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Abstract

Chaos in itself has been an intriguing area of study for many mathematicians, 
physicists, engineers and other scientists. It arises in deterministic systems and is defined 
as aperiodic behavior that depends sensitively on the initial conditions [Str94], Chaotic 
behavior does not occur in linear systems, however it can arise in non-linear systems.

Dynamics is the subject that deals with how systems evolve in time. For any 
positive integer n and real-valued variables, x-[,... ,xn, a dynamical system is the collec­
tion of equations

i’l = • ,Zn.)

Xn == , Xn')

where the right-hand side are smooth functions of the variables.
In this thesis basic principles of Chaos in Dynamics will be presented, in the 

context of the Lorenz Equations [Lor63] :

i = a(y - x)

y = rx — y — xz 

z — xy — bz.

In particular, we will see a demonstration of chaotic behavior in the Water wheel 
Experiment and show how the. dynamics of that experiment are a version of the Lorenz 
equations.
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Chapter 1

Introduction

1.1 Fixed Points and Stability in One-Dimensional Dynam­

ics

In mathematics we describe dynamical behavior as a system of autonomous 
ordinary differential equations in the time-dependent variables sq,... ,zn:

t'n = , • • • , X-rf],

where Xj = f°r J — 0,1,...,n [Str94]. Here t is time and the system is called 

autonomous because there is no explicit time dependence in the right-hand sides. To 
determine the behavior of such dynamic systems, it is best to lind their phase portraits.

i.e.,  the trajectory of the vector x = (.tj....... xn) through any given initial vector. If

are sufficiently smooth, such trajectories exist and are unique. It is usually 
impossible to find such trajectories in closed-form solution, so the best we can do is often 

to make a more qualitative study of the phase space. For this purpose, it. is useful to 

explore the stability properties in phase space. In particular, we. look for equilibrium 

points or cycles to see how solutions should behave near them. We will first look at. 

equilibria, or fixed points.

Fixed points., also called nodes., of a system ar e any vectors (.ti ,..., xn) for which 
Xi — 0 for all i = 1,..., n. For this thesis, the fixed points of the system will be denoted 
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by x*. Take for example x = 1 — .t?2. Setting i = 0, it is determined that its fixed points 

are x* = =pl; since that is when x — 0. This can be clearly seen by the graph of f(x) in 

Figure 1.1

Figure 1.1 is called a phase portrait. Phase portraits show the trajectories of the 

dynamics systems. In this case, the phase portrait of Figure 1.1 shows the trajectories 

for x ~ f(x) = 1 — .r2, along the x-axis. The graph of /(.?) not only allows us to see 

the behavior of the trajectories of a system, but it also tells us the stability of the fixed 
points. Fixed points can either be unstable, stable, or half-stable, which we symbolize as 
in Figure 1.2

—O-----•-----
unstable stable half-stable

Figure 1.2: Stability of Fixed Points

To determine the stability of the fixed points, we must first find the flow of the 

trajectory on the pase portrait. If f(x) < 0, x < 0 and x is decreasing, so the flow is to 

the left, denoted by a left arrow; and if /(.?;) > 0, x > 0 is increasing, then its flow is to 
the right, denoted by a right arrow on the phase portrait [Str94]. Lets look at the phase 
portrait, Figure 1.1, of the previous example x = 1 — x2. We can see that the flow of f(x) 

is to the left for when x < — 1 since f(x) < 0. When —1 < x < 1, f(x) > 0 so the flow is 
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to the right. Finally the flow is to the left for /(t) < 0 when x* > 1. Hence, at x* = — 1 

the fixed point is unstable since the flows on the left and right are going away from this 

fixed point. The fixed point x* = 1 is stable since the flow on the right and left of it are 

pointing towards it. So, combining Figures 1.1 and 1.2, we have Figure 1.3.

Figure 1.3: Unstable and Stable Fixed Points

To see an example of a half-stable fixed point, we look at. the following equation: 

x — —x2 and its phase portrait, Figure 1.4. The only fixed point for this equation is when 

x* = 0.

Notice that the flow of f(x) at the origin on either side is going towards the left. 

This makes the only fixed point at the origin half-stable.
For one-dimensional systems it seems as though a fixed point can be determined 

to be either stable, unstable, or half-stable. However, there are other types of classifies- 
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tions of fixed points for higher-order dimensions. In the next section. I will go further 

into this.

1.2 Classification of Fixed Points in Two-Dimensions

For one-dimensional dynamic systems, linear or not, the classification of the.fixed 

point were either unstable, stable or half-stable. What about two-dimensional dynamic, 

systems? Well there is such a classification for them as well.

First, consider a linear system x = where J is a 2 x 2 matrix. Suppose

J has eigenvalues Ai,A2 with associated eigenvectors V[. v2, and that Vi, v2 is linearly 
independent. The general solution is x(t) = CieAl/vj + C2eA;2*V2. (There is a similar 

formulation in the degenerate case when there is a simple eigenvalue with only a one­
dimensional eigenspace, but we will not describe that here). From linear algebra, if r = 

trace(J) = tr(J) and A = determinant(J) == det(J), then the characteristic equation is 

A2 — rA 4- A = 0, so that its solutions are Ai,2 =-------- --------- •

Now, the rules are as follows, t — tr(J) = A] + A2 and A = det(J) — A] A2, 
where Ai and A2 are the eigenvalues of the matrix J. First, using the determinant gives:

1. If A < 0, the eigenvalues are real and have opposite signs making the fixed point a 
saddle point [Str94].

2. If A > 0, the eigenvalues are either real with the same sign, or complex conjugate 
[S tr94].

3. If A = 0, at least one of the eigenvalues is zero. Thus, the origin is not an isolated 
fixed point. There is" either a whole line of fixed points or a plane of fixed points if 
J = 0 [Str94].

Second, using the trace can help determine the stability of the fixed point. Assume A > 0:

4. If t < 0 both eigenvalues have negative real parts, so if it is a fixed point, it is stable 
[Str94].

5. If r > 0 the eigenvalues are both positive, so if it is a fixed point, it is unstable 
[Str94].
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6. If r = 0 the fixed point is a neutrally stable center where the eigenvalues are purely 

imaginary [Str94].

Finally, the discriminant can help determine the classification of the fixed point (again, 

A > 0):

7. If t2 — 4A > 0 then it is a node [Str94].

8. If r2 — 4A < 0 then it is a spiral [Str94].

9. If r2 — 4A = 0 then it is on the borderline. So the fixed point could either be a 

node, spiral, star node, or degenerate node [Str94].

The following is a helpful diagram that expresses the rules up above:

Figure 1.5: Classifications of Fixed Points

The following is a picture showing examples of phase portraits near the different 

kinds of classifications. Reversing the direction of the arrows in any portrait reverses the 
stability of the equilibrium point.
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Figure 1.6: Types of Fixed Points for Two-Dimensional Systems

Non-isolated Unstable Fixed Points Saddle Point

The general solution for a two-dimensional system is given by x(t) = CieAlfvi 4- 

C,2eA2(V2. If A] and A2 are complex then so are Ci, C2, vi and V2, meaning that they each 

also have complex entries. The complex A’s appear as complex conjugates A± = ct ± icu. 

Thus, assuming w 0,

• If a = R,e(A) < 0 then the solution is exponentially decaying, so the fixed points 
are the limit points of stable spirals [Str94].

e If a — Re(A) > 0 then the solution is exponentially growing, so the fixed points are 
the limit points of unstable spirals [Str94].
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• If a — 0 then all the solutions are periodic [Str94].

Now, let’s recall Figure 1.3 and Figure 1.4. If we looked closely at. both of them, 

we can see their phase portraits were created almost by the same equation. Figure.1.3 had 

the equation x = 1 — x2 while Figure 1.4 had the equation x = —;r2. Both these equations 
have —x2 but only differ in their parameter, one being ’()’ and the other ’1’. Well, this is 

not a mere coincidence. I actually chose these equations on purpose for a specific reason. 

Although it cannot be seen clearly at the moment, I will begin by saying this: Fixed 

points can be either created, destroyed, or can change their nature, as some parameters 

on the dynamics are changed. This kind of qualitative changes in the dynamics are called 

bifurcations, in which I will go into further detail on the next chapter.
What about non-linear systems? Fixed points can still be found as before, but 

now we need to classify them by means of linearization. The linearization of the system 

x(i) — f(x(t)) at the fixed point found by taking its Jacobian

J =

f&L
X]

JU

9Ll ..

8h
2=2

xn 
dfz 
Xn , f =

A/A
h

l dfm
\ X}

dfrri * t
T2

d/in .
X'n 7 \fn)

If J is the Jacobian of the vector function at a fixed point x*, the linearization of x(t) = 

f(x(t)) at x* is — x*) = — x*).

We classify a non-linear fixed point by looking at the linearization and using the 
rules mentioned above. Then the fixed point generally has the same classification even 
in the non-lienar system. However, we have to be careful with the border-line cases (e.g. 

stars or centers): they may become one of the neighboring behaviors in the non-linear 

system.



8

To better understand these rules, I will show an example. Lets find the fixed

points and classify them of the following nonlinear dynamic system:

x = 1 + y -

V — x'* — y.

Setting ± = 0 and y = 0 we get only one fixed point., (.t*,?/*) — (0,0). Finding
its Jacobian:

Then, the Jacobian at the fixed point (x\y*} = (0,0) is:

The eigenvalues are A] = 1 and A2 = -1. Thus,

T = 1 + (-1) = 0

A= (1)(-1) <0

r2 - 4A = 0 —4(—1) >0.

Hence, the fixed point (0,0) is a saddle point. Its phase portrait is the following:

Figure 1.7: Saddle Point. Phase Portrait.
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Chapter 2

Bifurcations

2.1 Introduction

A Bifurcation is defined to occur when, upon changing some parameter of the 

system, a fixed point is created, destroyed, or can change its nature. Bifurcations provide 

models of transitions and instabilities as some parameter of the system is varied.

One way to think about this is as follows: Suppose I am standing on top of a 

flexible vertical styrofoam that does not compress and it can support my weight, so it 
is stable. Now, lets say I somehow gain weight that then the flexible vertical styrofoam 
becomes unstable and can no longer support my weight. Thus it might bend to the left 
or to the right in order to compensate for my additional weight.

Figure 2.1: My Weight Being Supported
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Figure 2.2: My Increased Weight No Longer Being Supported

For one-dimensional dynamical systems there exist saddle-node, transcritical, 

and pitchfork bifurcations. For phase portraits of t wo-or-more-dimension al dynamical 

systems we have new types, such as the Hopf Bifurcation.

2.2 Saddle-Node Bifurcation

A saddle-Node Bifurcation occurs when .fixed points are either created or de­
stroyed. A general representation of a saddle-node bifurcation is of the form x = r 4- x2 
or x = r — x2. To see this lets us look at. x — x2 + r. Looking at Figure 2.3 we can see 

what happens as the parameter r varies.

Figure 2.3: Saddle-Node Bifurcation
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When r < 0, their exist two fixed points, one stable and the other unstable. A 

saddle-node bifurcation occurs when r = 0 and the two fixed points come towards one 

another and coalesce, giving a half-stable fixed point. Finally, when r > 0, the fixed point 

is destroyed.

A bifurcation diagram is the graph of the fixed points :r* vs. r\ It shows for what 
values of r fixed points occur and indicates their stability. The sad die-no de bifurcation is 
pictured in Figure 2.4, the dotted lines show where it is unstable and the solid line shows 

where it is stable.

Figure 2.4: Saddle-Node Bifurcation Diagram

Now, recall the previous equations I introduced in Chapter 2, x = ~z2 and 
x = 1 — x2. It actually turns out that this equation follows the general representation 
of the saddle-node bifurcation x = r — x2. So there was a reason to why I chose these 

equations. For the equations that I chose, the parameter r varies from 0 to 1, creating 

two fixed points. Hence, we have a saddle-node bifurcation as in Figure 2,5.
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Figure 2.5: Saddle-Node Bifurcation of Example

2.3 Transcritical Bifurcation

A Transcritical Bifurcation is when there exists a fixed point that cannot be 

destroyed; however, it can change its nature of stability. The normal form of it is 
x — rx — x2 or x = rx + x2 [Str94]. To better understand this, lets look at x = rx — x2.

For x = rx — .t2. when r < 0 their exist two fixed points, one unstable and the 
other stable. The stable fixed point is actually at the origin. Lets keep this in mind. As 

the parameter ?’ varies we will see what happens. When r = 0. the unstable fixed point 
of the left-hand side of the origin comes towards the stable fixed point at the origin to 
create a half-stable fixed point at the origin now. So far, the fixed point at the origin has 

not been destroyed. Finally, as r > 0 another fixed point is created on the right-hand 
side of the origin, this time being stable while the origin changes its nature of stability 
to unstable [Str94],
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Figure 2.6: Transcritical Bifurcation

Thus, Figure 2.6 shows that the fixed point at the origin cannot be destroyed as 

the parameter r varies. However, its change of nature can be clearly seen as it becomes 

stable to half-stable to unstable as r varies. Figure 2.7 shows its bifurcation diagram.

Figure 2.7: Transcritical Bifurcation Diagram

2.4 Pitchfork Bifurcation

Recall how I gained weight and the styrofoam became unstable and it bent 

either direction to compensate for my extra weight creating symmetric bends. Well, 

what occured was pitchfork bifurcation. A pitchfork bifurcation occurs when a parameter 
is varied when a single fixed point turns into symmetrically, located on the x-axis, fixed 
points, (recall what happened when I gained weight and the styrofoam bent on either of 

two sides). There are two types of pitchfork bifurcations: supercritical and subcritical.

First, the supercritical pitchfork bifurcation has the normal form i = r:r. — :r3.



14

If r < 0 then their exist a stable fixed point. When r — 0 the fixed point is still stable, 

but not as strong as when r < 0. However, when r > 0, the fixed points splits into three 
fixed points, a pair of symmetric stable fixed points and one unstable fixed point [Str94], 
Figure 2.8.

Figure 2.8: Supercritical Pitch fork Bifurcation

The normal form of the subcritical pitchfork bifurcation is :v = rx 4- .t3 [Str94]. 

Its behavior as r varies is very similar to that of the supercritical pitchfork bifurcation. 

One difference is that the stabiltiy of the fixed points are opposite. Its phase potraits are 
shown in Figure 2.9.

Figure 2.9: Subcritical Pitchfork Bifurcation

The bifurcation diagram of the supercritical and subcritical pitch fork bifurca­
tions are as follows
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Figure 2.10: Supercritical and Subcritical Pitchfork Bifurcation Diagrams

Figure 2.10 shows that their bifurcation diagrams are mirror opposites of one 

another, except that where the supercritical is stable, the subcritical is unstable and vice 

versa.

Before I can continue to Hopf Bifurcations, I need first to mention Limit Cycles. 
Limit Cycles are isolated closed trajecories. Neighboring trajectories are not closed and 

they spiral either toward or away from the limit cycle [Str94].

Figure 2.11: Limit Cycles

2,5 Hopf Bifurcation

As stated before, Hopf Bifurcations occur in the phase portraits of two-or-more 
dimensional non-linear systems. They occur when the eigenvalues are of the form 
Ai = p + iw and A2 = p — with co £ 0, and p changes sign as a parameter is varied 
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(i.e., that the real part of the eigenvalue can change while the imaginary part has to 

be nonzero). At the critical value of that parameter, p. = 0. If p is negative then the 
eigenvalues will be located on the left-hand side of the imaginary axis (see Figure 2.12(a)) 

and the corresponding solutions will decay exponentially. When p becomes positive, bothe 

eigenvalues will cross the imaginary axis to the right-hand side, see figure 2.12(b), and 

the correspoding solutions will grow exponentially. When p. is equal to zero, there will be 
a limit cycle. This behavior of crossing the imaginary axis is what causes the limit cycle 

to either appear or dissapear, depending on the equations. Also, this is what causes the 

change of stability of the fixed point.

ImX Im A

•

Ra X

•

_ RaX

•

(a) (b)

Figure 2.12: Crossing the Imaginary Axis

As with pitchfork bifurcations, Hopf Bifurcations also have a supercritical and 

subcritical versions.
The supercritical Hopf Bifurcation occurs when a stable spiral becomes an un­

stable spiral with a limit cycle at a critical value. Now suppose the eigenvalues are 

A = p ± then the rules of thumb [Str94] for supercrtical Hopf Bifurcations are

• The size of the limit cycle grows continuously from zero, and increases proportional 

to ffp — pc, for p. close to pc .

• The frequency of the limit cyle is given approximately by w.

The following is an example of a supercritical Hopf Bifurcation. We will look 
at the following equations and show that when p = 0, the stable spiral will become and 
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unstable spiral. Consider the following example from Castello [Cas05]-,

x —y 4- [lx — xy2

y =py - ^ + y3.

Taking its Jacobian,

j= 1 — 2xy

P- - 3y2

The Hopf Bifurcation occurs at the origin, so we will let (:r*,y*) = (0,0). Thus,

Hence, we have t = 2/i, A = y? 4- 1, and Ap2 = y ± i. So when y < 0 then, we 

have that r < 0, A > 0, and r2 — 4A < 0. Hence (recall Figure 1.5) the origin, (0,0), is 
a stable spiral.

When y = 0, we have r = 0, A > 0, and r2 - 4A < 0. The stable spiral starts 
becoming an unstable spiral, as predicted, with a limit cycle sorrounding it at the critical 

value. Finally, when y > 0 we start to see the unstable spiral at the origin. The following 

illustrations show phase portraits when y = —2, y. = 0, and y = 2.

It

Figure 2.13: Supercritical Hopf Bifurcation at y = —2
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Figure 2.14: Supercritical Hopf Bifurcation at /i — 0

X

Figure 2.15: Supercritical Hopf Bifurcation at p. = 2

A subcritical Hopf Bifurcation occurs when we have an unstable cycle inside a 
stable limit cycle that then shrinks and engulfs a stable fixed point changing it to an
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unstable fixed point. This is illustrated in Figure 2.12.

Figure 2.16: Subcritical Hopf Bifurcation

The following is an example, from Clark [CJ09], of a subcrtical Hopf Bifurcation

x = — y + .r3 — x5 — 2x3y2 4- y2x — y4x 4- p(x — .r3 — y2x)

y = x + yx2 - yx4 - 2x2y3 T y3 -y5 4- pfy - x2y - y3).

Taking its Jacobian at its critical value (0.0). the origin, we get.

So r = 2/i and A = p2 + 1. As p, < 0, then t < 0, r2 — 4A < 0, and A > 0.
Thus we have a stable spiral at the critical value. However there exists an unstable limit 
cycle around the critical value (see Figure 2.17).
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X

Figure 2.17: Subcritical Hopf Bifurcation at p < 0

When p. = 0, then r = 0 and A > 0. Thus, we start to see that the unstable 
limit cycle engulfing the stable point and changing it to an unstable fixed point (see 
Figure 2.18) as predicted.

Figure 2.18: Subcritical Hopf Bifurcation at p. = 0
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Finaly when p. > 0, then t > 0 and A > 0. Thus, (lie fixed point has become 
an unstable spiral.

Figure 2.19: Subcritical Hopf Bifurcation at p > 0
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Chapter 3

The Wat er wheel Equations

3.1 The Waterwheel

We now have the background knowledge necessary in order to understand The 

Water wheel Equations. The following picture of the Water wheel was created by Willem 
Malkus and Lou Howard at MIT in the 1970’s [Str94].

Figure 3.1: Willem Malkus and Lou Howard’s Waterwheel

Adapted from Chapter 9 of S.H. Strogatz. Nonlinear Dynamics and Chaos: with, ap­

plications to Physics, Biology, Chemistry, and Engineering. Perseus Books Publishing, 
Cambridge, Maryland, 1994.
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,A simplified picture of the situation (and in fact the version of the water wheel 

constructed) is in Figure 3.2

Q(0)

Let 9 be the angular position on the wheel (from 0 to 27r). In Figure 3.2 it can 
be seen that as the water flows from the top, it slowly leaks out from the bottom of each 

chamber as the wheel spins either to the left or right. We define Q(0) to be the flow rate 
of water into the cups at position 0. and I< to be the leakage rate of water out of small 
holes in each cup. Other parameters of the wheel are?’, the radius of the wheel, and 

the rotational damping rate of the wheel, due to friction at the center.

3.2 Parameters and Variables of The Waterwheel

There are three variables that describe the state of the waterwheel: w(Z) is the 

angular velocity of the wheel, ?n(0, t) is the mass density of water around the rim of 
/■(?2

the wheel (the mass between and 02 is therefore M(t) = / m(0,t')d0), and I is the

moment of inertia of the wheel [Sti’94].
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Let us look at a small section of the rim of the waterwhel as in Figure 3.3.

Figure 3.3: Section of the R,im of the Wat er wheel

I want to know the change in the mass of water, AM, on the interval from 0] 

to 02 in a small interval At of time. Then the change in mass is

AM — QdO — / KmdO'j + — m{02)wAt. (3.1)

The part of the equation that describes the mass of water entering and exiting 
the segment due to the motion of the wheel is

m(0i)cuAt — m(02)wAt = cdAt[m(0i) — m(02)J.

dm dmNote that, / = mffa) ~ m-(0i). So, m(0i) — = — / ~an'd0. Thus
Jei du du

substituting it into equation (3.1),

AM = At (q - Km -

dividing by At to both sides and taking the limit, as t -4 0,

^ = lim^= f (Q-Km- Ade. 
dt t-»o At \ c dO J

However, —= — mdO = / -7— dO. Thus.
dt at J01 JQi dt

f®2 dm f®2 / dm \i ^d0=k ^-Km-'^de-
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This is true for all and G?. Thus.

(3.2)

Equation (3.2) is known as continuity equation.

Now, we need to describe io(t} as it changes with time. The total torque is 

expressed by

/•27T
Ztj = — vw + gr / m(0, t) sin&dO, (3.3)

./o

—vo} is the damping torque, where v > 0 (the negative sign indicates that the damping 
/•2-7T

opposes the motion); and gr / t) sin OdO is the gravitational torque due to the
Jo

mass of water in the wheel, where g is related to the gravitational constant. Equation

(3.3) is refered to as the Integro-differential 
equation.

But what of out third variable, I, the moment of inertia? Well, we can ignore 
it over time, because of the following:

Theorem 3.1, Z(/.) becomes constant as t oo.

Proof The total moment of inertia is a sum I — Iwiteel + I waters where Iwfieei depends 
only on the apparatus, and not on the distribution of water around the rim.

• First, we need to express Iwater in term of M = / m(0. t.}dO. The moment of

inertia of a continuous circular solid of negligible thickness rotating about, a known 
axis is given by

I = fo* pleads,

where, r is the. radius vector of a point within the body, p(6) is the mass density at 

point and r is the distance from the axis of rotation. So, it follows that

J water — / m(0, t)r2d9 = r2 / m(0, t.)d.O ~ r2M.

/'2tt
• Second, we must show that M satisfies M = Q total—KM, where Qtotal ~ / Q{9)d9.

Jo
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/*27r dm dm
Recall M — m(9, t)dO and Equation (4.2) — Q - Km - w——.

‘Jo dl du

r”27F

Thus, M = Qi.ot.ai - KM.

By separation of variables, it is easily seen that the solution to this equation is

M _ Q total + Ce Z
K

(3.4)

Note, that e * —> 0 as t —> oo. Hence, M —> as I —> oo.

Using (3.4), we see that

K '

Since, Iwheel depends only on the apparatus itself: Iwheel is constant! Hence.

lim Z(t) = Iwheei +

□

Thus, it has been shown that Z(t) approaches a constant as t —> oo.

The next section will use the continuity equation (3.2) and the Integro-differential 
equation (3.3) to obtain The Waterwheel Equations.



27

3.3 The Waterwheel Equations

We may reasonably assume that m and Q are smooth so they have Fourier 
expansions:

OO

?n(0,/.) = [(!„(/.) stii nO + bn(t) cos?z(9]
n =o
oo

Qffi) = 52^cosn<?'
n=0

Here Q is assume to be a even function, hence it only has a cosine series. Now,

dm _

dm „ 
~cn ~

oo

n(£) sinnO + bn(l) cos?i0], and
n=0

oo
= y2n[°nW Qosn® ~ WO sin 7Z/?].

71=0

It then follows from the continuity equation 3.2, that

Equating coefficients in the orthogonal basis {sin nff cosnO, n = 0,1,2,... }, we
have

dn = —Kan + nwbn

bn = (In - Kb}} - niM„. (3.5)

Which are the first two of the three Waterwheel equations. Recall equation 

(3.3), the In tegro-differential equation

r‘2~
Idj = —vu) + gr / 771 (0, I) sin OdO.

do

Dividing both sides by I and using the Fourier Expansions for ?n(0, l) we have 
the following,
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/•2tt °°
—vw 4- gr I „(/.) sin nO + d„(t) cos n0] sin OdO

u = 7o "=0

I

applying orthogonality again leaves us with,
/•27T

—vw 4- gr t/i sin2 OdO
., _ Jo _ _1’w +
“ I I (3.6)

This is the third equation in the system of equations of The Waterwheel. The 

n = 1 mode gives the waterwheel equations. So, why do we ignore higher-order modes 

and n = 0 mode?

The n = 0 mode can be ignored since no can be taken to be 0 as sin(n0) = 0 for 
n = 0 and bo = 0 as there is no constant part of the water content of the wheel.

Now consider n > 1 in

an — nwbn — Kan

b.>7, = — nwan — Kbn.

Letting,
•M - (t) ■ (-1

and finding their eigenvalues by det(an — XI) = 0 
Thus, Ai^ = —If ± inw. The eigenvectors satisfy

(a„-Au/)
\ !>n } \-vu

which has linearly independent solutions

0)
Thus,

an(t) = C-lel-K+lnu>‘ f 1 
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Recall ot = Re(Ait2) < 0, so an decays. Hence, a„,bn —> 0 as t —> oo. This is why we 

ignore higher-order modes.

Therefore, the only mode we care about is when n — 1, giving us the three 
Waterwheel equations,

di = wbi — Ka\

t>l = —LUA] — Kbi + 71

LU —
—vlu 4- 7rprni

(3.7)

3.4 Fixed Points of The Waterwheel Equations

We are now going to find the fixed points of the equations in (3.7). These are 

vectors (ai,bi,cu) where di.fri, and lu are all zero. So, let cq = 0, £>i = 0, and Cj = 0. 
This gives

solving for «i for each one,

0 = Lubi — Z<ai

0 = —Lua.1 — Kbi + Qi
n — voj 4- irgrai
0 - 7 ’

Lubi

=~K (3-8)

Lucq = 71 — 7<7?i (3.9)
?JLU

.
Trgr (3.10)

If lu = 0 then (3.8) and (3.10) give a.\ = 0 and (3.9) gives b] = (assuming 

K / 0). So, (ai,5T,lu*) = This fixed point represents the waterwheel at rest.
The inflow rate of the water is balanced by the leakage rate of the water.

If cu 0 0 and K 0, solving for (ii in equation (3.9) and substituting it into 
lu2 bi

(3.8), we get = 71 — Z<6i. Solving for bi results in

h glK
61 <j2 + K2’

Doing the same thing with (3.8) and (3.10) results in 

b - —1 -xgv'

(3.H)

(3.12)
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Substituting (3.11) into (3.12) and dividing by K we get

= ±./^ _ K2 = ±K 
V v V I<2v

which then leads to,

■ngr

Thus, this results into two fixed points

These solutions represent when the waterwheel is moving either to the left or to 
gi 7rgr

the right in stable rotation. However, we need —~— > 1 in order for this to happen. We 
Kzvqi’Kgrwill see that, as the Rayleigh number — increases beyond a certain critical value, the 

flow becomes chaotic, which is what I am curious about. This will be shown when the

Water wheel Equations are converted into the Lorenz Equations. Note that the Rayleigh 

number increases with the flow rate q\. As this increases, we will see bifurcations appear.
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Chapter 4

The Lorenz Equations

4.1 Introduction

Let us recall The Lorenz Equations that were mentioned in the beginning

a: = a(y - x)

y~ rz-xz-y (4.1)

z — xy — bz.

These equations were first realized by Edward N. Lorenz in his paper Deterministic 

Nonperiodic Flow. In this paper he used this finite system of deterministic ordinary 

nonlinear differential equations to represent forced dissipative hydrodynamic flow. Once 

we convert the Waterwheel Equations (3.7) into the Lorenz Equations, we will see clearly 
what can lead us to Chaos.

4.2 The Lorenz Equations

Theorem 4.1. The Waterwheel Equations are equivalent to the Lorenz Equations.

Proof. Recall the Waterwheel Equations:

ft] = wbj — Ka\

61 = —uni “ Kb\ + q\

w = — vw 4- ivgrai
I
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We will be converting all the variables: n, b, w, and t to dimensionless variables. 

We let oj = Ax + B, nj = Cy 4- D.b\ = Ez 4- F and r = Tt, where .4, B, C, D, E and 

F are yet to be determined constants: and A, C, E, F, and T cannot, be zero. Define 
dx dx dt dx 1x = — = —— — = where
dr dt dr dt T

(x\

yx =

i * ■ c^ai ; diq . dw . .... „ . , m .and = ——, , w = —. Taking the derivative of w, «i, and by gives w = TAx.
dt . dt dt

di = TCy, and bi = TEz

Substituting for the indicated variables in the equation di = cufq — Ka\

TCy = (Ax + B)(Ez 4- F) - K(Cy + D).

Substituting for y = rz — xz — y gives

TC(Rx — xz — y) = AFx 4- AExz — KCy 4- BEz + BF - KD.

AF
Equating like coefficients in both sides leads to T = K, R = KC — —AE, B = 0 

J C/
and D = 0. Malting the new substitutions into the appropriate variables, we now get
to — A.t, (?i = Cy, b\ — Ez 4- F, and Kt = r.

Doing similar steps for the second equation, /q = — u)O[ + q\ — Kbi, we get

KEz = - ACxy 4- Qi - K(EZ 4- F)

KE(xy — bz) — - ACxy — KEz 4- qi - KF.

Thus, b — KE = —AC and F = Recall that KC = —AE. Then this leads 

us to A = ±K and E = ^C. Now we have w = ±K2, ai — Cy, bi = T-Cz 4- “ and 
Kt = 7

v Trqv
Finally, the third equation u> = —~w 4—~tii results in

yj yY AT ft] 7T/J7*
This leads to a = -777 and C =---- . Recall R = - = ——7.—, the Rayleigh number.IK vgr TC K2v J &

Therefore, letting the change of variables be
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w — Kx, ai = -----y, bi = ------z + —, t = Kt, and rewriting 7? as r and substituting
7ryr irgr I\

these into cu, di and &i we will give us

a(y - .t)

rx ~ xz — y

xy — bz.

□

These are the Lorenz Equations! As we found the fixed points of The Waterwheel 

Equations, we will also find the fixed points The Lorenz Equations.

4.3 Fixed Points of Lorenz Equations

So we begin by setting x = 0, y — 0, and z = 0.

0 = cr(y - x)

0 = rx — xz — y

0 = xy — bz.

(4.3)

(4.4)

(4-5)

From the first equation (4.3) we get ay = ax. Since, a > 0, x — y. So (4.4) we get

0 -ry -y-yz

0 -y(r - 1 - z).

This leads us to two different, cases: case 1: y — 0 and case 2: z — r — 1.

• case 1: When y = 0, then x = 0. Subtituting this into (4.5) results in 0 = bz. Recall 

that b 0 0. Thus, z — 0. Hence we have the fixed point (.r*,y*,s*) = (0,0,0) for 
all r.

• case 2: When z = r — 1 and x = y, substituting these into (4.5) gives
0 = y2 - b(r — 1). Solving for y, y = ±^6(7- - 1). From (4.3) x — y. So

x = ±i/5(r — 1). Thus, we have two more fixed points

(.T*,y*,z*) = y/b(r — 1),— l),r — 1) for r > 1.
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Notice that :r* and y* are a symmetrical pair of fixed points. This will give us a 

pit ch fork bifurcation, I will go into this further in the next section as we find the stability 

of the three fixed points that we have found.

4.4 Stability and Fixed Points of Lorenz Equations

Lets recall the fixed point of case 1: (.r*,y*,z*) = (0,0,0). In order to find its 

stability, we linearize the Lorenz Equations at the origin. However, in this case we can 

ignore z. This is because the third equation becomes z = —bz. The solution of this 
equation is z(i) ~ Ce~bt and so z(t) -> 0 as t -> oo. The linearization of the remaining 

Lorenz Equations at the origin is

It then follows that the trace r, and its determinant A, are

r = — 1 < 0

A - cr( 1 - r).

Note that A leads us to two different scenarios depending on r.

1. r > 1 => A < 0; the eigenvalues are of opposite sign and we have a saddle point at 

(0,0,0).

2. r < 1 =► A > 0; and r2 — 4A = (er + l)2 — 4tr(l — r) = (cr — l)2 + 4 > 0, thus the 

fixed point (0,0,0) is stable.

Now, for the part that we are more interested in. linearizing at. the fixed point 
{.t*. y*, z*) = i/i7(7' - 1), ±i/6(r — 1). r- 1) for r > 1. Lorenz called these fixed points

C+ and C~ [Str94]. To save time and paper, we will see the linearization of only at the 

fixed point C+, since doing it at C~ is similar and will result in the same solutions.
Linearizing at C" gives the following matrix

( —a — A a 0

1 —1 - A -y/b(r- 1) ,
\\/b(r - 1) \/b(r - 1) -b - A J

we seek its eigenvalues. The characteristic equation is
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A3 4- (cr 4- 1 4- b)A2 4- (cr 4- r)b\ 4- 26<r(r — 1) = 0.

Claim 4.2. For a critical value rc > 1. a Hopf bifurcation occurs, as long as a >64-1.

To see this, look for purely imaginary solutions in the characteristic equation. Setting 

A = iw we have

(iw)3 4- (cr 4- 1 4- 6)(iw)2 4- (cr 4- r)b(iw) 4- 26cr(r — 1) = 0

—itv3 — (cr 4- 1 4- b)uj2 4- (cr 4- r)6(iw) 4- 2ba(r — 1) = 0.

Organizing real and imaginary parts we get

—tv3 4- (rb 4- bajcj = 0 (4.6)

(<7 4-6 4- l)w2 - 26ct(?’ — 1) = 0. (4.7)

Since tu 0 0, (4.6) is just <u2 we have td2 = rb 4- bo. Substituting w2 into (4.7)

gives

rb 4- ba =
2ba(r — 1)
<7 4- 6 4” 1

Finally, solving for 7’, we get the critical value

cr(cr 4-6 4-3)
(7 — 6—1 where, cr — 6 — 1 > 0.

In other.words, the real parts of the eigenvalues become zero as r = rc. One 

thing that this thing shows is that the fixed points C+ and C~ are stables nodes for 
1 < r < rr. = 3). So while cr < 6 4- 1 then C~ and C+ will be stable for

cr — t> — 1
all rc > r > 0. Thus, the pair of symmetric fixed points give a supercritical pitch fork 
bifurcation. Their stability is lost at rc. Hence, a Hopf Bifurcation has occured, a 

subcritical Hopf bifurcation at, that. A demonstration of this fact is provided in Drazin’s 

book, [Dra92].
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Figure 4.1: Bifurcation Diagram of C4 and C

We will see in the next chapter that if we go beyond the critical value, rc, then

Chaos occurs.
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Chapter 5

Chaos

5.1 Choatic Behavior of The Waterwheel Equations

Chaos is defined as a aperiodic long term behavior in a deterministic system 

that exhibits sensitive dependence on initial conditions [Str94j. To better understand 

this, I will begin with the critical value of the Lorenz equation
cr(cr + b 4~ 3)

7’c =------- ;---- *a — b — 1
For example rc = « 24.74 when a = 10 and b = - [Lor63], Hence, anything above vc

will have a chaotic behavior. This can be seen when plotting the solutions to the initial 

condition (0,1.0) on a y vs. t plane. This can be seen in Figure 5.1.

Adapted from page 137, volume 20, of Deterministic nonperiodic flow. Journal of the 

Atmospheric Science: Deterministic Nonperiodic Flow. 1963.

From the graph above we can see t.hat. the system at r > rc begins with a seemingly 

periodic behavior but eventually becomes chaotic.

As r gets closer to rc, the soluions still have a pattern that can be followed. 
However, once it passes beyond the critical value, rc, the periodic behavior is no longer 
there, meaning there is no pattern to follow.
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5.2 The Butterfly Pattern

Instead of plotting the solution we plot the trajectories for y(t), on a phase 

plane ofx(t) vs. z(t), we see what is known as the famous Butterfly Pattern. Figure 5.2 

illustrates.

Figure 5.2: The Butterfly Pattern

Adapted from Chapter 1 of S.H. Strogatz. Nonlinear Dynamics and Chaos: with ap­

plications to Physics, Biology, Chemistry, and Engineering. Perseus Books Publishing. 

Cambridge, Maryland, 1994.

Through the Butterfly Pattern phase portrait it can also be seen that as time 
passes by, we cannot find periodic behavior. It is still very much aperiodic. As the 

tracjectory begins from the right hand side it then switches to the left. Once on the left 

it stays there, spiraling once or twice before going back to the right hand side. If we 

continue to follow the trajectory, there is no pattern of when it decides to move from 
left to right. It also seems that the trajectories are intersecting one another. However, 

this is not true if graphed in 3-di mens ions! The trajectories do not intersect one another. 

Instead they either go in front or behind the other trajetories (see Figure 5.3).
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Figure 5.3: The Butterfly Pattern 3-Dimensions

Adapted from J. Sardanys. Chaos, http://complex.upf.es/~joscp/Chaos.html, 2007.

Other than being called The Butterfuly Pattern, the image above is called a 
Lorenz attractor. The following image, will show 10,000 nearby conditions at times 

t = 3, 6, 9, and 15 [Str94]. The dark shade will show that as times goes by, evpn though 

they all started relatively at the same place and time, the end result could be anywhere 
on the strange attractor. Thus, long term behavior is chaotic. Predicting where it can 
land is not possible.

http://complex.upf.es/%7Ejoscp/Chaos.html
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Figure 5.4: 10,000 Nearby Intitial Conditions at t = 3,6,9, and 15

Adapted from Chapter 8 of S.H. Strogatz. Nonlinear Dynamics and Chaos: with ap­

plications to Physics, Biology, Chemistry, and Engineering. Perseus Books Publishing, 

Cambridge. Maryland, 1994.
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Appendix A: Homemade
Waterwheel

While reading up on the Chaotic Water wheel, I was curious to see this actual 

chaotic behavior. Thus, through the guidance of my father, Mariano Romero, and my 
friends, Santiago Mondragon Martinez and Armando Martinez, I built a waterwheel that 
replicated the same effects as the experiment that I mentioned above. Our water wheel 

however does not look like the one made by Malkus and Howard, instead it was made 

from a bicycle wheel, a fish pump, and a 4-legged stand to lift the bicycle wheel; see the 
illustration below. '

As you can see in the picture above, we numbered nine cups and attached them 

around the circumference of the bicycle wheel. Behind the wheel, we at tached a plastic 
hose that will guide the water, being pumped by a fish pump, from the bottom to the top
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of the bicycle wheel. The idea of our experiment is that as the water, being affected by 

gravity, falls down vertically from the hose it will drop into the cups, forcing the bicycle 
wheel to turn to either the left or right direction. Now, each cup will have a hole on 

the bottom so the water can leak out and go back through the hose; a continuous water 

supply. Also, we attached a control valve at the top of the hose to control the inflow rate 

of the water.

Figure A.2: Waterwheel and Fish Pump

Increasing the rate of water flow we started to notice periodic behavior. However, 

as time went by the experiment showed Chaotic behavior; for our waterwheel it took 
approximately two minutes. We were no longer able to find a pattern. When we thought 
there might be a pattern arising, sometimes the wheel stop and stay at rest. If the inflow 

rate of the water was changed, in this case decreased, then we were able to create a 
stable state in which the bicycle wheel rotated left or right in periodic behavior. Finally, 

decreasing the inflow rate even further created the state where the water wheel was at 
rest.
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