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ABSTRACT

The Prouhet-Tarry-Escott Problem is a complex problem that still has much
to be discovered. My goal for this masters thesis is to organize the known results in a
systematic way and to provide further insight using original ideas. I also intend to show
the proofs of my findings in order to provide the most rigorous and complete outline
possible for the problem. Some of the proofs will use original ideas that I have developed
with Professor Fejzi¢ over the course of the year.

Many results and problems in Number Theory are often easy to comprehend
but difficult to prove. The Prouhet-Tarry-Escott Problem is no different. This problem
is still unsolved in that there are no known methods for finding ideal solutions of size
twelve or higher. The solutions to the problem are so difficult to find manually that
many are obtained by extensive computer searches. This fascinating problem shows up
in many areas of mathematics such as the study of polynomials, graph theory, and the
theory of integral quadratic forms. In fact, its solution would not only put to rest an old
problem in Number theory but would also make breakthroughs in these other areas of

mathematical research.
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Chapter 1

I_ntroduction

The purpose of this research paper is to gain a. deeper understanding of a
famous unsolved mathematical problem known as the Prouhet-Tarry-Escott Problem.
The problem consists of finding two disjoint multi-sets of integers {a;, a2, -,a6,} and
{b1,ba,---,bn} such that

al ta3+---+a)=b+b6+---+b, fors=12,...,k (1D

When two sets of integers {a1,a2,---,an} and {b1,b2, --,b,} satisfy (1.1) we use the
notation [a1,as, -+, an] =k [b1,b2, -, bs] . The number 7 is called the size of the solution,
while % is the degree of the solution. A simple example is [1,8, 8] =5 [2,5,10], which has
size three and degree 2. Note that 1+8+8 = 2+5+10 and 12+ 82 + 82 = 22 4+ 52 + 102.
This example will be used to illustrate some of the definitions that will be used throughout
the paper. Note that in the example the size of the solution and degree differ by one. In
general, when the degree of the solution and the size differ by one it is referred to as an
ideal solution. The example mentioned above is an example of an ideal solution of size
three and degree two.

Ideal solutions are not the only solutions that have unique characteristics. So-

lutions can also be symmetric. Symmetric solutions are of the form

T+at,...,T+am, T —b,.., T =bp] = [T+b1y.... T+ b, T —ay,..., T —ap)
when k. =1,2,...,2n



or in the form

[T+a1,...,T+am,T—a1,...,'T—am] =} [T+b1,...,T+bm,T—bl,...,T-bm]
whenk=1,2,....2n+1

3

Any solution not in either of these forms will be considered non-symmetric. An example
of a symmetric solution is [0,4,7,11] =3 [1,2,9, 10]. This is a symmetric solutions because
it verifies the definition above. Let T = 3 we see that we get [3,7,10,14,2,1, -6, —7] =¢
[4,5,12,13,3,—1,—4, —8|. Note any repeats can be cancelled out and we are left with an
ideal solution [7,10,14,2,1, -6, —7] =¢ [4,5,12,13, -1, -4, —-8].

In addition to ideal symmetric solutions there are even and odd ideal symmetric

solutions. An even ideal symmetric solution of size n is of the form [:l:al, ceey :I:a%] =p-1

[:I:bl, . ib% ] , while an odd ideal symmetric solution of size n and with even degree n—1
is of the form |ay,...,a,) =p—1 [—0a1,..., —ap). These definitions will have implications
for sine and cosine polynomials on the unit disk.

The Prouhet-Tarry-Escott Problem has seemingly easy criteria to satisfy, how-
ever ideal solutions are difficult to find. There are currently only ideal solutions for degree
eleven and smaller, excluding ten for which there is no current known solution. The fol-
lowing is a list of the smallest ideal solutions currently known [Bor02]. The solutions

of degree eight and nine have two different but inequivalent solutions, i.e. solutions not



dependent on another. In addition, all of the following solutions are symmetric as well.

[£2] =1 [+1]
[-2,-1,3] =2 [2,1,-3]
[-5,—1,2,6] =3 [—4,—2,4,5]
[-8,-7,1,5,9] =4 [8,7,—1,—5, -9
[£1,£11, £12] =5 [£4, £9, £13]
[-50, —38,—13, —7, 24, 33, 51| =¢ [50, 38,13, 7, —24, —33, —51]
[£5, +:14, 23, £24] =7 [£2, +16, £21, 25
[—98, —82, —58, —34,13, 16, 69, 75,99] =g 98, 82, 58, 34, —13, —16, ~69, —75, —99]
(174,148,132, 50, 8, —63, —119, —161, —169] =g [—174, —148, —132, —50, —8, 63, 119, 161, 169]
[£99, 100, £188, +-301, +313] =g [+71, £131, £180, +307, +-308]
[£103, 189, +:366, £452, £515] =g {18, £245, £331, £471, +508]

[£151, £140, +127, £86, £61, £22] =1 [+148, £146, £121, +:04, +47, £35]

These solutions show the extent of the currrent known ideal solutions. The
solutions are the most concise to this date, however they are a result of a collaboration
of many mathematicans. The next chapter is dedicated to the history of the Prouhet-
Tarry-Escott Problem, more specifically the work before the 1920°s. The majority of

the material for this section will be taken from Leonard Eugene Dickson who published

a book History of The Theory of Numbers, which includes a thorough account of the

problem and its origins [Dic66].

The list of ideal solutions above is relatively short consi'dering the amount of
time spent on the problem. This paper will include a list of these ideal solutions and the
corresponding general formulas used to find them. These formulas will be referred to as
parametric equations. In order to find these parametric equations we will reference Peter
Borwein’s Computational Excursions in Analysis and Number Theory and Jack Chernick

Ideal Solutions of the Tarry-Escott Problem [Bor02, Che37]. Examples will also be used

in order to clarify the method used to find these solutions.
Finally, the last chapter will include original ideas on the problem. The work will
include a combinatorics proof that will reduce the upper limit necessary to find solutions.

This proof will be given in its entirety and will include examples.



Chapter 2

The History

The solutions and interest for Prouhet-Tarry-Escott Problem is not credited to
any one person, rather a collection of mathematicians. Many mathematicians devoted
their time to this problem beginning with finding a general solution for degree two. One
of first more notable mathematicians to work on this problem was Goldbach. In 1750,
Goldbach wrote a letter to Euler about his findings of the first general solutions of degree

two,

[a+b+da+c+db+c+d,d=z2la+db+dc+d,a+b+c+d) @1)

for any a,b,cand d € Z

Clearly there are infinitely many solutions in this form but the size of these solutions are
four which is not ideal. One year later Euler wrote Goldbach back with a slight alteration
to (2.1); he found by setting d = 0 the resulting equation will still form a parametric
solution, i.e. (a4 b,a+ ¢, b+ ¢] =2 [a,b,¢,a+ b+ ¢]. For example, if a = 3,6 =5,c=7
we get [8,10,12] =2 [3,5,7,15]. This shows the beginning of the problem we know today,
however it differs in that the size on the left is not equal to size of the right. The size of
the solutions will later become more important as the research continued.

In 1851, Prohout was the first to prove how the size of the set related to the
degree of the solution. He noted that the first n™ numbers, {1,2,3,...,n™} can be
separated into n sets each with n”™~! terms such that the sum of the k%" powers of the
terms is the same for all sets k < m. For example, when n = 3 and m = 4 means the
numbers 1,...,81 are separable into 3 sets each of size 27. The sum of these sets are

equal for all degree less than or equal to 4. This result gives an upper bound to the size



of the set in relation to the degree. That is given a degree k then a solution can be found
with size 271, when n = 2.
Later in 1861, Pollock found an parametric equation of an ideal solution of size

three and degree two.
[a,a+b,a+2b4+3c]=2[a—c,a+b+2c,a+2b+2¢ foranya,b,cecZ. (2.2)

We can illustrate by letting a = 7,b = 4,¢ = 3 then the solution [7,11,24] =, [4,17,21]
is produced. It is now clear that for degree two there are infinitely many ideal solutions.

Other mathematicians followed Pollock and continued working toward finding
properties of second degree equations. In 1906, A. Gérardin found that z2 + 42 + 23 =
(x4 1)% + (y —2)3 + (2 + 1) is equivalent to Ay + A, = (y— 1)?, where Ay = z(z+1)/2.
He found picking A, = 1,3,6,10,15,... produced values of z’s < 100. One particular

solution was produced when z = 1,y = 12, z = 15. Using these numbers we get

13 4123 + 15% = (2) + (10)® + (16)3
but 124122 4 15% 5 (2)2 + (10)2 + (16)?
1412415 = (2) + (10) + (16)

This is not a solution to the Prouhet-Tarry-Escott Problem because it does not work
for all the degrees less than or equal to three but the sums for degree two differ by ten.
Gérardin noticed that if you pick two solutions like the one shown above, where the second
degree differs by some square m? then they can be manipulated in such a way to get a
complete solution to the Prouhet-Tarry-Escott Problem. For instance, if you multiply
the numbers of the first solution by m and add it to the second solution you can get new

solutions. Using the method described you can produce the following solutions:

[2,4,20,22,33] =3 [1,6, 16, 26, 32]
[1,4,12,13,20] =3 [2,3, 10, 16, 19]
3,4, 15, 20, 23, 26] =3 [2, 5,17, 18,22, 27]
(2,6, 30,46, 53, 73] =3 [3,4, 34, 44, 51, 74]
[2,6,44, 58,63, 91] =3 [1, 8, 40, 60, 65, 90]

Solutions of this type gave Gérardin the information he needed to find parametric equa-



tions for degree three and five.

[1,m + 3,2m — 2,4m + 2,5m — 3,6m — 1]
=3[2,m—1,2m+3,4m — 3,5m + 1,6m — 2]
[z,z+3,2+5,2+ 6,2+ 9,2+ 10,z + 12,z + 15]
= z+l,z+2,z+4,2+7,z+8x+ 11,2+ 13,z + 14]
Gérardin continued his work for another two years and his worked inspired Tarry and

Escott to pursue parametric solutions of degrees greater than three.

In 1908, Escott showed he could find not. one, but all the solutions of the sets in

me Zym and Zm —Zyz (2.3)

i=1 =1

the form:

for n = 3. He did this by substltutmn and reducing the problem to solving two unknowns
rather than n of them. The equation reduced the number of terms necessary to solve for
and resulted in the following, X2 + X1 X, + X2 == Y + ¥1Ys + Y. Using this simplified
equation, Escott let N be any number whose prime factors are of the form 6n -1 or 3
and any square factors in common to X1, Xo, Y1, Y2. The solutions would then be N in
the form 2% 4 zy + »2. Later in 1912, H.B. Mathieu gave a general solution to (2.3) for
n=3, 1+ (ab+ac),l{(1 — bd) + gab T ac,l(cd + 1) F ab — gac.

In 1912, G Tarry buﬂt upon the work of another mathematlclan M Frolov,

who found that if Za Zb’“ and Zc = de then Z(a + o) = Z(b + d)*.

k=1 k=1 k=1
Frolov correctly found that there exists 1deaI solutions for degree two, but thought more

than four terms were necessary for an ideal solution of degree three. Tarry generalized
this idea of size and degree and stated that the first 2*(2a + 1) integers can be separated
into two sets of integers with size 2"~1(2a + 1) and degree t for t = 1,2, ..., n. For exam-
ple, let @ = 1 and n = 3, then the first twenty-four integers can be separated into two sets
of integers each of size 12 with degree 3. Using these conditions the following solution
is produced, [1,3,7,8,9,11,14,16,17,18,22,24] =3 [2,4,5,6,10,12,13, 15,19, 20, 21, 23).
E. Miot, in 1913, found a similar result to Tarry. He found that any 2"(2e¢ + 1) num-
bers in arithmetical progression can be separated into two equal sets having the same
sum for the ¢th powers for ¢ = 1,2,...,71 if a > 0and n > 1. However if a = 0,

then it is only true for degree 1,...,n — 1. Using the same example above we get



[a,a+ 2r,a+6r,...,a+23r] =3 [a+ 1,0+ 3r,...,a+ 22r]. Tarry noted that the num-
ber of terms in each set of the equation is 2k — d. This occurs if k¥ is the number of
terms in each member of the given equation and z is expressible in d ways as a dif-
ference of two numbers that belong to the same set. For example, given the solution
[1,5,10,16,27,28,38,39] =¢ {2,3,13,14,25,31,36,40] we see that if £ = 11 then we
can manipulate the set so that each member in the set will have a difference of 11,
iee 11=16—-5=27—-16=38—-27T=39-28=13-2=14-3 =256 -14 =
36 — 25. By taking z to be 11, we get that d = 8 and the following solution is produced
[1,5,10, 24, 28,42,47,51] =7 [2,3, 12, 21, 31,40, 49, 50].

Later Tarry also found that if ¢ = %(a + b + ¢) the following solution can be
found [a,b,c] =2 [t — a,t — b,t — ¢|. Tarry referred to this as the double property. He also
found that for some z, {a,b,...,h] =, [p,q,...,t] implies [a,...,h,p+z,..., 0+ 2] =p41
[p,-..,t,a+x,...,h+z]. This is a property that will later be proved in the properties

section. Applying this lemma he found a solution of degree five

[6a — 3b — 8¢, 5a — 9¢,4a — 4b — 3¢,2a + 2b — B¢, a — 2b — 5¢,a — 2b+ ¢, b
=5 [6a — 2b — 9¢, ba — 4b — 5¢,4a + b — 8¢, 2a — 3b,a + 2b — 3¢, ¢

Later Tarry republished this result and found that given A,,..., Ax =2, B1,..., By and
A; + Ag_; = 2h = B; + By_; implies Ay,..., Ay =on+1 B1 + ..., Br. These equations
are subtracting an A from every term of the given equation as opposed to adding like the
earlier proposition.

Mathematicians L. Bastien and A. Aubry each contributed work of a different
kind. In 1913, Bastien proved that it is impossible for a solution to be in the form
[@1,-.-,%n] =n [¥1,...,yn) unless the z}s do not form a permutation of the y}s. Alterna-
tively, Aubry proved new as well as known solutions for the first and second degree. He
also proved the impossibility of a solution of the form [z,y,] =3 [¢,u,v,]. The work of

these mathematicians began the work of ideal solutions and when such solutions exist.



Chapter 3

Ideal 'Solutions

Recall that an ideal solution is when the size of the solution and the degree differ
by one. Ideal solutions are the most difficult to find; over the past 100 years there are
still only 13 known ideal parametric solutions. We now present the first 10 parametric
ideal solutions. [Che37] |

The general solution for the second degree was already mentioned in the previous

section. The solution was of the form
[AD +k,AG+ BD+ k,BG+k| =2 [AD+ BG+ K,AG + k,BD + k. (3.1)

To illustrate an example of this solution let A = 3,B =7,D = 8,G =2, and k = 0.

Using these numbers we get the solution

[24, 62, 14] =2 [38, 6, 56]
ie. 24+62+14=238+6-+56=100
242 4+ 622 + 14% = 382 - 6% + 56 = 4776

The parametric solution of the third degree can be found rather easily under

certain conditions. The general formula for the third degree is

la1, a2, —a1, —a2] =3 [b1, by, —b1, —bo] (3.2)

or ‘
[Ma1 +k Ma+k,—Ma1+ k,—Mao +k] =3 [Mbl + &k, Mby + k, —~Mby + k,—Mby —i—k]
' (3.3)



This equation is only true when a1, ag, by, ba satisfy a? + a2 = b? + b2. This occurs when

a1 = pip2 + P3P4 by = p1p2 — pap4

a2 = P1P3 — P4 by = p1p3 + p2py

This parametric equation will produce all the integers solutions. One possible integers
solution can be produced by letting p; = 13, p» = 10, p3 = 3, and py = 5. Picking these

as our p's then:

a1 =130+ 15 = 145 by =130 — 15 = 115
ag = 39 — 50 = —11 by = 39 + 50 = 89

So the solution [145, ~11, —145, 11} =3 [115, 89, —115, —89) satisfies all conditions. {Che37]

Parametric solutions for the fourth degree begin by assuming that
[a,a + 2k, —a,—a — 2k] =3 [b,k, —b, —k]

is a solution for degree three. Applying a proposition that will be discussed in the next

section we get the general formula for degree four.

[a1, a2, a3, a4, 5] =4 [—a1, —az, —a3, —a4, —as] (3.4)

where a; = (m?, ~2n%, —m? — mn + 2n?, —-m? + mn + 2n2,m? — 2n?). This parametric
solution was based upon a solution for degree three, if that solution was changed then so
would the solutions for the fourth degree. For instance if the third degree solution was
changed to [—3k, —k, k, 3k] =3 [u, v, —u, —v], then 3.4 holds but under the conditions that
a; = (—2m? — 2n2, —m? + mn + 2n?, —3mn + n%,m? + 3mn, 2m® — mn — n?). Letting
m = 2 and n = 8 we see that the first condition produces [4, —128,108, 140, —124] =4
[—4, 128, —108, —140, 124]. However using the second solution for degree three we get the
solution [—1386,140, 16, 52, —72] =4 [136, —140,—16, —52,72]. Note that using the same
parameters we get different solutions, in general this will hold for all values of m and n.
[Che37]

Borwein also has a parametric solution for fourth degree equations. His solution
is only one-parameter which is an advantage over Chernick. His solution is presented

below.
[2m?,—1,2m? — 1, -2m* + 1 —m, —2m® + m + 1]

=4 [-2m?, 1, -2m® + 1,2m? — 1 +m, 2m® — m — 1]
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To illustrate this solution let m = 3. Then [—18,1,—17, 20, 14] =5 (18, -1, 17,—20, —14].

In "Ideal Solutions of Tarry-Escott Problem” [{Che37], Chernick has a parametric
solution for the fifth degree. Since then another parametric solution was published in
» Computational Excursions in Analysis and Number Theory” [Bor02]. For the remaining
degrees we will continue showing both solutions to see the contrast over the years. We
will begin with the fifth degree.

[a1, 02, a3, —a1, —a2, —as] =5 {b1, by, b3, —b1, —b2, —b3] (3.5)
where
a1 = —5m? + dmn - 3n? by = —5m? + 6mn + 3n?
as = —3m? + 6mn + 5n? by = —3m? — 4mn — 5n?
ag = —m? — 10mn — n? by = —m? + 10mn — n?

Applying this equation we see that we can get a solution if m = 2 and n = 3. We get the
ideal solution [—23,69, —73,23, —69, 73] =5 [43, —81,47, —43,81, —47]. The correspond-
ing solution by Borwein is as follows,
[£(2n + 2m), £(nm +n+m — 3), £(nm —n —m — 3)] (356)
=5 [£(2n — 2m), £(n — nm —m — 3),£{(m — nm — n — 3)] .
Let n = 4 and m = 5 and we get the symmetric solution [:18, +26, £8} =5 [+2, +24, +-22].
As in the previous solutions Chernick begins by assuming a solution to the
previous degree (3.5). This specific solution is not parametric but infinitely many solutions

can be found using the recursion formula. Chernick begins this solution by letting

a1 = a blr—"k
as = a+ 2k b = 3k
as="o b3=b+2r

We can now assume these parameters hold for the sixth degree therefore, then the fol-

lowing holds.

a® + (a+ 2k)% + 0% = k? + (3k)2 + (b + 2r)?
0+ (a+2k) + 04 =k 4+ (k) + (b + 2r)?



11

These two equations can be rewritten in terms of M,r, and ). More specifically the
second degree can be rewritten as a%+2ak —3k> = 2Mr, b = M —7, a+k = 2(Q) while the
fourth degree can be rewritten as M? — Mr +r? = 7k?. This equation has a parametric

solution of
k=m?+mn+n® r =m? + 6mn + 2n’ M = —2m? + 2mn + 3n?

Using these variables we can substitute them into the second degree equation to get

2Q? = n(n -+ 2m)(2n + 3m)(4n — m). Substituting once more where

Q = 21 uotgly n= 2’(1,% n+2m = 4’11;%
2n + 3m = u3 dn —m = u’

This final substitution yields 9u? — 2u? = u2 and u} + 6uZ = u3. Letting u1 = 1 and
1 3 = Ug 1 2 = U3

uy = 2 we obtain an non-trivial solution for the sixth degree.

[1,29,...,27] =¢ [T1,22,...,%7] (8.7)
where
T = —134 To=—T5 x3 = —66 T4 =—8
Ty = 47 Tg = 87 T7 = 133

Assuming a different solution of the fifth degree we see that we can get infinitely many
solutions using this method.
Borwein has a purely parametric solution for the sixth degree. His solution is

also of the form (3.7), however his s are found by two parameters.
t

21 =—(=37%k + K3+ )P — ki + k) w2 = (j+K)(J — k)(5* — Bkj + K*)j

3 = (§ — 2K) (5 + kj — K*)kj 2y = —(j — k)(5® — ki — K*)(—k + 25)k
w5 = —( — k) (—=2kj% + j1 — P2+ B ze = (54 — 4k + 527 + 2635 — kYK
z7 = (§* — 4kj® + 552k — k)5

One example of a sixth degree solution where j = 3 and k& = 4 yields,

[221,231, —300, —152, —23, —316, 339] =4 [—221, —231, 300, 152, 23, 316, 339)
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The most basic solutions for degree 7 are of the symmetric form. The generic

solution is of the form

[al, RPN ¢ 700 13 PRI —a4] =7 [bl, ‘e ,b4, —bl, ey ——b4] (3.8)
It is clear that this equation is equivalent to finding a;’s and b;’s of the form, [a1, . .., a4] =¢
[b1,...,bq] for k = 2,4,6. We can find that one possible solution for the previous equation

is
[u — Tw,u — 2v + w, 3u + w, 3u+ 2v + w] = [u + Tw,u — 2v — w,3u — w,3u + 2v — W]

We see that this equation can be reduced to u? + uv + v? = Tw?, which a parametric
solution was given earlier for the sixth degree. One example leads to the following solution
[7,24,25,34] = [14,15,31,32]. Now this yields the actually solution for degree seven,
(7,24, 25,34, -7, —24, —25, —34] =, [14,15,31,32, ~14, —15,~31,—32]. Borwein states

this solution more directly by immediately giving the parameters for (3.8).

a1 = 5m? + 9mn + 10n? by = 9m? + 5mn + 4n®
as = m? — 13mn — 6n? by = m2 + 15mn + 8n?
az = 7Tm? — bmn — 8n? by = 5m? — Tmn — 10n2
a4 = 9m? + Tmn — 4n? by = Tm* + 5mn — 6n>

The rest of the solutions will be those given by Borwein. Chernick ended his
parametric solutions with degree seven and there are still no known parametric solution

of degree 8. There are two non-equivalent symmetric solutions, they are,
[—98, —82, —58, —34, 13,16, 69, 75, 99]
=g [98, 82, 58, 34, —13, —16, —69, —75, —99]
[174,148,132, 50,8, —63,—-119, ~161, —169]
=g [—174, —148, -132, -50, —8,63, 119, 161, 169]

The parametric solutions for degree nine are also symmetric. Borwein attributes

the solutions to Letac, who found them using rational solutions on an elliptic curve.

[0,1, ceayQ5y —Q1y. . ,—a5] =9 [bl, e ,b,_r,, —b1, ceany —b5] (3.9)



where

o1 =4n+4m

a2 =mn+n+m-—11
az=mn—n—m-—11
ag=mn+3n—3m+11
as=mn—3n+3Im+11

13

by =4n —4m

by = —mn+n—m-—11
bg=—rmm—n+m-—11
by=—-mn+3In+3m+11
by =—mn—3n—-3m+ 11

The final two ideal solutions that will be discussed currently do not have para-

metric solutions. More specifically, not only are there no known ideal solutions for

the tenth degree, there are mo solutions altogether. As for degree 11 there is only

one ideal solution where all the entries are less than 1000. That particular solution
is [£151, £140, £127, £86, £61, £22] =13 [£148, £146, £121, +94, +47, +35).
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Chapter 4

Basic Properties

Ideal solutions are the most sought after solutions and as the previous section
established there are only a small number of parametric ideal solutions. The exact method
by which these solutions were produced was overlooked but Chernick often found them
using previous solutions and applying simple properties. This section will list those simple
properties he used to find those ideal solutions as well as a corresponding proof for each.
However we will begin this section with a congruence statement for the Prouhet-Tarry-
Escott Problem. The Prouhet-Tarry-Escott Problem can be expressed many ways, one of
which is in terms of polynomials. In a definition above, it was noted that certain solutions
can be expressed as sine and cosine polynomials, i.e. even and odd ideal symmetric
solutions. The following theorem will establish the relationships between the Prouhet-

Tarry-Escott. Problem and the polynomials it represents.

Theorem 1. The following are eguivalent:

a) iag=iﬁfforj=l,...,k—1
i=1

i=1

b) deg (H(z — ;) — H(z - ﬁz)) <n-—k
=1

i=1

n ™
c) (z— 1)’“|Zz°‘" — Zzﬂi
i=1 i=1

Proof. (a) = (b)



(1
Assume af = Zﬁ: for j=1,...,k— 1. By definition,

"
i=1 i=1
o + a +...ta, =B+ B+ b
of + o} +..tak =+ B+t B
R
R e al By R

Let p(z) and g(z) be polynomials of the form:

p(z) = (z —o1)(z — az) - (z — an)
=[a" + 2™+ ™2+ + ]
g(z) = (z — f1)(x — B2) - (z — Bn)
=[z" +diz"™ !+ dpx™ 2 ...+ d)
then p(z)—q(z) = [=" + az™ 4 ez 2 + ...+ ¢
~ [ +diz™ ! + doz™ 2 + ... + dn]

Let
01=—Zak si=o1+ae+...+a,
62=Zai&j sz=a§+a§—l—...—|—aﬁ
i)
Cn =Zak Sk—1 =a’f_1+a’;"l+...+aﬁ_1

Similarly for d;. Let

di=-Y B ti=Pfi+p+...+ b
dy = Bibi to=f; + 5 +... + 5,
7=

dn= B tor =B A BT L+ R

15
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By Newton’s Identities, we know that we can express each coefficient in terms of o and

B. For the first degree we get:

>81+C1=0 t1+d1 =0
o =—8 dy = —t

But by assumption, s; = ¢1 and so must —s; = —t¢;. Therefore ¢; = d;.
Applying Newtons Identities again we can the following relationship between s

and c.
82+ 181 +205 =0 to+dit14+2dy =0
—(s3 +c151)

—(& dit
=>c2=__T_. :;,d2=.(—2—|2-.1_1)

By the previous identity we know that ¢1s1 = dit1 and se = #2 by assumption. Therefore
cy = ds.
We can continue using Newton’s Identities to show that ¢; = d; foreach i < k-1.

Referring back to

p(z) —q(z) = [:v” +eaz 4oz 2+, + cn] - [a:” +diz" P do™ 2 4.+ dn]
we see that every term will cancel till the k — 1 term. The term after the last cancelation
is of the form ¢xz"* and diz™* respectively for p(z) and g(z). Therefore we get the
fact that deg[(ckz™ * + ...+ ¢n) — (dk2™* + ...+ dn)] < n — k, which is precisely part
b of the theorem. O

Proof. (a) = (c)

n

n
Assume Za§=2ﬁf forj=1,...,k—1. ie,

=1 i=1
a, + ag +...+ 0o, = B + By +... B,
o + o2 +...+ o =8 + 8 +...+ 82
T I A
a’f_l + ag_l +...+ aﬁ_l = ,8{"_1 + ﬂg_l +...+ ﬂ,’;’_l
Let p(z) be a polynomial defined as

p(z) =) z% - oF

=1 g=1

= (g;al +x°‘2 S +man) — (:L-.Bl +$ﬂ2 + ...+v;[;'6")
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Taking the derivative of both sides of the equation yields
7 (@) = (7! + 092® ™ + -+ 0z® L) = (Braftl + fazP 4o BuafeY)
Note when z =1,

P@)=(tma+oas+ - +an)— (b ++  + )

n n
By assumption, Zaf = Z Bi for j=1,...,k— 1. Therefore p'(1) = 0.
=1 i=1
Taking the derivative again yields
p”(.’l)) = Z ai(ai — 1).’13%_2 - Zﬁz(ﬂz - l)mﬁf_z
i=1 i=1

When z = 1 we get

P = il —1)=> BiBi—1)

i=1 i=1
= Ye —Za W ED W
=1 =1 i=1

7 7. n n

But by assumption, Zai. = Zﬁi and Za? = Z,Bf So we get that p”(1) = 0 as
i=1 i=1 i=1 i=1

well.

Taking the derivative a third time yields

p"( Z oo — 1) (o — 2)z3 Z,@z —1)(B; — 2)aP3

z—l =1
7 ( Z o (e — 1){o; — 2) Zﬁi(ﬁi - 1)(Bi—2)
i=1 i=1
_Za —*320,,'!'220% Zﬂz +3Zﬁ2_2zﬁz
=1 i=1 =1

But by assumption, Z o = Z 51:2 of = Z B2 and Z of = Z ﬂz These equations

=1 =1 i=1 i=1
hold true even with a constant. So we get that p”(1) = 0 as well
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This is true for all derivatives up to k — 1. When we take that derivative we get
n
pk—l(fz) = Zai(ai — 1) . (ai — (k _ 2))$ai—(k—1)
. i=1

- Zﬁi(ﬁ@ -1)...(B— (k- 2))wﬂi—(k—1)
i=1

n

=) =D ai(e— 1) (s — (k- 2))

i=1
n
=Y BiBi-1)... (B~ (k—2)
i=1
As seen in the previous examples multiplying out the terms will result in a constant in
front of each term but the assumption will hold and will result in p*~1(1) = 0.

By the Taylor Series we can write p(x) in the form

p(x)=ap+a1{x—1)+a(z— 1)2 +...tap_1(z— l)k“1 + ax(z — l)k +...Fap(z—-1)"

where
ag=p(1)=0
a1=p(1)=0
Ui
1
4y = 192(r ) o
k—1
_p()
-1 = m =0

Thus we can rewrite p(z) as

p(@) = an(e — 1 + agpi(@ — V¥ 4.+ anfe — 1)
= (z— 1)k [ak Fapa(@—1)+...+an(k— 1)n—k]

Now let m = agtagy1(z—1)+. . .4an(k—1)"* so that p(z) = (z—1)*m = (z—1)%|p(z) =
n , n

(x— 1)’°|Z % — Z:{;’B‘
i=1

=1

O



Proof. (c) = (a)
n n
Assume (z = 1)%) "z — Y 2. Then

n
D =
i=1 =1 i=1

ar + opri(z— 1D +... +a(k— 1)”_’“. Then

- Z:v i = (z — 1)*m. Let m

i=1

(@ - 1)fm = (z — 1) [ak tappr(@—1) ...+ an(k — 1)“—k]

= ag(x — l)k + ar+1(z — 1)k+1 + ...+ ap(z—1)"
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Define p(z) as p(z) = ag(x — 1)* + apy1(z — ¥ + ... + an(z — 1) Every polynomial

can be rewritten using the Taylor Formula with ¢ = 1.

ap =p(1) =0
a1 =p'(1) =0
H 1
as = p2(! ) =0
k-1
(1) _
-1 m =0

=p(1)=0
=p'(1)=0
=p'(1)=0
=>pH1)=0



By assumption p(z) =
i=1

p(1) =) (1)°

i=1

20

Zm"“ Zmﬂt So,
™

- (=0
i=1

=) )% =3 (1)
i=1 i=1

ril) =

i=]1

n
=>Zai=

i=1

P =) aila

z-—l

D a(1)x?

B ED S YN :

- YA =0
=1

Y B

=1

i~ 1)(1)% 2 =0
=1

_Zaz(az—n Zﬁ,(ﬂz—l )=0

n

=2 o
i=1
n

=1
n

- o Zﬂz +Zﬁz_0

=1 i=1

n

=2 o= #

i=1

i=1

Similarly, for derivatives up to & — 1 will yield,

P =

=1

—Z@

i=1

= iai(az— -1).. (o

=1

n n
_z : k—1 § : k~2
= 2% —C) o -
i=1 i=1

n n
+ BT ey BT+
n
-3

T
= Z af‘l

=1 i=1

Zai(ai -1)...(«

i — ko 2)(1)% R

(B — k2 (L=

—k+2) =Y Bi(Bi—1)...(Bi~k+2)=0
i=1

n
A | Z (07
=1

n
..+Ck_1z,51;=0

i=1
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n n
Putting together the results of these derivatives we get precisely (1), Z of = Z Bt for

i=1 =1

j=1,... k=1 O

Proof. (b) = (:)

Assume deg H(z — ;) — H(z — B;)| < n—+%. Let p(z) and g(z) be polynomials of the

=1 i=1
form:

plz) =(z - a1)(z —az) - (z - az) o(z) = (2 —B1)(x— B2) - (z — Bn)
=[z" + 1™ L+ 2z 2 + ...+ ey = [z + dig”t + dpa™ 2 + ... 4 dy)

Then our assumption can be rewritten as
deg [(sc" +ea" b or™ i o) — @+ dig T b dprv R 4L+ dn)] <n-k
Since the degree must be less than or equal to n — k the terms up to n — k& must cancel.

Therefore

"=z
e1x™ ! = dyz" ! = =d;

n—2

Cz:l’:n_2 = dox = ¢ =da

n—(k-1) _ n—(k—1)

Ck~1% dy—1 = Ck—1 = dg—1

We can use Newtons Identities in order to rewrite each term.

For the first degree, where s, ¢ are coefficients for p(z) and ¢,d are for g(z).

s1+c1=0 t1+di =0

= 851 =—C =t =—-d

n n
However, we saw that ¢ = d1 = 81 = t1. So we get z o = Z B;.

i=1 i=1

sg+c181+2c =0 to+dit; +2dp =0

= 8§89 = —C181 — 2¢ = to = —di1t1 — 2dy
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By the previous identity we know —c181 = —d;t1 and by assnumption o= dy. So we get
—2¢y = —2d, which means that s; =t. Which mens that » _of = 4.
. , =1 i=1
This will continue for sy_; = tr—1. So Z of = Zﬁ: for j=1,...,k—1 which
is precisely (1). = = O

The previous theorem showed how the original Prouhet-Tarry-Escott Problem
can be reduced into equivalent statements regarding polynomials. The first form is the
most used version and because of this many properties have been discovered in order to

help distinguish equivalent solutions from one another.

Proposition 1. If [a1,a2,...,am) =k [b1,b2,...,bm] for k=1,...,n then
[Sa; +T,Sae +T,...,80m +T) =¢ [S1 + T, Sbo + T,...,Sby, + T

fork=1,...,n

Proof. Assume [a1,09,...,am] =k [b1,b2,...,bp] for k=1,...,n.
When & = 1, by the addition and multiplication property of equality we get the two

equivalent equations:

a'luaIQs"',a'm=b1’b2?"'rbm

= (Sa1+T)+...+(San+T)=(Sh +T)+... +(Sbp, +T)

Need to check when k = n the equation (Sa; + T)* +... + (Sam + T)" = (Sby + T)" +
«o.+ (Sby + T)* will hold. The left hand side of the equation yields:

s (o (o= ()]
L+ [(’(’D (Sam)™ + (’;') (Sam)™ T +... + (;‘) Tﬂ]
= K’g) (S)™(a1)™ + (’;) (S)" a)" T +... + (Z) T“] +
o+ [(g) (S)*(am)"” + G‘) () Ham)" *T+...+ (Z)T“]

= (2)8” [af +...+al] + (T)S’""lT [af ™+ +a )+ + (Z)mT"
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Similarly on the right hand side of the equation we get

(z’) ST 4. U]+ (T) ST+ e+ (:)an
. Since S and T are integers and by assumption we get the desired equality. ]

A consequence of this proposition is the standard form of a solution. Standard
form of a solution is when the sum of the a terms and the sum of the & terms is zero.
This is considered an equivalent solution to the original solution. For example, take the
solution [0,4,7,11] =3 [1,2,9,10]. To the find the correct S,T € Z we set one side equal

to zero.

LHS=(M-0+K)+(M 4+K)+(M-7T+K)+(M-11+K)=0

2M+4K =0
4K = -22M
—11
K= -—2-—M

Referring back to the original solution [0,4,7,11] =3 (1, 2,9,10], we need to multiply each
side by 2 and then subtract each number by 11. Multiplying each term by two yields
[0,8,14,22] =3 (2, 4,18, 20]. Finally subtracting each term by 11 gives the standard form
which is [-11, 3,3, 11] =5 [-9, —7,7,9].

Proposition 2. If [a1,as2,...,am) =k [b1,b2,...,bn] for k=1,...,n then
[al,...,am,bl -|-T,...,bm+T] =k [bl,...,bm,al+T,...,am+T]
fork=1,...,n4+1.

Proof. Assume [a1,a2,...,0m) =k [b1,b2,...,bp]) for k =1,...,n. By proposition 1, if we
set § =1 we get
a1 +T,...,om+T) = 1 +T,..., by + T}

fork=1,...,n.
When k=1, we see that using property 1 as well as the addition property we get:
a1+ ...+an =014+ ...+ by
(@m+T)+.. .. +en+D) =W +T)+...+ b +T)
2a1+... 0+ G+ +. .+ +T)=bi+...+bp+ (@1 +7),....(am+T)
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Similarly, when k& = n,

(@a1)" + ...+ (@m)™ = (b1)" + ... + (bm)"
(a1 +T)+ ...+ (@m+ D) =1 +D)" +...+ (b + T)"
= (@) " +...+(@m)" + 1+ D) +... 4+ (b + T
=) +... +On)" +(@+D)"+...+ (@am +T)"

Need to check for k=n+1

(al)n+1 R (am)n+1 + (bl + T)n+1 o+ (bm + T)n—l-l
— (bl)n+1 ..+ (bm)n+1 + (al n T)n+1 ...+ (am + T)n+1

(@)™ + ...+ (@)™ + [(”;“ l)b?“ + ("’+ 1) BT + ...+ (ZIDT’”“

+...+[(n+l)bn+1+(n+1)b"mT+...+(n+1)T”+1
n+1 ]
_ n+l nl n n+1 n+1\ , n+1 n+1_
=@+ G [ (M5 e R iy Lol
n+1 n+1 n‘l‘l n 'n:+1 TL+1-

+.. [( 0 )a, ( 1 anT 4+ -+ ntl T
1
=>[( )b?T+...+( )T"*l] +[(n+1)b’,;T+ +(”+1)Tn+l
1 n+1 ]
n+1\ . 7+ 1\, 1 n+1\ , n+1\, ne1]
[( ) 1T+...+( )T +...4+ 1 apT+... + nt1 T a
n+1 n n n+1\, . n4+ 1\ ny1 ]
=>( . )T[bl ]+ +( " )T [b1+---+bm]+m[(n+1)T J
_ n+1 n n n+1 n n+1 +1-
_( 1 )T[a1+...+am]+...+( n T a1 +...+am]+m ntl ™ -

Setting S = ("7')T* we can use property 1 together with the assumption to get the
desired result. | O

This proposition shows that given a solution we can manipulate the data so that
the solution is for that of one degree higher. However, in this process it is clear that if the
given T is not chosen wisely then the size of the solution can be double in the process.
More specifically a solution of degree 3 with size 4 can be manipulated to a solution of
degree 4 with size 8. In order to keep the sizes of these solutions down it is clear that

choosing a T such that some a; + T = a; for some i, j, € Z would decrease the size. To
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illustrate this begin with a solution [1, 5, 10, 16, 27, 28, 38, 39] =4 [2, 3, 13, 14, 25, 31, 36, 40]
using the previous theorem let 7'= 11. The result is
[1,5,10, 16,27, 28, 38, 39, 13, 14, 24, 25, 36, 42, 47, 51|
=7 [2,3,13, 14, 25;31,40} 12,16, 21, 27, 38, 39, 49, 50]

Note the repeats can be cancelled out to get the final ideal solution
[1,5,10,24,28,42,47, 51} =7 [2, 3,12, 21, 31, 40, 49, 50]

It stands to reason that given a solution in the proper form we can get create a solution
for a smaller degree. Escott noted that if you reversed the. process stated in proposition
2 you could create another solution in a method he called integration. This method is

stated more formally below.

Proposition 3. If [a1,a2,...,am] = [b1,b2,...,bw] for some k,m € Z and if a; = b;
mod h fori € [1,2,...,m] with a; <b; fori € [1,2,...,r] and a; > b; fori e [r+1,r+
2,...,m|, then
[@1,a1 +Tya1 +2T,...,00 = T,...,ar,ar + T,ar + 2T, ..., b, — T)
1 Bty brs + Ty rs1 = Ty b b + T 0 = T
The implications of this proposition are easy to see with an example. Consider
the ideal solution [1,5,9,17,18] =4 ({2,3,11,15,19] where h = 7. By the first condition
a; = b;( mod 7), so the solution has to be reordered in order to properly identify the a;s
and bls, ie. [1,5,9,17,18] =4 [15,19,2,3,11]. Note that a; < b; for ¢ € [1,2], so in this
example » = 2. Note that
ay,01 + T, a1 +27,...,0 ~T=1,8,15,...,8
ag,as + 1 a2 +2T,... bp — T =5,12,19,...,12
Similarly,
boyi, o1 +1,. .., 0000 — T =2,9,16,...,2
baya,bosa + T, ... 6049 —T=3,10,17,...,10
boysyboys+T,... 0043 — T =11,18,25,...,11

Taking the first four smallest numbers from the first set and finding the corresponding
solution in the next set we get the ideal solution (1,5, 8,12] =3 [2, 3, 10, 11].
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Proposition 4. If [a1,az,-..,06m) =k [b1,0,...,bp] fork=1,...,2n —1 then

[T+a1,...,T+@mT—b1,..., T —bp| =% [T +b1,...., T +bn, T —a1,..., T — ]
fork=1,...,2n.

Proof. Assume [a1,a2,...,am] =k [b1,02,...,bm] for k=1,...,2n— 1. We need to verify
that is it is for every k=1,2,...,2n.=>

When k=1,

(T+a)+...+T+an)+T—-b1)+...+ (T —bp)

=(T+b1)+...+(T+bm)+(T_a1)+"+(T_a’m)

S2mT+(@+...+an)—Oi1+...+bp)=2mT+ (b1 +...+bn) — (a1 +... +an)

=2a1+...+am) =2(b1 +...+ by) which is true by the assumption.

We need to check when & = 2n,

(T+a)+...+(T+an)" + (T -b) +... 4+ (T — bp)™

= (T+b)" + ...+ (T b))+ (T — 01" +... + (T — am)™
[(Zg)Tzn_E_ (2{1)11271—10/1_'_-”_]_ (;Z) (al)2n] +
(2071)1-,27; _ (ZITL) Th-ly o4 (277,) (b1)2n] n
= 2mT%" + (21n> T2l 4. +am) + (2n

The left hand side of the equation will yield:
20\ ron 20\ ron-1 2n n
...+KO)T +(1)T am+...+(2n)(am>
- [ 2n
2n 2n 2n 2n—1 2n 2n
B 1 R PESRNN T
5 )'TZ"_z(a% 4.4 a2+
2n 2n 2n 2n 2n—1
o+ on @™ +...+a7) - 1 T b+ ...+ bm)
2n . 2 _
+(2 )T2n"2(b§+...+b$n) — (22)(b§”+...+b3;‘)
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Similarly the right hand side of the equation will yieid:

2n
2

(2 2
ot (22)(b%"+...+b$,§‘)~ (f)T2"—1(a1+...+am)

2mT?" + (21”)T2"'1(l}1+...+bm) + ( )T2"—2(b%+ LD+

2
+(2;)T2“-2(a%+ N A (2:) (af" +... +am)

So every even term will cancel, to get

2
2(2;1)T2"_'1(a1 +idam) .t 2(271? 1)T(a§”'1 +...+a2

=2 (21”) T b+ bp)+.. . +2 (Qngf 1) TE !+ .+ 20

but by assumption [a1,as,...,8m] =% {b1,b2,...,bp] for k=1,...,2n -1
= 2(3™) T (ay,a2,.. . ,am) =t 2(3)T? (b1, bs,...,bm), 50 We get the desired con-
clusion. |

g

This proposition states how starting with an odd degree solution can be manip-
ulated to yield a complete solution to the Prouhet-Tarry-Escott Problem. These solutions
can also result in an ideal solution if m = n + 1 we can yield a solution of degree2n + 1.
For our example, [0, 24, 33,51] = [7,13, 38,50] for & = 1,3,5 where n = 3[Piel0]. Using

the proposition we see that this odd leads to infinitely many complete solutions

[T+0,T+24,7+33,T+51,T —0,T — 24,T — 33, — 51]
=5 [T+7,T+13,T+38,T+50,T —7,T — 13, — 38, T — 50]

If we let T = 5, then we get one of the many ideal solutions
[5,29, 38,56, 5, —19, —28, —46] =7 [12, 18, 43, 55, 98,33, —45]
Proposition 5. If [a1,a2,...,am| =k [b1,ba,... by for k=2,4,...,2n then
T+a1,...,T+amT—a1,....,T—ap| = [T+b1,.., T+ b, T —b1,...,T — by

fork=1,...,2n-1.
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Proof. Assume [a3,a2,...,am] =k [b1,b2,. .., bm] for k=2,4,...,2n.
When k£ = 2,

(T+a)+...+T+an)?+ T —a)?+...+ (T —am)®
= (T+b1)?+...+ (T +bn) 2+ (T =012 +...4+ (T = bm)?
(T% + 201 +a2) + ... + (T? + 24 + a2) + (T — 201 + @2) + ... + (T* — 2am + a2,)
= (T2 4 2by +02) 4 ...+ (T% + 2by +02) + (T? — 201+ 03) + ... + (T — 2b + B2,)
omT? + Aad +...+a2) =2mT% + 2003 + ... + b2)

Check when k& = 2n —1,

(T+a)™ +. + (T +an) 1+ (T —a)™ 4.+ (T —am)®
= (T +b0)> o+ (T4 b)) 4 (T = b)) o+ (T = b)) ™

So the left hand side of the equation yields,

2n =1\ ron-1_ (2 =1\ ron-2o (20 =1\ on_y
(22 o (Yt (2 ]

n-1 2n—1 2n—-1 2n—2 2n—1 2n—1
+|:( 0 )T + 1 T am+ ...+ on — 1 ) @m
2n—1 2n—-1 2n —1
=1 _ 2n—2 = 2n—1

2n— 1\ on1 _ (20— 1\ 2n2 2n—1Y on_1
—i—[( 0 )T ( 1 T Gm + ... op — 1, %m

So all odd powers of a; will cancel out for all 1 < a; < 2n — 1. So we get,
o2n—1 2n—1
2m( nO )T2”'1+2< n2 )Tzn‘3(a§+a%+...+afn)+

2n-1
...+2(2n*2)T(a%"+a%"+...—I—aﬁf})

Similarly the right hand side would be,
2m (2n{;_ 1) T2 2 (2”2_ 1) T30 £ b2 4 ...+ b2)+

2n—1
...+2(22_2)T(b§”+b§”’+...-z-b?g})
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The 2m (*";1)T?"~1 would cancel. By assumption, [a1,az,...,8m] = [b1,b2,...,bm] for
k=2,4,...,2n.

= 23N T (g1 4 ag + ..+ am) = 25T ED (b + by + .+ b

To get the desired conclusion. a

This proposition is similar to the previous one except we are starting with an
even solution. Similarly, starting with an even solution we can get a complete solution
if m = n+ 1 we will get a solution of degree 2n + 1. For our example, (2, 16,21, 25] =
[5,14,23,24] for k& = 2,4,6where n = 3[Piel0]. Using the proposition we see that this

odd leads to infinitely many complete solutions

[T+2,T+16,T+21,T+25T—2,T—16,T — 21,T — 25]
=5 [T+5,T+14,T+23,T +24,T —5T — 14,T — 23, T — 24|

If we let T = 3, then we get one of the many ideal solutions

[5,19,24,28,1,—13, 18, —22] =7 [8,17,26, 27, =2, —11, —20, —21]
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Chapter 5

Prouhet-Tarry-Escott Problem
Revisited

The following result is well known and it follows easily from Newton’s identities.

8 S

Proposition 6. Let p(z) = H(a: —¢) end g(z) = H(:c —d;). Then [c1,c2,...,Cs) =k
] i=1

te=]
[d1,ds, ..., ds] if and only if p(z) — q(x) is a polynomial of degree s —k — 1. In particular
if le1,¢0,. .., 05 =k 1da,day ..., ds] then s > k + 1.

This proposition is a special case of Theorem 1 from the Basic Properties Chap-
ter in which the proof was given.

The theorem below is attributed to Golden.

k+1
Theorem 2. If [c1,c2,- -+, Cky1] =k [d1,d2, -+ -, dr41] i5 an ideal solution and Zq =0,
—
k1 k+1 ¢
then Z cFt? Z dF+? = 0.
i=1 i=1
k+1 k41
Proof. The condition Zcz- = 0 implies that Zd,- = 0 and thus the corresponding
i=1 i=1

polynomials, p(x) and ¢(z) from Proposition (6) are of the form p(z) = a**1 +az_12F1+
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.-+ a1z +aand g(z) =z +ap_12F 1 4 .- + a3z + b. Since p(c¢;) = 0, we have

k41 k+1 k+1 k+l k-1
0=3 e =Y raa Y kvt Y d vad
t=1 =1 i=1 i=1

k+1 k+1 k+1

=3 Y d Y

i=1 =1

and similarly

k+1 k+1 k+1 k+1
0= Zdip(di) = Zdi‘c+2+ak—lzd? +'-'+a1zd3
i=1 i=1 i=1 i=1
k+1 k+1
By subtracting the last two equalities we obtain Z 2 _ Z df+? =0, O
=1 i=1

A simple observation that [e1,¢2,...,¢5] =¢ [d1,d2,...,ds] if and only if the
5 3

function F(z) = Zec""' - Zed"“’ satisfies F(0) = F'(0) = --- = F¥(0) = 0 prompts us
i=1 =1

to study the functions of the form F(z) = Z ;%% where a;’s and b;’s are integers. In this

1=
m

chapter we will refer to a;’s are the coefficients and to b;’s as the nodes of F'(x) = Z ;€%
o i=1
Let & = {Z a;e%® : a;,b; € Z and N} denote the set of all such functions. If F,G € ¥,
then clea.rl)zr=}*” — G € 7T and FG € U, thus ¥ is a commutative subring of C®(R). A
nonnegative integer k will be called an order of F € ¥ if F{0) = F'(0) = --- = F*(0) = 0.
It will be convenient to assign order of —1 to F € ¥ for which F(0) # 0. The reader
should keep in mind the equivalent definition of order that is, ¥ has order k > 0 if
Soai =0, ab; = 0,...,5 a;b¥ = 0. Notice that according to our definition if F is
order k then it is also of every order that is smaller t;'}llan k. The number of distinct

nodes, b;’s, will be called the size of F' and by ||F| = Z |ai| we denote the norm of F.

i=1
From Proposition (6) it follows that | F|| > 2k + 2 and thus an ideal solution of Prouhet-
Tarry-Escott problem of order & equivalent to finding a function F € ¥ of order & with
|1F|| = 2k + 2.

Proposition 7. If F is of order k, then the size, m, of F satisfies m > k 4+ 2.

Proof. If ¢;’s are distinct integers then the vectors {¢; := [1,¢;,¢%,. .., cf] }f:ll are linearly

’ e

independent. This follows easily from the fact that the determinant of a matrix whose



32

column vectors are {¢;: ¢ =1,...,k+ 1} is Vandermonde determinant and this it is not
equal to 0. Now the system Ya; = 0, aih; = 0,...,3  a;bf = 0 is equivalent to
5" aib; = 0; thus if there are fewer than (k + 2) distinct b;’s then each a; = 0 making
F=0. O

The following Leibniz rule for higher order differentiation will be frequently used.

Proposition 8. If f and g are two functions that are n times differentiable at x, then
fg is also n times differentiable at © and

(9@ =3 () @)

=0

Proposition 9. If F is of order k and G is of order r, then FG is order k+r + 1.

Proof. First assume that k > 0 and r > 0. By Leibniz rule,

(k1) () — fiig (k +r+ 1) ) (e (ebr+1—4)
(FG) (0) ;0 : FOOG (0).
If ¢ < k&, then F(i)(O), while if 4 > k then k+r +1~4 < r and hence in this case
Gk+r+1-9(0) = 0. Similarly one shows that FGW(0) for all 0 <! < k+r. If k > 0 and
7 = —1, then FG is of order k follows from Leibniz rule again. If k = —1,r = —1 then
FG is at least ofi order —1 by definition. O

m
Proposition 10. If F(z) = Zaiebf” is of order k then for any integers ¢ and d the
=1

m
function G(zx) = Z ;e %t 55 4lso of order k.

i=1

kit
Proof. Write G(z) = Zaiedbiwe“. Then by Leibniz rule,

i=1

l

m {
GO0y =>" (i) d D abid Tt =) (i) d'd= F(0)
i=1

=0 1=0

whichisQ0for 0 << k. a

It follows from Proposition (9) that if F' has order k then FG has order at least
k. The next result is also attributed to Gloden.
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k-1
Corollary 1. If [c1,¢2, -, ck+1] =k [d1,d2, -, dk+1] @5 an ideal solution, ¢ = Zci
~
k+1 k+1 '
then F(z) = Ze((k"'l)"f_c)"’ ~ Ze““”di_c)x is also an ideal solution and moreover

i=1 =1
F&t2)(0) = 0.

Proof. By Proposition (10) F(z) is also an ideal solution. The nodes, {(k + 1)c; — c}+4} of

k1 k1 ket
F(z) satisfy Y _((k+1)e;—c) = (k+1) > ¢i=»_ ¢=0s0 by Theorem (2) F*+2) =0. O
i=1 =1 =1

An immediate consequence is the following corollary.

m
Theorem 3. Let F(z) = Zaieb“” be of order k but not of order k + 1. Then there is

=1
m

a unique number ¢ such that G(z) = Zaie(kﬂ)b""’”m is of order k and G¥*+2(0) = 0.
—
(k+1)FB+2)( '

Moreover ¢ = (k-2) FOFFTY(0) -

Proof. Tt follows from Proposition (10) that G(x) is of order & for any ¢. By Leibniz rule,

k42
600 =3 (FF) 17 PO0) (-2

i=0
= (k + 1)***2F&FD(0) — c(k + 2)(k + 1) FEFD(0)
P . . . (k+2)
which is 0 if and only if ¢ = éigﬁ =0 (8%' O
The next Corollary is an immediate consequence of Corollary (1) and Theorem
(3).
m
Corollary 2. If F(z) = z:aie(”'”c is an ideal solution of order k, then
(k+1)> abft? = 5 Y lail bi(k+2) Y adf T
m k+1 1 ™m
Proof. By Corollary (1) G(z) = ;€% where ¢ = ;= = a;| b; satisfies
f. By Corallary (1) G(a) ;z(w) Do =53l
E+1)F 0
G*+2)(0) = 0. By Theorem (3) ¢ = (kIZ;F(kH EOJ' O

The following result might be interesting in its own.
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m n
Lemma 1. IfZa,ib{: =0 forj=0,1,...,k and chdf =0 for j =0,1,...,7 then
; I=1

=1
m n m n
k o |
E E aicl(bi+dl)k+T+2:( ']:_T_—: ) E aibeE adyt.

i=1 =1 i=1 =1

m n
Proof. Let F(z) = Zaiebim and G(z) = Z ¢e%i®. By Leibniz rule,
i=1 =1

k+r+2

FG(k+r—i—2) (0) — Z (k + 7“ + 2) F(i) (O)G(k+r+2—z’)(0).

2
=0

Since for ¢ < k, F®O(0) =0, and for i > k+ 2 then (k+7r+2—i < r), GEH+2-9(0) = 0

the last equality simplifies to FGHF++2(0) = (*}71%) P+ (0)G+1)(0). O

Proposition 11. The function (e® — 1)**! is of order n.

Proof. Let F(x) = ¢ —1 = ¢ — ¢%%. Then F is of order 0. By Proposition (9) F2(z) is
of order 1, F*(z) = F2?(z)F(z) is of order 2, and so on F**1(z) is of order n. O

Since the nodes of (¢ —1)"*! are 0,1,...,(n+ 1) by Proposition (7) it follows,
that the maximum order of (¢* — 1)**! is n. In fact the following is true.
Proposition 12. Let F(z) = (¢ — 1)**1. Then FD(0) = n +11.
Proof. Let G(z) = (¢* — 1) and g(z) = ¢* — 1. By Leibniz rule,

el n+1 : ,
e =3 ("7 )60,
i=0

Since ¢ is of order n — 1, the last equality reduces to

Flnt1) (0) = G(n+1)(0)g(0) + (n+ I)G(n) (0)9’(0)
= (n+1)G™(0)

Now the proof can be completed by induction on n. O

Proposition 13. Let F(z) = (¢ — 1)®L. Then ||F| = 2**1,

nf-1 ‘TL-|-1 N
Proof. Trom F(z) =" ( . )(—1)‘”*1-16” we get
i=0
n+1

141 :
7= (") = @y =

=0
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Proposition 14. A product of v consecutive integers is divisible by r!.

Proof. We have to show that if r is a positive integer, then r! |(¢+1)(¢+2}) - - - (¢+7) for any
integer . The proof is by induction on r. Clearly it is true for » = 1. Now assume that
there is an 7 > 1 for which the statement is true. Let p(¢) = (¢+1)(¢+2) - - - (t+r)(t+r+1).
From the identity p(t+1)—p(¢) = (r+1)(¢+2) - -- (¢ +r+1) and the induction hypothesis
' + 1Dt +2)---(t +r+ 1), since the right hand side is a product of r consecutive
integers it follows that (r + L)![p(t + 1) — p(¢) for every t. If £ > 1 we write p(t) =
(8(t) = plt — 1) + (p{t — 1) =9t = D) + -+ + (1) — p(0)) + ( + 1)! and because
(r + 1)! divides every term on the left hand side we have (r + 1)!|p(¢). If ¢ < 0 we write
p(t) = (p(t) —p(t+1)) + (Pt + 1) —p(t +2)) + - - + (p(=1) — p(0)) + (r + 1)! and again
we conclude that (r + 1)! |p(t). O

Theorem 4. If Fis order k then (k + 1)! divides F(0) (= Zaibf)) for every non-

negative inieger r.

Proof. If » < k this is obvious since in the case F(7(0) = 0. Assume that » > k. Let
T

pr(t)=F+1)E+2)---(t+7r) = ZCjtj. If b is an integer then p,-(b) is a product of r
=0
consecutive integers and thus r! |p,(b). Thus r! |Z a;pr(b;). But

D aprb) = 0 b
=0

> oY a
3=0

k r—1
=Y ¢ FD0)+ > F9(0)+ F(0)
j=0

j=k+41
r—1
= Y FO0)+ F(0)
F=k+1

We complete the proof by induction on r > k. For r = k41 the previous equality simplifies
to Zaipr(bi) = F")(0) and hence (k + 1)!|[Fr)(0). If the statement is true for some

r > k+1 then from (r + 1)! ]Z a;pr4+1(b;) the identity Zaipr.ﬂ (bi) = Z c; F9(0) +
j=h+1
Fr+1(0) and induction hypothesis it follows that (k + 1)! |F+1(0). O
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m

Corollary 3. If F(z) = Zaiebim is an ideal solution of order k, then (k + 2)! divides
i=1

Fiet2)(0),

Proof. By Corollary (2) (k + 2) divides F*+2(0). By Theorem (4) ‘(k + 1)! divides
F&+2)(0), 0

m
Theorem 5. A function F(z) = Zaieb"‘“ where by < by < -+ < by, is order k if and

i=1
d
only if F(x) = e"® Z ci(e® — 1)+ where ¢; are integers and d = by, — by — k.
i=1
Proof. If F(z) = "= Z c;e¥® then by Proposition (11) and the comment after Propo-

i=1
m
sition (9) the order of F is at least k. Next assume that F' = Zaiebfz has order k.

First we will assume that 0 = b;. By Proposition (7), by, > & —i—z?and by Proposition
(12) E(%l_lgg!l is an integer ¢;. Let Fi(z) = F(z) — c1(e® — 1)**1. By Proposition (12)
FED(0) = Fl+1 (0 — f{;%gl(k +1)!=0so Fi(z) is of order k+ 1. Since the nodes of
c1{e® — 1)%+1 are 0,1,2,...,k + 1, we have Fy(x) has order k¥ + 1 and nodes between 0
and bp,. If by, > k+2, the same argument applied to Fj(z) shows that there is an integer
co such that Fp(z) = Fi(z) — c2(e® — 1)¥*2 = F(z) — ¢1(e® — 1)#*! — co(e® — 1)¥*2 has
order k + 2 and nodes between 0 and b,,. Notice that continuing this argument the order
is increasing by 1 while the nodes remain between 0 and b,,,. We continue this argument
until the order, &k + d of Fy satisfies ¥ + d = bm. By Proposition (7) Fy(z) = 0. Hence

d
in this case F(xz) = Zq(em — 1)**, If b # 0, then we can apply the argument to
i=1
F(z)e~57, for the in this case F(z)e~®* has order k¥ and its nodes that start at 0.

O

m
Corollary 4. The coefficients a;’s and the nodes by < be < ... < by, satisfy Zaib:{ =0

i=1

m
forr=0,1,...,k if and only ifZaia:b" =g (z — 1)F+1p(x) where p(z) is a polynomial
, =1
with integer coefficients.

Proof. The proof follows immediately from Theorem (5) with the substitution z = e*. O
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If F(z) is of order k, then by Proposition (9) F(x)(e® — 1) is order k + 1. The

next corollary states that the converse also holds.

m
Corollary 5. If F(z) = Zaieb"” where 0 < by < b < -+ < by, is of order k then

i=1
there is G(z) with nodes between b1 and by, + by — 1 such that G is of order k — 1 and
F(z) = G(z)(e* - 1).

m m m b;—1
Proof. We can write Zaieb"” = Zai(eb"w -1)=("-1) Zai Z e, Let G(z) =
i=1 i=1 i=1 =0
bi—1

m
Za, Z /. Then by Theorem (5) (e* — 1)G(z) = ebiqu(e — 1D Thus G(z) =
i=1 3 =0 i=1

eh® Z c;(€® — 1)** and hence it is. of order k — 1. O
=0

Proposition 15. Let F(z) = (e® — 1)"*1. Then F?™#2(0) = 231 (n 4 2)L.

Proof. The proof is by induction on n. For n = 1, direct calculation shows that F®)(0) =
28 —2 =6 = 23l. We write F(z) = G(z)(e® — 1), then by Leibniz rule F("+2(0) =
(n + 2)G 1 (0) + ("”2*'2) G™(0) and by Proposition (12) and the induction hypothesis
Fr+2(0) = (n + 2)%(n + 1) + 8220 5y k1, 4 o)) O

The following corollary should be compared to Corollary (3).

Corollary 6. Let F(x) be of order k, then for k odd (k+ 2)! divides F*+2)(0) while for
k even L(k +2)! divides F(:+2)(0).

d
Proof. By Theorem (5) F(z) = e"® Z ci(e® — 1) and so

i=1

FO+D)(0) = (%01 (7 = 1)+ + c(e® — 1)*+2)) 2D
k+1
li(k + )l +ea(k+ 2k + 2)(k + 1)1by

Now if & is odd (k + 2)! divides the left hand side of the last equality, while if k is even
then £51 is not an integer so the best that can be said in this case is that §(k+2)! divides
FE+2)(0). O

The last two theorems use ideas from Wright [Wri59], to give a combinatorial

solution to Prouhet-Tarry-Escott problem. Our results are slightly better than that of
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Wright since unlike his solutions, we will show that there are solutions with distinct

integers.

k(k+1)

Theorem 6. For every k thereis ans < +1 such that the system [a1,as,...,as] =k

[b1,b2,...,bs) has an integer solution.

Proof. Let s be an integer to be determined later. To each collection of s distinct numbers
{a1,a2,...,as} € {1,2,...,n} we will assign an “address” [, a2, ..., ] where for 1 <
i < k the 4-th term is defined to be o; = af + a§ + ... + at. Since a1 < sn,az <

k k ’°("’
= §%n = dlffereut addresses.

sn?,..., ap < sn® there are fewer than snxsn®x - -x sn
On the other hand there are (7) different collections of s distinct numbers {a1, a2, ..., a,}.
Thus if (S) > sfn M3 here will be at least two different collections sharing the same
address. But two collections {a1,0a2,...,as} and {b1,bg,...,b,} share the same address
if and only if [a1,aq,...,as] = [b1,b2,...,bs]. So it remains to show that for sufficiently

. klk+1)
large n, and for s < %‘H) + 1 the inequality (Z) > sfn . has a solution. For fixed s

we can think of (7) = (")x(”"l)';!x(n_(”lnas a polynomial in n and of degree s. Hence
if this polynomial has a larger degree than the degree of the polynomial s*n 5 then
for all large n we will have (7) > s*n" 5™ But this is the case if s = -k(kzﬂ + 1. Note

8
k(k-l—l)

that it is possible to have s < + 1 in the case that some of the terms in the two

collections are the same. O
The last proof can be easily modified to give us the following stronger result.

Theorem 7. For every k, and every p there is s < k—(ng) + 1 such that the system
le11, 012, ... 015] =4 [@21,022,...,02s) =k **- =k [Bp1,p2,...,Gps] =k has integer solu-
tions.

) . . k(k41)
Proof. Tt is enought to prove that for 5 < ﬂk‘?il_l +1 the inequality (2) >ps*n~=2  hasa

solution, for in this case there will be at least p distinct collections, {a11,a12, -, @15}, - -,
{apt,ap2,- -+, aps} to share the same address. But as in the proof of Theorem (6) this
inequality will certainly have a solution if the degree, s of the polynomial is greater than

the degree, ﬂkle) of the polynomial pskn@. |
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Chapter 6

Conclusion

The Prouhet-Tarry-Escott Problem is still unsolved and requires more research.
This thesis has included the necessary background and history necessary to understand
the origin of the problem. In addition it has shown the known properties the problem
possess in order to show how new solutions can be acquired. The previous chapter
showed the problem in a new perspective in order to find and verify new properties. The
final theorem in the last chapter is a small contribution in the effort toward solving this
problem. Though this result is only slightly stronger than Wright’s, it shows how progress

is being made toward the ultimate goal of solving this problem.
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