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Abstract

The classic study of Pell’s Equation consists of solutions to the diophantine 
equation x2 — dy2 = n where d and n are fixed integers. This thesis aims to extend the 
notion of continued fractions to a new field, Q(a?)*,  in order to find solutions to generalized /
Pell’s Equations in Q[x]. Historically, mathematicians were interested in the specific Pell 
Equation x2 — dy2 — 1 which has influenced the primary goal of this project to become 
the solvability over Q[a?] where n = 1. The difficulty in generalizing solutions over Q[z] 
stems from the complexity of the continued fraction expansions of the elements belonging 
to the field extension Q(®)*.  The investigation of these new solutions to Pell’s Equation 
will begin with the necessary extensions of theorems as they apply to polynomials with 

rational coefficients and fractions of such polynomials in order to describe each “family” 

of solutions.
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Chapter 1

Introduction

A common topic of Number Theory courses is the study of Continued Fractions 

which was first introduced in 1202 by Leonardo Fibonacci in his work Liberation. Today, 

the continued fraction expansions of most real numbers can be completely characterized 

thus creating the opportunity for many applications. The study of continued fractions is 
a method mathematicians have used to explore the notion of the extension of Z to Q and 
its completion to R with respect to absolute value. The idea behind this extension is one 

that can be paralleled to a new ring, Q[aj]. We would like to consider the extension of 

Q[a;] to Q(z) and its completion to Q(e)*  with respect to a Non-Archimedian Valuation.

The traditional study of Continued Fractions can be segmented into two main 
categories: those with finite continued fraction expansions and those with infinite contin

ued fraction expansions. All rational numbers are expressible as finite continued fractions 
while irrational numbers are expressible as infinite continued fractions. Infinite continued 
fraction expansions can be subdivided further into two categories: periodic (repeating) or 
non-periodic expansions. In order to characterize real numbers by their continued frac

tion expansions, the idea of convergents is used; convergents are approximations found 

through partial continued fraction expansions whose limits converge to the real number 

they represent.

Although all irrational numbers are expressible as infinite continued fractions, 

not all irrational numbers have periodic or eventually periodic continued fraction expan

sions. It can be shown that if a 6 R — Q is a root of a quadratic polynomial of the form 
Ax2 + Bx 4- C where A, B, C and A / 0, then a has either a periodic or eventually 
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periodic infinite simple continued fraction expansion. The expansion is periodic from the 

its start if a > 1 and — 1 < a( < 0 where af is the conjugate of a. This result plays a vital 
role in the characterization of the solutions to the Pell Equation x2 — dy2 = 1, because if 
d is a positive integer that is not a perfect square, then y/d is a root of the polynomial 
x2 — d. Therefore, \fd has an eventually periodic simple continued fraction expansion. 

The investigation which ensues from this property eventually leads to Theorems 8.6 and

8.7 from Strayer’s text:

“Theorem 8.6: Let d be a positive integer that is not a perfect square. Let 
denote the ith convergent of the eventually periodic simple continued fraction 
expansion of Vd and let p be the period length of this expansion. If p is even, 
the positive solutions of the Pell Equation a:2 — dy2 = 1 are given precisely 
by x — Pnp-i and y — qnp-i where n is a positive integer; if p is odd, the 
positive solutions of the Pell Equation are given precisely by x = P2np-i and 
y = q2np-i where n is a positive integer.”

“Theorem 8.7: Let d be a positive integer that is not a perfect square and 
let xi,yi be the [least positive] solution of the Pell Equation x2 — dy2 = 1. 
Then all positive solutions of this equation are given precisely by xn, yn where 
xn + ynVd = (aq + yiVd)n and n is a positive integer.” [Str94]

In summary, the solutions to the Pell Equation x2 — dy2 = 1 can be found by substituting 

the numerator and denominator of the convergents of Vd for x &; y. Once the least 
positive solution, also known as the fundamental solution, is found, all other positive 
solutions can be generated through the final equation given in Theorem 8.7. This is truly 
a fantastic result. For a review of the traditional Continued Fraction theory see [NZM91], 

[Old77], or [Str94].
Although this thesis is similar to the works of Crawford and Vicknair, we have 

extended the theory as done in [Str94]. The works of Crawford and Vicknair are generally 

inaccessible, yielding the need to duplicate some proofs in detail; however, the proofs will 

be different because they are an adaptation of [Str94], whereas the others used [NZM91].
It is the types of results stated above which we will try to duplicate in the new 

field Q(x). Q(e) is the field of fractions of polynomials with rational coefficients and is 
also an extension of Q[rr] which is the domain consisting of polynomials with rational 

coefficients. Ultimately, we will be creating an extension mapping from Qfz] to Q(a?) 

and completing it to Q(z)*  with respect to a Non-Archimedean valuation similar to the 



3

extension mapping from Z to Q and its completion to R as mentioned above with respect 

to absolute value.
Elements belonging to Q[a;] are polynomials with rational coefficients, that is, 

elements have the form Anxn + An_ia;n_1 + + Ao where A{ G Q V i > 0. Ele
ments belonging to Q(a;) are fractions of polynomials with rational coefficients or frac- 

tions of the elements belonging to Q[®]; therefore, elements may have the form 

where f(x),g(x) 6 Q[®] and g(x) / 0. It is the elements in Q(&) which we complete 
to Q(a;)*  by taking the roots these elements; elements in may have the form

' where all terms are defined as above, but n must be an even integer. Contin

uing on, the y/Anxn + An-if'1 + Ao = CkXk + Ck-ix^1 + ... 4- Co + GLiz-1 +
—oo

C-2X~2 + ... = °ix* where k = n/2 and Cfc G Q for some k G Z such that 

(C(®' + Q-i®'-1 +... + Co + C-jx-1 + C_2X"2 +.. .)2 = Anxn + An_ix"-1 +... + 4). 

It is the continued fraction expansions of these elements which we will be interested in.

The continued fraction expansions of the elements in Q[rc]3 Q(e), and Q(®)*  
have many features in common with Z, Q, and R when it comes to their expansions, 

but there are important differences as well. Continued fraction expansions in our new 

rings and fields have the form [ao,ai,...], where deg(ai) > 0 for i > 0. Similar to 
the elements of <Q>, elements of Q(x) have finite continued fraction expansions. The 
elements Q(®)*  — Q(as) have infinite continued fraction expansions similar to elements of 

R — Q. For our purposes, the infinite continued fraction expansions can be categorized 

as Eventually Periodic if a = [do, ati,... a^, , an] or Purely Periodic, or Periodic
for short, if a = [ao, ai,... > an], A special case called Almost Periodic also occurs, but 

is best discussed at a subsequent time. A myriad of theorems and definitions from the 

traditional study of continued fractions hold true for our new rings and fields, with only 

minor changes or variations. For example, the idea of the greatest integer function no 

longer exists now that we have moved away from Z. Instead, we will be using the “integral 

part” of an element.
—o°

Definition 1.1. Define a to be 22 Cfo;*.  Then the integral part of a} denoted [[btJJ, is 
i—k

0

defined as 22 cixl-
i=k

The reader can observe that the “integral part” is merely a generalization of the 
o

greatest integer function where [[Vo]] = 22 (IO)1 for Ci G {0,1,2..., 9}.
i=k
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Many of the differences that arise in our setting are due to the fact that we are 

no longer dealing with measures of distance. Since we are not considering the extensions 

to these new rings and fields with respect to absolute value (because it ceases to hold 

in Q[x]), we need a new way of comparing two elements. In fact, we are not even 

considering an Archimedean valuation anymore (i.e. absolute value), but we will be 

considering the extension from Q[ar] to Q(x) and completing it to Q(e)*  with respect to 

the Non-Ar chimedean valuation which will be defined as follows:

Definition 1.2. Let P be an ordered field and K be afield with a,b G K. Then a mapping 
v : K —> P is called a Multiplicative Non-Archimedean valuation if
(1) v(a) > 0 for a 0; v'(0) — 0

(2) v(ab) = v(a)v(b)
(3) v(a + b) < max{v(a),v(b)}.

Using this valuation, we define v(£) = e,de9(f)-deg(g') where e is the transcendental 

number 2.718.... Traditionally, older texts tend to use multiplicative valuations while 

modern texts tend to use additive valuations, but translating from one to the other is 

possible. The Non-Archimedean valuation differs from the Archimedean valuation (i.e. 

absolute value) in that the Archimedean case, <j>(m ■ 1) = 0(1 + 1 + 1 + 1 + ... + 1) >1 
compared to the Non-Archimedean case 0(m ■ 1) = 0(1 + 1 + 1 + 14-...4-I) < 1. Also 

in the multiplicative Archimedean valuation, the triangle inequality holds, 0(a + b) < 
0(a) + 0(&); whereas, this is not true in a Multiplicative Non-Ar chimedean valuation by 

(3). For an in-depth study on valuation theory, see Zariski and Samuel (1991) and van 

der Waerdan(1970).
Since we have picked Q[rc] as the fixed ring similar to "L, we expect vital propri

eties to hold; specifically, the division algorithm.

Theorem 1.3. (The Division Algorithm)

Given f(x),g(x) G Q[a;] with g(x) 0, then there exists unique q(x),r(x) G Q[rc] such 
that f(x) = q(x)g(x) + r(x) where deg(r(x)) < deg(g(x)) or r(x) = 0

Proof. Notice, if deg(f) < deg(g), then f = 0 ■ g + f where q = 0 and r = f and the 

argument is done. Now, consider deg(f) > deg(g) and let f = amxm + am-yxm~14~.. .+ao 

and g = bkxk + b^yx^1 + ... + bo with am, bk / 0. Letting qo = ^fxm~k and fy = 
f ~ p(<?o), we have deg(fy) < deg(f).
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Notice that if deg(fi) < deg(g) then q = qoj = fl finishes the proof, so assume 
not. Then letting q± = 5^=ixm-k-i anj y2 = ^ _ whcre a/m_1 is the leading 

coefficient of fi yields dep(f2) < deg(g). Then letting q — qo + qi,r = f2 finishes the 

proof, therefore assume not. Continuing on in this manner, we notice deg(f) > deg(fi) > 
dcg(f2) ■ ■ . creates a decreasing sequence. Therefore, there exists some fn such that 

deg(fn) < deg(g) or deg(fn) = 0. Letting q = qo + qi + .. .qn-i, r = fn f(x) = 
g(x)q(x) + r(x) as desired.

Now, to prove uniqueness, suppose there exists qi,q2jij2 such that f = qfjf) 4- n and 

f ~ qz9 + r2 with deg(rf) < deg(g) and de^(r2) < deg(g). Then we have,

qi(g) + n = 92(5) + ^2 
n - r2 = (q2 - qi)g

=^g\(r1-r2)
but deg(rt — r2) < deg(g) => n — r2 = 0

=> n = r2

Also, (q2 - qi)g = 0=>p = 0orq2-Ql = 0
but g / 0 so qz — qi = 0 => q2 = Qi □

Having the division algorithm for elements in Q[rc], we can define other properties 

such as the greatest common divisor.

Definition 1.4. Let f(x) & g(x) € Qfru]. The greatest common divisor of f(x) and g(x) 
is a polynomial d(x) of highest degree such that d(x) divides f(x) & g(x). We denote the 
greatest common divisor of f(x) & g(x) by gcd(f(x)ig(x)).

With the division algorithm and the greatest common divisor, we are now ready 

to discuss continued fractions.
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Chapter 2

Continued Fractions

Before we can generalize solutions to Pell’s Equation, we must generalize the 

notion of continued fractions. Through this generalization we can create infinitely many 

more solutions by comparing and contrasting the continued fraction expansions in the 

new rings and fields with those from the real numbers.

2.1 Finite Continued Fractions

As previously stated, having the division algorithm for elements in Q[x] allows 
for a formal definition of a finite continued fraction:

Definition 2.1. The expression

1
ao 4-------------------------------------

1
ai 4------------------------------

1
a2 +---------------------

1
•. 4---------------

1 
On-l 4-----

where ao, aj, a2,..., an G Q(&), deg(af) > 0 for 0 < i < n, and ai, a2,••■, an 0 is 
said be a finite continued expansion and is denoted by [ao, ai, a2,..., an]. A finite simple 
continued fraction is a continued fraction expansion in which ao, ai, a2, • • ■, an 6 Q[rr].



7

It is important to note that if the numerator has smaller degree than the de
nominator, continued fraction expansions may begin with 0. Moreover, deg(ai) must be 

greater than 0 for all i to ensure that each finite continued fraction expansion is unique. 

For our purposes, we are only interested in the finite simple continued fractions and their 

expansions. Here are a few examples of finite simple continued fractions.

Example 2.2. Find the finite simple continued fraction expansion of

dx9+21xs-41x7-217x6-428lxf+6x3+42x2+W2x+128

6x7+3x6—80x5+6a?+24 *

By the division algorithm,

6a;9 + 21m8 - 41a?7 - 217a;6 - 428a;5 + 6a;3 + 42a;2 + 102a; + 128 
= (6m7 + 3a;6 - 80m5 + 6a; + 24) ■ (a;2 + 3a; + 5) + (8m6 - 28a;5 + 8) 

6a;7 + 3m6 - 80a?5 + 6a; + 24 = (8a;6 - 28a;5 + 8) ■ (|a? + 3) + 4a;5 

8a;6 - 28a;5 + 8 = (4a;5)(2a? - 7) + 8
4a;5 = (8)(l/2o?5) + 0.

Dividing each equation by the first factor on the right hand side yields,

6x9+21x8-41x7-217a?6-428x5+6x3+42x2+102x+128 _ „2 , q~ , r , 8a?6-28a?5+8
g;c7_|_3a;6_80a:5+6x+24 — T v -J T 6x7+3x6-80x5+6z+24

6x7+3x6—80x5+6x+24 __ 3„ i q , 4x5
8;c6_2g,c5_j_8 4J, □ T 8xd-28x5+8

8x6-28x5+8 % _ 7 < 8
4^5 *X  { -t-

4a?5 _ 1„5
8 ~ 2^ '

So combining these ratios we have,

6a;9+21a;8—41x7—217x6—428x5+6x3+42x2+102x+128 _ ™2 i q~ , k t 1 _________
6x7+3xd-80x5+6®+24 _ I J I 6a:7+3a:5-80a:5+6^+24

8 a:5 - 28a:5 +8

= a?2 + 3a? + 5 + 1—i------ = x2 + 3a? + 5 + f3„l3n 1—i------<4a:+3)+-^z^7i <4a:+3)+(2a:_;)+--r-

4a:5

- a?2 + 3a; + 5 + ,3 |3)| 1
(4^)+(2:c_7)+ i

7 3:5

Thus, = [z2 + 3a; + 5, + 3,2x - 7, Jar5].
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Example 2.3. Find the finite simple continued fraction expansion of 

______ 6x3415s44_________
30x5418s4481s3 465s2430s44'

Again by the division algorithm,

3O.t5 + 18a;4 4- 81a;3 4- 65a;2 4- 30a; 4- 4 = (6a;3 4- 15 a; 4- 4) • (5a;2 4- 3a; 4-1) 4- (3a:) 
6o?3 4- 15a; 4- 4 = (3a;) • (2a;2 4- 5) 4- 4) 

3a: = (4)(|a?) + 0.

Dividing each equation by the first factor on the right hand side yields,

30s5 418s4481s3465s2430s44   r 2 i q„ > -i i 3s
6a.3+15a.+4 -w -rox-r i -r 6;c3+i5a;+4

=2x2 + 5 + ^

3s — 3
4 “ 4J"

So combining these ratios and inverting we have,

______ 6s3415s44 ‘________
30s5418s4481s3465s2430s44 = 0 + 5s2+3x+l+-iJ+31:E5a:+4

0 + (5x2+3s+l)+-3;ii+263:+4' 0 + (5z2+3s+1)+-j;2+16)+^

° + ■■

Is®)

Thnc 6s3415s44_________  _
X11US> 30s5418s4481s3 465s2430s44 [0,5a;2 4- 3a; 4- 1,2a?2 4- 5, |a;].

The preceding examples seem to suggest that elements of Q(o?) have finite simple 

continued fraction expansions; in fact, this is the topic of our next theorem.

Theorem 2.4. Let a G Q(e)*.  Then a G Q(o?) if and only if a is expressible as a finite 
simple continued fraction.

Proof. (=>) Assume a G Q(a). Then a = with f(x),g(x) G Q[a;] and g(x) 0. Then 

by the division algorithm of polynomials,

f(x) — g(x)q0 + r0 where deg r0 < deg g(x) 
g(x) — roqi 4- ri where deg n < deg ro 

rQ = ri<?2 + r2 where deg r2 < deg n
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rn-3 = rn_2qn_i + rn_x

rn—2 — rn—-yqn

with go, «1, •' • , 9n € Q[®]- Thus = g(^gy° = go +-^ = qo + ^- 
r0

Similarly, = qi + = qi + Continuing on in this manner,
ri

^=<72 + ^

7^ = Q3 +
T3

1

1 
rn~2 
rn — 1

Substitution yields, = g0 4-
1

qi +
1

Q2 +
1

+----
1

Qn-1 "I-----
On

= Ivo, Vi,---, qn] as .desired.
(<$=) Let a be expressible-as a finite simple continued fraction, say

a — [ao, ai,, an] where ao, ai,... ,an e Q[a;]. Notice if n = 0, a = ao G Q(a) and if 
n = l,a!=:ao + ^-:= Qp^1i+1 G Q(a?). Assume a € Q(x) for n = k where k > 1. Consider 
a = [00, a!,..., afc+x] = a0 + [ai>a2,i,ajb+1] ■ the induction hypothesis, [ai, a2,..., afc+1] 
6 Q(rr). Let AM = [ax, a2,..., aft+1] for f(x),g(x) G Q[z].
Then, a = ao + 777 = ao + yy|j = aof(j)+g(a:) £ Q^). So by Mathematical Induction, 

s(®)
a 6 Q(z). □

2.2 Conver gents

In order to develop an infinite continued fraction expansion, we are going to use 

the idea of convergents to assess how adding terms to the expansion affects it. For now 

we will consider the convergents of finite continued fraction expansions.
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Definition 2.5. Let a = [ao, ax,..., an] be expressible as a finite continued fraction. The 
finite continued fraction G = [do, 01,..., Oj], 0 < i < n is said to be the ith convergent of 
a. If i = n, then a = Cn = [ao,ax, ■ • ■ ,an].

Consider the following example:

Example 2.6. Find the convergents of a = [a;4, x3, x2, a;].

The convergents of a are:

Co = [a?4] = z4
C1 = [xi,x3] = x4 + ^ = ^i
C2 = [x^x2] = x4 +
C3 = [x4,X3,X2,l) = x4 + ■*  1 1 - ■Ew+* 7+»5+* 3+i

x6+xa-|-x

and a = C3 = x'°+iLhI+1

Notice in our example, each of the convergents is becoming a “better” approx

imation of a; it converges as the name suggests. This method of computing each of 

the convergents is not practical; in fact, we can define each convergent by the following 

recurrence relation so that we may compute them efficiently.

Proposition 2.7. Let a = [ao, ai,..., an] be expressible as a finite simple continued 
fraction. Define po,p^,... ,pn and 2o> Qi, • • • > Qn by the following recurrence relations:

Po = a0

Pl = axa0 + 1

Pi = aiPi-i + Pi-2

20 = 1
21 = ax

2?' — ai2i-l + Qi—2 
for 2 <i <n. Then,

Ci = for 0 <i < n.
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Proof. Notice, if i = 0,

If i = 1,

If i = 2,

Cq ~ [a0] = ao =

C1 = [ao,ai] = ao + i = 2^±i = ^.

C2 = [O0,Ol,O2l=O() + _lx = 2totll = ^to = a
ao

Assume, for the sake of induction, that Ck — [ao > ai,. - -, a^] = ~. Consider,

— [ao, ai,..., ak, a^^i] = [ao, ai,..., ak 4- ]
_ (ofe+^^Pk-l+pfc-2 /gince pk _ akPk~i+Pk-2

(ak + ~^/)<lk-l+<lk-2 ' 9k «fc?fe-l+?fc-2

_ ^fc+1 (QfcPfe- 1+PJc-2)+Pfc-1 
«fc+l(“fc?fc-l+?k-2)+9fc-l

= gfc+i.9k+gfe~i the induc^on hypothesis)

_ Pfc+i
(Tk-j-1 ‘

Thus by Mathematical Induction, Ci = for 0 < i < n. □

We can compute the convergents of Examples 2.2 & 2.6 using this alternate 

technique.

Example 2.8. Compute the convergents of

6a:9+21z8—41a:7—217a:6—428x5+6ac3+42a:2+102a:+128   r™2 i 9™ ( r 3„ 1 q o„ *7  1™51 
6a.7+3,ctJ_80;c5+6;c+24 — -l- + 0, 4x -t- <3, ZX (,2xj

using Proposition 2.7.

Then ao = x2 + 3x 4- 5, ai = |jc 4- 3, a2 = 2x — 7,«3 = |rr5. So we have,

po = x2 4- 3$ + 5

pi = 4- 3) ■ (z2 4- 3z + 5) + 1 = |a;3 + ^-x2 4- ^x 4-16
p2 = (2z-7)-(|a;34-^z24-^4-16)4-(;c24-3z4-5) = |z44-^3-^#2-217a?-107 

p3 = (|a?5) ■ (|rr4 + ^x3 - ^-x2 - ~x - 107) + (|a?3 + ^x2 4- ^x + 16)
— 3„9 _l_ 21 ™8 _ 41„7 _ 217 „6 _ 107^.5 i 3 3 , 21™2 j_ 51™ t ifi

~r g g g ds 2 * 4^ * 4 ~ 4
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qo = 1
qi = fa + 3
q2 = (2x - 7) ■ (|a? 4- 3) + 1 = 3a?2 + |a? - 20
93 = (^5) ■ (3a?2 + |a? - 20) + (|x + 3) = |a?7 - |a?6 — 10a?5 + fa 4- 3.

So,
Co = = g2+3:c+5' = x2 + 3x 4- 5

_  pi _ 4g3+-4*g 2+~4*g+16  __ 3s3+21s2A51s4~64
O1 _ gi _ ^-f-3 “ 3x+12

z~»   P2   — ^-x2~107   6s4+21s3—41s2—217s—428
92 ~ 3®2+J®-20 _ 12s2—18s—80

°3 “ 93 “ glcT_|a:6_1oa;5+3;+3

_ 6s9+21s8—41s7—217s6—428s5+6s3+42s2+102s+128
— 12s7 - 18sa-80sa+6s+24 '

We caii compare these new results of the convergents of this recurrence relation

ship with those of our first convergent computations.

Example 2.9. Compute the convergents 101 — [a?4; a;3, a?2. F using Proposi
tion 2.7 and compare the results with Example 2.6.

We have ao = a?4, ai = x3, a2 = x2, = x. So,

Po = z4
pi = (x3) ■ (a?4) + 1 = a?7 + 1

p2 = (a?2) • (a?7 + 1) + (a?4) = a?9 + x4 + x2
p3 = (a?) • (a;9 4- x4 + a;2) + (a?7 + 1) = a?10 4- x7 + a?5 + a?3 + 1
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Notice that in Examples 2.8 & 2.9 the convergents of a = G Q(a?) with 
gcd(f(x), g(xf) = 1 which can be proven to always be true by the following proposition 

and its corollary.

Proposition 2.10. Let a = [01,02,.. • ,fln] expressible as a finite simple continued 
fraction and let all notation be as in Proposition £7. Then, Piqi-i —pi-iqi = (—I)* -1 for 
1 <i <n.

Proof. Notice, if i = 1, we have pigo — PoQi — (aoai + 1)1 — ao^i = 1 = (—I)1-1. 
Assume, for the sake of induction, pkQk-1 — Pk-iQk — (—
Consider Pfc+iQfc - Pk-iqk

= (pk+lpk + Pk-l)qk - Pk(ak+iqk + Qfc-1)

= Pk-iqk - PkQk-i
= - Pk-iqk)
= —(—l)fc_1 by the induction hypothesis

= (-!)*■

Thus, by Mathematical Induction, Piqi-i — pi-iqi = (—1)‘_1 for 1 < i < n. □

One can see that this proposition is illustrated in Examples 2.8 and 2.9. The 

corollary will show gcd(f(x),g(xf) = 1.

Corollary 2.11. Let a = [ai, , an) be a finite simple continued fraction and let all 
notation be as in Proposition 2.7. Then, gcd(pi, qf) = 1 for 0 <i <n.

Proof. Clearly, gcd(po,qo) — 1. Now, let di = gcdfpi.qj for 1 <i < n.
Then wethave di\piqi_i and for 1 < i < n.
So, di\{piqi-i — pi-iqi) => by Proposition 2.10, di|(—l)1-1 for 1 < i < n.
Thus, di = 1 for 1 < i < n. □

As we begin to extend our theory to infinite simple continued fractions we need 

another important corollary.

Corollary 2.12. Let ot = [ao,ai,... ,On] be a finite simple continued fraction with all 
notation as in Proposition 2.7.
Then,

Ci - Ci^i = 1 <i <n
and Ci - Ci_2 = 2 <i<n



14

Proof. First, Ci =

qtqi-1

t for 1 < i < n (by Proposition 2.10).
Also, Ci - = 1^

_ Piqi-2-Pi-2qi

QiQi-2
__  (atpi-1 +Pi-2) 9i—2 ~Pi—2 (ai 9i—14~9i—2)

9191-2
__ Qifei —191 — 2 Pi —29i—1)

(by Proposition 2.10)

for 2 < i < n. □
We are now prepared for infinite continued fractions.

2.3 Infinite Continued Fractions

As previously stated, elements belonging Q(a?)*  — Q(a?) have infinite continued 

fraction expansions. These elements include the square roots of polynomials with even 
degrees and rational coefficients; moreover, we will only consider the square roots where 

the leading coefficients are positive squares. It is in Q(a?)*  that many of the theorems 

and proofs from traditional Number Theory do not hold, or they require some extra 
assumptions. This occurs most notably because we lack the notion of absolute value, 

which is necessary for these proofs. Instead, using the idea of valuations, defined in the 

introduction, changes the way which we compare two elements creating new issues in 

these proofs.

Finite continued fraction expansions may be unpredictable, but they will even

tually come to an end. In the infinite case, many of these continued fraction expansions 

will be unpredictable and they never terminate. After discussing the general infinite 

simple continued fraction expansions we will shift our focus to those with more desirable 

expansions, i.e periodic and eventually periodic expansions. We will start by proving that 
the expression as an infinite simple continued fraction is unique before precisely defining 

when such expansions occur. The following proposition has our first use of valuations.

Proposition 2.13. Let a € Q(rc)* —Q(z). Then the expression of a as an infinite simple 
continued fraction is unique.
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Proof. First, by definition, no = [[a]]. Also, a = lim^oo[oOj ai, • • ■, Oi] where v(ai) > 0
for i > 0.

— ao +

= ao +

1__________
linij^oQ [ai ,Q2 ■■■ jdj] 

1
[ai,a2,...] *

To prove uniqueness, let a = [ao, ai, a2,...] — [&o»&i>&2» • • •] be two expressions of a as 
infinite continued fractions. By definition, [[a]] = ao = bo- By the previous result,

“o + pFl = b° + tsFl

=> [ai,a2,...] = [bi,b2,...].

Assume, for the sake of induction, a& = bj*  for k > 0 and that [at+i, a^+2, • ■ •] = 

[bfc+1, 6fc+2,. ■ •]. By the same reasoning as above, aA+i = bk+1 and [afc+2, afc+3,...] = 

[&fc+2, &fc+3, -..]. Thus, by Mathematical Induction, a$ = bi for all i > 0. □

The fact that an infinite simple continued fraction expansion is unique yields 

the “only if” direction of the next proposition with ease.

Proposition 2.14. a G Q(z)*  — Q(rc) if and only if a is expressible as an infinite simple 
continued fraction.

Proof. (=>) Let a = ao G Q(rc)* —Q(fc) and define ao, ai,... and ai, a2,... by the following 
recurrence relations:

ai = [[aj] i>0 
a«+i — 1 i> 0.a{—ai —

Clearly, a0, ax,... G Q[aj], Also, v(oti - a;) < 1 => i?(ai+i) = u^.1_a.y > 1. 

So, v(ai+i) > 1 and v(ai),u(a2),... > 0.

Now, to show a = [a0) ab...], rewrite ai+x = as ai = a, 4-

=4> a = ao = ao 4- ~

= ao 4-
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1
= Go H-------------------------------------------------------------------

1
dl 4------------------------------------------------------

1
(22 4----------------------

1
+-----------------------

1
a»i 4-------

<*i+l

= [ao, ai,..., Oi, Oi+1] = * > 0 (by Proposition 2.7).

Then, v(a — Ci) < 1 since a(^) = e_1. In fact, lim^oc v(a — Ci) = lim;r...>00 e~x = 0.

Therefore, lim^oo u(a — 67t) = 0 => lim^oo a — lim2_>00 Ci = 0
=> a = limj_>oo ct = lim^oo Ci = [ao, ax, a2,...] as desired.

(<$=) Let a be expressible as an infinite simple continued fraction, say a = [ao,ai,...]. 

Assume for the sake of contradiction, a 6 Q(a;). Then by Theorem 2.4, a is expressible 

as a finite simple continued fraction, say a = [do, 51, • • •, bn]. Moreover, by Proposition 

2.13, ai = bi for 0 < i < n => lim7l_>oc[an.|.i, an+2,...] = 0; a contradiction. □

We can illustrate the above proposition by creating an infinite simple continued 

fraction expansion which we know is unique by Proposition 2.13.

Example 2.15. Find the infinite simple continued fraction expansion ofVx2 4-1 6 Q(cc)*  

using Proposition 2.13.

ct = ao = Vx2 + 1 = x + 4-...
“0 = [[“o]J = X ai = = 2x + |x-1 + ...
“1 = [[“11] = 2x “2 = = 2x + |x_1 + ...

a2 = [[a2]] = 2x a3 = = 2x + ^x”1 + ...

Thus ai = 2x for i > 0 making the infinite simple continued fraction expansion of 

\/.t2 + 1 = [rr, 2x, 2x,...]. .

We can change the polynomial slightly to observe how the infinite simple con

tinued fraction expansion is affected*.
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Example 2.16. Find the infinite simple continued fraction expansion of 
x/a;2 + 4a; +1 € Q(a?)*  using Proposition 2.13.

a = qq = x/a:2 + 4o? + 1 = x + 2 — |a: 1 + ...

UQ = [[ao]] = X + 2 
ai = [M] = “jh- I 

a2 = [[oj2]J = 2a; + 4
= [M] = - jx - | 

04 = [[c*4]]  = 2a: + 4

Qi = 1t~ = — %x — 4- lx 1 — .CKO Gq O o
02 = O11O1 = 2z + 4 3x x + ... 
“3 = a2—a2 = lx 3 + 2^ 1 •

“4 = Q3\ =2® +4 lx x + ... 
“5 = 04-04 = lX 5 + 2® 1 •

where the pattern continues on infinitely many times. Thus, the infinite simple continued 

fraction expansion of x/a;2 + 4a; + 1 — [a? + 2, — 2x + 4, — |a? — 2x + 4,...].

Not all infinite simple continued fractions expansions have repeating patterns as 

the last two examples seem to suggest.

Example 2.17. Find the infinite simple continued fraction expansion of 
x/a;4 + 8a:3 + 16a:2 + a; +1 using Proposition 2.13.

q = — x/a;4 + 8a:3 4- 16a;2 + a? + 1 = x2 + 4a; + |a; 1 — |a; 2 + ...
1 2x24-8x4-Ix-1 — ^x-2+„.

ai = --------= [[ao]] = a;2 + 4a:

ai = [[ckiJ] = 2a- + 6 CH2 = ------- -----“ ai—ai

—2x2 —8x—6—^x 1 —|x 2+... 

12x+35

°2 = [[a2]] = -$x - i
_ ! _ 10368x2+41472x+1656+ix“1-|x“2+...

Q’3 — a2—a2 ~ 276x-133

«3=m=
Ct4 = —-— :

03—03

_ 559682x24-2238728x—12981664-1x~1 -1x~ 24-...
— x4-l

where no pattern seems readily visible. Although we have only reviewed three iterations 
of the recurrence relationship, the coefficients are growing rapidly without any sign of 

possibly repeating. Finding out whether or not the continued fraction expansion will 

ever repeat is difficult to determine.
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As we continue to create more examples of infinite simple continued fractions, 
we will also be considering the convergents of these expansions. In the finite case, we 

have found that a = Cn when i = n if at = [ao, ai, • ,On]; however, in the infinite case
Ci is simply an approximation of a for all i. Therefore, it is worthwhile to discover how 

accurate of an approximation of a the ith convergent, C{ = ^, really is. First, we need a 

proposition as a preliminary result. For this, we will use the valuation as defined in the 

introduction where v(£) = edeg^~de9^.

Proposition 2.18. Let a € Q(e)*  - Q(z) and let i = 0,1,2,... be the convergents 
of the infinite simple continued fraction expansion of a. If afb G Q[x] and 0 < v(b) < 
v(qi+i), then vfaa - pi) < v(ba - a).

Proof Consider the system of equations given by

Pix+pi+1y = a 
qiX + qi+iy = b.

Notice, if x — 0 we have bpi+i = aqi+n since (pt+i, Qi+i) = 1 by Corollary 2.11, we have 

which is a contradiction to 0 < v(b) < Also, if y = 0 we have a = pix and

b = qix\ since v(x) > 1, we have v(ba — a) = v(x)v(qta — pi) > ufaa-pi). Therefore, we 

may assume x / 0 and y / 0. Now, we will show v(x(qia — pi)) > v(y(qi^.±a — p»+i)). 
First, since b = q7.x- qi+iy, qiX = b- qi+1y => ufax) = v(b- qi+iy).
However, v(b) < v(qi+1) => vfaiX) = v(qi+1y) v(qi)v(x) = v(qi+1)v(y). 
We know that v(qi) < v(qi+i) => v(x) > v(y).
Also, Consider

_ 21\ = /Qi+iPi+Pi-1 _ 2£X _
qC ' ai+iQi+Qi-i qj (ai+ig»+qi-i)?i '

= /-(Pi9i-i-Pi-iq^)\ / (~i)f x

v (cti+i9i+qi-i)qi ' ^qdai+iqi+qi-i J
=______ 1______

v(qi)v(ai+iqi+gi_i) ’

But v(ai+1qi) > v(qi_i)
= 1 = i

■v(qi)v(ai+iqi) v(qi)v(ai+iqi)
_ ____________1___________  _ 1

v(qi')v(ai+1qi-qi-1') v(qi)v(qi+i) '

So, v(qia-pi) = and ufe+ict - pi+i) = u(g^2) similarly. Since -u(&+i) < v(qi+2),
> nin- Thus’ ~ Pity > -Pi+i)). Finally, consider
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v(ba — a) = v(fqiX + qi+iy)a - (piX + pi+iy))
= v(x(qi& -pi) -j- y(qi+ia-pt+i)).

But v(x(qia - pif) > v(y(qi+ia - pi+1))
=> = v(x(qia - p^) 

= v(x)v(qia - pi)
> v(qicx — pi) as desired. □

We are now ready to prove that the ith convergent of a is the “best” approxi
mation for a.

Corollary 2.19. Let a € Q(a;)*  — Q(a?) and let z — 0,1, 2,... be the convergents of 
the infinite simple continued fraction expansion of a. If a,b £ and 0 < v(b) < v^qf), 
then v(a — < v(a — |).

Proof. Assume, by contradiction, v(a — > v(a — g). Then,

v(qia - p^ = v(qi)v(a - &)1 > v(b)v(a - f) = v(ba ~ a)
which contradicts Proposition 2.18. □

This corollary shows that given any infinite simple continued fraction expansion, 

Ci — & is the closest approximation of a for a denominator with value less than or 
equal to qt. If an approximation closer to a is desired, one must consider with the 

denominator, b, having greater value than qi. The next proposition will show that f is a 
“close” approximation to a if and only if it is a convergent of the infinite simple continued 

fraction expansion.

Proposition 2.20. Let a,b 6 Q[e] with gcd(a, b) = 1 and v(b) > 0. Let a € Q(z)*,  then 
v(a — |) < if and only if | is a convergent of the infinite simple continued fraction
expansion of a.

Proof (=>) Let be a convergent of the infinite simple continued fraction expansion 
of a and assume, by contradiction, that J is not such a convergent. Since the values 
of the denominators form a non-decreasing sequence, there exists a unique k such that 

v(qk) < v(b) < v(qk+i)> Then by proposition 2.18,

v(qka ~ Pk) < v(ba - a) = v(b)v(a - 5) < by hypothesis.
So v(a - Now, s / => bpk - aqk 0 => v(bpk - aqk) > 1.

Thus,
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1 < v(bpk-aqk)

v(bqk) — v(bqk)

< 77iaa;{'u(^ — a), v (ce — |)}.

We know from Corollary 2.19, a) = v(a~<v(a—J) => max{v(^—a),v(a~^)}
< max{v(a — |), v(a — g)}

fe) — v(xb^) *"* ■ Jxb2) vfxbqh)'

So we have, - < < ? Ksx 4—r4—vv(bqk) v(xb2) v(xbqk)

=> v(xb) < v(qk) 4- v(b)
=> v(x - l)v(b) < v(qk)

but v(x — 1) > 1 =4*  v(b) < v(qk)’ Contradiction.

(<=) Let | be a convergent of the infinite simple continued fraction expansion of a. 

Consider v(pt — g) = v(a — &) for some i > 0. Then,
v(a — Ei)= v(ai+iPi+Pi-i _ 2i\ _ (-(Pi<li~i-Pi-I<li)\

\ qj Oti+iqi+qi-i qj (ai+igi+<7i-l)<7i /

= by Pr°POSition 2.10

= 1__________
v((ai+i9i+9i-i)«i)

' = ,-,)„) Since ”(“«) = »(“«) for a11 i

= 1 < 1 = 1
— v&QiQi) vfxqf)

since v(qi) < v(qi+i) for all a. □

Example 2.21. To illustrate Proposition 2.20, consider a = Vx2 Bl ~ [a;, 2x. 2x,..

Then,

n ----- rp _|_ 1/V"-1 __  lop — 3 I _1_~—5 _ 5 7
u — u, -r “ 1(> 128

JLt-9 _ _21_ —11
256 A 1024x

4_ 33 -13
r 2048 x

143 ,..-19 i
65536"r

Consider

a   64a7+112a5+5 6a3+7%
& 64a64-80a4+24a2+l

- _li~-5____ET-7 i ^,r-9____21 „-ll , _ 104Sx4+476a2q-21___________
— gj, -t-16A, 12gX 1_256j' 1024^ 65536a17+81920a15+24576a13+1024a11 *

Since v(a - f) = e“13 < = e“13, 80^+24^+? is a convergent of the infinite

simple continued fraction expansion of Vx2 + 1. In fact,
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Cq = [a;, 2a?, 2x, 2x, 2x, 2x, 2x] — 64x7+112x^+56x3+7x   a64x64-80x4+24x2-|-1 b *

On the other hand, consider each of the convergents of the infinite simple continued 

fraction expansion of a/ic2 +1.

Co =
Ci =
c2 =
c3 =

2a
90

21
91

22
92

21
93

= x + ^x 1 = 2x2+1
2x

----- rr*  1 X 1 Xt*g w

--- ™ _|_ 1/p-1   3 
*v i 2 g

_l______ 1 __ 4a3+3a:
32ar5+8a:3 4ap2+l

i X„-5__________ 1 _ 8x4+8a:2+l
-r 16 32s7++16a:& “ S^+lcc

Then,

v{a - Co) = v(a - f) = e-1 < = e_1
v(a - Ci) = t)(a - 2^1) = e“3 < = e"3

. w(“ - °2) = ~ = e“5 vIF(4^+i)2) = e“5

v(a - C3) = l)(a - %X*L+1) = e"7 = e~7

In this example, v(a—for all i because v(ao) = v(a±) = v(a2) = .... Choosing 
a new example where v(cii) varies will cause v(a — |j) <

2.4 Eventually Periodic Continued Fractions

In the introduction we discussed what it meant to be periodic and eventually 

periodic and Examples 2.15 and 2.16 are those where the infinite simple continued fraction 

expansions repeat. Here is the definition:

Definition 2.22. Let a € Q(z)*  — Q(rc) and let a = [ao!ai>*  • •] be the infinite simple 
continued fraction expansion of a. a is said to be eventually periodic if there exists non
negative integers p and N such that an = an+P for all n > N. We call the sequence 
aw, a;v-f-i,..., ajy+(p_i) the period of a where p is minimal. The eventually periodic con
tinued fraction expansion is denoted,

a = [aojfli, • • • a2V-i,ajv,a^+i,... av_|_(p_!)].

If N=0, the infinite simple continued fraction expansion is called purely periodic, or 
periodic for short.
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Example 2.23. Use Example 2.15 to demonstrate purely periodic and eventually periodic
infinite simple continued fraction expansions.

By Example 2.15 we have that fx2 4- 1 = [®, 2x] is an eventually periodic continued 
fraction expansion. So,

1_____ 1
Va?2 4-1 = [as, 2x\ = x-\------------------

1
2a? -I------------

1
2x -----

then adding x to both sides yields

,_____ 1
x 4- fx2 + 1 = 2a? -I------------------- = [2aj]

1
2x 4------------

1
2a? 4-----

is a purely periodic infinite simple continued fraction expansion.

We would now like to categorize some particular elements of Q(a?)*  — Q(a?) be
ginning with a definition.

Definition 2.24. Let a G <Q>(a?)*  — Q(a?). Then a is a quadratic surd if a is a root of a 
quadratic polynomial Ax2 + Bx 4- C with A, B, C G Q[a?] and A / 0.

Then the following proposition categorizes the above elements elegantly.

Proposition 2.25. Let cn G Q(a?)*  — Q(ai), then a is a quadratic surd if and only if 
a = where a,b,c G Q[a?], v(b) > 0, b is not a perfect square, and c f 0.

Proof. (=>) Assume that a is a quadratic surd. Then there exists A, B,C G Q[a?] with 

A / 0 such that A (a)2 4- B(a) + C — 0. By the quadratic formula, we have

_ —B±\/B2~4AC
“ ~ 2A

Note, B2 — 4AC is not a perfect square and v(B2 — 4AC) > 0 since a is a quadratic surd.
Letting a = — B, b = B2 — 4AC, and c = 2A and taking the plus sign yields a =

Otherwise, letting a = B, b = B2 — 4AC, and c = -2A and taking the minus sign also 



23

yields the desired result.

(<=) Assume that a = where a, b, c G Q[rr], v(b) > 0, b is not a perfect square, and 
c ± 0. Then c2 0 => a is a root of the quadratic polynomial, c2a:2 — 2acx + (a2 — b). 

Let A = c2, B = —2ac, C = a2 — b. Then a is a root of the polynomial Ax2 + Bx + C 
with A, B, C e Q[a;] and A f 0 as desired. □

We will explore the notion of a quadratic surd by examining its continued frac
tion expansion. The following lemma will begin our study of the quadratic surd by 

yielding the characteristics which it possesses.

Lemma 2.26. Let a G Q(fc)*  — Q(a;), then a is a quadratic surd if and only if a = 
where P,Q,d G v(d) > 0, d is not a perfect square, Q 0, and Q\d — P2.

Proof. (=>) Assume that ce is a quadratic surd. Then by Proposition 2.25, a = Q+Cv^ where 

a, b, c G Q[z], v(b) > 0, b is not a perfect square, and c^O. Multiplying the numerator 
and denominator by c2 (to ensure that the leading coefficient remains positive) yields,

ac2+c2y7>   aJ+Vbc4
3 ?

Letting P = ac2, d = bc4, and Q = c3 produces the desired result.

(<=) Let a = where P,Q,d G Q[a;], v(d) > 0, d is not a perfect square, Q / 0, and 

Q\d — P2-, then, by Proposition 2.25, a is a quadratic surd. □

Computing the infinite simple continued fraction expansions of a quadratic surd 
can seem somewhat mysterious at times when using the recurrence relationship defined in 
the first half of Proposition 2.14. We now use the last lemma to define an alternate method 

for finding the continued fraction expansion of a quadratic surd that not only offers more 

information, but the new information we obtain will have many unique properties.

Proposition 2.27. By Lemma 2.26, let

_ Pp+'/d 
a~ Qo

be a quadratic surd where Po, d, Qo G Q[ru], d^0, d is not a perfect square, Qo f 0, and 

Qo|(d - Po)- Define ao', ai, a2,..., ao, «1, 02, ■ . ■, Pi, P2, • . •, Qi, Qi,. • ■ by the following 
recurrence relations:
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= [Ml

for all i > 0. Then a — [czq3 ai> ^2, • ■

Proof. First, we can show Pj} Qi G Q[rc], Qi f 0 and Qil(d—P2) for all i > 0 by induction. 

Notice, if i = 0, then a = Pqq^ for which the conditions are true by assumption. Now, 

assume that fc > 0 and Pk,Qk 6 Q[®]> Qk 7^ 0, and Since Pk+i = ctfcQfc-Pfc,
clearly Pk~i G Q[rr] since P^Qk G Q[®] by the induction hypothesis. Now, consider

Qk+1 = = = ^L + 2akPk _ alQk.

Then Q^+i G Q[®]« Furthermore, since d is not a perfect square, d — P%+1 f 0 so 
Qk+i f Finally, Qfc+X = d~^+1 Qk = Since Qk\(d - P^+1),Qk+i e

Q[rr] => Qfc+i|(d — P2+1). Thus, by Mathematical Induction, Pi, Qi G Q[a;], Qi f 0, and 
Qi\(d-P?) for all i > 0.

Now, we want to show a = [00,01,021-••]> but by the first half of Proposition 2.14 it 
suffices to show o^+i = Qjia.. Consider

•\/d—(ajQi—Pj) 
Qi

Jd-Pi+1 = (Vd-Pi+i)(Vd+Pi+i)
Qi Q<(Vd+Pi+1)

_ vd Pi+1 _ ___ QiQi+1 (since O-j-i = d F*+1)Qi(^+Pi+1) Qi(%/d+Pi+i) ^+1 Qi }

— Qi+1 _ 1
■/d+Pi+l ai+l

So ai+i = ^7^7 => a = [a0, ax, a2 ...]. □
A few more results:

Lemma 2.28. Let a be a quadratic surd and let a, b,c,d G Q[e]. Then,

belongs to either Q(x) or Q(x)*  — Q(®). 
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Proof. By Lemma 2.26, a = F+V™ m,n,Z £ Q[a;] and n not a perfect square. 

Thus,

(am+lb)+ay/n 
(cm+ld)-i-cy/n

(am+lb+a\/n)(cm+ld—cjn) 
(cm+ld+cy/n)(cm+ld—cy/n)

(am+lb)(cm+ld)+(ald—clb')\/n—acn

(cm+ldy2—c2n '

Letting P = (am + lb)(cm + Id) — acn, Q — (cm + Id)2 — c2n, and r — aid — clb we have,
_ p-i-rja where p5 G Q[a;]. Notice, if b = ^d, then r = 0 => = § G Q(ac).

Otherwise is a quadratic surd by Proposition 2.25. So G Q(ff)*  — Q(a?). □

As in the traditional study of Number Theory, we would like to consider the 

conjugate of a quadratic surd. The conjugate will be referred to multiple times throughout 
this section.

Definition 2.29. Let a = be a quadratic surd where a,b,c G Q[rr] and c 0. The 
conjugate of a, denoted a1, is

a' =

We now present a lemma which summarizes the elementary properties of the 

conjugate.

Lemma 2.30. Let ay = and a2 = 0-2where ay, a2, b, ci, c2 6 Q[a?] and cy,c2
0. Then

a) (ay + a2)' = + a’2
b) (ai - a2)' = ai - a2
c) (aya2y = aiai

Proof. The following proofs are straightforward computations.
a) (ai + a2y = + ^)'
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b) (ai - a2)' =

_ ai+Jb , 
ci '

ai —y/b 
ci

— O2 + x/b

C2 by a)

ai — y/b ___  a2—y/b

ci c2 — al ~ a2 •

__  /aia2+M~(Qi+a2)%/by __

' Cl CQ /C1C2

QlQ24~fr~(^14~g2) V7

C1C2

_ (ai-y/b)(a2^Vb) _ Q1 -y/b g2-y/b _ _/ /
C1C2 Cl C2 cqcl^*

ai +x/b

d'J ('^■Y = (—^_ Y — picz+g^Y
/ \a2' ag+s/b / \Q2Ci+ciyfb'

c2

/'(aiC2-i-C2%/t>)(a2Ci-ci x/tQxy

(a2Ci+cix/fe)(a2Ci—cix/ft ''

(aiC2—C2x/b)(a2Ci+ci Yt>) 

(°2C1)2—C|) by c)

(aiC2—C2x/i>)(a2Ci+cix/&)

(02 cj 4-ci %/b) (a2 ci — ci y/b)

+

□
The previous results are exactly what we need to create the best possible char

acterization of a quadratic surd. The following proposition and its modified converse are 
vital to finding the solutions to Pell’s Equation.

Theorem 2.31. Let a G Q(a?)*  — Q(a?)■ If the expression of a as an infinite simple 
continued fraction is eventually periodic, then a is a quadratic surd.

Proof. Assume the expression of et as an infinite simple continued fraction is eventually 

periodic. Then there exists integers p,N such that p, N > 0 with,

a = [ao, ai,..., oat-i, aN> aN+i, + ■ • •, +ajv-f-(p-i)]-

Letting /3 = ajv+i, + • ■ •, +ajv+(p-i)J we have

— [a?/, Gjv+i , + ••., +ajv+(p_i), ft]

=*&  = PQp-i+q71 by Pr°P°sition 2-7
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where and are convergents of the purely periodic continued fraction expansion 

[a;v,ajv+i, + • • •, +Oftr+(p-i)J- Since the expression of ft as a simple continued fraction 
is infinite, ft G Q(x)*  — Q(x). Also, ft is a root of the quadratic polynomial Qp_^x2 4- (Qp-2 — .Pp-i)ir — Pp-2, so ft is a quadratic surd. Now,

a = [a0, ab..., aN-i, ft] = by ProPosition 2-7

where an(^ gZ-i 3X6 conver8en^s [ao, ai,..., ajv-1] • Since the expression of a as a 
simple continued fraction is infinite, a G Q(x)*  — Q(z); however, since ft G Q(x)*  - Q(z), 
Lemma 2.28 shows that a is a quadratic surd. □

We can compute the quadratic surd that the eventually periodic simple contin

ued fraction represents by first finding the ft as described above and adding the ai not 

belonging to the period.

Example 2.32. Find the quadratic surd represented by a = [x2,2x,3x2].

First, we will find the quadratic surd represented by the periodic infinite simple 

continued fraction ft = [2a;, 3a:2]. Notice ft = [2x,3x2,2x,3x2] = [2x,3x2,ft] so we have,

^ = 2i+3^7

q _ 6x3/342x+/3 
P— 3i2/3+1

3x2ft2 - 6x3ft -2x = 0

which yields, by the quadratic formula, ft = 6a3+x/36x6+24T3 . rp]lus

a = [x2,2x. 3a;2] = x2 4--- ■=—U - ■1 ’ ’ J 6*3 +v'3a»6+24*3

— x2 J_______ 6x2
6z3+V36a:(i+24z3

_ 6x5+x2 \/36x6+24a?4 6a:2
6x3+v/36xg+24x3

_ -2x3+V36xti+24x3
4x

Therefore [x2,2a;, 3a;2] = ~2a;3+^6a6+24x2.

Although it was not proven in Example 2.17, it is suggested that
\Au4 4- 8a;3 4- 16a:2 4- a; 4-1 does not have an eventually periodic continued fraction expan

sion leading us to believe that the converse of Theorem 2.31 does not hold; that is, given 
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a quadratic surd, its infinite simple continued fraction expansion may not necessarily 

be eventually periodic. The following example is a counterexample to the converse of 

Theorem 2.31.

Example 2.33. Find the infinite simple continued fraction expansion of
a = \/xG 4- 2a;4

Po = O

using Proposition 2.27.

+ lx-3 + . . .Qo = 1 a = fto =

ao

: 4- ‘

= [M

2a;4 = x3 + x — fa 1 
= a:3 4- x

Pi = x3 4- X Q1 = —x ai = x'J+x+y/x°+2x4 
X2 01 = [[ai]] = -2a;

Pq = X3 — X Q2 = -4z2 4-1 ce2 = x'^—x+y/x^+Zx4 
4x2 — l a2 = [[a2]] = - jo?

P3 = Z3 4- $X Q3 — -1-2 03 =
4x34-2x+4\/x64-2x4 

x‘l 03 = [MJ = —8a:
P4 = x3 — Q4 = —12a;2 +1 04 = 2arJ — x+2y/xa-f-2x4 

24x2—2 «4 = [[a4]] = -fa
P$ — x3 + |a? Qs = 1™2 a<5 = 9j;a+3T+9 y/x& +2x4 

x2 05 = [[<*5]]  = —18a?
Ffj = M Qe = —24a;2 + 1 06 = 3xJ — x+3x/x6 4-2x4 

72x2-3 a6 — [[a6]] “
P7 = x3 4- Q7 = _ Lt216 x a7 = 16x3+4x4*16  Vx°+2x4

X2 07 = [(<*7]]  = —32a:
P8 = x3 - fa Q& = —40a?2 + 1 a8 = 4x3—x+4x/x6+2x4 

160x2—4 = [[as]] =

So cn = [z3+z, —2a:, —ja;, — 8a;, — |a;, —18a;, — ^a;, —32, —^x,...] where the infinite simple 

continued fraction expansion is not periodic, but a pattern does present itself. It turns out 
that a2i_i = —2(z)2a; and a2i = ^or > 1- Following this pattern, the infinite

simple continued fraction expansion of i/a;6 4*  2a;4 is guaranteed to never be periodic. 
More on this example is covered in [Vic78].

The best result that we could possibly hope for is to characterize exactly which 

quadratic surds have eventually periodic infinite simple continued fraction expansions. 

However, while there are many which are characterizable, equally as many of them are 

not. In the following sections we will assume that the quadratic surds which we are 

considering have eventually periodic infinite simple continued fraction expansions.

2.5 Periodic Continued Fractions

Although we were unable to characterize the infinite simple continued fraction 

expansions of quadratic surds as precisely as in the traditional study, we will be able to 
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examine those with eventually periodic expansions and classify them precisely by their 

expansions in this section. We will start with a theorem.

Theorem 2.34. If a is a quadratic surd with a periodic continued fraction expansion, 
then the expansion is purely periodic if and only if v(a) > 1 and < 1, where
a' denotes the conjugate of a. For ease of notation, we will call such quadratic surds 
‘reduced ’.

Proof Let a be a quadratic surd with a periodic continued fraction expansion. 

(=>) Assume that a = «o with v(a) > 1 and v(af) < 1. Then, by definition, 

a = [ao, ai,...] where

a^ = [[aj]], i > 0 

“4+i = »2: °-

By the second equation, a*  = a$ 4- ^hen aj = a; + for all i. Now, we have 
a = ao => a(ag) < 1 => v(ocq) = v(ao + A-), but v(a(j) < 1 and iz(ao) > 1 => v(^) > 1. 

Thus, f(a^) < 1. For the sake of induction, assume v(aj) < 1 for i = k. Then,

v(ak) ~ v(ak + v(4+1))‘ However, v(a'k) < 1 => v(ak 4- ^-) < 1 and v(ak) > 1
> 1. So, u(a'fc+1) < 1. Therefore, by Mathematical Induction, ^(aj) < 1 for all i. 

Furthermore, v(aj) < 1 => 0i4-Tr— = 7nia?“1 + m2#“2 + ... where m: € Q for i = 1, 2,....
ai+l

Thus, ai = —r—F W+1 4- 7712a:”2 + ...=> a; = [[-7^-]] for i > 0.
“i+l ai+l

Now, since a is a quadratic surd with a periodic continued fraction expansion, aj = ak
for some j, k £ N with j < k. Therefore, a'- = a'k and a^_i — [[-^r]] = [[^]] = at-i.
So, a^-i = Oj_i +A- = afc_i +A; = afc-i. Iterating this process j times yields ao = a/._j.

=> a = ao = [ag, a^,..., ak_j—i, &k—j]
= [a0,ai,... ,afc_j_i,a0]

— [ao, ai,..., ak—j—1].

Thus, the infinite simple continued fraction expansion of a is purely periodic.

(4=) Assume that the expression of a as an infinite simple continued fraction is purely 
periodic with period length p + 1 such that a = [ao,’ai7 + a^] where

ao, ai,..., ap_i e Q[a;]. Since a is purely periodic, ao € Q[a:], but ao £ Q. Thus v(a) > 1. 
Now, a = [ao,ai,... ,ap, a] = (fr°m proposition 7.6) where and are

the (p — l)th and pth convergents of [ao, ai,..., aj, respectively. So, a1 =
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Algebraic manipulations of these two equations yield that a and of are roots of the 

quadratic polynomial

qpX2 + (gp_i — pp)X -pp_i.

Moreover, of = where fl = [ap, ap-i,..., «o]•

But, v(a) = u([ao, ^i, • • ■, oP]) > 1 => v(fl) > 1- So, v(^) = v(of) < 1 as desired. □

To illustrate this theorem, consider the following example.

Example 2.35. Find the infinite simple continued fraction expansion of

a — a2 4- j a 4-1 4- y'a4 4- a3 4- ^x2 + 3a + 2.

First, notice v(a) > 1 and since \Jx^ 4- a?3 4- |a2 + 3a? 4- 2 = a?2 + ^x + 1 + a;-1 + ..., 

v(cf) = v(x2 + |a? +1 — ^a4 4- a3 + |a2 4- 3a 4- 2) = v(x2 4- |a 4-1 — (a2 4- ^a?4-l + a_1 4- 

...)) = v(—a:-1 — ...) <1 so a is reduced. Moreover, y^a4 + a3 + |a2 4- 3a? 4- 2 has been 

chosen due to its eventually periodic continued fraction expansion. By Proposition 2.27,

Fo = a2 -4 |a + 1 Qo = 1 a = a0 = x2 4- |a 4-1 + -y/a4 4- a3 4- |a2 + 3a + 2

<zq — [[q?o]] ~ 2a2 4- x 4- 2

Pi = a2 4- %x 4-1 Qi — 2a + 1
x2+1 x+1+ Fx44-x3+|x2+3x+2

= 2x+l

P2 = x2 + jx - 1 Q2 — 2a + 1
x2+1 x—1+ f x4+x3+|x2+3x+2

0(2 = 2x+l

ai = [Ml = %

tt2 = [[02]] = X

P3 = x2 4- %x 4- 1 Q3 = 1 0'3 = a2 -r 4-1 — ^/a4 + a3 + |a2 4- 3a 4- 2

a3 = [[<^3]] = 2a2 + a + 2.

Since ct3 = Qi, the infinite simple continued fraction expansion of

a2 4- ja 4-1 4- -^/a4 + a3 + |a2 + 3a + 2 = [2a2 4- a 4- 2, a, a]

is purely periodic.

It seems surprising that if a has an infinite simple continued fraction expansion 

that is periodic and a is reduced, the expansion is purely periodic. As it turns out, 

Theorem 2.34 holds because of the specific pattern that the eventually periodic infinite 

simple continued fraction expansion of a — \fd has.
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Proposition 2.36. Let d 6 Q[®], where d is not a perfect square, with the infinite simple 
continued fraction expansion of Vd being eventually periodic. Then, the infinite simple 
continued fraction expansion of Vd takes the form

[ao, ai, a2 • ■ ■, Op-i, 2ao]

where p is the period length and ao = [[x/d]]-

Proof. Consider a = [[x/d]] + Vd. Clearly, t>(a) > 1 and v(a) <1. So by Theorem 2.34, 

the infinite simple continued fraction expansion of a is purely periodic, say

[ao, ay, a2 ..., ap_i]

where p is the period length. Noting that ao = ([ [[x/d]] + Vd ]] = 2[[x/d]], we have that

Vd = ([[Vd]] + Vd) - [[Vd]] - a - [[x/d]]
= [ao,ai,a2..., ap_i] - [[x/d]]

= [ao, ai, a2 ..., ap_i, ao] — [[x/d]]

= [2[[x/d]],ai,a2...,ap_i,2[[x/d]]J - [[Vd]]

= [ [[x/d]], ai,a2..., ap_!, 2[[x/dj] ] as desired. □

The following corollary sums up the two previous results by comparing the 

similarities of the continued fraction expansions of Vd and [[x/d]] + x/d.

Corollary 2.37. Let d e Q[z], where d is not a perfect square, with the infinite simple 
continued fraction expansion of Vd being periodic. Then, the infinite simple continued 
fraction expansion of Vd and [[x/d]] + Vd differ only in the first component (with the first 
component of the latter being twice the first component of the former), and the period 
lengths are equal. Furthermore, the values generated by a = ao = Vd, Pq = 0, Qo = 1 

differ from those generated by a = ao — [[x/d]] + Vd, Po = [[x^d]], Qo — 1 only at Po and 

ao-

Proof. The first claim follows directly from the proof of Proposition 2.36. To prove the 

values generated by a = ao = x/d, Pq = 0, Qo = 1 differ from those generated by 

a = a0 = [[x/d]] + Vd, Pq = [[x/d]], Qo = 1 only in Pq and ao, we use a straightforward 

computation. If a = Vd, then we have

Po = 0 Qo = 1 a = a0 = Vd a0 = [[a0]] = [[x/d]]

Pi = aoQo-Po = [[Vrf|] Qi = ^? = d-[[^] = «i = M
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whereas if a = [[v^j] 4- Vd, we have

Pq = [[x/d]] Qo = 1 CK = Qo = [[Vd]] -]-Vd ao = [[a0]] = 2[[^d]]

P, = aoQo - Po = [[V3|] Qi = = d - [[V3] = “i = W-

Notice that the values differ only in Pq and oq. Since the values of Pi,Qi,oti,ai are 

generated recursively, the remaining values will be identical for i > 1. □

2.6 Examples

While the previous sections had examples throughout, we did not investigate 
what makes each example unique. In the traditional study of Number Theory, y/d is 
always eventually periodic for d G Z, but we are not as fortunate. While we have not 

been able to classify when y/d is eventually periodic for d G Q[z] thus far, there are 

unique properties that do allow us to classify certain expansions based on the period 

length. Example 2.15 had a period length of one so we will classify it as period 1, but 

Examples 2.16 and 2.32 used period 2 expansions. Here are a few more examples of period 

2, period 3, and period 4 expansions using notation as defined in Proposition 2.27 .

Example 2.38. Find the infinite simple continued fraction expansion for a = y/4xQ + x.

Let a = >/4a76 + x. Then,

Pq = 0 Qo = 1 a — ctQ = \/4a;6 + x = 2x3 4- 5x 2 — ... ao = [[cto]] = 2a?3

Pl = 2x3 Qi = x Q _ 2x3+%/4x6+o:
1 X

= [M] = 4a;2

P2 = 2x3 Q2 = l a2 = 2x3 4- V4a;6 4- x CL2 = [M] = 4a;3

P3 = 2x3 Qz = x __  2x3+x/4x6+x

3 x a3 = [[a3]] = 4a;2

Again, since Qi = 03, the infinite simple continued fraction will be periodic; therefore, 

ct = V4a;6 4- x = [2m3, 4a;2, 4m3] is period 2.
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Example 2.39. Find the infinite simple continued fraction expansion for

^/^d-J^d-j.

Let a = +I® + 1> then

Po = 0

Pi = h2

ps = I* 2

Qo = 1 a = a0 = + |zd- 5 = \x2 + x 1 + x 2
«o = [[ao]] =

al = -------------I^ZI-------------
2X'2

a2 =----------------fcrl---------
2X^2

«3=y2+y d- i

Ql, — 2X d*  2

Q3 = i

= [[<*2]]  = a; - 1

®3 = [M] =

p4 = i* 2 Q4 — 2X d*  2 014 = a4 = [IM =x-l

G1 = [[ai]] = X - 1

P2 = |z2 - 1
2 Q% — 2*c d” 2

But ai = a4, implies that a — yf ^x4 d- |x + | — [|a;2, x — 1, x — 1, |x2] is period 3.

Example 2.40. Find the infinite simple continued fraction expansion for

a — ^a;14 — x9 — 2x8 — a;6 4- ^x4 4- |a?3 + x2 + ^x +

Then

Po = 0 Qo = 1

a = ao = yx14 - x9 - 2x8 — a;6 4- fa4 d- fa3 4- a;2 + |a; 4- |

= x7 — \x2 ~x — |a?_1 4- ^x~4 - ^x~7 4-... ao = [[ao]] = x7 - ±x2 — x

P1 = x7 - ^x2 -x Qi = -xG 4- 4- 4-1

x7-|s2-o>h/x14-x0-2x8-x6+jx4+|x3+x2+“x+5“» = —1------- V --------- — “1 = = ~2x

P2 = x7 — x4 — TjX2 Q2 = —2a?5 4- 2x2 4-1

x7-x4-|x2+\/x14-x9-2x8-x6+|x4+|x3+x2+|x+5 f 9
“2 = ---------"---- *------^+^+1---- ---------— a2 = W = -X2

P3 — x7-x4- ^x2 Qs = ~x6 + ^x3 4- 4-1
X7 —X4 — |x2 + y^x14—x9-2x8—x8 + |x4 + |x3+x2 + |x+^

~ 1 -x6+|x3+|x+ja3 = a3 = [[a3]J = -2^
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g7 — ^ae2— g9 — 2gs — g34.13.44.37;3_|_n,24.1T;4_l

But cti = ctg, we have that a = ya?14 — t9 — 2a:8 — a?6 + |a;4 + |a;3 + x2 + fa + =
[a?7 — fa2 — x, —2x, —x2, —2x, 2x7 — x2 — 2a?J is period 4.

We can discover the properties that make each of the above infinite simple continued 

fraction expansions eventually periodic by considering the properties the elements have. 

For example, if a = Vd, is period 2 ([ao, ai,2aoj), it turns out that ai|(2ao) and d = a§ +

If ct = Vd is period 3 ([ao, ai, a2,2ao]), then a2 + l|(2aiao +1) and d = a§ + 1 •

Lastly, if ct = Vd is period 4 ([ao> ^1, &2i <*3, 2ao]), then a2a2F2,ai\(2aQaia2+2aQ-\-a2') and 
d = Qq+ 2°p aX2°|+2ai+a2' corre^afi°n between each of the expansions and the properties 

they satisfy is not obvious; to find them we must consider the following expansions:

Example 2.41. Consider the general cases for periods 2} 3, and 4 infinite simple con
tinued fraction expansions.

If ct = Vd is period 2, say ct — [ao, ai,2ao], then by definition

a+aQ
Multiplying both sides by aia + a^aQ + 1 and subtracting yields

aict2 — aia§ — 2a$ = 0

If we are considering d G Q[rr], the desired conditions appear.

If ct = Vd is period 3, say a = [ao, ai, a2,2ao), then by definition 
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Multiplying both sides by aia2a 4- aodia2 + cii + a + ao and subtracting yields

d]d2a2 + dia + a2 - dQdid2 — dQdi — — a2a — a2do — 1 = 0

since a 6 Q(rr)*,  ai = d2 so that the aia and d2a terms disappear. Then

d±d2a2 + a2 — dQdid2 — dQdi — tip — a2ao — 1 = 0
_____ _  /“o°ia2+aoai +a§+a2ao+l _ /„2 i 2aoai+l

a ~ V aiaa+1 “ V a0 T ■ a^+1 •

Again, if we are considering d € Q[z], the desired conditions appear.

If a = \/d is period 4, say ct = [ao, ai, a2,03,2aoJ> then by definition

aia2a3oH~ao<iia2 03+0102+01 a+aoa 1+0301+0300+1

Multiplying both sides by aia2a3cn 4- aoaia2a3 + aia2 + aja + aoai + 030: + 0300 + 1 and
subtracting yields

(21^2^3a + (21 Or t &3OL — &Q&1G2G3 — G0&1G2 — O'O^'l — — 2(2o — <12^3^ —

aoa203 — a2 = 0

since a € Q(e)*,  aia2 = d2d3 => ai = 03 so that the aia2a and a2a8a terms disappear. 

Then

d2d2ot2 4- 2<2iq2 — apa2a2 — 2dQd±d2 — 2dgdi — 2uq — a2 = 0

=+> a

where if we are considering d 6 Q[a?], the desired conditions appear,

In theory, we could repeat this process multiple times and build the conditions

for each infinite simple continued fraction expansion with a given period length; however, 

as is shown in the previous examples, the algebra involved in solving for a is increasing 

in complexity. In fact, if a = y/d is period 5, then there seems to be several cases for 

which different conditions apply. To approach the problem from the other direction we 

could consider the infinite simple continued fraction expansions of various polynomials 
and explore how the expansions vary based on minor changes to their coefficients.
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Example 2.42. Consider a = y/d when d G Q[a] is of degree 2.

Let a = x/a2x2 + bz + c = ax + + • ■ • where a,b,c 6 Q with a f 0 and
a2z2 + bz + c is not a perfect square. For ease of notation, we will find the infinite simple 

continued fraction as defined in Proposition 2.14. Then,

1 dfA nn4-2n./i4-4n2 x2 4~bx-\-C

1 2/i.t 2 4- h4-2n v/g2x2+6x+c

1 4n3^-l-2n.Z)-l-4r72 a? x2-f-bx-)-c

since ai = 0:3 we have a = x/a2a2 + bz + c = [ax + , ‘fax + |]-

Every quadratic polynomial with rational coefficients and a perfect square as a 

leading coefficient has an eventually periodic infinite simple continued fraction expansion. 

We can now create an infinite family of quadratic surds that are period 2 and compute 

their continued fraction expansions with very little effort! We can also raise the degree 

of these polynomials by replacing x with xn where n > 2. Since we are taking elements 

in Q(z)*,  the leading degree of d should be divisible by 2 and all leading coefficients 
should should be perfect squares. We will now examine a? = f a2z4 + bz3 + ex2 + dx + e 
by starting with the case where b = c = d = 0 (note: the case when b = d = 0 is covered 

by Example 2.42; a = x/a2z4 + ex2 + e = [az + “2^4“) 2az2 + -]).

Example 2.43. Consider a = Vd when d = a2z4 + e.

Let a = x/a2z4 + e = ax2 + ^x~2 + ... where a, e G Q with a / 0 and a2z4 + e is not a 
perfect square. Using Proposition 2.14, we have

e

012 = ax2 + f a2x4 + e

since ai = 03, a — V a2 x4 + e = [ax2, 2ax2].

Now we consider the cases where b = c = e = 0 and b = c = 0.
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Example 2.44. Consider a = Vd when d = W + dx.

Let a = Va2x4 + dx = ax2 + -^x 1 + ... where a, d 6 Q with a V 0 and o2®4 + dx not a 
perfect square. By Proposition 2.14,

«o = [[ao]] — ax2

°1 = [[ai]] =

a2 = [[a2]] = 2ax2

ax2+x/a2x4+dx 
dx

a2 = az2 + Va2z4 + dx
ax2+y/a2x4+dx 

dx»3 —

since = as, a = x/a2^4 + dx = [ax2, 2ax2].

Example 2.45. Consider a — Vd when d — a2ac4 + dx + e.

Let a = Va2x4 + dx + e = ax2 + ^x 1 + ^x 2 + ... where a, d, e 6. Q with a 0 and 

a2x4 + dx + e not a perfect square. By Proposition 2.14,

no = [[ao]] = ax2

°1 =

ai — ax2+%/ a2x4+dx+e 
dx-J-e

(d2ax2-2e2a+d2Va2x4+dx+e)d2 
d4+4a2e2 dx—4a2 e3

as = [[as]] =
d^—d4-{-4a2e3)

8a3e4

= [[^3]] = 32e6asx 
d5(—d4+8a2e3)

8a3 e4 (8a4 e4 x2—dG -j-8d2 a2 e3 -t-8a3 e4 J a2 x4+dx+e)
32d5a4e6x+16d4a4e6—4d9a2e2x—12d3a2e3+d12

, 8a3e4(16a4e6—12d4a2e3+b8)
"I >T-d4+8a2e3j2

where the infinite simple continued fraction expansion does not appear as though it is 
going to have an eventually periodic form as in Examples 2.43 & 2.44 (though it is difficult 
to say with certainty).

Similar problems arise when the other general cases of a2x4+bx3+cx2+dx+e are 

considered. The expansions grow rapidly, lessening the chances of becoming eventually 

periodic. It is important to note that although the general case may not always appear to 

be eventually periodic, adjusting the coefficients can create such expansions as in Example 

2.35. In Example 2.45, letting a2 = forces ay = Qi so the infinite simple continued 

fraction expansion is period 6. The period 6 that is created is not the common form of a 

period 6; instead the expansions are “almost period 3”, but 03 = r(2ao) (instead of 2ao) 

and a6 — 2ao. We will define such expansions as follows:
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Definition 2.46. Let a G Q(x)*  — Q(®). a is said to be Almost Period n for nG N if

a = [oq, ai, 02,... ,an_i,an,r(a + ao)J where r G Q.

Notice if n is odd, then the expression of a as a continued fraction expansion 

has period length 2n; such an expansion has the form,

[ao,ai>a2}.-.,an-i,r(2ao),^,r(a2)J qS- ■ • ,r(an-i),r(^) = 2a0] where r G Q.

Example 2.47. Find the infinite simple continued fraction expansions of
a) a = x/z2 — 1 and b) a = x/4a;4 + 4x -j- 2 (a specific case of Example 2.45) using 
Proposition 2.27.

a) Let a = x/a?2 — 1. Then by Proposition 2.27,

Po = o Qo = 1 a = cto = x/a?2 — 1 ~ x — 4-.. ao = [[cto]] = x
Pl = X Q1 = -1 cti = —x — y/x2 — 1 °1 = [Ml = ~2x
P2 = X Q2 = 1 a2 = x 4- x/a?2 — 1 02 = [[<=*2]]  = 2x
P3 = x Qs = -1 a3 = —a? — x/a?2 — 1 a3 = [M] = -2a;

where the infinite simple continued fraction expansion is “almost period 1”, but 

a = [x, —2a;, 2x\ = [a;, — l(2a;)> ] where r — -1. Thus, as noted above,
the infinite simple continued fraction of ct has period 2(1) = 2.

b) If a = y/4x4 B 4x B 2. Then by Proposition 2.27,

Po = 0 Qo = 1 ot = cto = x/4a?4 + 4a; + 2 = 2x2Bx~1B^x~2B-■. ao = [[Q,o]] = 2a;2

Pl = 2x2

P2 = 2a;2 - 1

P3 = 2m2

P4 = 2m2

P5 = 2x2 - 1

P6 = 2x2

P7 = 2a;2

Qi = 4a; + 2

Q2 = xB^

$3 = 4

Q4 = a; + ^

Qs — 4a; + 2

Qe = l

Q7 — 4a; + 2

oi6 = 2a;2 4- x/4a?4 4- 4a? 4- 2

__  2x24-V4x44-4x4-2
” 4x4-2 01 = [[aill = x~l

a _ 2x2-lW4x4+4x+2 
x4-| a2 = [[a2]] =4a;-2

----------2x24-V4x44-4x4-2
u3 — 4 a3 = [MJ = x2

__ 2x24-V4x44-4x4-2
«4 “ ----------- ---Tl------------

z4*2
04 = [[a4]] = 4a; - 2

__ 2x2—14-v/4x44-4x4-2 
a5 “ ------------4x4-2 ag = [[as]] = x~l

_ 2z2+\/4x4+4x+2
— 4x4-2

aG = [[ae]] = 4a;2 

a7 = [[O7]] = x - |
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where the = 07 so infinite simple continued fraction expansion is period 6. Notice 

the expansion is “almost period 3”, but a = [2x2,x - j,4x - 2, ~ |)>
where r = thus, the infinite simple continued fraction of a is period 6.

It is worth mentioning that it can be proven that there are no “almost period 

2” or “almost period 4” continued fraction expansions. That is, if Vd = [ao, ai,a2,.. -, 

an_i,an,r(vzd+ao)] for n = 2 orn = 4, thenr = 1 causing a to be an ordinary eventually 
periodic simple continued fraction expansion. For the complete details of these proofs see 

[Vic78].
If this pattern persists, it seems that there does not exist an a such that the 

infinite simple continued fraction expansion is “almost period n” for n even. When 

considering n ~ 6, even with the assistance of Maple, the equations became unwieldy. 

We formalize this idea with a conjecture:

Conjecture 2.48. Let a 6 Q(a?)*  — have an infinite simple continued fraction 
expansion. Then a may have an “almost period n” continued fraction expansion if and 
only if n is odd.

To sum up the previous examples as well as other examples not previously done, 

consider the tables on the following pages:

r
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Table 2.1: Generalized Expansions (with examples)
Period

\JaQ "k — la°> ai’ 2°o] 2

V4a;6 + x = [2m3,4a:2,4a:3] 2

y|a?2 + |a? = [|m, 3m, m] 2

^/ao + 2~a°f+t1 “ (a(h ai ’ai > 2a°l 3

3^/a;4 4-a;3 4- |a?2 + 3a; + 2 = [x2 4- jx + l,x,x,2x2 4- x + 2]

y/|a?20 + x8 —.a?4 + 1 = [|a;10, a?2, a:2, m10] 3

/“o + = [ao.a^.a^ao] 4

yj a;14 — a;9 — 2a?8 — z6 4- |a?4 + | x3 4- x2 4- |a? 4- 

= [a?7 — |z2 — x, —2x, —x2, —2x, 2x7 — x2 — 2a?]
4

yjJo?18 + |a?14 + a?11 + ^a:10 4- 2x7 + x4 4*  a;3 4-1 

= [|a?9 + |a?5 + a;2, x2,x5, x2,x9 4- x5 4- 2m2]
4
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Table 2.2: Generalized Polynomials (with examples)
Period

Va2z2 + bx + c = [os + lax + 1,2

Vx2 4- 1 = [a;, 2e] 1*

x/a;2 — 1 = [a?, —2a?, 2x] 2**

\jfa2 + x 4-1 4-1, -2x — 4,x 4- 2] 2

Va2rr4 + dx = [ax2, 2ax2] 2

\/4x4 — x = [2x2, —4a?, 4a?2] 2

yi34 + 33 = [|32,13, |z2] 2

x/a2a;4 4- e = [ax2, 2a:r2] 1,2

Vx4 4-1 = [a?2, 2x2] 1*

V16a;4 4- 4 = [4a?2, 2a?2, 8a?2] 2**

VaW + ex2 + e = [oz2 + £, 2oz2 + f] 1,2

\jfa4 + x2 4- 5 = [|a?2 -1- 1, -2x2 - 4,x2 + 2] 2

x/x'4 4- 8a;2 4- 8 = [a;2 + 4, — fa2 — 1,2a;2 4- 8] 2

x/a2a;4 + dx + e = [aa;2, 2aa:2,...] 3, 6

V^4 + I® + 1 = [i^x-Lz-Lla;2] 3

6**V4x4 4- 4x 4- 2 = [2x2, x ~ 4a? - 2, a;2,4x - 2, a? - 4a;2]

** - Almost Period * - Special Case
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Chapter 3

Pell’s Equation

The entire study of Continued Fractions over Q(z)*  is the core study of this 

project due to its relevance to the solvability of Pell’s Equation, X2 — dY2 = n where 
d G Q[z] and X,Y G Q[x]. As in the previous chapter, we will only be interested 

in the cases where the leading coefficient of d is a positive square. When comparing 

solutions to Pell’s Equation over Z, there are many notable differences from the beginning. 

Traditionally, if d < 0 or d is a perfect square, there are only finitely many solutions; 

however, transitioning to Q(z)*,  there are an infinite number of solutions for any given 
d. We choose to restrict d to not be a perfect square in hopes of being able to classify all 
solutions precisely. This restriction is what creates the relationship between continued 
fractions and solutions to Pell’s Equation.

Theorem 3.1. Let d G Q[z] and n G Q , with v(d) >0, where d is not a perfect square, 
0 < v(n) < v(Vd), and the infinite simple continued fraction expansion of Vd being 
eventually periodic. If f2 — dg2 = n where the leading coefficients of f and g have the 
same sign, then £ is a convergent of the infinite simple continued fraction expansion of
Vd.

Proof. Let f2 - dg2 = n. Then, (/ + gVdfif - gVd) (f - gVd) =

but v(£ + Vd) > since and ‘(j’ have the same sign. So v(£ — Vd) < v(^z)-
Therefore, L is a convergent of the infinite simple continued fraction expansion of Vd by

Proposition 2.20. □
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As stated in the introductory chapter, we will be interested in characterizing 

solutions to the specific Pell Equation X2 - dY2 = 1 rather than a general n; it is at 
this point that we will begin to look only at this specific case for future results. We will 

pursue the solutions by examining their relationships to the convergents of the infinite 

simple continued fraction expansions of y/d.

Lemina 3.2. Let d G Q[a:] where d is not a perfect square and let be the ith convergent 
of the periodic infinite simple continued fraction expansion of y/d. Then,
Pi ~ dq? = for i > 0 where Qi,Q2i. • • are defined as in Proposition 2.27.

Proof. Let all notation be as in Proposition 2.27 with ao = y/d. Since y/d = ao =[oq, fli,..., Oi, Oi+i] for i > 0, Proposition 2.7 yields y/d = Qi+lPi+pi-l., But 
d!£+19£+?i-1

a«+l - Qi+1

_K M2 = (Ai+i+x/djpi+Qi+ipi-i
(Pi+1+x/d)q<+Qi+1 q, _ 1

and so,

dqi + (Pi+iqi + Qi+iqi_i)y/d = (Pi+iPi + Qi+iPi-1) +PiVd for i > 0

=> dqi = Pi+iPi + Qt+iPi-i and Pi+iqi + Qi+iQi-i = Pi 
=> dq2 = Pi+iPiqi + Qi+iPi-iVi and Pi+iPiQi + Qi+iPiVi-i = pf 
=> Pi ~ = (piQi-1 - Pi-iqfiQi+1 for 2 > 0

but by Proposition 2.10, (piQi-i —pi-iQi) = (—l)l_1 => p2 — dq2 = (—l)2_1Qi+i for i > 0. 
If i = 0 => pl - dqi = a2 - d = (-l)(d - = (-~l)(^r^) = (-l)Qi- □

Lemma 3.3. Let d 6 Q[x] where d is not a perfect square with the infinite simple con
tinued fraction expansion of y/d being periodic. Let p be the period length of the infinite 
simple continued fraction expansion of y/d and let all notation be defined as in Proposition 
2.27. If a = ao — y/d, Po = 0, and Qo = 1, then Qi = 1 if and only ifp\i.

Proof By Corollary 2.37, it suffices to show the desired result given a = ao = [[\/d]] + Vd, 
Po = [[\/d]], and Qq — 1 with ao = [ao,ai, . . . , ap_i] so that a is reduced. If i G Z with 

2 > 0 and ai = [a£, fli+i, ai+2, • ■ •], we have ao = ap = a2p = .... Furthermore, 

a^ = a0 =>
Now if p|i, we have PiQ^ = a$ = a0 = [[^/dj] + Vd=>P{ — Qi[[x/dj] = (Qi - l)Vd.
Notice, if Qi 7^ 1, the left hand side of the previous equation belongs to Q(rr), but the 

right hand side does not. Conversely, if Qi = 1, we have that ai = Pi + y/d; since ai is
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periodic, we have v(ai) < 1 => v(Pi — Vd) < 1 => Pi = [[a/^] • So ai = «o and p\i as 
desired. □

In the traditional study of continued fractions, it holds that Qi is never equal 
to —1; however, Example 2.47 shows that we are not able to say the same in Q(a;)*.

Theorem 3.4. Let d G Q[e] where d is not a perfect square with the infinite simple 
continued fraction expansion of Vd being periodic. Let & denote the ith convergent of the 
infinite simple continued fraction expansion of Vd and let p be the period length of this 
expansion. If Qi. V ~ 1 fQT °1>l i and p is even, then the solutions with positive leading 
coefficients to the Pell Equation X2 — dY2 = 1 are given by X — pnp-i and Y = qnp-i 
where n is a positive integer; if p is odd, the solutions are given by X = p2np-i and 
T = q2np—1 ■

Proof. By Lemma 3.2, we have p2 — dq2 = for i > 0. Note if Qi V — 1 for
all i, p2 — dq2 = 1 only if p\i + 1 by Lemma 3.3. Moreover, if p\i + 1, then, i = np — 1 for 

some positive integer n. So we have,

Pnp-l - d(&p-l = (-I)’*1'"2-

If p is even, then X = pnp-i, Y = qnp-i solve JV2 — dY2 = 1; otherwise, if p is odd, then 

X = P2np-1, Y = Q2np-1 solve X2 — dY2 = 1. These solutions are the only solutions with 

positive leading coefficients since any such solution must be a convergent of the infinite 
simple continued fraction expansion of Vd by Theorem 3.1. □

Theorem 3.4 allows us to find all solutions with positive leading coefficients by 
not only considering the convergents of the infinite simple continued fraction expansions, 
but by looking in a precise location.

Example 3.5. Using Theorem 3.4, find all solutions with positive leading coefficients to 
the Pell Equation a) X2 — (|a:18 4- x8 — xG 4- x4 — x2 4- 1)T2 = 1 and
b) X2 — (^a;18 + |a;14 4- a;11 4- + 2a;7 4- x4 + a;3 + 1)Y2 = 1.

a) Consider X2 — (Jo;18 4- a?8 — a?6 4- x4 — x2 4- 1)Y2 = 1- Since Qi —1 for all i and 
yj|a;18 4- £8 — a?6 4- a:4 — a?2 4-1 = [^a?9, x, x, a?9], we have that p = 3; thus, the solutions 

are given precisely by X = p6n-i and Y = g6n-i where n is a positive integer. The 

solution with the least positive value, given when n = 1, is
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X = p5 = la:22 +120 + |a:18 + 2®12 + 2x10 + 2x2 + 1

and

y = qs = a;13 + 2a;11 + x9 + 2a?3 + 2z.

That is, (|z22 + z20 + ^z18 + 2z12 + 2z10 + 2x2 +1)2 - (3Z18 + x8 - xG + x4 - x2 +1) (z13 + 

2z41 + x9 + 2z3 + 2z)2 = 1.

b) Consider X2 — Qz18 + |z14 + z11 + |z10 + 2z7 + z4 + z3 + l)y2 = 1. Since Qi 7^ —1 

for all i and

^z18 + |z14 + z11 + |z10 + 2z7 + z4 + z3 + 1

= [|z9 + |z5 + z2,z2,z5,z2, z9 + z5 + 2z2],

we have that p = 4; thus, the solutions are given precisely by X = p4n-i and Y = Q4n-i 
where n is a positive integer. The solution with the least positive value, given when 

n = 1, is

X = P3 = |z18 + ^z14 + 2zn + 2z7 + 2z4 + 1

and

y = q3 = x9 + 2z2.

That is, (|z18 + |z14 + 2Z11 + 2z7 + 2z4 + l)2 — (|z18 + |z14 + z11 + jz10 + 2z7 + z4 + 

z3 + l)(z9 + 2z2)2 = 1.

Although we have only found a single solution, substituting new values for n 
will provide us with infinitely many solutions we would like. The solutions found in the 
previous examples are those of least degree and are known as the fundamental solutions. 
Rather than compute the nth convergents for every desired n using our previous methods, 

we can use the fundamental solution to generate all others.

Theorem 3.6. Let d € Q[z] where d is not a perfect square with the infinite simple 
continued fraction expansion of Vd being periodic. Let xy, yy be the fundamental solution 
of the Pell Equation X2 — dY2 = 1. Then all solutions with positive leading coefficients 
are given by xn, yn where xn + ynVd = (xy + yyVd)n and n is a positive integer.
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Proof. First, consider x2 — dy2 = (xn 4- ynVd)(xn ~ ynVd)
= (#1 4- 2/1 Vd)n(xi — yiVd)n from the definition

= ^l~dyl)n
= (l)n since #1,2/1 is the fundamental solution
= 1.

Now, assume by contradiction that X, Y is a solution not of the form xn,yn for any n. 
Then 3 k e Z+ such that

u((#i 4- yr/d)k) < v(X + Yy/d) < v(fxi 4- yiVd)k+1).
Multiplying both sides by v((#i + yiVd)~k) yields,

u(l) < v(X 4- Yy/d)v((#1 + yiVd)~k) < v(xi 4- yiVd)
=> 1 < v(X + Y\/d)v((#i 4- yiVd)k) < v(xi 4- yiVd)

Now, let r,s6 Q[#] such that r 4- sy/d — (X 4- Yy/d)(xi 4- yiVd)k. Then

1 < v(r 4- sVd) < v(#i 4- 2/1 Vd).
Moreover, v(r2 — ds2) = v(r 4- sfd)v(r — sy/d)

= v(X + Y\Zd)v((xi +yiVd)kfu(X - Yy/d)v((xi - yiVd)k)
— v(X2 — dY2)v((x2 — dy2)k)
= v(l)
= 1.

So since #1,2/1 is the fundamental solution, v(#i) < v(r) and 11(2/1) < v(s) => *y(#i  4- 
2/1 y/d) < v(r 4- sy/d) a contradiction. □

Example 3.7. Using Example 3.5 and Theorem 3.6, find all solutions with positive lead
ing coefficients to the Pell Equation a) X2 — (^#18 4- #8 — #6 4- #4 — #2 4-1) Y2 = 1 and 
b) X2 — (|#18 4-1#14 4- #u 4-1#10 4- 2#7 4- #4 4- #3 4- 1)Y2 = 1.

a) The fundamental solution to the Pell Equation

X2 - dY2 = 1

where d = |#18 4- #8 — #6 4- #4 - #2 + 1 is

X = p5 = |#22 4- #20 + i#18 4- 2#12 + 2#10 4- 2#2 4- 1

and

Y = <75 — #13 4- 2a;11 4- #9 4- 2#3 4- 2#. 
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But we have established that all solutions with positive leading coefficients are given by 

xn, yn where

Zn+s/nV^ = ((5z22+z2o + |z18+2z12+2zio+2z2+l) + (z13 + 2z11+z94-2z3+2z)x/d)n.

We can compute the next solution with positive leading coefficients and second smallest 

value by expanding

((|a:22 + a:20 + |a:18 + 2x12 + 2a:10 + 2a:2 +1) + (a:13 + 2a:11 + z9 + 2a:3 + 2z)v'd)2

= U + Vjd

where,

U = jz44 + 2z42 + 3z40 + 2z38 + jz36 4- 4z34 + 12z32 + 12z30 + 4z28 + 12z24 + 26z22 4-
16z20 4- 2z18 4- 16z14 + 24z12 + 8z10 + 8z4 + 8z2 4- 1

and
V — jz35 + 2z33 + 3z31 + 2z29 + ^z27 4- 3z25 4- 9z23 + 9z21 4- 3z19 + 6z15 4- 13z13 4- .

8zn + z9 + 4z5 + 6z3 + 2z

b) The fundamental solution to the Pell Equation

X2 - dY2 = 1

where d = |z18 4- |z14 4- z11 4- Jz10 + 2z7 + z4 + z3 + 1 is

X=p3 = lx18 + |z14 + 2zn + 2z7 4- 2z4 4-1

and
■j

Y = q3 = z9 + 2z2.

But all solutions with positive leading coefficients are given by xn,yn where

xn + VnVd = ((jz18 + jz14 + 2Z11 + 2z7 + 2z4 + 1) + (z9 + 2x2)Vd)n.

We can compute the next solution with positive leading coefficients and second smallest 

value by expanding

((|z18 4- |z14 + 2zlx + 2z7 4- 2z4 4- 1) 4- (z9 + 2z2)x/d)2 = U + VVd
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where,

U = |a?36 + x32 + 5a;29 4- |a?28 4- 8a?25 4- 13a:22 4- 4a:21 4- 22a;184-
16a;15 4- 10a?14 4- 24a?11 + 8a:8 + 8x7 -J- 8a?4 + 1 

and
V = ^a;27 + ia;23 + 3a;20 4- 3a?16 4- 6a;13 + 5a;9 + 4a;6 4- 2a;2
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Chapter 4

Conclusion

The process of finding solutions to X2 — dY2 = 1 in Q[x] can be laborious, and 

nearly impossible, if one does not know about the theory of infinite simple continued 

fraction expansions that has been developed in Chapter 2. While analysis of solutions to 

the traditional Pell’s Equation, X2 — dY2 = n, is not as complete as when n = 1 in Z, 

the specific case has properties which can be generalized nicely.

Ultimately, the vital piece of information we lack is the characterization of when 

a = Vd has an eventually periodic continued fraction expansion. The transition from 

R to Q(e)*  has created changes to the traditional theory which have impacted the final 

results in a major way, primarily the converse of Theorem 2.31. Knowing that a quadratic 

surd has an eventually periodic infinite simple continued fraction expansion enables us 

to determine where Pell’s Equation has solutions given an arbitrary d G Q[z]. However 
at this stage, except for the specific cases outlined in Section 2.6, one must compute the 
infinite simple continued fraction expansion of Vd in order to determine if it is periodic. It 
is important to note that the expansion could be of any given period length so the process 

could be time consuming. This problem could be due to a few things. The new field and 

its properties could be the reason that the expansions are not as nicely categorized. 

Also, changing to the Non-Archimedean valuation from the absolute value seems to have 

played the largest role in the converse failing. Lastly, it is possible that many more of 

the expansions we have considered, at some point, eventually become periodic, but as of 

now the proof simply cannot be done.
A characteristic that is new to elements of Q(a;)*  is the fact that there exists an 
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i G N such that Qi = —1, which causes the fundamental solutions to their Pell’s Equation 

to show up earlier on. In the traditional study of Pell’s Equation, the version of Lemma 

3.3 over JR proves that there does not exist an i with Qi — —1 and so the solutions that are 
outlined in Theorem 3.4 are the only possible solutions in Z. However, having Qi+i = — 1 
over Q(a?)*  for some i creates solutions earlier on since (—= 1 when i — 1 is 

odd.
One property that was surprising was the examples where Qi = r for r G Q 

r f 1;—1. This is noteworthy because it appears in every “almost periodic” case. Our 

research into a few of the general cases of polynomials has led to the observation that 

it is the coefficients which affect exactly what r can be; for example, in the case of 

y/ a2x4 B dx Be where a = so that the infinite simple continued fraction is “almost 

period 3”, Q3 = r = 2e. A problem is that our collection of “almost periodic” examples 

are limited in number so our ability to explore any patterns they might have is hindered.

At first, the process of converting the traditional continued fraction theory into 

the new field was difficult having just learned of valuations. It turns out that the prop
erties we lose (due to no longer having absolute value), have an almost direct translation 
with valuations. Since we are no longer dealing with R, we do not have decimals, but 

clearly the new corollary to that is the infinite expansions where bQX~1 4- dim-2 4- ..., 
which look like Lagrange expansions. Also, instead of considering the distance between 

two elements, we measure the elements by the remaining values, or degrees, when they 
are subtracted; that is, we are no longer taking |a —1|, but we have v(a — |). Lastly, the 

idea of a < 0 translates to be v(a) < 1 which is notable in the definition of “reduced” 

elements in Theorem 2.34.
Since the Non-Archimedean Valuation is stronger than the traditional absolute 

value, we are able to arrive at stronger conclusions in certain cases. Proposition 2.20 

has two noteworthy changes when considered over Q(z)*.  Traditionally, |ce — || < 
whereas, now we have the possibility of equality so that v(a — f■ Also, more 
surprisingly, the “only if’ direction of the proposition holds. In the traditional study, \/3 

can be used as a counter-example since |x/3 — Co| = |a/3 — 1| > j. When extended to 

Q(a?)*,  it is sometimes the case — , but never greater, allowing the converse

to hold.
The use of Maple was essential to computing many examples at an expedited 
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rate, but it had its advantages and limitations. The main advantage of Maple was its ease 

of computing due to its ability to handle recursive definitions and its simplifying abilities. 

The limitations were that in using it, the outputs generated were less familiar and seemed 

detached. It is highly suggested that when studying continued fraction expansions, one 
does many examples by hand as well as using Maple. Maple proves to be a great source for 
checking and computing those expressions for which one already has an understanding, 

similar to a calculator. Even though Maple is an amazing computation tool, the numbers 

involved in some of the non-periodic continued fractions grow too rapidly to continue the 

expansions.
In terms of material, Chapter 3 summarizes the theorems and lemmas by com

bining them to find solutions to Pell’s Equation. Initially, beginning the study of solutions 

to Pell’s Equation with a subject that seems as disconnected as the study of continued 

fractions seems counter-intuitive, but once the reader understands how the solutions are 

discovered, each of the chapters on continued fraction expansions form the stepping stones 

to finalizing the results. The solutions come from the convergents of the infinite simple 

continued fraction expansions which were defined after finite simple continued fractions. 

Each of the examples, lemmas, theorems, and corollaries were precisely those necessary 

to further the progress in each chapter.
Despite the number of theorems and properties of continued fraction expansions 

which we are able to generalize over our new rings and fields, there are many problems 

left to be considered. The idea that there may not exist any almost periodic continued 

fractions of even length has been discussed and although the result seems likely, we have 

not proven it. Moreover, only expansions with “almost periods 1 and 3” have been found 
so finding other “almost periods” is another problem left to consider. As stated earlier, the 

most important of these open problems is to discover the general conditions an element 

of Q(®)*  — Q(o?) must meet for its infinite continued fraction expansion to be periodic. 

With such a result, we would be able to examine an element and immediately determine 

whether or not the expansion is periodic. Knowing whether expansions are periodic or 

not will allow for the complete characterization of the solutions to Pell’s Equation.
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