••

 1 J? Xi2

x22 - n • • •

®11 - ^12 xlm

Let A =
^21 X22 - rf '*' X2m

xml *' ’ Xrnm

xlm ai 0

x2m 02
=

0

mm 0_

. If det A 0 0 then there exists an A 1 so

get

ai
r "i
0

«2 =
0

0_

But ai,a2, ...,an 0 0, so det A = 0. Let f be the polynomial created by the de

terminant of A. Then — f is a monic polynomial and rt is integral over R. Thus, 

x E (1+(ri, r2, Hence, ri is integral over I 4- (n,^, so by Lemma
5.6. I + (ri,r2,...,ri_i) is a reduction of I + (ri,r2,...,ri). Therefore by part (i) and 

induction of fc, I C I 4- (ri,r2, = d is a reduction. □

Theorem 5.8. The integral closure of an ideal in a ring is an ideal (I is an ideal).

Proof. Let I be an ideal. We first show that I is non-empty. Since I is an ideal, 10 0.
So let a € I. Then a G I by Lemma 5.3. Thus I 0 0. Next we need to show that I is 

closed under multiplication by elements of R. Let r G I and t G R. Then

rn + air" 1 4------ F an-ir + an = 0 for some a$ G F.

Multiplying by tn gives us

tnrn 4- aiT^r71-1 -1------ 1- an-itnr + antn = 0

or (tr)n 4* ait^r)""1 4-------F an_itn_1(tr) 4- antn = 0

We know that atL G P since a^ G I1 and t1 G R. Thus tr G I.
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Now we need to prove that I is closed under addition. Let r,s C.I. Then we 

can write
rn 4- air71-1 4----- 1- an_ir 4- an = 0 for some az G F and

sn + 6isn_l 4-------1- bn_\s + bn = 0 for some bi G F.

There exists a finitely generated ideal F QI such that G (I'}1. Thus r G F. We can say 

the same thing about s and by possibly extending F we get s G I'. Now let J = F + (r) 

and K = F 4* (r, s) = J 4- (s). We know F Q J Q K, and by Lemma 5.6 I! is a reduction 

of J and J is a reduction of K. So F is a reduction of K by Lemma 5.7. F, J and K 

are all finitely generated and I! Q F 4- (r 4- s) C K so by Lemma 5.7, F is a reduction of 

F 4- (r 4- s). Thus by Lemma 5.6 r + s is integral over F. Hence, r 4- s G I. Thus I is an 
ideal. □

Theorem 5.9. For any ideal I, the integral closure of I is integrally closed, in symbols: 
1 = 1.

Proof. First, by Lemma 5.3, we know that I QI. Now, let I be an ideal of R and r G I. 

Then there exists a finitely generated submodule J Q I such that r G J. We can write 

J — 0i>•••) Jn)- Similarly there exists a finitely generated ideal I( CI such that each 

ji is integral over K. By Lemma 5.7, K is a reduction of K 4- J and K 4- J is a reduction 
of K 4- J 4- (r). So K is a reduction of K 4- (r). Thus r is integral over K by Lemma 5.6 
and hence over I. □

Theorem 5.10. If I C J, then I G J.

Proof. Let r El, then we can write

rn 4- airn_1 4------ k an_ir + an = Q for ai G F.

Since F C J®, then at E J\ Therefore, r E J so I Q J. □

Lemma 5.11. I QI Q

Proof. By Lemma 5.3, we have that IQ I. Next we will show I Q \/l. Let b El. Then

bn 4- ai6n_1 4----- k an_ib 4- an = 0 for G F.
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From this equation we get:

—bn = a]bn 1 + • • ■ + an-ib + an

Where ai G I, a2 G I2 C I,..., an G In C Z, so ai G I for each i. This means ai&n_1 + 
• * • + fln-16 + an G I because I is ideal. Hence bn G I, and so b G x/Z. Therefore 

Z C I C v7. □

This brings up an interesting notion. We have that if x/Z = I then \/l = I 
because I C I C x/Z. But we cannot necessarily say that x/Z = I because if b G x/Z 

then bn G Z, but bn is not necessarily an element of Zn. Thus radical ideals (x/Z = Z) are 

integrally closed, but the radical of Z need not be equal to the integral closure of Z.

Theorem 5.12. If I and J are integrally closed, then 11] J is integrally closed.

Proof. We want to show that IPl J = ZD J for I = I and J = J. By Lemma 5.6 we have 

that I n J C I Pi J. Now we have to show I Pl J C I Pi J. Since I = Z and J = J, then 

IR J = I PI J. Let b G I Pl J. Then

f(b) = bn + rib"-1 4------ 1- rn_\b 4- rn = 0, for r; G (I D J)’.

Since G P and ri G J1 then f(b) G Z[x] and f(b) G J[x]. Thus f(b) G Z[x] Pl J[x] so 
b G I n J. Therefore I n J = I Fl J‘ □

This next theorem shows how the integral closure of an ideal is related to the 

integral closure of a ring. Basically the integral closure of an ideal is the extension of the 

original ideal into the closure of the ring and then contracted back into the ring.

Theorem 5.13. ZPD P = I for all ideals I of P.

Proof. First we will show IR Pl P C I. Let b G IR A P. Then b G IR and b G R.

Case 1: b = cd for c G I and d G P.
Since d G R, d is the root of a monic polynomial with coefficients in P, i.e.

dn + nd71-1 4------ 1- r„_id + rn = 0.

Mulitplying by cn G P1 gives us

cn(F + r1cn<F-1 + -" + rn-1cnd + rnCn = 0

(cd)n 4- ric(cdn-1) 4-------F rn_icn_1 (cd) 4- rncn = 0.
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Since ric G I, r2c2 G I2, ...,rncn G In, we have the equation

bn + rjcb""1 4-------1- rn_icn-16 4- rnCn = 0 for all rtc1 G P.

Therefore, b G I.
n

Case 2: b = £ Cidt for c$ G 1 and di G R.
i=i _

By Theorem 5.8,1 is an ideal and by the previous case each Cfdj is in I, and hence b G I. 
Therefore IR C\RCL Now we will show I C IR n R. Let b G I. Then b is. a root of a 

monic polynomial with coefficients G P. We can write the equation

bn 4- arf* 1 4" • ■ • 4" Un—ib 4- an = 0.

n _ _
We are given that b = jjf Cidi for a G I and di G R, so b G I. Thus, bn G IR and

i=l _ _ _ _
ai6n_1 4- • • • 4- a>n-ib + an 6 IR since aj G I and b G I C R C R. Hence b G IR so 

b G IR Pl R. Therefore IRC\ R = I for all ideals I of R. □

The following theorems list some properties about principal ideals in the integral 
closure of a ring. Theorem 5.14 is a special case of Theorem 5.13.

Theorem 5.14. bR = bR for all b G R.

Proof. In the previous chapter we saw that R C R and R = R. Using this result with 
Theorem 5.13 gives us I = IR Pl R for any ideal I of R. If we let I = bR then we have 

bR = bRR DR = bRD R = bR. Thus bR = bR. □

Theorem 5.15. bR Pl R = bR for all b G R.

Proof. Let I = bR. By Theorem 5.13, bR = (bRR) A R = bR Pl R. □



53

Chapter 6

Closure Operations

We have seen many similarities that tie the algebraic closure of a field to the 

integral closure of a ring and then to the integral closure of an ideal. However, we are 
now going to concentrate on the operation on ideals in general. We will first define what 

a closure operation on an ideal is and then explore the properties of closure operations. 

An interesting fact about closure operations is that the term “closure operation” was first 

coined by E.H. Moore [Epsll]. He used it to classify operations on subsets of rings and 

did not use it primarily for ideals.

6.1 General Closure Operations on Ideals

Definition 6.1. Let R be a ring. A closure operation, cl, on a set of ideals T of R is a 
set map cl: P —> Z where I f-> Icl and satisfies the following conditions:
(i) Extension: I C Icl for all I&I.

(ii) Idempotence: Ici — (Icl)cl for all I eT.
(iii) Order-preservation: If J C I are ideals of T, then Jcl C Icl,

Four examples are listed below along with short proofs using Definition 6.1 to 

show they are indeed closure operations.

Example (6.1.1). Identity closure; this mapping sends each ideal to itself.

Proof. Let IcL = I for all ideals I 6 R. We will check that the three conditions of 

Definition 6.1 hold.
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(i) Since Id — I and I C I, we have that I Q Id for all ideals in R.
(ii) Id = / .and (Zd)d = Id = I. Thus Id = (Id)d for all ideals in R.

(iii) Let J C I. Since Id = I and Jd = J, we have Jd C Id. □

Example (6.1.2). Indiscrete closure; this mapping sends each ideal to the unit ideal, R. 

Proof. Let Id = R for all ideals I G R. We will check that the three conditions of 

Definition 6.1 hold.
(i) I C Id — R for all ideals in R.

(ii) ld = R and (Id)d — Rd = R Thus Id = (Zd)d for all ideals in R.

(iii) Let J Q I. Since Id — Jd = R and R C R we have Jd C Id. □

Example (6.1.3). The radical (^/) is a closure operation.

Proof. Let T be the set of ideals of R with a map where I H- y/T. We need to check 

that extension, idempotence and order-preservation hold in order to prove it is a closure 

operation.
(i) Extension: Let f G Z, then fn G I for n = 1. Thus f G y/l.
(ii) Idempotence: We want to show that y/T = yfy/E

Note that yfl C a/V? since every ideal is conained in its radical extension. So now we 
just need to show \A/Z C y/I. Let g G aA/7. Then there exists n G N such that gn G y/l 

and there exsits m G N such that (gn}™‘ G I. So gnm G I. Thus g G \/l.
(iii) Order-preservation: Let J C Z G L Let f G \A7, then fnEJ for some n G N. Since 
J Q Z, fn € I so f G VZ.

The radical operation satisfies all conditions and therefore is a closure operation. □

Example (6.1.4). Integral Closure is a closure operation.

Proof. Let T be the set of ideals of R with the map Z »-> Z. By Lemma 5.7, Z C Iso 

extension holds. By Theorem 5.5, I = Z, so idempotence holds. Lastly by Theorem 5.6,, 
Z C J implies I C J, so order-preservation holds. Thus, Integral closure is a closure 

operation. □

The following theorem gives properties of closure and follows from the definition 

of closure operation.
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Theorem 6.2. Let R be a ring and cl a closure operation. Let I be an ideal of R.
(i) lfl = ld andJ = Jd, then I C\ J — (I C\ J)d.
(ii) (Id + Jd)d = (I + J)d

(Hi) (IJ)d C (ld . Jd)d

In part (iii), if we change the containment to equality, that is if (IJ)d = 
(ld . jeiy^ then the cooperation is called a semi-prime operation.

Proof, (i) First we will show (I C\J)d Q I ft J. We know IA J C I and IA J C J. Then 

(I A J)d C Id and (I A J)d C Jd since closure operations are order-preserving. Now, let 
a E (I A J)d. So a E Id and a E Jd. Hence a E Id A Jd so a E IA J. Next we will show 
1A J C (1 A J)d. Let a E I A J. By extension In J C (in J}d. Thus a E (I A J)d. 

Therefore I A J = (1 A J)d.

(ii) Just as in part (i) we will use subsets to prove this equality. First we will show 
(1 + J)d C (ld + Jd)d. By extension I C Id and J C Jd. Hence I + J C Id + Jd. 
Therefore, by order-preservation (14-J)^ C (ld + Jd^d. Now we will show (ld 4- Jdyl C 

(14- J)d- We have that I C 14-J C (I+J)d and JCI+J C (I-\-J)d. So by idempotence 
(1 4- J)d = ((14- J)d)cl and by order-preservation Id C ((14- J)d)cl = (14- J)d and 

Jd C ((1 + J)d)d = (14- J)d Hence Id + Jd C (14- J)d 4- (14- J)d = (14- J)d- Thus, 
(!<* +Jd)d = (1 + J)d.

(iii) By extension, I C Id and J C Jdi so IJ C Id • Jd C (ld • Jd)d. By order

preservation we have (IJ)d C ((Jd • and by idempotence we end up with (IJ)d C

(Jd • Jd)d. □

We will now look at specific types of closure operations on ideals. Throughout 

this portion we let R be a commutative integral domain with identity (unless otherwise 
stated) and If be the quotient field of R. Also F(R) will be the set of non-zero fractional 
ideals of R. The first definition given is a special type of closure operation taken from 

[OM92].

Definition 6.3. Let cl be a closure operation for an ideal R. We say that cl is a star 

operation on R is a mapping I 1* of F(R') into itself that satisfies the following three 

properties, for all 0 0 a E K and 1, J E F(R):

(i) (a)* = (a) and (al)* = al*,
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(ii) I C Z*, and if I C J, then Z* C J*,

(iii) (I*)* = r.

A very important star operation is the v-operation. Before we get to this defini

tion, let us recall Property 4.13.1 where we defined the inverse of an invertible fractional 

ideal:
Z'1 = R : I = {x G K \xl C R},

and as in the example for Property 4.13.2 we found that the inverse of the ideal (2) G Z is 
(2)_1 = |Z. Consequently, we use this terminology in the definition below for v-operation.

Definition 6.4. For any Z G F(R) and denote (Z-1)"1 by Iv. Then the mapping Z H- Iv 

is a star operation on R called the v-operation.

Example (6.4.1). Let R = Z and I = (2) = 2Z. We know that (2)“x = -Z so

((2)-1)-1 = 6 Q | x (lz) C z) = 2Z = (2).

First of all we need to show that the v-operation is truly a closure operation. 
We need to check that extension, idempotence and order-preservation hold.

Proof: The v-operation is a closure operation. Let T be the set of ideals of R with a map

ping from I Iv.
(i) Extension: Let x G Z. Then xZ”1 C ZZ_1 C R. Thus x G (I-1)”1 = Iv and so I C Zy.

(ii) Idempotence: By part (i), Iv C (Jv)v. Let x G (Zy)v. Then x(Zu)_x C R. Hence
xZ-1 C x ((Z_1) = x(Z“1)y = x(Zu)-1 C R. Thus x G Iv.

(iii) Order-Preservation: Let x G Jv. Since J C Z, then Z-x C J-1. This is true because
if x G I-1, then xl C R, and since J C I we have xJ C xl. So x G xJ, and hence 
x G J-1. Continuing on, we have the xZ“x C xJ-1 C R since x G Jv = (J-1) Thus, 

x G Zv. □

The next step is to show that the v-operation is a star operation.

Proof: The v-operation is a star operation. Let a G K be non-zero and let I,Je F(R)< 
Parts (ii) and (iii) of Definition 6.3 are satisfied because the v-operation is a closure 
operation. Now we need to show that (a)v = (a) and (al)v — alv. First we will show 
(a)v = (a). By part (i) (a) C ,(a)v. So now let x G (a)v. Then x(a)"1 C R. So
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ir(a)-1(a) £ R(a)- Since 1 6 (a)-1 (a), then x = x ■ 1 6 (a). Thus (a)v C (a) and hence 

(a)v = (a). Secondly, we will show (aZ)v = alv. Note that (al)-1 = a-1!-1. This 

is because if x G (al)-1, then xal G R. So xa E I-1, and thus x E a-1!"1. Going 

the other direction, let x E Then xa E I-1 so xal C R and thus x E (al)-1.
From this we can write ((al)-1)-1 = (a-1!-1)-1 = (a-1)-1 (l-1)-1 = alv. Therefore, 

(al)v = aly. □

The next theorem characterizes the v-operation of 1 as the intersection of the 

set of principal fractional ideals that contain 1 and the corollary after tells us that the 

u-op eration is the largest star operation on B [Epsllj.

Theorem 6.5. For any I E F(R)

Iv ,= 11 c Rx, x E K]

Proof. Let a E n{Bz [ 1 C Rx, x E AT}. Then a E Rx for all x E K such that 1 G Rx. 
Since 1 C Rx we have that x~rI G R, and so x_1 E I-1. Hence as-1 G al-1. We also 
have that ax~^ E R because a G Rx, thus al-1 C R. Therefore, a G (l-1)”1 = Iv, 

and so | 1 C Rx,x E K} G Iv. Next, we will show containment in the other
direction. Let a E Iv. Then al-1 C R. Now let b E I-1. Then abl C R, and so 

1 C H(afe)-1. By order-preservation, Iv C (j?(ab)-1)v = B(a5)-1 for (ab)-1 G K. 
Therefore Iv G 11 C Rx,x E !<}. □

Corollary 6.6. I G I* C Iv for all star operations * on R and all I E F(R).

Proof. The star operation is a closure operation, so 1 C 1* follows from extension. We 

need to show that 1* C Iv. Let Rx be a principal fractional ideal containing 1. Then 

1* C (Rx)* and (Rx)* = Rx by the definition of a star operation. Thus 1* C 11 G

Rx, x E K} = Iv. Thus 1* G Iv.

□

6.2 Corresponding Ring Closures

Along with closure operations of ideals we can define the related closure oper

ations of rings. For instance, we looked at the integral closure of a ring in Chapter 4 
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before we examined the integral closure of an ideal in a ring which was in Chapter 5. 

This section provides some definitions and examples of ring closures.

Definition 6.7. Let I —> Id be a closure operation on the set of ideals of a ring R and

let
| b is a regular non-unit in R and c G (bR)cl }■

Then Rd is the ring closure of R.

The example below takes this idea of a ring closure and places it in a more 

familiar context by using integral closure as the closure operation for the ring.

Example (6.7.1). R = | b is a regular non-unit in R and c G (bR)}.

Proof. Let g G R. Then we can write

/ c\n /c\n—r /c\
\6/ ai xjJ "I-------\5/ + On = 0 for at G R.

Multiplying by bn gives us

cn + ai&cn 1-|------ |-an_i&n 1c + an&n = 0.

Since aib G bR, a2b2 G (bR)2,..., and anbn G (bR)n we have an equation of integral 
dependence of c over bR. Thus c G bR.
Now we will show containment in the other direction. Let j G {j ] b is a regular non-unit 
in R and c G (bR)}. Then we can write

cn + ric71”1 4------ h rn_ic 4- rn = 0 for rt G (bR)1.

Since ri G (bR)1 we can write ri = Fx? where Xi G R for some i. So rewriting the equation 

above gives us
cn 4- bxic*1-1 4----- 1- 6n_1irn_ic 4- bnxn = 0.

Now multiplying by gives us

(D + X>1 (I) + ‘ ‘ (^) + = 0 for € R.

Hence, f G R. Therefore R = {f I 6 is a regular non-unit in H and c G (bR)}. □

Additionally, we can define a star operation on a ring R as follows.
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Definition 6.8. For any star operation * on R, we set

K* = |J{r :r | I is a finitely generated ideal of R}

and we shall call R* the *-integral closure of R.

The *-integral closure of a ring, R*, is very similar to that of the integral closure 

of a ring, R. First off, R* is a ring extension of R [OM92], just like R. Also, if we recall 

from Theorem 4.9, which states that the integral closure of a ring can be written as the 

union of the set of quoitent ideals (7 : 1) where J is a finitely generated ideal of R, we 

see that it is comparable to the definition above except for the * notation. The theorem 
below illustrates the relationship between the integral closure of a ring and the *-integral 

closure.

Theorem 6.9. The integral closure of a ring, R, is contained in the *-integral closure of 

R.

Proof. We want to show R C R*. Let x E R. By Theorem 4.9, x E U{(Z : F) | Z is 
a finitely generated ideal of R}. So xl C I for some finitely generated ideal I. Thus 
(a;/)* C 7* by Corollary 6.6. By Definition 6.3, (xl)* = xl* so we have (xl)* = xl* C I*. 

Hence, x E I* : I*. Therefore x E R* so R C R*. □

The last theorem of this chapter shows that R* is an integrally closed ring just 

as the integral closure of a ring is integrally closed. This theorem provides one more 

similarity between the integral closure of a ring and the *-integraI closure. It is a special 

case of Theorem 2.8 found in [OM92J.

Theorem 6.10. The ^-integral closure of a ring is integrally closed.

Proof. We want to show R* = R*. We know that R* C R* so we just need to show 

that R* C R*. Let x E R*. Then there exists ai,a2, ...,an E R* such that x is integral 

over R[ai,a2; Since each ai E R*, there exists ai G J* : J* where R is a finitely

generated ideal of R. Let J = J]_J2 • • • Jn- Then atJ* G J* for all i = 1,2,..., n. Thus 

R[ai,a2,...,an] C (<1* : J*). Since x is integral over R[ai,a2> —>®n]> there is a finitely 
generated ideal I such that I = (&i, b2i ■••,bm) and xl G I. Now, let H = JI. Then H is 

a finitely generated fractional ideal of R and

H = JI C JR[ai, d2j ®n] C J R[ni, a2,C J .
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Thus, if dj* C R for 0 d G R, then dH C R. Additionally, we have

JI C J*Z C (JZ)* C HP

Now, since xl C Z, then xH = x{JI} = J{xl} C JI C R*. Hence, xH* = (xH)* C 

(R*)* = HP Therefore x G R* : R* C R*, and so R* C RP □



61

Chapter 7

Conclusion

The algebraic closure of a field F can be summed up as the smallest algebraically 

closed extension field containing F, A good example to help ground us with this concept 
is looking at the algebraic closure of the field of rational numbers Q. One might think 

that the complex numbers would be its algebraic closure because we learned that by 

the Fundamental Theorem of Algebra (Theorem 3.16) the field of complex numbers is 

algebraically closed. But actually, there is a smaller algebraically closed extension field 

that contains Q. It is the set of algebraic numbers. Thus, the algebraic closure of Q is 
the set of all algebraic numbers.

Now, the algebraic closure of a field has many resemblances to integral closure of 
a ring. For one, extension fields are extension rings and integral elements over a field axe 
also algebraic elements. They also have the same transitive property that states an al- 

gebraic/integral extension over another algebraic/integral extension is algebraic/integral. 
However, one thing that separates the integral closure of a ring with the integral closure 

of a field is its connections to modules and finitely generated ideals as is seen in Theo

rems 4.4 and 4.9. Additionally, the integral closure of a ring has an ideal counterpart: 

the integral closure of an ideal in a ring.

After studying the integral closure of an ideal and analyzing some of its prop

erties, we found that it was part of a larger, more general concept of closure operations 
on ideals. We defined a closure operation on an ideal to be a mapping from an ideal to 

its closure that satisfies the properties of extension, idempotence and order-preservation. 

There are also special types of closure operations like star operations and v-operations.
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Lastly, closure operations on ideals and their corresponding ring closures have 

many similar characterizations. Take the case of the integral closure of a ring and the 
integral closure of an ideal in a ring. By their definitions alone we can see that they share 

important properties. The core of their definitions both depend on elements from their 
respective ring or ideal as roots of monic polynomials. Another similarity is that the 

integral closure of a ring is an integrally closed ring in the same way the integral closure 

of an ideal is an integrally closed ideal. In the end, we generalized the closure of a ring 

R to be the set of elements | such that b is not a unit in R and c is in the closure of 

the principal ideal generated by b. The last theorem, Theorem 6.10, ends this survey of 
closure operations in commutative rings. It associates the information studied about the 
integral closure of rings to the star operations on ideals.
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