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ABSTRACT

An important invariant of a graph is its cycle matroid. Whitney’s 2-isomorphism 
theorem characterizes when two graphs have isomorphic cycle matroids. This expository 
paper will outline a proof of Whitney’s theorem using blocks of cycle matroids. Then we 
will generalize Whitney’s 2-isomorphism Theorem to hypergraphs and polymatroids by 
characterizing when two hypergraphs have isomorphic associated polymatroids. An 
associated polymatroid is an invariant of a hypergraph and carries the same information 
as a cycle matroid. Polymatroids generalize matroids by lifting the restriction that 
singletons have rank at most one. An associated polymatroid of a 2-uniform hypergraph 
(that is a graph) will be the usual cycle matroid.
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1 Graphs

Euler (1735) showed that no path exists that crosses over 
each bridge exactly once and returns to the starting point.

Figure 1.1: A graph representing the. bridges of.Konigsberg.

This expository paper will examine a fundamental theorem from graph theory: Whit­
ney’s 2-Isomorphism Theorem. Whitney’s 2-isomorphism theorem characterizes when two 
graphs have isomorphic cycle matroids. We will outline a proof of Whitney’s theorem us­
ing blocks of cycle matroids. Then we will generalize Whitney’s 2-isomorphism Theorem 
to hypergraphs and polymatroids by characterizing when two hypergraphs have isomor­
phic associated polymatroids. We will expound upon Dirk Vertigan and Geoff Whittle’s 
seminal work "A ^Isomorphism Theorem for Hypergraphs" [VW97]. We are interested in 
investigating the connections between graphs, matroids, polymatroids and hypergraphs.

We begin by stating basic graph definitions and results. We will follow the standard 
graph notation of Diestel’s book [DIO].

1.1 Preliminaries

Definition 1.1 1Let V be a finite set and E be a family of subsets of the Cartesian product 
V xV, where each element of E is an unordered pair of elements ofV. A graph is a pair G 
= (V,E) of sets where the elements ofV are called vertices, denoted V(G), and the elements 
of E are called edges, denoted E(G). For an arbitrary graph G, the elements of E are of 
the form {^1,^2} where Vi, V2 6 V, and V G E = 0.

1In this section we will be utilizing the basic graph notation of Diestel’s book [DIO].

Definition 1.2 The order of a graph G, denoted |G|, is its number of vertices, also denoted 
|V (<7)| (or simply |V|J. Similarly, \E (G)| (or simply denotes the number of edges of 
a graph G.

Definition 1.3 Let G — (V,E). We say that two vertices vi and V2 of G are neighbors if 
Is an edge ofG. A vertex v EV is incident with an edge eEE ifvEe.

Example 1.1 The vertices V2 6 V and v? E V are neighbors since there exists an edge 
{^25^7} in E(G) (also V2V7 E E(G)) that contains both. See Figure 1.2.
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Figure 1.2: A graph G = (6,7).

Definition 1.4 A loop is an edge whose endpoints are the same vertex. An edge is a 
multiple if there exists another edge with the same endpoints; if they have the same direction 
(say from x to y), they are parallel.

Definition 1.5 A graph is a simple graph if it does not contain multiple edges or loops. 
[See Figure 1.1. Edges e2 and e3 are multiple and parallel. Edge e4 is a loop.]

Definition 1.6 If all vertices of a graph G are pairwise adjacent, then G is complete.

Definition 1.7 Let G = (V,E) and G' = (v' ,E'^be two graphs. IfV' C V and E‘ C E, 

then G' is a subgraph ofG, written as G' C G. Less formally, we say G contains G'. (Note: 
G is a supergraph of Gf.)

Definition 1.8 If G' C G and G' contains all the vertices of G, that is V1 = V, we say 
that Gf is a spanning subgraph of G.

Definition 1.9 ForG1 C G, if E' consists of all edges ofG spanned byVf, Gf is an induced 
subgraph, denoted by G [V'], so that G' = G [V'].

Definition 1.10 A graph G is minimal when it possesses a property R and does not contain 
a proper induced subgraph of G that also contains this property. Similarly, a graph G is 
maximal when it possesses a property R and G is not contained in a proper supergraph H 
that also possesses this property.

Definition 1.11 For any graph G = (V, E), ifU C V, we denote G — U for G [V\17], that 
is G — U is obtained from G by deleting all vertices in U and their incident edges. Likewise, 
if F C E, we say G — F for G = (V, E\F).

Definition 1.12 Let G = (V,E) and G' = (v’,E>yjbe two graphs. We say G and G' are 

isomorphic, denoted by G = G* , if there exists a bijection p : V —> V‘ with xy 6 E 
ip (x) p(y) G E for all x,yEV. A map (p is called an isomorphism.



3

Definition 1.13 A map that takes graphs as arguments is called a graph invariant if it 
assigns equal values to isomorphic graphs.

Graph V'

Vi Vi

GrapEW

Far an isomorphism between V and W set f(v\) =■ W|s: 
/(v2) = /(ri) = /(V4) = 1V2. Hence V s W

Figure 1.3: Graph Isomorphism between V and W.

1.2 Connectivity

Definition 1.14 A path is a non-empty graph P = (V, E), where V = {a?o, a?i,. ■ ., £&}? 
E = , Xk~iXk} and each Xi is distinct. The length of a path P is denoted by
Pk. A path between two vertices x 6 V and y G V is denoted by xPy.

Definition 1.15 A cycle C is a path where E = {xo^i, ..., and k > 3. The length
of a cycle is denoted by Ck.

Remark 1.1 A graph may contain multiple paths and cycles.

Definition 1.16 A non-empty graph G is called connected if there exists a path between 
every pair of distinct vertices in G.

Definition 1.17 A component is a maximally connected subgraph.

Definition 1.18 A graph G = (V,E) that is not connected is said to be disconnected.

Definition 1.19 A cut vertex is a vertex whose removal disconnects the remaining sub­
graph, that is G — v has more components than G has.

Definition 1.20 A subset U of V is said to be disconnecting vertex set or a separator if 
G — U is disconnected.

1.3 Trees

Definition 1.21 A tree is a connected graph without cycles.

Remark 1.2 A spanning tree is a spanning subgraph that is a tree.

Definition 1.22 A forest is a disconnected graph whose components are trees.



4

Remark 1.3 It follows that a forest is a graph without cycles.

Forest with two components.

Figure 1.4: A Forest with two components.

Proposition 1,1 A graph G — (V, E) has a spanning tree if and only if G is connected.

Proof. Suppose G has a spanning tree. This implies that there exists a path between any 
two vertices of G. Thus G is connected.

Suppose G is connected. If G is not a tree, then it must contain a cycle. Select a cycle 
and remove an. edge from it. The resulting subgraph G! will still contain the same number 
of vertices as G and remain connected. Repeat process until Gf contains no cycles. The 
resulting subgraph G( will be a spanning tree. ■

Corollary 1.1 Every graph has a spanning forest.

Corollary 1.2 For any forest, |E| = |Vj — k where k is the number of components of(V, F). 
For a tree, |E| = |V| — 1.

Definition 1.23 Let G = (V,E) be a connected graph. We say that G is k—connected 
(for k e N) if |G| > k and G — X is connected for every set X C V with |X| < k. In other 
words, for a k—connected graph it is possible to form a path from any vertex to every other 
vertex in a graph after removing k — 1 vertices.

Definition 1.24 Let G = (V, E) and F C E. If G\F has more components than G, we 
say that F is an edge cut (or simply a cut).

Definition 1.25 A bond is a non-empty minimal edge cut.

Remark 1.4 If G is connected, its bonds are its minimal cuts. If G is disconnected, then 
its bonds are the minimal cuts of its components.

Remark 1.5 An edge cut in a connected graph is minimal if and only if both sides of the 
resulting vertex partition induce connected subgraphs.
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An arbitrary connected graph G can be decomposed into subgraphs that cover G and 
capture precisely the structure of G.

Definition 1.26 A block is a maximally connected subgraph without a cut vertex.

Remark 1.6 Every block is a maximal 2-connected subgraph, or a bridge, or an isolated 
vertex.

(a) A graph G.

0>)

•-----------•

(b) The six blocks of G.

Figure 1.5: A graph G and its six block subgraphs.

Proposition 1.2 Let G = (V, E) be a graph. Then the cycles of G are exactly the cycles 
of its blocks.

Proof. Each cycle in G is a connected subgraph without a cut vertex. Therefore, by 
definition, it lies in some maximal subgraph which is a block of G. ■

Definition 1.27 The block graph of a graph G is a tree graph that depicts all of the blocks 
of G as emphasized vertices. See Figure 1.6.

(a) A graph G. (b) The block graph of G.

Figure 1.6: A graph G and its block graph representation.
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Definition 1.28 The incidence matrix B=VxEofa graph G = (V, E) is the matrix B 
with

(lifvee}
v’e ]0ifv<£ej

for v eV and e E E.

Example 1.2 The graph on V = {^i, v2, ^3} with the edge set E = {ei,e2,e3,e4}. It has 
the incidence matrix B=VxE

ei e2 e3 e4
Vl T 0 1 r

B = v2 110 1
v3 0 110

Figure 1,7: A graph G and its incidence matrix B = VxE
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2 Hypergraphs

In this section we will introduce hypergraphs which generalize graphs. We will utilize 
the notations and expound on the related theorems found in Vertigan and Whittle’s "4 
2-Isomorphism Theorem for Hypergraphs" [VW97].

2.1 Hypergraph Introduction

Definition 2.1 2Let V be a finite set and E a family of subsets ofV. A hypergraph H is 
a triple (V,E,I) where V and E are called vertices and edges respectively and I QVxE 
is the incidence relation of H.

2In this section we will be utilizing the hypergraph notation of Vertigan and Whittle [VW97]. For futher 
details see also [B73],

J' = b’h v2; v3» v6)
E= [ei- ei, ej. et} =

= {{Vi, v2: v3J, {V2: V3}: {v3? r4, va), {v5}}

ei e2 e3 e4
Vi '1 0 0 0'
v2 110 0

I = V3 1110
v4 0 0 10
^5 0 0 0 1
v6 0 0 10

Figure 2.1: A hypergraph H=(6,4,(6,4)).

Remark 2.1 In this expository paper, every edge will be incident with at least one vertex.

Definition 2.2 A subset W of vertices is a separator of H if, for any edge e, either e is 
contained in W or e is disjoint from W.

Remark 2.2 A component of H is a minimal non-empty separator.

Definition 2.3 A (non-trivial) hypergraph H is connected if it has exactly one component.

A hypergraph H is simple if it has no loops or parallel edges. A hypergraph is 2- 
connected if it is connected and contains no cut vertices.

Notation 2.1 For a subset A of edges, A denotes the set of vertices incident with at least 
one edge in A.

H\A = (A, A, IQ (Ax A)).

Notation 2.2 For a subset W of vertices, W denotes the maximal set F of edges such that 
F is contained in W.

H | W = (W, W, 7n (W x W)).
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2.2 Complete Hypergraph

Definition 2.4 A complete hypergraph is a hypergraph (V,E,I), for |V| > 2 having the 
property that for every subset W of V having at least two elements, there is a unique edge 
e such that e = W.

Complete Hypergraph on Four Vertices

Figure 2.2: A complete hypergraph on four vertices.

Remark 2.3 The maximum size of a simple complete hypergraph on n vertices is 2n — n — 
l(See Remark 2.1).
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3 Matroids

In this section we will introduce matroids, which are an abstraction of linear independence. 
Matroids can be characterized by their bases and circuits, with the latter being related to 
cycles in graphs. We will utilize the notations of and expound upon the related theorems 
found in Oxley’s book "Matroid Theory" [O92J.

3.1 Independent Sets and Rank

Definition 3.1 3 A pair (E,T) is called a matroid if E is a finite set andT a non-empty 
collection of subsets of E satisfying:

3In this section we will be utilizing the matroid notation of Oxley’s book [092],
4See Whitney’s historic papers [W32] and [W33].
5 See Berge’s historic book [B73] for further details.

1. If I ET and J QI, then J E T. (hereditary)

2. If I, J ET and |1| < |Jj, thenlUz EX for some z E J~ I .(independence augmentation)

Note: These axioms were given by Whitney in 19354.

Definition 3.2 For a given a matroid M = (E,T), a subset I of E is called independent, 
denoted T(M), if it belongs to T, and dependent otherwise.

Remark 3.1 The members ofT are the independent sets of M, and E is the ground set of 
M, denoted E (M).

Remark 3.2 A matroid on E is a hypergraph. The independent sets correspond to the 
edges of hypergraph (E,T)5.

Definition 3.3 For U C E, a subset B of U is called a base if it is an inclusionwise 
maximal subset of U. That is, B eT and there is no Z eT with B C Z QU.

Corollary 3.1 For any subset U of E, any two bases ofU have the same size.

Definition 3.4 The common size of the bases of a subset U of S is called the rank of U, 
denoted rw (U) or simply r (U) when the matroid M is clear from the context.

Definition 3.5 Let E be a finite set. The function r : 2E —> Z is the rank function of a 
matroid M on E if it has the following properties:

1. If X C E, then 0 < r (X) < |X|.

2. If X Q Y C E, then r (X) < r (Y).
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3. If X and Y are subsets of E, then

r(Iuy) + r(Xny)<r(I) + r(y).

Definition 3.6 Let Mi and M2 be matroids. We say Mi and M2 are isomorphic, denoted 
by Mi = M2, if there is a bijection <p from E (Mi) to E (M2) such that for all X C E (Mi), 
the set tp (X) is independent in M2 if and only if X is independent in Mi. A bijection 9? is 
an isomorphism from Mi to M2.

Definition 3.7 Let Mi and M2 be matroids. A matroid invariant is a function f defined 
on matroids such that f (Mi) = f (M2) whenever Mi M2.

Remark 3.3 The rank and cardinality of bases are matroid invariants.

3.2 Circuits

Definition 3.8 A circuit C of a matroid M is an inclusionwise minimum dependent set, 
whose proper subsets are independent.

A circuit of M that has n elements is called an n-circuit. We denote the set of circuits 
of a matroid M by C(M) or simply C.

Definition 3.9 The set C of circuits of a matroid M has the following properties:

1. 0$C.

2. If Ci and C2 are members of C and Ci Q C2, then Ci = C2.

3. If Ci and C2 are distinct members of C and e € Ci Pl C2, then there is a member C3 
of C such that C3 C (Ci U C2) — e.

Theorem 3.1 Let E be a set and C be a collection of subsets of E satisfying properties of 
Definition 3.9. Let I be the collection of subsets of E that contain no member ofC. Then 
(E, I) is a matroid that has C as its collection of circuits.

Corollary 3.2 It follows that if C is a circuit of M, then C T (M) and C-x€l (M)
for all x in C.

A matroid can be characterized in three specific ways: by the collection of its indepen­
dent sets, by the collection of its circuits, and by the collection of its bases.

Theorem 3.2 Let E be the set of column labels of an mx n matrix A over a field IF, and 
let T be the set of subsets X of E for which the multiset of columns labelled by X is a set 
and is linearly independent in the vector space- V (m, F). Then (E, I) is a matroid.
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Example 3.1 Let A be the following matrix over the field R of real numbers: 

1 2 3 4 5
[10 0 11

A [o 1 0 0 1

Tften£ = {1)2,3,4>5} andI = {

Thus the set of circuits of this matroid is C = {{3} , {1,4} , {1,2,5} , {2,4,5}} whose proper 
subsets are independent.

Lemma 3.1 Suppose that I is an independent set in a matroid M and e is an element of 
M such that I U e is dependent. Then M has a unique circuit contained in IU e, and this 
circuit contains e.

Proof. By Corollary 3.2, I U e contains a circuit, and all such circuits must contain e. 
Suppose C and C' are distinct circuits that contain e. Then Definition 3.9 implies that 
(C U Cf) — e contains a circuit. So (C U C') — e C I, which is a contradiction. Thus, C is 
unique. ■

Theorem 3.3 Let E be the set of edges of a graph G and C be the set of edge sets of cycles, 
of G. Then C is the set of circuits of a matroid on E.

Proof. The set C satisfies Properties 1 and 2 of Definition 3.9.
To prove that it satisfies Property 3, we want to examine two distinct cycles of G and 

construct a cycle with an edge set contained in (Ci U C2) — e.
Let Ci and C2 be the edge sets of two distinct cycles of G that have e as a common 

edge. Let u and v be endpoints of e. Let Pi be the path from u to v in G whose edge set 
is Ci — e. Likewise, let P2 be the path from u to v in G whose edge set is C2 — e. Starting 
at u, we traverse Pi towards and let w be the first vertex at which the next edge of Pi is 
not in P2. Continue traversing Pi from w towards v until the first time we reach a vertex 
x that is distinct from w but is also in P2. Since Pi and P2 both end at v, such a vertex 
must exist. So now we adjoin the section of Pi from w to x to the section of P2 from x to 
v, the result is a cycle (see Figure 3.1), with the edge set contained in (Ci U C2) — e. Hence 
C satisfies property 3.
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Figure 3.1: A unique circuit of a matroid M.

■
The matroid derived from the graph G (Figure 3.1) is called a cycle matroid of G. It 

follows that a set X of edges is independent in the matroid of G if and only if X does not 
contain the edge set of a cycle, that is the subgraph induced by X is a forest.

3.3 . Graphic Matroid

Definition 3.10 Let G = (V, E) be a graph and let I be a collection of all subsets of E that 
form a forest. Then M = (E,T) is a matroid and called a cycle matroid, denoted M(G).

Remark 3.4 Any matroid obtained by this construction or isomorphic to such a matroid 
is a graphic matroid.

Remark 3.5 The circuits of M(G) are exactly the cycles ofG.

Remark 3.6 The bases of M(G) are exactly the inclusionwise maximal forests F ofG. So 
if G is connected, the bases are the spanning trees.

Let G be the graph in Figure 3.2 and let M = M (G).

Figure 3.2: A graph G and its graphic matroid M(G).

Then E (M) = {ei, e2, e3> e4, e5} and C (M) = {{e3} , {ei, e4) , {ei, e2, e5} , {e2, e4, e5}}.
If we compare M with the matroid M [A] in Example 3.1, we can see that there exists a 



13

bijection (p from {1,2,3,4,5} to {ei, e2,63, e4, eg} defined by <p (i) = &i. Thus, a set X is a 
circuit in M [X] if and only if ip (X) is a circuit in M.

From Definition 3.10, we know that each base U of F is an inclusionwise maximal forest 
contained in F. So U has |V| — k elements, where k is the number of components of (V, F). 
So each base of F has |Vj — k elements.

Remark 3.7 So U forms a spanning tree in each component of the graph (V, F).

Definition 3.11 For each subset F of E, let k (V,F) denote the number of components of 
the graph (V,F). Then for each F Q E:

wjGWi-w
which is called the rank function of M(G').

3.3.1 Matroid Connectivity
Proposition 3.4 Let M be a graphic matroid. Then M = M (G) for some connected graph 
G.

Proof. Suppose M is graphic, that is M = M (H) for some graph H. If H is connected, 
we are done. If not, suppose the connected components are Hi, H2,..., Hn of II. We can 
form a new graph G by identifying with each block Hi a vertex Vi (for i G [1,2,..., n]) and 
joining vi,v2,... ,vn into a single vertex. So E (H) = E (G) and G is connected. Observe, 
if X C E (H), then X is the set of edges of a cycle in H if and only if X is the set of edges 
of a cycle in G. Hence M (H) = M (G). ■

Corollary 3.3 If H is a disconnected graph , then there is a connected graph G, such that 
M(H) = M(G).

(a) (b)

Two non-isomorphic graphs with congruent cycle matroids.

Figure 3.3: Two non-isomorphic graphs with congruent cycle inatroids.

Definition 3.12 A matroid M is connected if and only if for every pair of distinct elements 
ofE(M), there is a circuit containing both.

Definition 3.13 Let G be a connected loopless graph and suppose that (G)| > 3. Then 
M (G) is a connected matroid if and only if G is a 2-connected graph.
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3.4 Whitney’s 2-Isomorphism Theory for Graphs

Definition 3.14 A graph is 2-isomorphic to a graph H if H can be transformed into a 
graph isomorphic to G by a sequence of the following operations:

1. Vertex joining. Let vi and V2 be vertices of distinct components of G. We modify G 
by identifying t?i and v2 as new vertex v.

2. Vertex splitting. We modify G by the reverse operation of vertex joining, namely we 
split G at a cut vertex.

3. Whitney twist (or twisting). Suppose that the graph G is obtained from disjoint 
graphs Gi and G2 by joining the vertices ui of G4 with of G2 as the vertex u of 
G, and joining the vertices u2 of Gj with v2 of G2 as the vertex v of G. In a Whitney 
twist of G about {u, v}, we instead join u\ with v2 as the vertex u of G', and join U2 
with vi as the vertex v of G!. We say Gi and G2 are the pieces of the twisting.

Remark 3.8 A 2-isomorphism transformation does not alter the edge sets of cycles of 
graph.

Vertex Joining and Vertex Splitting

Figure 3.4: A vertex joining and splitting.
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Figure 3.5: A twisting about {u,u}.

Proposition 3.5 If a graph G is 2-isomorphic to a graph H, then M (G) = M (H).

Theorem 3.6 Whitney’s 2-isomorphism Theorem. Let G and H be graphs having no 
isolated vertices. Then M (G) and M (H) are isomorphic if and only if G and H are 
2-isomorphic.

Remark 3.9 Unfortunately, the operations of 2-isomorphism cannot be applied to the class 
of graphs that are 3-connected loopless graphs8.

Remark 3.10 Fortunately, 3-connected graphs are uniquely determined by their cycle ma- 
troids.

Proposition 3.7 Let G and H be loopless graphs without isolated vertices. Suppose that 
$ : E (G) —> E (H) is an isomorphism from M (G) to M (77). If G is 3-connected, then $ 
induces an isomorphism between graphs G and H.

Proof. (Sketch of proof) Since G is 3-connected, G — v is 2-connected for every vertex v of 
G. By Definition 3.13, we know the M (G — v) is connected, so M (G) has precisely |V (G)| 
connected hyperplanes* 7. But M (G) = M (77), and M (G) is connected and loopless, so H 
is a loopless block. It follows that |V (G)| = r (M (G)) + 1 = r (M (77)) 4-1 = |V (77)|. Thus 
M (H) has precisely ]V (77) | connected hyperplanes. Hence G = H. ■

cSee Oxley’s book [092] for further details of Tutte’s results.
7 Refer to [092] for further details and proofs of this result.

Proposition 3.8 Let G be a block having at least four vertices and let G not be 3-connected. 
Then G has a representation as a generalize cycle, where each part is a block.
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Figure 3.6: A generalized cycle of a graph G.

Proposition 3.9 Let G have a block representation as a generalized cycle with the block 
parts of Gi,G2,..., Gn. Let H be a graph for which there is an isomorphism # from M (G) 
to M (H) and, for each i, let Hi be the subgraph of H induced by 4/ (E (Gif): Then H is a 
generalized cycle with parts Hi, H2,..., Hn.

Proof of Theorem 3.6

Proof. (Sketch of proof)8

1. By Proposition 3.7, if G is 3-connected, then G = H.

2. Suppose G is not 3-connected. Then by Proposition 3.8, G has a representation as 
a generalized cycle in which each part is block, say Gi, G2, ■ • •, Gn. It follows from 
Definition 3.16, H has a representation as a generalized cycle, the parts of which are 
Ri, H2,..., Hn, where H [£ (E (G^))].

3. We transform H into a generalized cycle of H!.

4. We transform H', by a well-defined sequence of twistings of the individual blocks of 
the generalized cycle of H', into a graph isomorphic to G .

5. Hence we transformed H into a graph isomorphic to G.

8 Refer to [092] for further details and proofs of the results in this section.
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4 Polymatroids and Rank Equivalence

In this section we will introduce polymatroids which are generalization of matroids. An 
associated polymatroid is an invariant of a hypergraph and carries the same information as 
a cycle matroid. Polymatroids generalize matroids by lifting the restriction that singletons 
have rank at most one. An associated polymatroid of a 2-uniform hypergraph (that is 
a graph) will be the usual cycle matroid. We will utilize the notations of and expound 
upon the related theorems found in Vertigan and Whittle’s "A 2-Isomorphism Theorem for 
Hyperqraphs" [VW971 and in Schriiver’s book "Combinatorial Optimization: Poh/hedra and 
Efficiency" [S03].

4.1 Polymatroids

Definition 4.1 9Let f be a set function on a finite set E, that is, a function defined on the 
P(E) of all subsets of E. Then f is called submodular if

f (Tn U) + f (T U U) < f (T) + f(U)

for all subsets T, U of E.

Definition 4.2 Let E be a finite set and consider an integer valued set function p : 2E —> Z. 
Then p is called a polymatroid if it has the following properties:

1. p is normalized, that is p(0) = 0,

2. p is increasing, that is p (A) < p (B) whenever A C B G E,

3. p is submodular, that is p (A U B) + p (An B) < p (A) + p(B) for all subsets A and B 
of E.

Remark 4.1 Each submodular function gives a polymatroid, which is a generalization of 
the independent set polytope of a matroid.

Remark 4.2 In a sense, submodularity is the discrete analogue of convexity.

Figure 4.1: An independent set polytope (72,3.

9In this section we will be utilizing the polymatroid notation of Schrijver’s book [S03].
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Definition 4.3 A separator of a polymatroid p on E is a subset A of E with the property 
that p (A) + p (E — A) = p (E).

Remark 4.3 A component of a polymatroid p is a minimal non-empty separator.

A polymatroid p is connected if its only separators are E and 0. A subset A of a 
polymatroid p on E is a spanning if p(A) = p (E).

Definition 4.4 A hypergraphic polymatroid Xh of H is defined, for all subsets A of E to 
be

XhW = |^|— k(H I A).

The hypergraphic Xh is an invariant of a hypergraph, which essentially contains the 
same information as a cycle matroid contains for a graph (See Definition 3.5 and Definition 
3.11). In fact, if H is a graph, that is a 2-uniform hypergraph, then Xh is the rank function 
of the cycle matroid of the graph.

4.2 Rank-equivalent Hypergraphs

Definition 4.5 Let H and I be hypergraphs. If H and I have the same edge set E and 
XH(A) = X/(A) for every AC E, then H and I are rank-equivalent, that is, Xh =

Corollary 4.1 It follows that two hypergraphs have isomorphic hypergraphic polymatroids 
if and only if, up to relabelling of edges, they are rank equivalent.

Theorem 4.1 The hypergraph H is rank-unique if the only hypergraph that is rank-equivalent 
to H is H itself (up to vertex labelling and isolated vertices).

Definition 4.6 Complete hypergraphs are rank-unique.

Complete Hypergraph on Four Vertices

Figure 4.2: A complete hypergraph on four vertices.
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4.3 Hypergraph Transformations

Definition 4.7 A twisting partition of H = (V,E,I) is a partition {U, W,u, w} ofV such 
that for every edge e of H, either e C U U {u, w} or e GW U [u, w} or {u, w} C e.

Definition 4.8 A twisting ofH is defined to be when each edge e of E with e C Wufu, io} 
and |eA {u, w}| = 1, change e to e A {u, w} where A denotes the symmetric difference.

Figure 4.3: A non-trivial twist of a hypergraph H.

Remark 4.4 If H is a 2-uniform hypergraph (i.e. a graph), then a twisting is as defined 
in Definition 3.14-

Definition 4.9 A splitting of H is to remove a cut vertex v of H such that its edges are 
partitioned into two subsets A and B.

Definition 4.10 A joining of H is a reverse splitting operation where vertices 14 and v2 
in components A and B are joined into a single cut vertex v such that A A B = {v}.

Theorem 4.2 Hypergraphs H and I are 2-isomorphic if H can be transformed into I by a 
sequence of twistings, splittings and joinings. (Note: This includes the addition and removal 
of isolated vertices and the relabelling of vertices.)

A hypergraph H is rank-unique if the only hypergraph rank-equivalent to H is H itself. 
It follows then that a hypergraph is rank-unique if and only if it has non-trivial twisting 
partitions.
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5 2-Isomorphism Theorem for Hypergraphs

In this section we will generalize Whitney’s 2-isomorphism Theorem to hypergraphs and 
polymatroids by characterizing when two hypergraphs have isomorphic associated polyma- 
troids. We will utilize the notations of and expound upon the related theorems found in 
Vertigan and Whittle’s "A 2-Isomorphism Theorem for Hypergraphs" [VW97],

5.1 Whitney’s 2-Isomorphism Theory for Hyp ergrap hs

Theorem 5.1 Let H and I be hypergraphs. Then H and I are rank-equivalent if and only 
if they are 2-isomorphic.

Proof. (<=) If H and I are 2-isomorphic, then they are rank-equivalent. Without loss 
of generality, assume I is obtained by H via a single twist. So I is obtained from H by 
twisting on the twisting partition {U,W,u,w}. Let A be a subset of edges. Observe, if 
A n {ix, w} has the same cardinality in H as in I, then clearly Xh (A) = Xi (A).

If not then, without loss of generality, assume A contains more elements of {u, tu) in I 
than in H. Observe, if A contains both elements of {u, it;} in I and only one element of 
{it, id} in H, then k (I | A) = k (II ] A) -I- 1.

Set |A|h = n. So, |A|j = n + 1.
So)Xj(A) = |A|/-A:(Z|A)

= (n + l)-(fc(tf| A) + l)
= n~k(H\ A)
— Xh (^)*

Hence, Xii (a) = Xi (A).

( ) (Sketch of proof). We want to show that if H and I are rank-equivalent hy­
pergraphs and II is simple and 2-connected, then H and I are 2-isomorphic. We do this 
by showing that two rank-equivalent hyp er graphs II and I can be transformed to rank­
equivalent complete hypergraphs via a well-defined sequence of operations, which consists 
of twist partitions and edge extensions, all of which preserve rank-equivalence. We must 
first develop this sequence of operations and then apply it to finish the other direction of 
our proof. ■

5.2 Rank-equivalent Complete Hypergraphs

Definition 5.1 Let H be a hypergraph. Then xh connected if and only if H is 2- 
connected.

Definition 5.2 If H and I are rank-equivalent hypergraphs and A is a set of edges for 
which H | A is 2-connected, then I [ A is 2-connected.

Proposition 5.2 Let H and I be 2-isomorphic hypergraphs and let F be a subset of edges. 
If F is spanning in xh an(l II \ F is 2-connected, then H | F and I [ F are 2-isomorphic.
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Proof. We assume H and I have no isolated vertices. Since F is a spanning in so 
F = V (H). So a twisting partition of H is also a twisting partition of H | F. Observe, if 
we choose the twists corresponding to the sequence of twisting partitions that transforms 
H to I, then we can transform H [ F to I | F. ■

5.2.1 Edge Extensions

Now we wish to consider adding edges to rank-equivalent hypergraphs in particular way 
that preserves rank-equivalence10.

10Refer to [VW97] for further details and proofs of the results in this section.

Proposition 5.3 If H and I are rank-equivalent and e is an edge, then H | e and I | e are 
rank- equivalent.

Remark 5.1 By Definition 4.5, H and I have the same edge set, so rank-equivalence for 
hypergraphs restricted to particular edge sets also follows.

Definition 5.3 Let H and H1 be a simple hypergraphs. We say the hypergraph H' is an 
extension of H if H ~ Hf | E (IT).

Definition 5.4 Let H and I be rank-equivalent hypergraphs. We say that (H*  ,/') is a 
coherent extension of (H, I) if H' and F are extensions of H and I respectively, and H! 
and I1 are rank equivalent.

Definition 5.5 A hypergraph H is closed under coherent extensions if it has no non-trivial 
coherent extensions.

Proposition 5.4 Let H and I be rank-equivalent hypergraphs and assume that H | Vh (f) 
and I | V/ (f), then H and I can be extended to rank-equivalent hypergraphs Hl and I’ where 
Hf | f and I' | f are equal complete hypergraphs.

Remark 5.2 Recall Definition 2.4. By Definition 4.6, complete hypergraphs are rank­
unique. It follows that a pair of rank-equivalent complete hypergraphs are equal.

5.2.2 Twisting Partitions

Definition 5.6 Let e be an edge of a simple hypergraph H. We say that e is minimal 
incomplete if H \ e is not complete but for every edge f with f C e, the hypergraph H | f is 
complete.

Definition 5.7 A hypergraph H is near-complete if it has a minimal incomplete edge e 
withe —V(H).

Proposition 5.5 Let H be a simple 2-connected hypegraph that is closed under coherent 
extensions. Suppose I is rank-equivalent to H. Let e be a minimal incomplete edge of H. 
Then H | e and 11 e are 2-isomorphic.
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Proposition 5.6 Let H be simple 2-connected hypegraph that is closed under coherent ex­
tensions. Suppose I is rank-equivalent to H. Let e be a minimal incomplete edge of H. 
Then H is 2-isomorphic to a hypergraph such that Hi | e = I ] e.

Proof. Let IT = {h E \h C e or h = f or h = 5}. It follows that H | H*  is rank 
unique and that no twisting partition of 77 ] e extends to a twisting partition of H. By 
Proposition 5.5, there is a sequence of twistings (each associated with a twisting partition) 
from 77 ] e = I | e. If we can extend every twisting partition to the whole hypergraph then 
we are done. If not, 77 has a restriction, such as hypergraph 77*.  But then 77 ] II*  = 7 ] H*,  
so that 77 | e = 7 | e. ■

5.2.3 Proof of Theorem 5.1

Recall Theorem 5.1: Let II and 7 be hypergraphs. Then 77 and I are rank-equivalent if 
and only if they are 2-isomorphic.

Proof. ( => ) Let H be a 2-connected simple hypergraph. Let 7 be a hypergraph that 
is rank-equivalent to 77, (that is 77 and 7 have the same edge set E and x#(A) = X/(^) 
for every A C E, so that %H = %j). Let E (H) = E(F) = E. Assume H and I are not 
2-isomorphic. Suppose \V (H)\ = ]V (7)] = n, where n is of a minimum order, that is both 
77 and 7 are near-complete and bound above by |7?| = m, where m = 2n — n — 1 (see 
Remark 2.3). So II is closed under coherent extensions and is not complete. So there exist 
an incomplete edge e, and by Proposition 5.6, 77 is 2-isomorphic to a hypergraph 77i such 
that Hi | e = 7 | e. By Proposition 5.4, there exists a non-trivial coherent extension of 
(77i,7) to (Hf,I') such that 77' ] e = 7' ] e is complete. Since E(H') > m, then by our 
maximality assumption, H' is 2-isomorphic to 7'. However, Hi — IP | E is 2-isomorphic to 
I = 7' | E, by Proposition 5.2. It follows that 77 is 2-isomorphic to 7. ■
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