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Abstract

The Prouhet-Tarry-Escott Problem is a complex problem that still has much 

to be discovered. My goal for this masters thesis is to organize the known results in a 

systematic way and to provide further insight using original ideas. I also intend to show 

the proofs of my findings in order to provide the most rigorous and complete outline 

possible for the problem. Some of the proofs will use original ideas that I have developed 

with Professor Fejzic over the course of the year.

Many results and problems in Number Theory are often easy to comprehend 

but difficult to prove. The Prouhet-Tarry-Escott Problem is no different. This problem 

is still unsolved in that there are no known methods for finding ideal solutions of size 

twelve or higher. The solutions to the problem are so difficult to find manually that 

many are obtained by extensive computer searches. This fascinating problem shows up 

in many areas of mathematics such as the study of polynomials, graph theory, and the 

theory of integral quadratic forms. In fact, its solution would not only put to rest an old 

problem in Number theory but would also make breakthroughs in these other areas of 

mathematical research.
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Chapter 1

Introduction

The purpose of this research paper is to gain a deeper understanding of a 

famous unsolved mathematical problem known as the Prouhet-Tarry-Escott Problem. 

The problem consists of finding two disjoint multi-sets of integers {ai,a2> • • ’ ? &n} ail<d 

{&1, i>2, ■ ■ ■, bn} such that

al T a2 d” ' ' ' d- = ^1 d“ ^2 d- ‘ ‘ ’ d- for S = 1,2,...,A; (1.1)

When two sets of integers {«i, «2-■ • • • and {t>i,&2? • - • ?&n} satisfy (1.1) we use the 

notation [ai, 02, • ■ ■, an] =k Ai? 62? • ■ •, AJ ■ The number n is called the size of the solution, 

while k is the degree of the solution. A simple example is [1,8,8] =2 [2,5,10], which has 

size three and degree 2. Note that 1 + 8 + 8 = 2 + 5 +10 and l2 + 82 4- 82 = 22 + 52 +102. 

This example will be used to illustrate some of the definitions that will be used throughout 

the paper. Note that in the example the size of the solution and degree differ by one. In 

general, when the degree of the solution and the size differ by one it is referred to as an 

ideal solution. The example mentioned above is an example of an ideal solution of size 

three and degree two.

Ideal solutions are not the only solutions that have unique characteristics. So

lutions can also be symmetric. Symmetric solutions are of the form

[T + ai,... ,T + am>T ~ bi,... ,T — 6m] =& [T + &i, • • ■ >T + bm, T — . ,T — am]

when k = 1,2,..., 2n
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or in the form

[T -J- ai,...,T 4- am,T — ai,..., T — am] —k [T + bi,... ,T + bmiT — £>i,..., T — 6m]

when fc = 1,2,..., 2n + 1

Any solution not in either of these forms will be considered non-symmetric. An example 

of a symmetric solution is [0,4,7,11] =3 [1,2,9,10]. This is a symmetric solutions because 

it verifies the definition above. Let T — 3 we see that we get [3, 7,10,14,2,1, —6, —7] =§ 

[4,5,12,13,3, —1, —4, —8]. Note any repeats can be cancelled out and we are left with an 

ideal solution [7,10,14,2,1, —6, —7] [4,5,12,13, —1, —4, —8].

In addition to ideal symmetric solutions there are even and odd ideal symmetric 
solutions. An even ideal symmetric solution of size n is of the form [±ai,..., ±da] =n-i 

..., ±bn j, while an odd ideal symmetric solution of size n and with even degree n—1 

is of the form [ai,..., an] =n-i [—ai, ■ • •, — an]- These definitions will have implications 

for sine and cosine polynomials on the unit disk.

The Prouhet-Tarry-Escott Problem has seemingly easy criteria to satisfy, how

ever ideal solutions are difficult to find. There are currently only ideal solutions for degree 

eleven and smaller, excluding ten for which there is no current known solution. The fol

lowing is a list of the smallest ideal solutions currently known [Bor02]. The solutions 

of degree eight and nine have two different but inequivalent solutions, i.e. solutions not
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dependent on another. In addition, all of the following solutions are symmetric as well.

[±2] =! [±1]

[-2,-1,3] =2 [2,1,-3]

[-5,-1,2,6] =3 [-4,-2,4,5] 

[-8,-7,1,5,9] =4 [8,7,-1,-5,-9] 

[±1, ±11, ±12] =5 [±4, ±9, ±13]

[-50, -38, -13, —7,24,33,51] =6 [50,38,13,7, -24, -33, -51]

[±5, ±14, ±23, ±24] =7 [±2, ±16, ±21, ±25]

[-98, -82, -58, -34,13,16,69,75,99] =8 [98,82,58,34, -13, -16, -69, -75, -99] 

[174,148,132,50,8, -63, -119, -161, -169] =8 [-174, -148, -132, -50, -8,63,119,161,169] 

[±99, ±100, ±188, ±301, ±313] =9 [±71, ±131, ±180, ±307, ±308]

[±103, ±189, ±366, ±452, ±515] =9 [±18, ±245, ±331, ±471, ±508]

[±151, ±140, ±127, ±86, ±61, ±22] =11 [±148, ±146, ±121, ±94, ±47, ±35]

These solutions show the extent of the currrent known ideal solutions. The 

solutions are the most concise to this date, however they are a result of a collaboration 

of many mathematicans. The next chapter is dedicated to the history of the Prouhet- 

Tarry-Escott Problem, more specifically the work before the 1920’s. The majority of 

the material for this section will be taken from Leonard Eugene Dickson who published 

a book History of The Theory of Numbers, which includes a thorough account of the 

problem and its origins [Dic66].

The list of ideal solutions above is relatively short considering the amount of 

time spent on the problem. This paper will include a list of these ideal solutions and the 

corresponding general formulas used to find them. These formulas will be referred to as 

parametric equations. In order to find these parametric equations we will reference Peter 

Borwein’s Computational Excursions in Analysis and Number Theory and Jack Chernick 

Ideal Solutions of the Tarry-Escott Problem [Bor02, Che37]. Examples will also be used 

in order to clarify the method used to find these solutions.

Finally, the last chapter will include original ideas on the problem. The work will 

include a combinatorics proof that will reduce the upper limit necessary to find solutions. 

This proof will be given in its entirety and will include examples.
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Chapter 2

The History

The solutions and interest for Prouhet-Tarry-Escott Problem is not credited to 

any one person, rather a collection of mathematicians. Many mathematicians devoted 

their time to this problem beginning with finding a general solution for degree two. One 

of first more notable mathematicians to work on this problem was Goldbach. In 1750, 

Goldbach wrote a letter to Euler about his findings of the first general solutions of degree 

two,

[ct ——H cZ, d 4~ c 4~ d, & 4~ c 4~ d, d] —2 [a 4~ d, b 4- d, c -I- d, a + b 4- c 4- d]
(2.1) 

for any a, b, c and d G Z

Clearly there are infinitely many solutions in this form but the size of these solutions are 

four which is not ideal. One year later Euler wrote Goldbach back with a slight alteration 

to (2.1); he found by setting d = 0 the resulting equation will still form a parametric 

solution, i.e. [a 4- b, a + c, b 4- c] =2 [a, b, c, a 4- b 4- c]. For example, if a = 3, b = 5, c — 7 

we get [8,10,12] =2 [3, 5, 7,15]. This shows the beginning of the problem we know today, 

however it differs in that the size on the left is not equal to size of the right. The size of 

the solutions will later become more important as the research continued.

In 1851, Prohout was the first to prove how the size of the set related to the 

degree of the solution. He noted that the first nm numbers, {1,2, 3,..., nm} can be 

separated into n sets each with terms such that the sum of the kth powers of the 

terms is the same for all sets k < m. For example, when n = 3 and m = 4 means the 

numbers 1,..., 81 are separable into 3 sets each of size 27. The sum of these sets are 

equal for all degree less than or equal to 4. This result gives an upper bound to the size 
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of the set in relation to the degree. That is given a degree k then a solution can be found 

with size 2m_1, when n = 2.

Later in 1861, Pollock found an parametric equation of an ideal solution of size 

three and degree two.

[a, a + b, a + 2b + 3c] =2 [a — c, a + b + 2c, a + 2b 4- 2c] for any a,b,c£ Z. (2.2)

We can illustrate by letting a — 7,b — 4,c = 3 then the solution [7,11,24] =2 [4,17,21] 

is produced. It is now clear that for degree two there are infinitely many ideal solutions.

Other mathematicians followed Pollock and continued working toward finding 

properties of second degree equations. In 1906, A. Gerardin found that rr3 + y3 + z3 = 

(a? + l)3 + (y — 2)3 + (z + l)3 is equivalent to Ax + Az = (y — l)2, where Ax — x(x +1)/2. 

He found picking Ax = 1,3, 6,10,15,... produced values of z*s < 100. One particular 

solution was produced when x = 1,y = 12, z = 15. Using these numbers we get

l3 + 123 + 153 = (2)3 4- (10)3 + (16)3 

but l2 + 122 4- 152 / (2)2 + (10)2 + (16)2 

14-12 + 15 = (2)4- (10) + (16)

This is not a solution to the Prouhet-Tarry-Escott Problem because it does not work 

for all the degrees less than or equal to three but the sums for degree two differ by ten. 

Gerardin noticed that if you pick two solutions like the one shown abdve, where the second 

degree differs by some square m2 then they can be manipulated in such a way to get a 

complete solution to the Prouhet-Tarry-Escott Problem. For instance, if you multiply 

the numbers of the first solution by m and add it to the second solution you can get new 

solutions. Using the method described you can produce the following solutions:

[2,4,20,22,33] =3 [1,6,16,26,32]

[1,4,12,13,20] =3 [2,3,10,16,19]

[3,4,15,20,23,26] =3 [2,5,17,18,22,27]

[2,6,30,46,53,73] -3 [3,4,34,44,51,74]

[2,6,44,58,63,91] -3 [1,8,40,60,65,90]

Solutions of this type gave Gerardin the information he needed to find parametric equa
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tions for degree three and five.

[l,m + 3,2m — 2,4m 4- 2,5m — 3,6m — 1]

=3 [2, m — 1,2m 4- 3,4m — 3, 5m 4- 1,6m — 2]

[e, x 4- 3, x + 5, x + 6, x 4- 9, x + 10, x 4-12, x + 15]

=5 [x 4- l,a? + 2,x 4- 4,x 4- 7,x 4- 8, x 4-11, x 4-13, x 4-14]

Gerardin continued his work for another two years and his worked inspired Tarry and 

Escott to pursue parametric solutions of degrees greater than three.

In 1908, Escott showed he could find not one, but all the solutions of the sets in

the form:
71 71 It Tit

52 = 52 2/i and 52 Z; = 52 $

1=1 3=1 3=1 3=1

for n = 3. He did this by substitution and reducing the problem to solving two unknowns 

rather than n of them. The equation reduced the number of terms necessary to solve for 

and resulted in the following, X2 4- X1X2 4- — Y2 4- YiYz 4- Y2. Using this simplified

equation, Escott let N be any number whose prime factors are of the form 6n 4- 1 or 3

and any square factors in common to Xi, X2, li, Y2. The solutions would then be N in 

the form x2 4- xy + y2- Later in 1912, H.B. Mathieu gave a general solution to (2.3) for 

n = 3, I ± (ab 4- ac), Z(1 — bd) 4- qab 4= no, l(cd + l)^ab — qac.

In 1912, G. Tarry built upon the work of another mathematician, M. Frolov, 
n n n n n

= 52yk and 52cfc = 5L^fc’ t^icn 52(a c^k = 52^ + 

fc=l fc=l fc=l k=l fc=l

n
who found that if 52 ak

k=l
Frolov correctly found that there exists ideal solutions for degree two, but thought more 

than four terms were necessary for an ideal solution of degree three. Tarry generalized 

this idea of size and degree and stated that the first 2n(2a 4- 1) integers can be separated 

into two sets of integers with size 2n~1(2a 4-1) and degree t for t = 1,2,..., n. For exam

ple, let a = 1 and n = 3, then the first twenty-four integers can be separated into two sets 

of integers each of size 12 with degree 3. Using these conditions the following solution 

is produced, [1,3,7,8,9,11,14,16,17,18,22,24] =3 [2,4,5,6,10,12,13,15,19,20,21,23].

E. Miot, in 1913, found a similar result to Tarry. He found that any 2n(2a 4- 1) num

bers in arithmetical progression can be separated into two equal sets having the same 

sum for the tth powers for t = 1,2, ...,n if a > 0 and n > 1. However if a = 0, 

then it is only true for degree 1,..., n — 1. Using the same example above we get 
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[a, a + 2r, a 4- 6r,..., a + 23r] =3 [a 4- r, a 4- 3r,..., a 4- 22r]. Tarry noted that the num

ber of terms in each set of the equation is 2k — d. This occurs if k is the number of 

terms in each member of the given equation and x is expressible in d ways as a dif

ference of two numbers that belong to the same set. For example, given the solution 

[1,5,10,16,27,28,38,39] =6 [2,3,13,14,25,31,36,40] we see that if x = 11 then we 

can manipulate the set so that each member in the set will have a difference of 11, 

i.e. 11 = 16 - 5 = 27 - 16 = 38 - 27 = 39 - 28 = 13 - 2 = 14 - 3 - 25 - 14 = 

36 — 25. By taking x to be 11, we get that d = 8 and the following solution is produced 

[1,5,10,24,28,42,47,51] =7 [2,3,12,21,31,40,49,50].

Later Tarry also found that if t = |(a + b + c) the following solution can be 

found [a, 6, c] =2 [t — a,t — b,t — c]. Tarry referred to this as the double property. He also 

found that for some x, [a, b,..., h] =n \p, q,..., t] implies [a,..., h, p + x,..., t 4- x] =n+l 

[p,..., i, a + x,..., h 4- a:]. This is a property that will later be proved in the properties 

section. Applying this lemma he found a solution of degree five

[6a — 3b — 8c, 5a — 9c, 4a — 4b — 3c, 2a 4- 2b — 5c, a — 2b — 5c, a — 2b 4- c, b]

=5 [6a — 2b — 9c, 5a — 4b — 5c, 4a 4- b — 8c, 2a — 3b, a 4- 2b — 3c, c]

Later Tarry republished this result and found that given Ai,..., Ak =2n Bi> •.. ,Bk and 

Ai 4- Ak_i = 2h = Bi 4- Bk_i implies Ai,..., Ak =2n+i Bi 4-..., Bk. These equations 

are subtracting an h from every term of the given equation as opposed to adding like the 

earlier proposition.

Mathematicians L. Bastien and A. Aubry each contributed work of a different 

kind. In 1913, Bastien proved that it is impossible for a solution to be in the form 

[xi,..., a?n] =n [pi,..., yn] unless the x^s do not form a permutation of the y^s. Alterna

tively, Aubry proved new as well as known solutions for the first and second degree. He 

also proved the impossibility of a solution of the form [a;,p, ] =3 [t, u, v,]. The work of 

these mathematicians began the work of ideal solutions and when such solutions exist.
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Chapter 3

Ideal Solutions

Recall that an ideal solution is when the size of the solution and the degree differ 

by one. Ideal solutions are the most difficult to find; over the past 100 years there are 

still only 13 known ideal parametric solutions. We now present the first 10 parametric 

ideal solutions. [Che37]

The general solution for the second degree was already mentioned in the previous 

section. The solution was of the form

[AD-k,AGg BDgk,BG-k] -2 [AD-- BG + K, AG + k,BD--k} . (3.1)

To illustrate an example of this solution let A = 3,B = 7,D — 8, G = 2, and k = 0. 

Using these numbers we get the solution

[24,62,14] =2 [38,6,56]

i.e. 24 + 62 + 14 = 38 + 6 4- 56 — 100

242 + 622 + 142 = 382 + 62 + 562 = 4776

The parametric solution of the third degree can be found rather easily under 

certain conditions. The general formula for the third degree is

[(21, (22, —<Z1, — 02] =3 [i>l, &2) ~bl, —62] (3.2)

or

[Mai + k, Mcl<2, + k, —Mai 4- k, —Ma2 + k] —3 [Af&i 4- k, Mb% + &, — Mbi 4- fc, — Mb-2 + &] 

(3-3) 
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This equation is only true when ai, <Z2> &1> satisfy a2 4- dg = b2 + b^. This occurs when

Al = pxp2 + p3p4 bi = piP2 ~ P3p4

a2 = P1P3 - P2P4 &2 — P1P3 + P2?4

This parametric equation will produce all the integers solutions. One possible integers 

solution can be produced by letting pi = 13, p2 = 10, P3 = 3, and P4 = 5. Picking these 

as our pfs then:

di = 130 + 15 = 145 h = 130 - 15 = 115

a2 = 39 - 50 = -11 b2 = 39 + 50 = 89

So the solution [145, —11, —145,11] =3 [115,89, —115, —89] satisfies all conditions. [Che37] 

Parametric solutions for the fourth degree begin by assuming that

[a, a 4- 2fc, —a, —a — 2k] =3 [6, k, —b, — fc]

is a solution for degree three. Applying a proposition that will be discussed in the next 

section we get the general formula for degree four.

[di, d2, d3, d4, as] =4 [“di, — a2, — a#, —04, —as] (3.4)

where a; = (m2, — 2n2, —m2 — mn 4- 2n2, ~m2 4- mn 4- 2n2, m2 — 2n2). This parametric 

solution was based upon a solution for degree three, if that solution was changed then so 

would the solutions for the fourth degree. For instance if the third degree solution was 

changed to [—3fc, —k, k, 3fc] =3 [u, v, —u, — u], then 3.4 holds but under the conditions that 

m = (—2m2 — 2n2, — m2 4- mn 4- 2n2, — 3mn 4- n2, m2 4- 3mn, 2m2 — mn — n2). Letting 

m = 2 and n = 8 we see that the first condition produces [4,-128,108,140,-124] =4 

[—4,128, —108, —140,124]. However using the second solution for degree three we get the 

solution [—136,140,16,52, —72] =4 [136, —140, —16, —52,72]. Note that using the same 

parameters we get different solutions, in general this will hold for all values of m and n. 

[Che37]

Borwein also has a parametric solution for fourth degree equations. His solution 

is only one-parameter which is an advantage over Chernick. His solution is presented 

below.

[2m2, —1,2m2 — 1, —2m2 4-1 — m, —2m2 4- m 4-1] 

=4 [—2m2,1, —2m2 4-1,2m2 — 1 4- m, 2m2 — m — 1]
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To illustrate this solution let m = 3. Then [—18,1, —17, 20,14] —5 [18, —1,17, —20, —14].

In ’’Ideal Solutions of Tarry-Escott Problem” [Che37], Chernick has a parametric 

solution for the fifth degree. Since then another parametric solution was published in 

” Computational Excursions in Analysis and Number Theory” [Bor02]. For the remaining 

degrees we will continue showing both solutions to see the contrast over the years. We 

will begin with the fifth degree.

[ai, 02,03,—ai> — 02, —03] =5 [61,63, —bi, —b2, — 63] (3-5)

where

9 9ai = —5m ± 4mn — 3n

a2 — —3m2 + 6mn + 5n2

03 = —m2 — lOmn — n2

bi — —5m2 ± 6mn ± 3n2

&2 = —3m2 — 4mn — 5n2 

bs = —m2 + lOmn — n2

Applying this equation we see that we can get a solution if m = 2 and n = 3. We get the 

ideal solution [—23,69,-73,23,-69,73] =5 [43,-81,47,-43,81,-47]. The correspond

ing solution by Borwein is as follows,

[±(2n ± 2m), ±(nm ± n ± m — 3), ±(nm — n — m — 3)]

=5 [±(2n — 2m), ±(n — nm — m — 3), ±(m — nm — n — 3)]
(3-6)

Let n = 4 and m = 5 and we get the symmetric solution [±18, ±26, ±8] =5 [±2, ±24, ±22].

As in the previous solutions Chernick begins by assuming a solution to the 

previous degree (3.5). This specific solution is not parametric but infinitely many solutions 

can be found using the recursion formula. Chernick begins this solution by letting

ai = a 6, = fc

<7,2 = o ± 2fc 62 = 3k

a3 = b 63 = b + 2r

We can now assume these parameters hold for the sixth degree therefore, then the fol

lowing holds.

a2 + (0 + 2A;)2 4- b2 = k2 ± (3fc)2 4- (b 4- 2r)2 

a4 4- (a 4- 2&)4 4- 64 = fc4 + (3&)4 4- (6 4- 2r)4 
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These two equations can be rewritten in terms of M,r, and Q. More specifically the 

second degree can be rewritten as a2 + 2ak — 3k2 = 2Mr, b = M — r, a+k = 2Q while the 

fourth degree can be rewritten as M2 — Mr + r2 = 7k2. This equation has a parametric 

solution of

k = m2 + mn + n2 r = m2 + 6mn + 2n2 M = —2m2 + 2mn + 3n2

Using these variables we can substitute them into the second degree equation to get 

2Q2 = n(n + 2m)(2n + 3m)(4n — m). Substituting once more where

Q = 2U1U2U3U4

2n + 3m = u2

n — 2u2
9

4n — m — u4

9
n + 2m = 4^2

This final substitution yields 9u2 — 2u2 = u2 and u2 + 6u2 = u2. Letting = 1 and 

U2 = 2 we obtain an non-trivial solution for the sixth degree.

(3-7)

where

zi = -134 x2 = -75 = —66 rc4 = —8

x’6 = 87X5 = 47 x? — 133

Assuming a different solution of the fifth degree we see that we can get infinitely many 

solutions using this method.

Borwein has a purely parametric solution for the sixth degree. His solution is 

also of the form (3.7), however his x^s are found by two parameters.

= (j + k)(j - k)(j2 - 3kj + k2)j

= -0' ~ k)(J2 - kj - k2)(-k + 2j)k 

xq = (j4 - 4kj3 + j2k2 + 2k3 j - k4)k

One example of a sixth degree solution where j — 3 and k = 4 yields,
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The most basic solutions for degree 7 are of the symmetric form. The generic 

solution is of the form

[tZl, . . . , G4, Qj, * * * ) a4] 7 Al > • • • ) A? A) • ' ■ > A] (3.8)

It is clear that this equation is equivalent to finding a^’s and A’s of the form, [ai,..., 04] =& 

Ai,, A] for & = 2,4, 6. We can find that one possible solution for the previous equation 

is 

[n — 7w, u — 2v + w, 314 + w, 3u + 2v 4- w] [u + 7w, u — 2v — w, 314 — w, 3iz + 2v — w]

We see that this equation can be reduced to u2 + uv + v2 = 7w2, which a parametric 

solution was given earlier for the sixth degree. One example leads to the following solution 

[7,24,25,34] =k [14,15,31,32]. Now this yields the actually solution for degree seven, 

[7,24,25,34,-7, -24,-25,-34] [14,15,31,32, -14,-15,-31, -32]. Borwein states

this solution more directly by immediately giving the parameters for (3.8).

ai = 5m2 4- 9mn 4- 10n2

a2 = m2 — 13mn — 6n2

CL3 = 7m2 — 5mn — 8n2

04 — 9m2 4- 7mn — 4n2

51 = 9m2 4- 5mn 4- 4n2

62 = m2 4- 15mn 4- 8n2

63 = 5m2 — 7mn — 10n2

64 = 7m2 + 5mn — 6n2

The rest of the solutions will be those given by Borwein. Chernick ended his 

parametric solutions with degree seven and there are still no known parametric solution 

of degree 8. There are two non-equivalent symmetric solutions, they are,

[-98, -82, -58, -34,13,16,69,75,99]

=s [98,82,58,34, -13, -16, -69, -75, -99] 

[174,148,132,50,8, -63, -119, -161, -169] 

=8 [-174, -148, -132, -50, -8,63,119,161,169]

The parametric solutions for degree nine are also symmetric. Borwein attributes 

the solutions to Letac, who found them using rational solutions on an elliptic curve.

[fti,..., cig, cii,..., G5] —9 [Aj • • •) A> Aj • • ■) A] (3-9)



13

where

ai = 4n ± 4m bi — 4n — 4m

02 = 'mn fn + m- 11 62 — —mn ± n — m — 11

03 = mn — n — m — 11 £>3 — —mn — n ± m — 11

04 = mn — 3'0 — 3m ± 11 64 — — mn ± 3n ± 3m ± 11

05 = mn — 3n ± 3m ± 11 65 = — mn — 3n — 3m ± 11

The final two ideal solutions that will be discussed currently do not have para

metric solutions. More specifically, not only are there no known ideal solutions for 

the tenth degree, there are no solutions altogether. As for degree 11 there is only 

one ideal solution where all the entries are less than 1000. That particular solution 

is [±151, ±140, ±127, ±86, ±61, ±22] =n [±148, ±146, ±121, ±94, ±47, ±35].
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Chapter 4

Basic Properties

Ideal solutions are the most sought after solutions and as the previous section 

established there are only a small number of parametric ideal solutions. The exact method 

by which these solutions were produced was overlooked but Chernick often found them 

using previous solutions and applying simple properties. This section will list those simple 

properties he used to find those ideal solutions as well as a corresponding proof for each. 

However we will begin this section with a congruence statement for the Prouhet-Tarry- 

Escott Problem. The Prouhet-Tarry-Escott Problem can be expressed many ways, one of 

which is in terms of polynomials. In a definition above, it was noted that certain solutions 

can be expressed as sine and cosine polynomials, i.e. even and odd ideal symmetric 

solutions. The following theorem will establish the relationships between the Prouhet- 

Tarry-Escott Problem and the polynomials it represents.

Theorem 1. The following are equivalent:

n n
a) = 11^ f°r j = 1

i=l i=l

/ n n \
b? deg I - ai) - P[(2 - A) 1 <n-k

\i=l £=1 /

n n

c) (z — ~
?=1 i=l

Proof (a) => (b)
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rt n
Assume a ■ = 52 ft- for j = 1,..., fc - 1. By definition,

z=l i=i

X + a2 ft + ft ■ ■ + fln

al + = ft2 + ft2 ■■+ Z

+ .. + : — : +

a^1 1 _ k—1+ a2 + •. +X1 + • •■ •+X1

Let p(x) and q(x) be polynomials of the form:

p(x) = (sc - ai)(a? - a2) • • ■ - an)

= [Xn + Ci27n_1 + C2Xn~2 ± . . . + Cn]

q(x). = (x - fa^x - £2) ■ •' 0 ~ fin)

= [zn + diz71"1 + d2xn~2 + ... + dn] 

then p(x) — q(x) = [a?n + cix71"1 ± c2xn~2 + ... + cj

- [#n + dix71-1 + d2xn~2 + ... + dn]

Let

ci = - 57 Qfc si = ai + a2 + • • • + an

c2 = y^ajaj S2 ” + fta + ■ ■ ■ ± O^n

Sfc-1 = a& 1 + Ct 9 1 + • • ■ + an

Similarly for di. Let

di = -£> tl = ft + ft + • ■ • + ft

ft = Aft h — /?1 + ^2 + ■ • ■ +

dn — 5 ft tk_1=^-1 + /3t1 + --- + X
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By Newton’s Identities, we know that we can express each coefficient in terms of a and 

/3. For the first degree we get:

si + ci = 0 ti + di = 0

ci = —si di = —ti

But by assumption, si = ti and so must —si = —ti. Therefore ci = di.

Applying Newtons Identities again we can the following relationship between s 

and c.

s2 + Ci Si 4- 2c2 = 0 ^2 + diti 4- 2dz = 0

-fe + cisi) v j -fc + diti)

By the previous identity we know that cisi = diti and S2 = £2 by assumption. Therefore 

c2 = d2.

We can continue using Newton’s Identities to show that c-6 = di for each i < k—1. 

Referring back to

p(x) - q(x) = [zn 4- ci£n_1 4- czxn~2 + ... + cn] - + d\xn~^ 4- dzxn~2 4- ... + dn]

we see that every term will cancel till the k — 1 term. The term after the last cancelation 

is of the form CkXn~k and dkXn~k respectively for p(x) and q(x). Therefore we get the 

fact that deg[(cfc£n“fc 4-... 4- cn) - (dkXn~k + ... 4- dn)] < n - fc, which is precisely part 

b of the theorem. □

Proof, (a) (c)
n n

Assume 52 ai = for j --= !>■... ,fc — 1. i.e.,
3=1 3=1

cq 4~ c^2 • + an “ ft. + P2 4-..■•+ fin

a2 4- 0^2 4". • ■+ «2n = P? + Pl ■•+ &

: + : 4-.. ■+ : = : + •
„k—1 1 fc—1
CE| + CH2 4-.. • + X1 = PY +$_1 ■ •+X1

Let p(x) be a polynomial defined as
n n

p(x) = 52xOti ~ 52
i=l i=l

= 4- xa2 4- ■ - ■ 4- xan) — (x^1 4- x&2 4-------1- x@n



17

Taking the derivative of both sides of the equation yields

pf(x) = 4- a2xa2_1 4-------- 4 4- 4-------- 4 /3naA-1)

Note when x = 1,

p'(x) = (ai 4- 0:2 4-------- 4 an) “ (Z^i 4- X?2 4-------- 4 fti)

n n
By assumption, 52 ai = 52 $ for j = 1,..., A; — 1. Therefore pz(l) = 0. 

i=l 3=1

Taking the derivative again yields

p"w = 52°^ -1)^-2 -Y^Wi -1)^-2
i=l i=l

When x = 1 we get

n n

p"w = Y2a^ai ~_ 52 ft (ft -1)
2=1 i=l
n n n n

= E“< + E&
2=1 2=1 2=1 2=1

n n n n
But by assumption, 52 = 52 ft and 52 = 52 ft^- we tkat — 0 as

2=1 2=1 2=1 2=1
well.

Taking the derivative a third time yields

P’"(X) = - l)(«i - 2)xa‘-3 - - l)(ft - 2)x*-3

2=1 2=1
n n

= Y^ai(ai - 1)(0;i - 2) - 52 ft (A - !)(ft “ 2)
2=1 2=1
n n n n n n

= 52 ~3 52 qj+2 52 - 52 ft*+3 52 ft? -2 52 ft
2=1 2=1 2=1 2=1 2=1 2=1

n n n n n n

But by assumption, at = l>Ea?=E ft2 and ^2 E fl. These equations
3=1 3=1 3=1 3=1 2=1 2=1

hold true even with a constant. So we get that pw(l) = 0 as well.
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This is true for all derivatives up to k — 1. When we take that derivative we get

n
= E ai(a' - • ■ • (“’■ - - Z))^-**-1’

2=1

- E ft(ft -1) ■ ■ • (ft - (fc -

2=1

=> pfe_1(l) = 52 ai(ai ~ 1) • • • (ai - - 2))

2=1
n

-Eft(ft-i)--(ft-(*-2))

2=1

As seen in the previous examples multiplying out the terms will result in a constant in 

front of each term but the assumption will hold and will result in = 0.

By the Taylor Series we can write p(x) in the form

p(x) = ao + ai(a? -1) + a2(x - I)2 + ... + ak_i(x - I)*-1 + ak(x - 1)& + ... + an(x - l)n

where

ao =P(1) = 0 

ai =p'(l) = 0

>"(1)
2!

= 0

Thus we can rewrite p(x) as

p(x) = ak(x - l)fc + afe+i(z - l)ft+1 + ... + an(x - l)n 

= (x- l)fc |aft + ak+1(x - 1) + ... + an(k -

Now let m = ak+ak+i(x—1)+.. .-\-an(k—l)n-fc so thatp(a;) = (x—l)km (x—l)ft|p(a;) => 
n n

(x-i/ie^-E^
2=1 2=1

□
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Proof, (c) => (a)
n n n n

Assume (rc — !)*£>* - £ x&. Then E*“' - E x^i = (x — l)km. Let m = 
i=l i=l i=l z=l

ak + afe+ify - 1) + ... + an(k - l)n~k. Then

(x - l)km = (x- 1)& + cifc+i(z - 1) + ... + an(k - l)n_fc]

= ak(x - l)fc + ajt+ify ~ l)fc+1 + • • • + an(x - l)n

Define p(x) as p(x) = ak(x — l)k a^+i^x — l)fc+1 + ... + an(x — l)n. Every polynomial 

can be rewritten using the Taylor Formula with c = 1.

=£■ p(l) = 0

=>p'(l) = 0

=>p"(l) = 0

^pk x(l) = 0
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n n

By assumption p(z) = ” 52^’ ®0’
2=1 2=1

p(i) = £(i)a* - Ewft = o
2=1 2=1

=> £(i)Qi=D1)*
2=1 2=1

2/(1) = fxir--1 - E/W*-1 = o
2=1 2=1

n ny^ —y? a
2=1 2=1

P"(i)=!>(«< - i)(i)“‘-2 - - i)d)ft-2 = o
2=1 2=1
n n

= J2ai(ai-l)-52ft(A-l) = O

2=1 2=1
n n n • n

= I2a? -EJi “ZJ?+52a = °
2=1 2=1 2=1 2=1

n n

2=1 2=1

Similarly, for derivatives up to k — 1 will yield,

p*_1(l) = £>(«< -1) ■ ■ ■ (a; - k + 2)(l)“‘-*+1
2=1

- - 1)... (ft - k + 2)(l/‘-fc+1 = 0
2=1

n n
= - 1)... (a; - k + 2) - J^ft(ft - 1)... (ft - fc + 2) = 0

2=1 2=1 2=1

+y? $1+°i y? pi~2+• • •+cfc~i y^/^t—o 

2=1 2=1 2=1
n n

=>EX_1 = ZX_1
2=1 2=1
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n n

Putting together the results of these derivatives we get precisely (1), 

j = 1,... ,fc- 1.

= for

i=l i=l
□

Proof, (b) => (a)r n
Assume deg

form:

n>- < n — k. Let p(x) and q(x) be polynomials of the

p(x) = (x — ai)(.T - a2) • • • (x - an) q(x) = (x - Ai)(^ - A2)■■• (z - An)

— [irn + C]Xn 1 4“ c^x71 2 + ... 4" cn] = [xn 4- d^xn * 4* d&x71 2 4~ ■ • • 4* dn]

Then our assumption can be rewritten as

deg [(irn 4- Cixn~x 4- C2Xn~2 4-... 4- Cn) - (xn 4- dyp1"1 4- d2Xn~2 4-... 4- dn)] <n — k 

Since the degree must be less than or equal to n — k the terms up to n — k must cancel. 

Therefore

c.]Xn 1 = dixn 1

C2Xn~2 = d2Xn~2

=> ci — di

=> c2 = d2

Ofc—i = dfc—i

We can use Newtons Identities in order to rewrite each term.

For the first degree, where s,c are coefficients for p(x) and t, d are for q(x).

si 4- ci = 0

=> Si = —Cl

ti 4~ di = 0

—r* ti — di

n

n n
However, we saw that ci — di => si = fy. So we get — Y^ Ai-

i=l i=l

s2 4- cisi 4- 2c2 = 0

=> s2 = — cisi — 2c2

i2 d- dify 4" 2d2 — 0

=> i2 = — diti — 2d2
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By the previous identity we know — ciSi = — d-ytl and by assumption C2 = d2- So we get 
n n

—2c2 = —2d2 which means that s2 = ^2- Which mens that
i=i i=i

n n
This will continue for sjt_i = tk-i- So °i ~ for J = 1,..., A? — 1 which

i=l i=l
is precisely (1). □

The previous theorem showed how the original Prouhet-Tarry-Escott Problem 

can be reduced into equivalent statements regarding polynomials. The first form is the 

most used version and because of this many properties have been discovered in order to 

help distinguish equivalent solutions from one another.

Proposition 1. If [ai,a2, • • • ,Om] —k [&i,. ,&m] for k = 1,... , n then

[Sai + T, Sa,2 4- T,..., Sam + T] — & [S61 + T, Sb2 4- T,..., Sbm + T]

for k = 1,... ,n

Proof Assume [ai, a2,.. •, am] =& [&i, 62, • ■ •, &m] for fc = 1,..., n.

When k = 1, by the addition and multiplication property of equality we get the two 

equivalent equations:

ai, a2, • • •, am — bi,b2} •. • ,bm

=> (Sai + T) + ... + (Sam + T) = (Sh + T) + ... + (Sbm + T)

Need to check when k = n the equation (Sai + T)n + ... 4- (Sam 4- T)n = (Sbi 4- T)n + 

... + (Sbm + T)n will hold. The left hand side of the equation yields:

LHS = +

mTn
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Similarly on the right hand side of the equation we get

. Since S and T are integers and by assumption we get the desired equality. □

A consequence of this proposition is the standard form of a solution. Standard 

form of a solution is when the sum of the a terms and the sum of the b terms is zero. 

This is considered an equivalent solution to the original solution. For example, take the 

solution [0,4, 7,11] =3 [1,2, 9,10]. To the find the correct S, T G Z we set one side equal 

to zero.

LHS = (M ■ 0 + X) + (M ■ 4 + K) + (M ■ 7 4- K) + (M ■ 11 + K) = 0

22 M 4- 4K = 0

4K = -22M

-11 
K ——— M

2

Referring back to the original solution [0,4, 7,11] =3 [1, 2,9,10], we need to multiply each 

side by 2 and then subtract each number by 11. Multiplying each term by two yields 

[0,8,14,22] =3 [2,4,18,20], Finally subtracting each term by 11 gives the standard form 

which is [-11, -3,3,11] =3 [-9, -7,7, 9].

Proposition 2. If [ai, a2,..., am] =k [bi, b2j..., bm] for k = 1,..., n then

[ai, bi + T1,..., bm 4- T] [bi ,.. •, bm, ai 4- T,..., am + T]

for k = 1,..., n 4- 1.

Proof Assume [ai, a2,..., am] =*. [bi, b2,..., bm] for k = 1,..., n. By proposition 1, if we 

set S = 1 we get

[ai 4- T,..., am 4- T] =& [bi 4- T,..., bm 4- T]

for k = 1,... ,n.

When k=l, we see that using property 1 as well as the addition property we get:

G1 4-... 4- am = bi 4-... 4- bm

(ai 4- T) 4- • • • 4- (am 4- T) = (bi 4- T) 4- ... 4- (bm 4- T)

=4* ai 4- ... 4- 4" (bi + T) 4-... 4~ (bm 4" T) = bi 4- . ■. 4- bm 4~ (a-i + 71),..., (am 4- T)
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Similarly, when k = n,

(®i)n + ... + (am)n = (ft)n + ... + (bm)n

(ai +T)n + ... + (am + T)n = (ft + T)n + ... + (bm + T)n 

=> (ai)n + ■ • ■ + (^m)n + (ft + T)n + ... + (bm + T)n 

= (ft)n + • • ■ + (&m)n + («i + T)n + ... + (am + T)n

Need to check for k = n + 1

(ai)n+1 + ... + (am)n+1 + (bi + T)n+1 + ... + (bm + T)n+1

= (bj)^1 + ... + (bm)n+l + (ai + T)n+1 + ... + (am + T)n+1

Tn [ai + ... + am] + wi

Setting S = (n+x)g™ we can use property 1 together with the assumption to get the 

desired result. j □

This proposition shows that given a solution we can manipulate the data so that 

the solution is for that of one degree higher. However, in this process it is clear that if the 

given T is not chosen wisely then the size of the solution can be double in the process. 

More specifically a solution of degree 3 with size 4 can be manipulated to a solution of 

degree 4 with size 8. In order to keep the sizes of these solutions down it is clear that 

choosing a T such that some + T = a,j for some i,j, G Z would decrease the size. To
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illustrate this begin with a solution [1,5,10,16,27,28,38,39] [2,3,13,14,25,31,36,40]

using the previous theorem let T = 11. The result is

[1,5,10,16,27, 28,38,39,13,14,24,25,36,42,47,51]

=7 [2,3,13,14,25,-31,40,12,16,21,27,38,39,49,50]

Note the repeats can be cancelled out to get the final ideal solution

[1,5,10,24,28,42,47,51] =7 [2,3,12,21,31,40,49,50]

It stands to reason that given a solution in the proper form we can get create a solution 

for a smaller degree. Escott noted that if you reversed the process stated in proposition 

2 you could create another solution in a method he called integration. This method is 

stated more formally below.

Proposition 3. If [ai, a2, ■ .., am\ —k [bi, b2,..., bm] for some k,m G Z and if ai = bi 

mod h for i e [1,2,..., m] with < bi for i G [1,2,..., r] and a{ > bi for i E [r 4-1, r + 

2,..., m], then

[cti, oi 4~ T, ai 4~ 271,..., bi — T,..., ar, ar 4- V, ar 4- 27\..., br — T]

=k—i [br+i, br-|-i 4“ 71,..., ar-pi T1,..., bm, bm 4~ 71,..., am I"1]

The implications of this proposition are easy to see with an example. Consider 

the ideal solution [1,5,9,17,18] =4 [2,3,11,15,19] where h = 7. By the first condition 

ai = bf mod 7), so the solution has to be reordered in order to properly identify the o<s 

and bjs, i.e. [1,5,9,17,18] =4 [15,19,2,3,11]. Note that ai < bi for i G [1,2], so in this 

example r = 2. Note that

Oi, Oi 4~ T, oi 4~ 2T,..., bi — T — 1,8,15,..., 8

a2, a2 4~ T, a2 4- 2T,..., b2 — T — 5,12,19,..., 12

Similarly,

b2+h b2+i 4- T,..., 02+1 — T = 2,9,16,..., 2

b2+2, b2+2 + T,..., a2+2 ~ T = 3,10,17,..., 10

b2+3s &2+3 4- T, • • • , a2+3 — T — 11,18,25,..., 11

Taking the first four smallest numbers from the first set and finding the corresponding 

solution in the next set we get the ideal solution [1,5,8,12] —3 [2, 3,10,11],
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Proposition 4. If [ai, a2i • ■ •, dm] =k [ft, ft, • • ■, ftj for A; = 1,..., 2n — 1 then

[T 4- ai,..., T 4- am, T — ft,... ,T — ftj =k [T 4- ft, • ■ • ,T 4- bm,T — ai,... ,T — am] 

for k = 1,..., 2n.

Proof Assume [di, a2,..., am] =k [ft, ft,..., ftj for fc = 1,..., 2n — 1. We need to verify 

that is it is for every k = 1, 2,..., 2n.=>

When k = 1,

(T 4- ai) 4-... 4- (T 4- flm) 4- (T — ft) 4- ■ • • 4- (T — bm)

— (T 4- ft) 4- ... 4- (T 4- bm) + (T — di) 4-.. - 4- (T — dm)

=> 2mT 4~ (fli 4-... 4~ dm) — (ft 4-... 4- bm) = 2mT 4- (ft 4- ■ • • 4- bm) — (&i 4- • • ■ 4- dm)

=> 2(di 4-... 4- dm) = 2(ft 4-... 4- bm) which is true by the assumption. 

We need to check when k = 2n.

(T + ai)2" + ... + (T + am)2n + (T - bi)2n + ... + (T - &m)2"

= (T + 6i)2n + ... + (? + bm)2n + (T - ai)2" + ... + (T - om)2"

The left hand side of the equation will yield:

=> 2mT2n + r2")?2"-1^ + ... + am) + T2n~2 (a? + ... + a2m)+

• ■ • + Q”)(«?n + • ■ • + 4") - (2f)T2”-1^ + ... + bm)

+ ^f2-2(b2 + ... + b2m)-...+ (!>? + ■•• + b%)
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Similarly the right hand side of the equation will yield:

2mT2n + P"/2"-/! + ... + bm) + (2”)T2n-2(6? + ... + b2mi+

• • • + (J) (*>?" + ••■ + - (2”) T2"’1^ + ... + am)

+ Qr2n_2(a? + + _ + g) (a?n + +

So every even term will cancel, to get

2( 1 ^2n_1(ai + + am) + 1 •' + 2Qn _ ^^(ain 1 + • • ■ + am 1)

= 2 P") 7'2"-1 ((>! + ... + &m) + ... + 2 Q/2 i) T&f1 + ■ • ’ + 6™_1) 

but by assumption [ai, a2,•••, Om] =k [&i; &2, • • ■, bm] for k — 1,..., 2n — 1

=> 2(21n)T2n_1(ai,a2,...,am) =fc 2(2p)T2n_1(6i, &2, ■ • ■ ,bm), so we get the desired con

clusion.

□

This proposition states how starting with an odd degree solution can be manip

ulated to yield a complete solution to the Prouhet-Tarry-Escott Problem. These solutions 

can also result in an ideal solution if m = n 4-1 we can yield a solution of degree2n 4-1. 

For our example, [0,24,33,51] =& [7,13,38,50] for k = 1,3,5 where n = 3[Piel0]. Using 

the proposition we see that this odd leads to infinitely many complete solutions

[T 4-0,7 4-24,74-33,T + 51,T-0,7-24,7-33,7-51]

=5 [T + 7,7 + 13, T + 38,7 + 50,7 - 7,7 - 13,7 - 38,7 - 50]

If we let T = 5, then we get one of the many ideal solutions

[5,29,38,56,5, -19, -28, -46] =7 [12,18,43,55, -2, -8, -33, -45]

Proposition 5. If [ai, o2, ■. ., am] =% [&i, b2, • • •, 6m] for k = 2,4,..., 2n then

[T 4- «i,... ,T + am,T — ai,... ,7 — om] =*. [T 4- &i,... ,T 4- bm,T — 61,...,7 — 6m]

for k = 1,..., 2n — 1.
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Proof. Assume [ai, u2? ■ ■ • > Om] — k [A, , An] for fc = 2,4,..., 2n.

When k = 2,

(T 4- Gi)2 + ... 4" (T 4- &m)2 4" (T — ai)2 4-. ■ - 4- (T — o,m)2

= (t + a)2 + ..- + (t + M2 + (^-A)2 + ..- + (t-M2
(T2 4” 2ai + a2) 4~ • • • 4" (T2 4~ 2,am 4- u^) 4" (T2 — 2ai 4- a^) 4~ ■ • • 4- (T — 2om 4~ um)

- (T2 + 2A 4- bl) 4- - • • + (T2 4- 2bm 4- b2m) + (T2 - 2A + &?) + •■■ + (T2 - 2bm 4- b2m) 

2mT2 + 2(a? 4- -.. + a2m) = 2mT2 + 2(bl 4-... + *4)

Check when k = 2n — 1,

(T + oi)2n-1 + ... + (T + am)2n_1 + (T - ai)2n_1 +'... + (T - M2"'1

= (T + bi)2""1 + ... + (? + M2"-1 + (T - bi)2”-1 + ... + (T - bm)2"-x

So the left hand side of the equation yields,

' /2n - 1 + ...

4-

' f2n — 1+ 4-

...+

So all odd powers of a-t will cancel out for all 1 < a* < 2n — 1. So we get,

2m (2n - X) T2-1 + 2 (2n“ X) T2»-3(a2 + . + <£)+

Similarly the right hand side would be,

2m (^0 0T2n_1 + 2 CV 0 T2n_3(6? + 62 + •'' + 6“)+ 
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The 2m(2n0 1)T2n 1 would cancel. By assumption, [ai, (ty,..., am] =& [bi, b2,..., bm] for 

k — 2,4,..., 2n.

=> 2(2\-1)T2"-<Jfc+1>(ai -«2 + ... + M = + b2 + ... + bm)

To get the desired conclusion. □

This proposition is similar to the previous one except we are starting with an 

even solution. Similarly, starting with an even solution we can get a complete solution 

if m = n + 1 we will get a solution of degree 2n + 1. For our example, [2,16, 21, 25] =& 

[5,14,23,24] for k = 2,4,6where n = 3[PielO]. Using the proposition we see that this 

odd leads to infinitely many complete solutions

[T + 2,T + 16,T + 21,T + 25,T-2,T-16,T-21,T-25]

=5 [T + 5,T+14,7 + 23,T + 24,T-5,T-14,T-23,T-24]

If we let T = 3, then we get one of the many ideal solutions

[5,19,24,28,1, -13, -18, -22] =7 [8,17,26, 27, -2, -11, -20, -21]
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Chapter 5

Prouhet-Tarry-Escott Problem 
Revisited

The following result is well known and it follows easily from Newton’s identities.

8 S

Proposition 6. Let p(x) — — cf) and q(x) = “ A). Then [ci,C2,.. •, c8] =fc
7=1 7=1

[di, d2, • • •, d8] if and only ifp(x) — q(x) is a polynomial of degree s — k — 1. In particular 

if [ci, c2,..., c8] -k [di, d2, ■ • ■, ds\ then s > k + 1.

This proposition is a special case of Theorem 1 from the Basic Properties Chap

ter in which the proof was given.

The theorem below is attributed to Golden.

fc+i
Theorem 2. If [ci, c2, • • •, c&+i] =* [di, d2, • ■ •, d^+i] is an ideal solution and 52 ci = A

^•EX-EX=o-
7=1 7=1

fc+1 fe+1
Proof The condition 52c* = 0 implies that 52 A = 0 and thus the corresponding

7=1 7=1
polynomials, p(x) and q(x) from Proposition (6) are of the form p(x) = xk+1 Aak-ix^1 +



31

------F aia; 4- a and q(x) = xk+1 4- ak-ixk 1 4-------- F &1X 4- b. Since p(ci) = 0, we have

fc+1 fc+1 fc+1 fc+1 fc+1

o = 52 = 52 ci+2+a*:-i ^ <£ + •■•+ai 52 c£ + ° 52
4=1 2=1 2=1 i=l 2=1

fc+1 fc+1 fc+1

= 52 ci+2+afc-i 53 + ■ ■ ■+ai 53 $
2=1 i=l £=1

and similarly

fc+i fc+i fc+i fc+i

o = 52 w*) = 52 d-i+2+a*:-i 52 "*—u ai 52 $
2=1 i=l 2=1 1=1

fc+1 fc+1

By subtracting the last two equalities we obtain 52ci+2 ~ 52^i+2 ~ 0- □
2=1 2=1

A simple observation that [ci, ca,..., cs] =k [di, d2.. ■ -, A] if and only if the 
s s

function F(x) — 52 ~~ ^2e<liX satisfies F(0) = F'(0) = • • ■ — Fk(0) = 0 prompts us

4=1 4=1 m
to study the functions of the form F(x) = 52 aiebiX where a/s and b/s are integers. In this 

i=i
m 

chapter we will refer to a/s are the coefficients and to b/s as the nodes of F(x) = 52 ai&biX‘ 
2=1

' m
Let T = < 52 aiebiX ■ &i, bi and N > denote the set of all such functions. If F, G E

12=1 J

then clearly F — G E and FG E thus Q is a commutative subring of C°°(R). A 

nonnegative integer k will be called an order of F E T if F(0) = F'(0) = • ■ ■ = Ffc(0) = 0. 

It will be convenient to assign order of -1 to F G $ for which F(0) 0- The reader 

should keep in mind the equivalent definition of order that is, F has order k > 0 if 

YLai = 0,^2 aibi = 0,... ,'f2ad)i = 0. Notice that according to our definition if F is 

order k then it is also of every order that is smaller than k. The number of distinct
m

nodes, b/s, will be called the size of F and by |[F|| = 52 la*l we denote the norm of F. 

4=1
From Proposition (6) it follows that ||F|| > 2k 4- 2 and thus an ideal solution of Prouhet- 

Tarry-Escott problem of order k equivalent to finding a function F E T of order k with 

||F]| = 2A; 4-2.

Proposition 7. If F is of order k, then the size, m, of F satisfies m > k 4- 2.

Proof If c^’s are distinct integers then the vectors (c^ := [1, c^, c?>..., cf] are linearly 

independent. This follows easily from the fact that the determinant of a matrix whose 
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column vectors are {c^ : i = 1,..., k + 1} is Vandermonde determinant and this it is not 

equal to 0. Now the system ^ai = 0,^2 aiyi = 0,..., ai^i = 0 is equivalent to

= 0; thus if there are fewer than (k + 2) distinct bfs then each ai — 0 making

F = 0. □

The following Leibniz rule for higher order differentiation will be frequently used.

Proposition 8. If f and g are two functions that are n times differentiable at x, then 

fg is also n times differentiable at x and

(/<?)» = E

3=0 ' '

Proposition 9. If F is of order k and G is of order r, then FG is order k + r + 1.

Proof First assume that k > 0 and r > 0. By Leibniz rule,

fc+r+l \
(FG)(fc+r+1)(0) = 52 ( +r+ )F(i\0)G(fe+r+1_i)(0).

3=0 ' 2 '

If i < k, then F^(0), while if i > k then k + r 4- 1 — i < r and hence in this case 

^(fc+r+i-3) (o) = 0. Similarly one shows that FG®(Q) for all 0 < I < k 4- r. If k > 0 and 

r — — 1, then FG is of order k follows from Leibniz rule again. Iffc — —l,r = —1 then 

FG is at least of order —1 by definition. □

m

Proposition 10. If F(x) = 52 aiebiX 75 °f order k then for any integers c and d the 
3=1

m
function G(x) = 52 G>j^dbi+c^x is also of order k.

3=1

m
Proof. Write G(x) = '^2,atetibiXecx. Then by Leibniz rule,

3=1

G<')(0) = (l)d‘ = E (bdic,“i-F’(,)(0)
i=0 V' i=l i=0 W

which is 0 for 0 < I < k. □

It follows from Proposition (9) that if F has order k then FG has order at least

k. The next result is also attributed to Gloden.
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fe+1 
Corollary 1. If [ci,C2, ■ ■ •,Cfc+i] =% [di, ^2, • • •, djt+i] is an ideal solution, c — Y^ ('i 

i=l 
AH-1 fc+1

then F(x) = £ e((fc+l)Ci-C> __ £ e((fc+l)di-c)x is aiso an ideal solution and moreover 
i=l z=l

F(A±2)(0) = 0.

Proof. By Proposition (10) F(x) is also an ideal solution. The nodes, {(fc 4- l)c$ — c}^- of 
fc-f-1 ZH-l Zc+l

F(x) satisfy Y^((^+l)cj—c) = (&4-1) Y?ci~Y^c — 0 s°5y Theorem (2) F^k+2^ = 0. □ 

i=l i=l i=l

An immediate consequence is the following corollary.

m

Theorem 3. Let F(x) = ^^aiebiX be of order k but not of order k 4-1. Then there is 
i=l

m
a unique number c such that G(x) = Y2aie^+1^ia: °f order k and G^fc+2\0) = 0.

i=l
Moreover c =Moreover c [k+2)F(k+V(o)'

Proof It follows from Proposition (10) that G(x) is of order k for any c. By Leibniz rule,

fc+2
G(k+2)(0) = (k + 2 ) (k + l)iJ’®(0)(-c)/!+2_i

«=o ' 4 '

= (k + l)t+2F(fc+2>(0) - c(fc + 2)(* + l)fc+1F<fc+1>(0)

which is 0 if and only if c = □(fc+l)F<fc+2)(0)
(fc+2)F(fc+1)(0) ‘

The next Corollary is an immediate consequence of Corollary (1) and Theorem 

(3).

m

Corollary 2. If F(x) — ^^aiebiX is an ideal solution of order k, then
i=l

m - m m
(fc + 1) £ a^2 = - £ H bi(k + 2) £ atb^1

?=1 i=l z=l

fc+1 , m

i=l i=l

Proof. By Corollary (1) G(x) = Y^ where c — Y? = satisfies

£C&+2)(0) = 0 By Theorem (3) c = ■ □

The following result might be interesting in its own.
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m n

Lemma 1. If 52 (7z2 = 0 for 3 = 0,1,..., fc and 52 cz^f. — 0 for 3 = 0,1,..., r then 
i=i i=i

+^k+r+2=rtK )

i=l 1=1 \ ± / i=l l=l
m n

Proof. Let F(x) = 52Q^ebia: and G(x) = 52 czcdig- By Leibniz rule,
7=1 1=1

JU _ 11 | o

FG(^+2)(0) = £

7=0
fc+I+2)F(i)(0)G<k+r+2—i

Since for i < k, (0) = 0, and for i > k + 2 then (fc + r + 2 — i <r), G^k+r+2 (0) = 0

the last equality simplifies to FC?(fc+r+2)(0) = (ft^^2)F^+1\0)G^r+1^(0). □

Proposition 11. The function (ex — l)n+1 is of order n.

Proof Let F(x) = ex — 1 — ex — eGx. Then F is of order 0. By Proposition (9) F2(x) is 

of order 1, F3(x) = F2(ic)F(ir) is of order 2, and so on F"+1(a;) is of order n. □

Since the nodes of (ex — l)n+1 are 0,1,..., (n +1) by Proposition (7) it follows, 

that the maximum order of (ex — l)n+1 is n. In fact the following is true.

Proposition 12. Let F(x) = (ex — l)n+1. Then Ffn+1)(0) = n + 1!.

Proof. Let G(x) = (ex — l)n and g(x) = ex — 1. By Leibniz rule,

F<"+1)(0) = (”*1)G(i)(0)s(n+1_i)(0)-

Since G is of order n — 1, the last equality reduces to

2?(»+i)(0) = G<n+1)(0)s(0) + (n + l)G(n)(0)s'(0)

= (n + l)G*">(0)

Now the proof can be completed by induction on n. □

Proposition 13. Let F(x) = (e^ - l)n+1. Then ||F|| = 2n+1.
n+1 / _i_ i\

Proof. Prom F(x) = 52 ■ J (—l)n+1_zez:r We get

ii^ii==c1+i)n+i=2n+i
7=0 ' % '

□
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Proposition 14. A product of r consecutive integers is divisible by r!.

Proof We have to show that if r is a positive integer, then r! |(t+1) (t+2) • • • (t+r) for any 

integer t. The proof is by induction on r. Clearly it is true for r = 1. Now assume that 

there is an r > 1 for which the statement is true. Let p(t) = (t+1)(t+2) ■ • • (t4-r)(t+r+l). 

From the identity p(t+1) —p(t) = (r4-l)(£4-2) • (t4-r4-l) and the induction hypothesis

r! |(r 4- l)(t 4- 2) • • • (t 4- r 4-1), since the'right hand side is a product of r consecutive 

integers it follows that (r + 1)1 \p(t 4- 1) — p(t) for every t. If t > 1 we write p(t) = 

(p(t) - p(t — 1)) 4- (p(t ~ 1) - p(t - 2)) 4- ■ • • 4- (p(l) - p(0)) + (r + 1)! and because 

(r 4-1)1 divides every term on the left hand side we have (r 4-1)1 |p(t). If t < 0 we write 

p(t) = (p(Q - p(t + 1)) + (p(t 4-1) -p(t 4- 2)) 4------- H (p(—1) - p(0)) 4- (r 4-1)1 and again

we conclude that (r + 1)! |p(7). □

Theorem 4. If Fis order k then (k 4- 1)! divides F(r>(0) (= 52°*^) for every non

negative integer r.

Proof If r < k this is obvious since in the case F<r)(0) — 0. Assume that r > k. Let 
r

pr(t) = (t 4- l)(t 4- 2) ■ - • (i 4- r) = 52 # & *s an integer then Pr(ft is a product of r
j=o

consecutive integers and thus r! |pr(6). Thus r! [52 atPr(ft)- But

r
52 aiPr(bi)

j=0

= YclYaibi
1=0

k r—1
= 22c>-F<3)(0) + 22 CjF<J)(O) + F(r\o)

3=0 3=fe+l
i—1

= 22 CjFw)(0) + F(r)(0)

3=fc+l

We complete the proof by induction on r > k. For r — fc4-l the previous equality simplifies 

to 22°iPr(ft) — F^(0) and hence (k 4- 1)! |F^(0). If the statement is true for some 
r

r > k +1 then from (r 4-1)1152 a»Pr+i(ft) identity 52 a^Pr+i (ft) = E c,r«>(0)+

j=k+l
F^r+1\o) and induction hypothesis it follows that (k 4-1)! |F^r+1^(0). □
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171

Corollary 3. If F(x) = ^^aiebiX is an ideal solution of order k, then (fc + 2)! divides 
i=l

p(k+2) (Q) _

Proof. By Corollary (2) (k + 2) divides F<*+2)(0). By Theorem (4) '(k + 1)! divides 

r(*+2)(o], □

171

Theorem 5. A function F(x) = ^^a,iebiX where A < A < • • • < bm is order k if and 
i=i

d
only if F(x) = eblX Y^ a(ex — l)fc_H where c; are integers and d = bm — A — k. 

i=i

d
Proof. If F(x) = eblX Y^ Ci.ediX then by Proposition (11) and the comment after Propo- 

2=1
m

sition (9) the order of F is at least k. Next assume that F = Y7 has order k. 
2=1

First we will assume that 0 = A- By Proposition (7), bm > k + 1 and by Proposition 

(12) is an integer ci. Let Fi(x) = F(x) — ci(ex - l)fc+1. By Proposition (12)

F-ffe+1\o) = J?(fc+1)(0) — (fc +1)! = 0 so F-fx) is of order k +1. Since the nodes of

ci(ex — l)fe+1 are 0,1,2,..., k + 1, we have Fl (a;) has order k + 1 and nodes between 0 

and bm. If > fc + 2, the same argument applied to Fi(a?) shows that there is an integer 

c2 such that FAx) ~ Fffx) — C2(ex - l)fc+2 = F(x) — ci(ex — l)fc+1 — C2(ex - l)fc+2 has 

order k 4- 2 and nodes between 0 and bm. Notice that continuing this argument the order 

is increasing by 1 while the nodes remain between 0 and bm. We continue this argument 

until the order, k + d of Fc{ satisfies k + d = bm- By Proposition (7) Fjfx) = 0. Hence 
d

in this case F(x) = Y^Qj^ ~ If A 7^ 0> then we can apply the argument to

2=1
F(x)e~blX, for the in this case F(x)e~bix has order k and its nodes that start at 0.

□
m

Corollary 4. The coefficients ai }s and the nodes A < A < ■ • ■ <bm satisfy Y^ — 0 
2=1

172

for r = 0,1,..., k if and only if Y^ &iXbi = #bl (re — l)fc+1p(a:) where p(x) is a polynomial 

2=1
with integer coefficients.

Proof. The proof follows immediately from Theorem (5) with the substitution x = ex. □
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If F(x) is of order k, then by Proposition (9) F(x)(ex — 1) is order k + 1. The 

next corollary states that the converse also holds.

m

Corollary 5. If F(x) = y^aiebiX where 0 < £>i < &2 < • • • < bm is of order k then 
i=l

there is G(a>) with nodes between bi and bm + — 1 such that G is of order k — 1 and

Fix') = Glx'jle* -1).

mm m bi—1
Proof. We can write aiebiX = aj(ebiX — 1) = (ex — 1) ai e^x- Let G(x) = 

i=l i=l i=l j=0
m bi—1 d
^Oi y~^J e?x. Then by Theorem (5) (ex — l)G?(rr) = eblX^2ci(ea: — I)*14-1. Thus G(x) = 
i=l j=0 i=l

d-i
e6ia: y^j and hence it is. of order k — 1. □

i=0

Proposition 15. Let F(x) = (ex - l)n+1. Then F(n+2)(0) = *±i(n + 2)1.

Proof. The proof is by induction on n. For n = 1, direct calculation shows that F^\0) = 

2s — 2 = 6 — |3!. We write F(x) — G(x)(ex — 1), then by Leibniz rule F^n+2^(0) = 

(n + 2)G?(n+1>(0) + (nJ2)G"(0) and by Proposition (12) and the induction hypothesis 

F<n+2>(0) = (n + 2)|(n + 1)! + <n+2J+1)n! = + 2)! □

The following corollary should be compared to Corollary (3).

Corollary 6. Let F(x) be of order k, then for k odd (fc + 2)! divides F^k+2\0) while for 

k even + 2)! divides F(fc+2)(0).
d

Proof. By Theorem (5) F(x) = eblX Ci(ex — l)fc+l and so
i=i

p(«:+2)(0) = - 1)*+1 + c2(eI -

= + 2)!+ca(fc + 2)1+(fc + 2)(fc +1)! &j

Now if k is odd (k + 2)1 divides the left hand side of the last equality, while if k is even 

then is not an integer so the best that can be said in this case is that |(&+2)l divides 

F<fc+2)(0). □

The last two theorems use ideas from Wright [Wri59], to give a combinatorial 

solution to Prouhet-Tarry-Escott problem. Our results are slightly better than that of 
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Wright since unlike his solutions, we will show that there are solutions with distinct 

integers.

Theorem 6. For every k there is ans < ^^-^4-1 such that the system [ai, 02,..., as] =k 

[bi, b2,..., bs] has an integer solution.

Proof. Let s be an integer to be determined later. To each collection of s distinct numbers 

{ai, a2,...,C {1, 2,...,n} we will assign an “address” [ap, az, ■ ■ ■, «&] where for 1 < 

i < k the i-th term is defined to be g;; = + aj + ■ • • + Since ap < sn, az <

sn2,..., cvfc < snK there are fewer than sn x sn x • ■ • x s?i = sKn 2 different addresses. 

On the other hand there are (”) different collections of s distinct numbers {ai,az, • ■ ■ ,as}. 

Thus if ( ) > skn 2 there will be at least two different collections sharing the same 

address. But two collections {ai, a2,..., x} and {bi, b2,..., bs} share the same address 

if and only if [ai, a2,..., as] = [bi, b2,..., b5]. So it remains to show that for sufficiently 

large n, and for s < —4- 1 the inequality (f) > skn has a solution. For fixed s 

we can think of (”) = (w)x(wr1)‘”x(n~(s+j-}las a polynomial in n and of degree s. Hence
, fc(fe+i>

if this polynomial has a larger degree than the degree of the polynomial sKn 2 then 
for all large n we will have (”) > skn (2 \ But this is the case if s = k^k^ + 1. Note 

that it is possible to have s < 4- 1 in the case that some of the terms in the two

collections are the same. □

The last proof can be easily modified to give us the following stronger result.

Theorem 7. For every k, and every p there is s < —4- 1 such that the system 

[ail, &12, • ■ ■, ®is] =fc [^21, ®22, • • •, a2s] —fe ■ ■ ■ ~k [a^n apz, • ■ •, =k has integer solu

tions.

Proof. It is enought to prove that for s < k^kf^ 4-1 the inequality (”) > pskn (2 has a 

solution, for in this case there will be at least p distinct collections, {an, a 12, ■ • •, ais} , • • •, 

{dpi, apz, • • •, aps} to share the same address. But as in the proof of Theorem (6) this 

inequality will certainly have a solution if the degree, s of the polynomial is greater than 
the degree, k(kfY of pIC polynomial pskn 2 >. □
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Chapter 6

Conclusion

The Prouhet-Tarry-Escott Problem is still unsolved and requires more research. 

This thesis has included the necessary background and history necessary to understand 

the origin of the problem. In addition it has shown the known properties the problem 

possess in order to show how new solutions can be acquired. The previous chapter 

showed the problem in a new perspective in order to find and verify new properties. The 

final theorem in the last chapter is a small contribution in the effort toward solving this 

problem. Though this result is only slightly stronger than Wright’s, it shows how progress 

is being made toward the ultimate goal of solving this problem.
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