
California State University, San Bernardino California State University, San Bernardino

CSUSB ScholarWorks CSUSB ScholarWorks

Theses Digitization Project John M. Pfau Library

2013

Quantum cryptography Quantum cryptography

Razvan Augustin Dinu

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project

 Part of the Information Security Commons

Recommended Citation Recommended Citation
Dinu, Razvan Augustin, "Quantum cryptography" (2013). Theses Digitization Project. 4047.
https://scholarworks.lib.csusb.edu/etd-project/4047

This Thesis is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has
been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks.
For more information, please contact scholarworks@csusb.edu.

https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd-project
https://scholarworks.lib.csusb.edu/library
https://scholarworks.lib.csusb.edu/etd-project?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F4047&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F4047&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd-project/4047?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F4047&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

Quantum Cryptography

A Thesis

Presented to the

Faculty of

California State University,

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree

Master of Arts

in

Mathematics

by

Razvan Augustin Dinu

March 2013

Quantum Cryptography

A Thesis

Presented to the

Faculty of

California State University,

San Bernardino

by

Razvan Augustin Dinu

March 2013

Approved by:

3//?,/20)?

Dr. Chris Freiling, Committee Chair Date

Dr. Peter Williams, Chair,
Department of Mathematics

Dr. Charles Stanton
Graduate Coordinator,
Department of Mathematics

Abstract

The Thesis starts by presenting RS A, the most used cryptosystem in the world.

Then the Thesis presents the basis of quantum information theory, while also making a

succint comparison with the equivalent classical counterparts and presenting briefly how a

quantum computer works. The Thesis then builds a case for using a quantum computer for

solving cryptographic problems. It looks at the quantum turing machine concept, explores

why use quantum computers and presents Deutsch’s problem which allows one to select from

amongst the parallel paths a quantum computer calculates. After the Thesis briefly presents

the classes of quantum algorithms, it describes in detail the algorithm stages a quantum

computer would have to go through in order to brake an RSA code: Shor’s factoring

algorithm, quantum fourier transform (QFT), tensor product factorization, a circuit for

QFT, and Simon’s algorithm for phase estimation.

Acknowledgements

I wish to thank Dr. Chris Freiling for all his help and support in the development

and formation of this paper. I also want to thank Dr. Corey Dunn and Dr. Ronald Trapp

for their comments on the paper as well. Your assistance was very much appreciated.

V

Table of Contents

Abstract iii

Acknowledgements iv

List of Figures vi

1 Introduction 1

2 Quantum Information 3
2.1 Basic Quantum Information Theory.. 3
2.2 How a Quantum Computer Works... 12
2.3 Shor’s Algorithm... 18

3 The Rationale for Using a Quantum Computer 19
3.1 The Quantum Turing Machine.. 19
3.2 Why Use Quantum Computers... 21
3.3 Deutsch’s Problem... 22

4 Quantum Algorithms 28
4.1 Classes of Quantum Algorithms .. 28
4.2 Shor’s Factoring Algorithm and Order Finding... 29
4.3 Quantum Fourier Transform ... 34
4.4 Tensor Product Factorization... 37
4.5 A Circuit for Quantum Fourier Transform .. 38
4.6 Simon’s Algorithm for Phase Estimation... 41

5 Conclusion 43

Bibliography J 47

1 i ‘ * * -■ j

vi

List of Figures

2.1 The quantum Fredkin gate... 8
2.2 A quantum circuit black-box model... 15
2.3 A quantum circuit with the second qubit set to |0).. 16
2.4 A qubit in state |0), applied to a Hadamard gate.. 16
2.5 The transformation Uf : | xy) —> | x(y © /(&))) performed by the quantum

gate array... 17

3.1 Classical and quantum parallelism... 23
3.2 A quantum circuit for solving Deutsch’s problem... 24

4.1 The relationship between integer factorization, order finding, phase estima­
tion, and Quantum Fourier Transform. 29

4.2 The cycle for computing the order k for an integer x mod P............................ 30
4.3 The multiplicative cycle for 11 mod 21.. 31
4.4 Flowchart of the factorization algorithm for P = 21 and q — 11......................... 34
4.5 A circuit for Quantum Fourier Transform... 40
4.6 A quantum circuit for phase estimation ... 42

1

Chapter 1

Introduction

Cryptography, in Greek meaning “code-making”, toghether with cryptanalysis,

meaning “codebreaking”, form the science of cryptology. Cryptology, first employed by the

Spartans in 400 B.C., is the science of secret communication.

Cryptography uses methods that allow for secret communication between parties.

The plain text is encrypted, respectively decrypted into a cipher text using a certain key.

The communication is secret as long as an eavesdropper has no information on the message.

The goal of cryptanalysis is to overcome cryptographic systems and reveal the

contents of encrypted messages, even if the cryptographic key is unknown.

Communication and computer systems encoding information in the spin of elec­

trons or polarization of photons are called quantum computers. Quantum means “some

quantity” in Latin. The term has been employed in physics with the same meaning of the

word “discrete” in mathematics: it refers to a quantity that can take only sharply defined

values, as opposed to a continuously varying quantity.
1' J 1 if

Quantum systems have strange and, at the same time, remarkable properties.

There are several concepts associated with quantum mechanics that are very difficult to

accept.

One of these concepts is the non-determinism, or the Heisenberg’s Uncertainty

Principle: the position of a quantum particle and its velocity cannot be measured simul­

taneously. This is because measuring the property of the quantum particle corresponds

to applying a linear operator to the vector describing the state of the system. A linear

operator in quantum mechanics has a matrix associated with it and, because the product

of matrices is nori-commutative, the order of measurement is important.

Another one of these concepts is the non-locality: the fact that two quantum

2

objects can influence one another, even when separated by a large distance, and that the

change of state of one determines an instantaneous change of state of the other.

Quantum computers can have a role both in cryptography, by using quantum

states as information carriers, and in cryptanalysis, by using quantum algorithms that can

factor large numbers very efficiently, thus potentially being able to break the RSA, the most

used cryptosystem in the world.

The RSA is based on the use of one-way functions, as proposed by Diffie and

Hellman in 1976 [DH76]. The RSA uses two different keys: a public one and a private one.

The public key is announced to everybody, and the private key is kept secret. The plaintex

is converted in ciphertext using a one-way function. This function can be evaluated easily,

but is hard to invert. The invertion can easily be done using the private key. Thus, the

plaintext can be recovered from the ciphertext by the owner of the private key.

The RSA system was invented by Rivest, Shamir, and Adleman in 1978 [RSA78]

and it is based on the difficulty of factoring large numbers. The RSA system works as

follows: Let M = ni • Tty the product of two prime numbers ni and rty. Let —

(m|l)(?i2|l) be'the Euler function of M, choose a such that 1 < a < and gcd(a, M) =

1, and calculate p such that a • p = Imodg(M'). The numbers M and a then form the
I

public key, whereas p is the private key. A message 5 gets encoded into C = Sa mod M.
I . t

Since xap = xmodM, we can decode by calculating CpmodM = S. As an example, take
1 > I* (

m = 7 and n.2 = 11, thus M =77 and = 6 x 10 = 60. Choosing the public key a = 13

(together with M = 77) we find the private key p = 37 .

3

Chapter 2

Quantum Information

2.1 Basic Quantum Information Theory

The theory of quantum information is involved with the communication and pro­

cessing of quantum states.

Quantum system store information using qubits. A qubit can be in any state that
iis a linear combination of the basis states |0) , represented as , and |1), represented as

, called computational basis states. For example, in case the physical implementation
f—i

uses photons, the basis states can be horizontal polarization (|0) represented as and
vertical polarization (|1) represented as ^LJ), or up spin and down spin in case the physical

implementation uses electrons. Imagine the possible states a qubit can be in, represented

as© © O © © © © © 0 0 0 G.
The result of measuring a qubit is non-deterministic and the measurement alters

its value. In contrast, a regular bit can can only be in the states 0 or 1, and we can measure

its value with certainty and without affecting its value. . : . . , • ><

Definition 2.1. Hilbert space: a complex vector space with a finite dimmension n. We will

note the Hilbert space by Hn.
/ ' ' I

Definition 2.2. The qubit, or quantum bit, is the unit of quantum information.’ 1 t

Consider {|0), |1)} to be an orthonormal basis of H2, the Hilbert space we define

our qubit in., Then we can represent the, qubit as a normalized vector in ,H2- . |u>), =

m|0) -f- n|l). Coefficients m and n are the probability amplitudes of the state and are

complex numbers, such that |m|2 -4- |nj2 = ■ 1. The jO) can be represented as a matrix

4

|0) = I I and the |1) can be represented as a matrix |1) = I].
\ ° / \ 1 /

When we measure a qubit, we actually project the vector on one of the basis

vectors chosen randomly depending on the amplitudes. The qubit must be normalized so

that the probabilities sum to one.

The outcome of a measurement of a qubit with the state \tp) = ao|0) 4- ai|l) is 0

with probability |ao|2 and 1 with probability |ai|2. We say the qubit is in superposition of

these two states, meaning that it is both 0 and 1 at the same time.

Law 3.1: Qubit measurement (collapsing): Once we measured the state of a qubit

and the result reads |0)(or |1)), then repeated measurements will give the same result. We

say the state collapses to |0)(or |1)).

To do useful computation we need more than one qubit. If we consider a system

consisting of n, qubits,- .the possible observed states of such a system form a vector space

2n. That is because for each qubit we have two orthogonal basis. There are 2” basis

states forming a computational basis and there are superposition states resulting from the

superposition of these basis states. The state of an n-qubit system is given by the tensor

product of the individual state spaces.

Definition 2.3. Quantum register: A quantum register is a grouping of n qubits |0i)... |0n) •

Its classical analogue is a procQssor 'register. ‘ 1

We can express the state of !the register fy) as1 a tensor product‘ ‘

W = 101) ® |02> ■ - ■ ® |0n>

or as a linear combination of the basis vectors |0),|2n — 1):

I .< 2n-l ' Ml ...
W = E -

£—0
with the restriction that *

2n —1
12 i«d2 = i
£=0

It is important to emphasize that the qubits in the register may be in an entangled

state.

For example, if we group two qubits, then the resulting space will be 744 =

So lets say we have two qubits, one represented by the vector |a) = ao|O) 4- ai11), and the

other qubit represented by the vector |/?) = &o|0) 4- &i|l). The resulting product state is

5

\a/3) = aoi»o|OO) + ao&l|Ol) + ai&o|lO) + aibi|U)

For example, it yields 00 with probability |aobo|2* We can see this product state is

normalized since

V (ao&oj2 + (ao&l)2 + (ai^o)2 + (ai^i)2 = yj + J) + u2(Z>q + £»2) =

\/(ao + ai)(bo + fei) = \/(ao + ai)\/(6o + &i) = 1

But if a transformation is applied to the state, then separation of the states may

no longer be possible. In other words we cannot represent it by a tensor product of qubits

- we say the qubits are in an entangled state and we present this concept later on in this

chapter.

Definition 2.4. Unitary transformation: A unitary transformation is a unitary operator

acting on a vector space 'Hn.

Unitary means that the following properties are satisfied:

1) U :Hn ~^Hn

2) = (Ua\U/3)

3) 3U-1 9 UU~X = 1. : .

where is the inner product in W"‘.
.. i . . ■■ ■ ■ • i i

Theorem 2.5. Unitary transformations form a group under composition.

Indeed, if U and V are unitary transformations then UV is also surjective and

{UVa\UVfi} = (Va\V/3) = (a|&)

for every a, 0 G 'Hn . Also, (C7Vj_1 = V-1!/-1.

Hence UV is also a unitary transformation.

We will represent unitary transformations using unitary matrices.

Definition 2.6. A unitary matrix is a square complex-valued matrix, A, whose inverse is

equal to its conjugate transpose:

A-1 = A*

6

Quantum computers are comprised of quantum circuits which are built using quan­

tum gates. Quantum logic gates perform unitary operations and therefore are represented

by unitary matrices.

Definition 2.7. Qubit operation: A single qubit operation is the operation performed by a

quantum gate on a single qubit.

Definition 2.8. Quantum algorithm: A quantum algorithm is a sequence of unitary oper­

ations on the vector \ f).

Definition 2.9. Walsh-Hadamard transform: The one qubit Walsh-Hadamard transform

determines a rotation on the basis vectors defined by:

H. io> —> ^(|0) + |l»
' |!> +(l°> -JV),

H transforms a qubit [i/j) = gq|0) + ai|l) in the following way:

if i 1 \
Its corresponding unitary matrix is: -L I I ■ The most important role of

V2 y i -i j

the Walsh-Hadamard, gates is the fact that it can take a qubit in any state and transform

the state into a, superposition state,-with equal probability amplitudes for |0) and |1).

Definition 2.10. CNOT operation: A CNOT (controlled NOT) operation is performed by

a CNOT gate. The CNOT gate switches the second qubit (the target qubit) to its opposite

state if and only if the first qubit (the control'qubit) is |1). The operation performed by this

gate is similar to the one performed by a classical XOR gate.'

The operation of the CNOT gate can be modeled by the following chart:

Before After
|0,0) 10,0)
|0,1) |0,i>
|l,0> IM'
ll,l> |l,0)

The CNOT operation is given by the matrix:

7

G o o o A

0 10 0
c =

0 0 0 1

^0010/

CNOT is a unitary operation because the inverse of its matrix C is equal to its

conjugate transpose:

1 0 0 0 A

0 1 0 ,0

0 0 0 1,

0 0 10/

(-1

. 1 , v 1 0
C = def(C)^=-l

0
I 0

and

/

& = 0it —

0 0 0 (1 0 0 o

-1 0 0 0 1 0 0

0 0 -1 0 0 0 1

0 -1 0
J

0 1 0/

Let [#>) be the state of a quantum register formed by the qubits |a) = ao|O) + ai|l)

and \fi} — 6q|0) + h|l)=

\i/>} = \ap) =aoi>o|OO) + ao£>i|Ol) + ai&0|10) + ai&i 111) —

«oo|OO) + aoi|01) + aio| 10) + an 111)

■ By applying the CNOT operation to this register we obtain:

C >= C\af3 >— aoo|00) + aoi[01) + an|10) + aio|H)

1
If the target qubit is \0) =|0) = l|0) + 0|l), then'the quantum register is

= |Qj0) = aol|00).+ qg0|01) +ail|10) f mOJll) = ao|00) + aj|10)

and the CNOT generates the state

C|v>) = ao|OO) + a1|U)

8

and in this way the CNOT gate copied the superposition of the control qubit to

the target.

One-qubit operations and the CNOT operation are called elementary unitary

transformations. Dan C. Marinescu [MM05] shows how we only need these elementary

unitary transformations in order to construct a universal quantum computer.

Definition 2.11. Fredkin gate: The Fredkin gate is a three-qubit quantum gate with two

target inputs, a, b, and a control input, c. The gate has three outputs, af, bf, and d.

The input of the Fredkin gate determines the output as follows:

• The control input c is transferred directly to the output, c’ = c, see Figure 2.1(a)

• When c = 0, the two target inputs are transferred without modification to the output:

a’ = a and b’ — b, see Figure 2.1(b).

• When c — 1, the .two target inputs are swapped: a’ = b and b’ == a, se.e Figure 2.1(c)

i >

ii ---------------------- u-

j

A—----------__L—Q
(b). :---- i

Figure 2.1: The quantum Fredkin gate.

A system of three qubits requires an eight-dimensional complex vector space with
a basis consisting of eight vectors: |000), |001), |010),|011) , |100), jlOl), |110), and |111).

Each of the basis vectors in Tls. is a tensor product of three basis vectors in Hz:

(A
0 i 0 0

0 0 1 0

0 0 0 1
|000> =

0
|001) =

0
|010> =

0
|011> =

0

0 0 0 0

0 0 o' 0
U J U/ \o/

9

when c = |l),aand6 are switched, and the mapping of the Fredkin gate’s input to output

is as follows:

|000> |000)

|001>'J—> |001> ’ ■ ‘ .{ , 1
|oi'o> |oio) ■ ' !

i <
|011> |101>

1100) b-> 1100)

|101) |011) ,
I I ’

|110) |110)

|111) >-> |111)

The transfer matrix of the Fredkin gate is otain as follows:

Gfredkin = |000> (000| + |001) <001| + |010> <010| + |011) (1011+

+|100)(100| + |101>(011| + |110)<110| + |111)<111|

And therefore

10

fl 0 0 0 0 0 0 0 >

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

G Fredkin —
0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0

\0 0 0 0 0 0 0 1/

Let | Vpredkin) be the input state of a Fredkin gate:

iFpredfein) — ftooo)000)+aooi |OOl)+^oio|OlO)+aoi1|011■)+flioo| 100)+flioi 1101)+ano| 110) +«1111111).

The output state of a Fredkin gate, | Wpredkin) is given by:

jlVpredftjn) — G Fredkin\VFredkin) ,

The Fredkin gates have the following properties: .

• they are reversible;

• they conserve the number of Is at their input making them a conservative logic gate;

• they can simulate both AND and NOT gates, making them universal gates.

In order to implement “if-then-else” constructs, there were devised quantum cir­

cuits who can execute a unitary transformation G function of the state of a “decision” qubit.

The most common of these single-qubit controlled transformations are: the controlled-H,
the controlled-/, the controied-Pa, and the controlled-

The controlled-Rk will be used later on in Chapter 4 so we are presenting its defi­

nition below. When we apply a transformation on a qubit, its angle 0 about the three axes

changes, as well. The controlled—Rk gate implements such a phase-shift transformation.

Definition 2.12. Controlled~Rk gate: The controlled-Rk gate implements the operation

given by:

I_ / 1 0
Rk ~ I 0 e2^2"

11

The controlled-gate maps its input to the output as follows:

|00) h-> |00>

|01) *“* |01)

|10> !-> |10>

|11) >-» e2"72* |11)

The transfer matrix of the controlled-7?/,- gate is given by:
Gcontrolled—Rk = 100) <00| + |01)(01| + 110) <10| + e2^ 111) <11|

And therefore

(1
0
0

G controlled—R^ —

0

1

0

0

0 0

o o

1 o
0 e™^ J

Definition 2.13. Entanglement: Two or more qubits are entangled if the state of the

register formed by them cannot be expressed as a tensor product.

For example, consider a CNOT gate with the control qubit |a) = 110) 4- 0)l)and

the target qubit |/3) = bo|O)'+bi|l). Then state of the CNQT, gate will be bo |00) + bi |01) =

|0> ® (bo |0) + b |1)). This state is separable and the two qubits are not entangled because

the state can be written as a tensor product.

If we consider a similar situation but with the control qubit |a) — ao]O) + ai|l)

and the target qubit \/3) = l|0) + 0[l), then the state of the CNOT gate will be uq |00) +

111)which cannot be written as a tensor product and therefore is entangled.

We will prove that no |00) + cq 111) with ao, fti 0 cannot be written as a tensor
, , i

product.

Proof Assume |</?2) 3 l^i) 0 |02> = ct|00) + , ct, /3 / 0'‘

Let = ao|O) + ai|l) and |^2) = bo|O) + bi|l).

Then ® |^2.).= ao&o|00) + aobi|01) d-.ai&o|10) +L,aibi|ll).
/

Therefore <
dobQ — a, nobi = 0 => bi = 0

#ibi = /3, aibo — 0 => bo = 0- \
diction of our hypothesis.

'I ; 1 1 ’ i , ’
=> a = 0and/3 = 0 which is a contra-

\ ■ i ■ . . . i i i ■ . ■ , * . <1 ■

□

12

We can conclude that, by applying the CNOT operation to the quantum register

|0), returned as an output the entangled superposition of the control and the target. In

other words, the output of the CNOT gate cannot be expressed as a tensor product.

The fact that a quantum system is entangled means there are reciprocal relation­

ships between the subsystems. For example, suppose that | '-I0 represents the state of two

qubits, one of which is in Los Angeles and the other one is in New York. Since the qubits

are entangled, their individual states cannot be written as vectors in 7Y2. If we measure

the qubit in Los Angeles, we will obtain a random answer (0 or 1), but we will be sure

that if someone measures the other qubit, he will obtain the opposite answer. Although the

answer we receive is random, the other answer is always its opposite. What we do with one

part, of the system influences the other part. This will prove very useful for computation.

Law 2: Evolution: The evolution in time of a quantum system is unitary. In

other words, in a quantum system , for any event, the sum of probabilities of all possible

outcomes is equal to 1.
t *

1 j 1 : 1 > < l

2.2 How a Quantum Computer Works

A classical computer evolves from an input state, goes 'through a number of in­

termediate states, and arrives at an output state. Throughout its evolution^ these states

are all known. For example, a server might be in a state of IDLE, CONNECTED, BUSY,

ERROR, etc. This classical computing'engine always returns the same result any time a

specific set of input values is present. We call this behaviour “deterministic”.

A quantum computer is a quantum system. As we have seen earlier, the quantum

system is a generalization of the qubit to the h-states and its state is represented by:

|Y) = ao]0> + ax|l)... + a$4- a„i|nl)

, such that |aj2 = 1

This means the states of the quantum computer are not known. We call this

behaviour “stochastic”. , ,

The output states of a.stochastic(engine are random and the value of the output

state cannot be discovered. All we can do is, label a set of pairs consisting of an output

state of an observable and a measured value of that observable.,, , , , . ,

Then the quantum computation works as follows: we prepare a quantum register

in a known state, we apply quantum gates on the register, i.e. we apply unitary operations

13

on some qubits in a precise order, and we measure the final state of the register to learn

its content. It is important to note that a quantum computation is probabilistic in nature,

because altghough the evolution of the states is deterministic, the measurement step gives

probabilistic answers.

One important result is that every classical computable function can be imple­

mented by unitary transformations[MM05]. This means a quantum computer can perform

any function a classical computer does, and more. As we will see in Chapter 3.1, there is

no significant increase in the time (time complexity) or number of operations required to

compute those functions with a quantum computer. An example of something a quantum

computer can do and a classical one cannot would be the implementation of a fair coin toss

using a one qubit computation. First we prepare our qubit in state |0). We then input this

in a Walsh-Hadamard gate:
ff|0) = + ' ''

which yields the superposition. A measurement on this resulting superposition state of

the the qubit in the standard basis would produce a |0) or a |1) with equal probability.

The result we obtain is a true random number. It would be impossible to generate such a

number using a classical computer.

Quantum mechanics imposes limitations on what we can do with qubits. Two

important theorems follow: , (,

Theorem' 2.14. There is no perfectly accurate measurement of amplitudes. Let *[-0) ‘ =

<2o|O) +^i|l) an arbitrary qubit. Measuring the qubit will hot allow us'to tell its probability

amplitudes a$ and a.\. ’ ’ ’

In other words measuring the qubit will not allow us to tell that it is in the state,
say ||0) + ^|1). We can only distinguish between orthogonal states: if we know the qubit

is in one of the orthogonal states |aj or \/3) (such that (a|/3) = 0),' then we could apply a

measurement to tell in which one of those two states the qubit is.

Theorem 2.15. No cloning: Given an arbitrary qubit = uo|O) 4- aijl), there does not

exist an operator A and a state |ct) 9 A(|?/?) ® |a) = ® \ip). This implies that we can’t

clone arbitrary quantum states.

Definition 2.16. Quantum interference: In quantum computing different parallel compu­

tations can interfere, making the path. of certain computations stronger, while .the path of

others weaker. This can cause some answers to become more likely than others.

14

For example, suppose we have the unitary transformation U: t

and we apply this transformation to a qubit in the state |1) =

We obtain

['ll> - A
meaning the results |0) or |1) have an equal probability. But applying this transformation

twice:

and this means the output will certainly be |0).

Similarly

CW|0) = |1)

The conclusion is that when we aply U once we obtain a stochastic answer but applying U

twice gives a deterministic answer: the negation of the input.

In many quantum algorithms, interference plays a crucial role. The “good” com­

putational paths interfere constructively and the “bad” ones interfere destructively so they

will not be encountered.

Interference, together with entanglement and parallelism play a major role in

quantum computing. ' • ; '

Let i be a binary string of length n. Then there 2n possible values of x. In order

to compute a function f(x) using a classical circuit we can either :

1. Use a sequence of the same circuit and obtain all the values of the function after 2”

time steps (exponential time), or

2. Or, use 2n copies of the circuit, each with a different input x, and obtain all the values

in a single time step (exponential resources).

15

For example, let us consider a function f : {0,1} —> {0,1}. To calculate its output

in a standard fashion we would have to perform f (0) and f (1), separately.

Definition 2.17. Quantum parallelism: Quantum circuits can perform /([0) -F [1)) =

|/(0)) + |/(1)) in one step, using what is called quantum parallelism, a behavior based

on the superposition principle and entanglement.

We will see below how quantum circuits have the ability to calculate the all the

values of the function /(x) for all possible values of the input x. in one time increment and

using only one instance of a circuit.

Let us see an example for a two qubit computation.

We will use a black-box approach.

Let / : {0. l}n —> {0, l}m be a function we would like to obtain information about.

In order to do so / is associated with a black-box Uf .

Definition 2.18. The black-box model: In this model a gate is considered a black-box in the

sense that we don’t know how it works internally. All we know is that it takes x € {0, l}n

as input, and outputs f(x).

As it is, this function is not generally reversible (consider for instance the all-0

function). A quantum circuit needs to be reversible. In order to make the function reversible

we use another input y G {0, l}m. In.this way the black-box Up. outputs x and /(x) © y.

Using this extra input Uf is then a permutation of all (n + m)—bit strings, and therefore

reversible (BFFP10] Now consider the circuit shown in the Figure 2.2 below used by Peter

Shor as a quantum circuit black-box model [Sho02]. This circuit takes an input not in the

computational basis and applies Uf to it. As a note, the function / is hardwired into the

circuit usingiFredkin.gates. The^circuit .takes, as input the two qubits |x)and |y) and outputs

|z)and \y® f(x)}. , (

X X —

Uf ..

: ■ Figure 2.2: A quantum circuit ,black-box model

Therefore Uf : \xy) —> |x(j/ © f(x))

16

If the second qubit is set to |0), as seen in Figure 2.3, then the transformation

carried out by the circuit is

|z0) ->

Figure 2.3: A quantum circuit with the second qubit set to |0)

Let us take a qubit in state |0), apply it to a Hadamard gate, which will output

the superposition state (|0) +|1)), and apply this to the input |x), all while the input

\y) is set to = |0), as in Figure 2.4.

Figure 2.4: A qubit in state |0), .applied to a Hadamard gate

As a result, the two output qubits of the circuit are:

10) + |1)
V2

and

17

„ |0> + |1> x _ 1/(0)) + l/W>
A J x/2

The readout state of the quantum black-box is:

/|0> + |l)\ ® ^10) + !!^ = 10/(0)) + |0/(l)) + ll/(0)> +
\ \/2 / >/2 2

As you can see, we have evaluated f(x) for both /(0) and /(l) concurrently. The problem

is that we cannot extract both answers. If we measure the resulting qubit, we will obtain

the answer /(|0)) or /(|1)) at random because /(|0)) and /(|1)) are orthogonal.

Let us see an example with three qubits, where we have a two qubit register |sd) ,
a one qubit \y} = |0), and would like to compute /(|x)). We prepare [x) formed by the 2

qubits initailly set at |0) using Hadamard gates. This gives us H |x) = =

|oo)+|oi)+|io)+|ii) ng outpUt from the Hadamard gates. Then /([a?)) = /(l0Q+lQJ++°+l1b) —
1/(00)). \ . l/(oi)) + 1/(10)). + I/(1D)

This result can be extended to an input consisting of say m qubits. For this we

need a quantum circuit to transform an m-dimensional vector |x) into |/(x)).

Figure 2.5 illustrates a quantum gate array performing'a linear transformation U/

to the input |x) 6 TU™ , a 2m-dimensional vector acting as a control input, and |y) 6

a 2fe-dimensional vector acting as a work qubit.

|x)----------- ►
(m-diinensional)

|y.j.----------- ►
(^-dimensional)

——

- ----
(h = m + Zc)-diihensiohal

Figure 2.5: The transformation Uf : | xy)> | x(y®/(x))) performed by'the quantum gate
array. ’ ■ ■ '.

As we have seen in the examples above, the m qubits in the register |x) have to

be first brought to a superposition state using m Hadamard gates. Typically, we start with

these m qubits in state |0). Then, each |0) qubit is transformed by a Hadamard gate as

follows:
H ; |0) |0> t

1 1 y/2

18

By applying an array of m Hadamard gates we obtain:

(H® H... ® H) |00. ..0> = (10) + |l»®(|0) + |l))...®(|0) + |l))
(72)n

and this result is expressed as a linear combination of 2m vectors forming an

orthonormal basis in ty”1- The gate array performs a linear transformation and it generates

a result in the form of a superposition state. The outputs are and \y © f(x)} G >

with n = m 4- k. When \y) — [0), the second output becomes

In this way we calculated the function f(x) for its entire 2m-dimmension domain in a single

step and this is what is called quantum parallelism.

However, this parallel computation does not seem to be useful because1 when we

measure the output of the quantum gate array we can only observe one value: We need the

capability to extract from the superposition state ''fo\x,'f(x')) more than one value of f(x).
X

We will see how this is done using the Deutsch’s Algorithm in Chapter 3.

2.3 Shor’s Algorithm

In 1994, Peter Shor[Sho97] published a quantum algorithm that factors integers in

polynomial time. This discovery drew a lot of attention to the field of quantum computation

because the factoring problem is at the core of modern cryptography. Many cryptographic

systems base their security on the assumption that the factoring problem is difficult. Shor’s

algorithm could break such systems very effectively. The subject of this Thesis is this

algorithm and we will see how it functions in Chapter 4.

19

Chapter 3

The Rationale for Using a
Quantum Computer

3.1 The Quantum Turing Machine

The Church-Turing principle is stating that all computing devices can be simulated

by a Turing Machine. This principle has major implications for the computability theory.

It means that in order to study computability, instead of investigating a potentially infinite

set of physical computing devices, it is sufficient to restrict ourselves to a single abstract

model, the Turing Machine.

Definition 3.1. Turing Machine: A Turing Machine (TM) is an abstract computing device

with a finite number of internal states, a read-write head (the modem memory bus), and

an infinite moving tape (the modem memory) organized in individual cells with each cell

containing a symbol.

The Turing Machine starts in a certain state, scans the symbol currently under

the head and, function of the internal state of the machine and the current symbol, it may

either erase that symbol and replace it with another symbol, or leave it as is, and then

move the tape left or right and change its internal state. Let Qi and Si denote the state

and the symbol read at time t. Let D the direction of the movement and Qj, Sj the new

state and the symbol written. Then the relationship between these can be expressed as

Qj — F(Qi, Sf).

Sj = G(Qi,Si)

20

D = D(Qi,Si)

The Turing Machine is completely defined by the original tape and the set of

quintuples (Qi, Si, Qj, Sj, D).

As Alan Turing describes it in 1936[Tur], there is a Universal Turing Machine

(UTM) able to simulate any other Turing Machine.

In order to do so, we input into the Universal Turing Machine the set of quintuples

and the tape describing the original Turing Machine together with the indication where to

start and where to end.

To establish if a function f(x) is Turing-computable or not, we have to find a TM

able to carry out the computation prescribed by the function f(x). If such a machine exists

we can be assured that the function is computable.

Definition 3.2. Turing-computable functions: A function f(x) is Turing-computable if

there is a Turing Machine Tj with a tape containing a description of x and which will

eventually halt with a description of f(x) on tape.

Being able to automate the solving of a mathematical problem consists in finding

a Turing Machine able to carry out that same computation.

Definition 3.3. A Probabilistic Turing Machine (PTM) is a Turing Machine with an extra
I

instruction that allows it to randomly choose an execution path. A PTM can have stochastic

results such that a computation performed several times on a. given input may have different

run times, or it may not go through at all.

A classical computation performed by a PTM can be represented by a probability

tree diagram with nodes for each state, and branches connecting parent and child states,

each branch with its probability. Because of the stochastic nature of PTM, the same state

may appear in the probability tree multiple times, which we will call state instances. The

probability of a state instance is given by the product of probabilities assigned to all branches

leading from the root to the node associated with that instance state. The probability of

a state is the sum of the probabilities of all the instances of that state. The sum of the

probabilities of all states at any given level of the tree is equal to one.

Definition 3.4. Quantum Turing Machine: A Quantum Turing Machine- (QTM) is a PTM

in which the classical laws of probabilities are substituted by quantum systems laws [Sim97].

A computation on a QTM is represented by a computational tree where each

branch has an associated probability amplitude. The probability amplitude of an instance

21

state is given by the product of the probability amplitudes assigned to all branches leading

from the root to the node associated with that instance state. The probability amplitude

of a state at any level is the sum of the probability amplitudes of all the instances of that

state at that level. The probability of an instance of a state is the square of the probability

amplitude of the corresponding node. For example, the probability of a particular final

state is the square of the sum (not the sum of the squares) of all leaf nodes corresponding

to that state [Sim97]. The evolution of a QTM must be unitary and reversible.

3.2 Why Use Quantum Computers

There are two reasons why we would want to use quantum computers instead of

classical ones in solving certain types of mathematical problems. One reason has to do with

computational complexity. The other reason is the posibility of using quantum parallelism.

Computational complexity clasifies problems into classes' of complexity. Compu­

tational complexity takes into account two major complexities: resource complexity and

time complexity. The time complexity of an algorithm, expressed as O, depends on the

size of the input to the problem and represents the run time of that algorithm'. Thus, time

complexity represents a measure of the performance of an algorithm and represents the to­

tality of elementary operations performed by the algorithm. In a quantum computer each

elementary unitary transformation is counted as one operation [1]. On a conventional com­

puter performing a unitary operation requires more than one arithmetic operation. Time

complexity has an asymptotic representation. For example, if an algorithm presented with

inputs of size n requires a run time of T(n) = 7n5 + 2n, the asymptotic time complexity is

O(n5). ‘ ‘ *

Depending on the type of the function T(’n), an algorithm with time complexity

O(n) is called a polynomial time algorithm, and an algorithm with time complexity O(2n)

is called an exponential time algorithm. A problem is considered relatively simple if it uses

polynomial time and difficult if it uses exponential time.

Computational complexity theory considers several complexity classes. For our
I | k - L 1

thesis we will consider just two of these classes:

P: The complexity class of decision problems that can be solved on a deterministic

Turing machine in polynomial time.

JVP: The complexity class of decision problems that can be solved on a non-

deterministic Taring machine in polynomial time.

22

The complexity class P C NP. JVP contains something called jVP-complete

problems. There are no known polynomial-time algorithms capable of solving this type of

problems.

C.M.Papadimitriou launched the hypothesis that any physical computing device

can be simulated by a Turing Machine.in a number of steps polynomial in the resources

used by the computing device [Pap 94]. No counter-examples have been found amongst

the classical mechanics-based systems. However, counter-examples seem to exist amongst

quantum-based systems [121]. According to this theory, J\fP problems such as factoring

integers, or finding discrete logarithms could be solved in polynomial time by a quantum

computing system. This means that we are well motivated to investigate quantum com­

puting devices and quantum algorithms. It is mainly the phenomenons of entanglement

and quantum parallelism, characteristic to quantum systems, that can make all of this

computing power possible [Joz98].

There is also the question if we can emulate the behavior of a quantum system

using a classical system. Research [Joz98] shows that it may be possible for the 2n modes

of a classical system to emulate the behavior of n qubits and exhibit entangled states, but

we would neeti to expend an exponential amount of energy to emulate the behavior of

entangled quantum particles.

3.3 Deutsch’s Problem

Imagine a black box circuit performing a hardwired function f(x) with the possible

inputs to the blackbox being x = 0 or x = 1.

We have four possible mappings: * '

7(o) = o,/(o) = i1/(i) = o5/(i) = i

with the assumption that the black box' spends' T time computing any of the mappings and

that it .takes no time to compare the results.

The problem posed by David Deutsch is the ability to discriminate between /(0) =

/(I) and /(0) /(I) using only one circuit and in the minimum time possible.

In order to do so we have three options.

• Two classical computing options:

— a sequential solution: use the same circuit to calculate /(0), then /(l) and then
I

compare the results, for a tojtal time 2T. see Figure 3.1(a).

23

— a parallel solution: use two copies of the circuit, with one of the circuits receiving

0 as input, the other circuit receiving 1 as input, and then compare the results

for a total time T, see Figure 3.1(b).

• One quantum computing option: a quantum circuit implementing the function Uf,

which has as input qubits |a?) (control) and |y) (target) and produces as outputs |x)

and |t/ ® see Figure 3.1(c).

Figure 3.1: Classical and quantum parallelism.

You can see in Figure 3.2 how |x) is the result of preparing a |0) through a

Haddamard gate and |t/) is the result of preparing a |1) through another Haddamard thus

At each stage, the condition of the system is described by the following vectors :

• |w0) represents the input state,

• |wi) represents the input after it was prepared by Hadamard gates,

• |w2) represents the output state of the black box implementing Uf ,

• 1^3)represents the output state of the circuit.

The input vector is

24

ID

|o)

>i t i
ii ii

i i 4

/ 0 \

Figure 3.2: A quantum circuit for solving Deutsch’s problem.

\ 0 7
The transfer matrix of of the Hadamard gates is

■1' -1 -1 1 /

1 1 1 >

1/1 1 1 (1 1 1 1 -1 1 -1
G± — H ® H = —y=M1 -brvsfy _1? = -1 2 1 1 -1 -1

And if we apply this transfer matrix to |£o)we obtain,

z°\

I

o

H 1 ‘ 1 .1 >

, . 1 1 —1.1 —1
| wi) = Gi| w0) = -

1 1-1-1
(1 -1--1 1 /

1 -i
2 1

\ -i 7
or

I «1) = | (|00> - |01> 4-110> - 111)) =f Mil ® Mil

Therefore the two qubits applied to the input of the black box are

\x} = |0) + IV
V2

and |y) =
|0) -11)

x/2

25

We know that |0 © f(x)) = | f(x)) thus:

I y © f&V) =
\f(x)} - |1 @ /(a;))

V*

But |1 © f(x)) — |0) when f(x) = 1 and |1 © f(x)} = |l)when f(x) = 0 thus

J2^if/W = 0

= <

And we can write this as,

When /(0) = /(l), the state |u>2) of the black box is:

z 1 \

-1
if /(0) = /(l) = 0

1

-1/
|a>2) = I®) ® | y © /(a:)) = <

1)

if/(0) = /(l) = l.

\

When /(0) 7^ f (1), the state |cu2) of the black box is:

■ -1

1

26

\ 1 /
|w2) = <

1\

1 /

Combining these two results we have

if 7(0) =/(i)

f 1 \

[MTI ±1 -1
L J L ^2 J -2 1

1
-1
-1
1 /

if AO) //(l).

The transfer matrix of the third stage of the quantum circuit in Figure 3.2 is

Zi
G3 = H 0 1 = 4=

72

0

1

0

1

. 1
0

-1

0

0 >

1

0

-1/\o

If /(0) = /(l) then

27

(1 0 1 0 1 f i\
. < 1 0 10 1 1 -1 1 -1
'<■>-* vs

10-1 0 2 1
- ±—

x/2 0

^01 0 -1)
UJ

0 /

If /(0) / /(l) then

Ho 1 0 1) 0 j

. » 1 0 10 1 1 -1 1 0
l&> _ ±75

10-1 0 2 -1
= ±75

1

^01 0 -1 J
1J (-1/

Therefore, if the first output qubit of the circuit is |0), then we can rule that /(O) = /(l)

because |O) (D |O) = |O) and |1) ® |1) = |O) and when the first output qubit of the eircuit is

|1), then we can rule that f(0) /(l) because |0) ® |1) = |1) and |1) ® |0) = |1).

We observe that

Oif/(O) = /(1)

k lif/(O)^/(l).

Finally, we rewrite |tU3)

ho=±1/(0) ® /a)) •

Therefore, we are able to establish /(0) ’© / (I) after performing a single computation of the

function just by measuring the first output qubit of the circuit. • '

28

Chapter 4

Quantum Algorithms

The purpose of this chapter is to help us understand Shor’s factoring algorithm

and order finding.

4.1 Classes of Quantum Algorithms

In a recent paper [Sho03], Peter Shor classifies the quantum algorithms proved to

exhibit a significant speed-up over their standard counterparts into three broad categories:

1. Algorithms that find the periodicity of a function using Fourier Transforms, Simon’s

algorithm [127], Shor’s algorithms for factoring and for computing discrete logarithms

[123], and Hallgren’s algorithm to solve Bell’s Equation are all members of this class.

2. Search algorithms which can perform an exhaustive search of N items in vCZV. An

example of this class are Grover’s algorithms [67, 68, 69].

3. Algorithms for simulating quantum systems, as suggested by Feynman.

The focus of this paper is the first class of algorithms. Peter Shor speculates

[Sho03] that quantum algorithms may offer a substantial speedup over classical algorithms,

but may be very limited.. This means we have to concentrate on problems not in.the classical

computational class P - see Section 3.2. < , / - .h « • • ■ > f. *' : .

One of these algorithms is the one for integer factorization. The security of cryp­

tographic protocols, in general, is based on the fact that large integers are difficult to factor

using classic computers. In 1994, Peter Shor found a factorization quantum algorithm oper­

ating in polynomial time[Sho94]. This algorithm performs the factorization by determining

29

the period of a function. By using quantum parallelism, the algorithm produces a super­

position of all values of the function, in one iteration. Then, the algorithm computes the

Quantum Fourier Transform (QFT) of the function. By using QFT, the algorithm organizes

the amplitudes into multiples of the fundamental frequency, the reciprocal of the period.

The Figure 4.1 below summarizes the stages of the algorithm: integer factorization

reduces to order finding, which requires phase (period) estimation, which requires Quantum

Fourier Transform.

Figure 4.1: The relationship between integer factorization, order finding, phase estimation,
and Quantum Fourier Transform.

4.2 Shor’s Factoring Algorithm and Order Finding

We will construct an algorithm that allows us to determine the prime factors of P

. This algorithm will be based on determining the order of integers x mod P for x < P.

But for our factorization algorithm we cannot simply try all x < P. That is why

we will determine the x integers using period estimation, better known as phase estimation.

Phase estimation is an algorithm that allows us to estimate the eigenvalue associated with

an eigenvector of a unitary operator. The phase estimation algorithm uses the Quantum

Fourier Transform, . (, ■
I I I I 1

Definition 4.1. To factor an integer P means to write N = I x qi x q2 x ...qn, with

I, qi; qn prime numbers.

30

Definition 4.2. The integer I is said to be a proper factor of P if three conditions are

satisfied:

1. another integer q exists such that P = Iq,

2. Z 1, and

3. l^P.

For example, the proper factors of 14 are I — 2 and q — 7, while the proper factors

of 39 are I = 3 and q = 13. To factor small integers is trivial. The problem becomes

increasingly difficult when the integers to be factored increase in size. Take for example

factoring the integer 2841877. By trial and error we could find that I = 19 is a proper

factor, thus 2841877 = 19 x 149573 but then we have to factor the integer 149573.

Definition 4.3. The order of an integer x modulo P is the smallest positive integer k, such

that xk = 1 mod N with two additional conditions:

1. x1 J ImodP, and

2. xk"[+ xk~2 4-----j-x2 + x + ly^l modP

We can represent graphically the computation for the, .order k modulo P of an

integer q as a cycle of length k — 1, as shown in Figure 4.2. , .

Figure 4.2: The cycle for computing the order k for an integer x mod P.

Several examples of finding the order of an integer modulo P by direct search are

given below. First, we compute the order of 11 modulo 21 (i.e., we compute the smallest

integer k such that llfe = 1 mod 21). We start with k = 2 and continue with k = 3,4,5, 6.

31

k = 2 ; ll2 = 121 = 16 mod 21 = 24mod 21

k = 3 : ll3 = 176 = 8 mod 21 = 23mod 21

k = 4 : ll4 = 14641 = 4 mod 21 = 22mod 21

k = 5 : ll5 = 161051 = 2 mod 21 = 21 mod 21

k = 6 : ll6 = 1771561 = 1 mod 21 = 2° mod 21

As you can see in Figure 4.3, the length of the cycle is k — 1 = 5.

Figure 4.3: The multiplicative cycle for 11 mod 21.

Another example for the order of 5 modulo 21 :

32

52 = 25 = 4 mod 21

53 = 52+1 = 5 ■ 52 = 5 ■ 4 mod 21 = 20 mod 21

54 = 52 ■ 52 = (4 mod 21) • (4 mod 21) = 16 mod 21

55 = 54+1 = 5-16 mod 21 = 17 mod 21

56 = 54+2+1 = 5 ■ (16 mod 21) • (4 mod 21) = 1 mod 21

So the length of the cycle is also k — 1 = 5.

You can see that we only need several powers of x to compute xk for any value of

k. Indeed, we can express any integer k as

k = km^2m~1'+ fcm_22’"-2 + ... kiT + *121 + fto

with ki = 0,1, 0 < i < m — 1. Then,

rp/c — jJcm—12m 1 xkm~22”1 X X Xk%^? X Xk^ X Xk°

To compute xk we need at most m — 1 exponentiations

21 22 23 . 2!"_1.X , X ‘ , X . ,x

For example, when we wish to compute 1729 we can write:

■ 29 = 16’+ 8 + 4 + 1 = 24 + 23 + 22 + 2°.

Thus,

’ 1729 = 1716 x 178 x 174 x 171.

J 1 t I
The pseudo code to carry out this computation is *

power:= 1

for i=0 to m-1

if (xki = = l)then

power power x x^ mod P

33

endif

endfor

The condition xk = 1 mod P implies that xk — 1 is divisible by P. Equivalently,

this means that

3m € Zfxk - 1 = (x - l)(xfc_1 + xk~2 4-... + x2 4- x 4- 1) = mP.

This equation shows that either (x — 1) or (xk~l 4- xk~2 4-... 4- x2 4- x 4-1) share a common

factor with P. Assume that x — 1 is such a factor, or shares a common factor with P.

We show that gcd(P, x - 1.) f 1 and gcd(P, x - 1) f P. In other words the

gcd(P. x — 1) is a proper factor of P. Let us consider these two cases:

1. if x — 1 < P, then the common factor of x — 1 and P cannot be P.

2. if x — 1 > P, then gcd(R x — 1) could be P if x — 1 is a multiple of P. But x — 1 is

not a multiple of P due to the condition P f 1 mod P that can also be written as

(x — 1) 0 mod P.

Thus I — gcd(P, x — 1) is a proper factor of P and it is calculated with the

Euclidean Algorithm.

Therefore finding the factors of P becomes a quest for order finding. To clarify

this idea, let us give several examples. , , .

First, we consider the easier case when P is neither even, nor the power of a prime.

In this case we are looking, for, an integer x with the property that x2 — 1 is a multiple of

P, but neither x — 1 nor x 4-1 are multiples of P (i.e., a: / 1 mod P and x f — 1 mod P).

For example, when P = 2i a possible choice for x is x — 8. Indeed, x2 — 1 =

64 — 1 = 63 = 3 x 21. As expected, x — 1 •== 8tl— 1 = 7 is a proper,factor of,P = 21., When

q — 5, we find again that kr = 6. Now x,.— 56 mod 21 = 20, x — 1 = 19. and a; 4~ 1 = 21. We

see that 21 is a factor, but not a proper factor of 21.

The pseudocode for finding a proper factor I for an integer P, based upon the

order finding algorithm is:

Step 1. If P is even then return I = 2.

Step 2. If P is a power k of a prime integer I then return I.

Step 3. Randomly pick q, 1 < q < P — 1.
If I — gcd(q, P) > 1 then return I. Else go to Step 4.

Step 4. Determine the order k of qmodP.
t 1 . b > I 1 ' 1 f

If k is not even then go to Step 3.

34

Figure 4.4: Flowchart of the factorization algorithm for P = 21 and q = 11.

Step 5. Let k — 2m and determine x, the m-th power of q mod N with 1 < x < P.

If 1 < I = gcd(x - 1, P) < P then return I.

If 1 < I = gcd(x + 1, P) < P then return I.

Else (if we fail to find a proper factor of q) go to Step 3.

It is easy to see that when k = 2m the condition qk = 1 mod P implies that the

factors of P are either gcd(x — 1, P) or gcd(x + 1. P) with x = qm mod P. Indeed,

q2m = ImodP => q2m — 1 = (qm — l)(Qm + 1) must be divisible by P. The

flowchart of the algorithm is shown in Figure ??. In our example the order of 11 mod 21

is k. = 6. But 6 = 2x3. Thus, m = 3 and x = qm mod P = 113 mod 21 = 8. Then,

x — 1 = 8 — 1 = 7 and I = gcd(x — 1, P) = gcd(7, 21) = 7 < 21 is a factor of P = 21. As

we pointed out previously, the key to the efficiency of the algorithm is the choice of q.

4.3 Quantum Fourier Transform

JV-l

j=0 • . .' i

Let

35

and
at-i

M = wk\ty
fc=O

two states of a quantum system, where |j) and |fc) are part of an orthonormal basis.

Then the Quantum Fourier Transform (QFT) takes the state |v) to the state |w):

M -► M

in such a way that the amplitudes are the Discrete Fourier Transforms (DFT) of the

amplitudes vj:

Wk = DFT(vj) =
,=o

When N = 2n , we consider the binary representation of integers j and k

j = jo2n 1 + Ji2n 2 + ... + jn_22 4- jn_i2°

k = &o2n 1 + k±2n 2 4"... 4“ kn—22 + A;n_i2^

We use this reversed notation because in Section 4.5 the QFT circuit performs a

bit reversal.

k Thus, we obtain,another expression for the.QFT: u ■ t-

boj'l-.Jn-l) “»-J 53 X ••• 53 e'2*1^™^^2~m\k0ki...k„-i},
22 feb=(0,l)*:i=(0.1) ■ 4„-i=(0,l)

ijoji• • ■ 7n~i) 4- 53 '53'-;- 53 c1oefi’,w’”iu
22 *0=(0,l) ti=(O,l) *„_j=(0,l)

22 fef3o,i)

where km can only be a 0 or a 1.

Because e*27rjfcm = 1 when km = 0, then

22

But

36

Therefore |j) has been converted to:

Let us see an example for n = 3:

For j = 0, the basis vector 1000) is transformed as follows:

i

i

i

i

, , - \ i /
or ■

looo) -»L nooo) + iooi) + 1010) + |oii) + |ioo) + |ioi> +1 no) + |m>]
2$

For j = 1, the basis vector |011) is transformed as:

or

37

1 j
i

-1

—i

1

i

-1
\-i)

Thus,

|011)
1

(v^)3
[|000) - |010) + |100) - |110) +i(|001> - |011) + |101) - |U1))]

The transformations for the other basis vectors can be computed using the same procedure.

4.4 Tensor Product Factorization

We can can compute QFT either using direct matrix multiplication or tensor

product factorization.

Using the direct matrix multiplication we need a quantum system in an initial state

|V), a quantum device with the transfer matrix G, and the final state of the system after

the transformation |W). Both |V), and |W) will be expressed using two column vectors

with 2n elements, |V), |W) G Ho", and G is a 2n x 2n unitary matrix.

Therefore , . , - s ,

|W) = G|V)

and performing this calculation by direct matrix multiplication we must use O((2n)2) op­

erations.

The algorithm proposed by Cooley and'Tukey [CT65] in 1965 diminishes the

amount of operations from 21V2 to INlocpN and is based ,on tensor product factoriza­

tion. The algorithm^ called the Fast Fourier Transform (FFT), separates recursively the

transformation for an .integer N into two transformations of length N/2 as follows:

AT 1 ' £_1 ^-1 J '
TV -“1 2 2

w a *~i27r(2j)fe t < ■R\ ^£27r(2j + l)fe __

a3e N - N ; + 2^ a2l+le * ' ' ' '
3=0 j=0 , j=0

38

— i2-n2jk
even^

j=0, j even

+ e *
— i2,irk

e
— i2irjk

N/2

3=0, j odd

We will use this algorithm to compute the Quantum Fourier Transform.

Consider a quantum system in state | V), We apply to this system a transformation

with the transfer matrix G and the resulting state of the system will be |W), with | V), |W) G

7i2n.

We can express both the space as well as the transformation matrix, as tensor

products:

® M^2)... 0 up ... ® 'H.f'

G = G(1) 0 G(2)... ® Gy)... 8 G(n).

with 1 < j < n. : < >

Let us now examine the J-th component of W = (Wi, W2,..., W),..., W271) with

the index j expressed in binary as j = ■(ji, y21 , jn) ' 1

kl,k2,...kn

Each application of requires a fixed number of operations and to compute

each Wj we need O(n) operations because in the. previous expression we have a product

of n such matrices. There are 2n components Wj thus, the total number of operations is

O(2n-n).

We conclude that the tensor product factorization reduces the number of opera­

tions and leads to an exponential speed up compared with the direct matrix multiplication

which requires (9((2n)2) operations.
• . ■ > • < t „ , . - r 1

4.5 A Circuit for Quantum Fourier Transform

In this section we will obtain the QFT in a new format and derive the quantum

circuit able to carry out the transformation based upon this new expression. We have

defined in Sect ion 4.3 that the Quantum Fourier Transform of |j) = U0J1 ■ ■ ■ Jn-i)is

We will use regular vector multiplication instead of tensor products:

® {|0> + = h (|0> + e<2^2"m|l))

m—0 m=0

Thus,

IJOJI ■ ■ • Jn-1) - (|0) + 11>) (|0) + e<2’«/2*>|1>) • • • (|0) + ei2’'W2”’1’|l))

1 0
0 ei27r/2fc

Under this Fourier transformation the bits of the transformed state are in reverse

order. ' ’

So if

a = ao2n * + <2i2n 2 +,... + an_322,+ an_22 + an—i

is, presented as input to the transformation then the result will be

a — an-i2n 1 + an_22n 2-j-an—s2n ® . + a222 + a\2 + ag.

Let us now follow the state transformations produced by the circuit, in Figure 4.5.

We apply the Hadamard gate to the first qubit and obtain:

Recall that we used the reversed notation for j — jo2n_1 + ji2n~2 + ... + in-2 2 + Jn-12°

and if we use the following notation [NCOO]

t ■ *

0 JtnJni+i ■ ■ ■ jn-1 = jrnA 1 + Jm2 2 + . . . + Jn-12 ,

the transformation becomes

IjoJ'i • • • jn—1) 4 (|0) + el2l0J"-'|1» (10) + |1))... (|0) +
22

Figure 4.5 shows a circuit for the Quantum Fourier Transform based upon this new ex­

pression for the transformation. Each basis vector is first transformed into a superposition
1 V f 4 , (

state by a Hadamard gate and then it goes through one or more Rk -gates (see Chapter 2).
An Rk gate transforms a qubit by multiplying its projection on |1) by el2?r/2fc

40

Figure 4.5: A circuit for Quantum Fourier Transform.

IM71J2 • • ■ j„-i) -A(|0) + ei2’r0-»|l» |jU2 • ■ ■ jn—i)
22

with

—lifjo = 1-

ei2ir0->o _ ei2ir2o/2 _ f ®

Each controlled — R gate applied to the first qubit adds an extra bit to the phase

of the projection on |1). As a result, we observe the successive changes of state

A~(|0> + ei27r0,J°|l)) |J1J2 ■ • • jn-i) first Rk gate h->
22

i ■ k ■
—(|0> + e12^07111)) |jij2 ■ • ■ jn~i) second Rk gate
22

-4(|0) + ei27r0-jojlj2|l)) I/1J2 • ■ ■ Jn_i) thirdRkgate^
22

... 4(|0) + \j,j2 ■ ■ ■ jn_,)
22

after the n — 1-th Rk gate.

’ The transformations of the second qubit are

* ■- . it j 1 r.......... ,

—7it-(|0) + ei27r0j'°|l))(|0) + el27r0J111)) |j2 • • -jn-l} first R*gate
22(2)

41

—j-(|0) + ei27r0do|l»(|0) + ei27r0-J1J2|i» |>2 ■ • • jn-1) •-» second Rkgate •->
22^J

• • • 4tt(|O) + ei2w0<fo]l»(|0> + |1» |J2 ■ • - J„_!>.
22(2J

As we can see from Figure 4.5, the total number of gates required by a QFT with

N = 2n is

Total Number of Gate.?^^ witfl ;v=2n)
n(n + 1)

2

If N 2n then the QFT gives only approximate results and therefore we will

round up the the next power of 2.

4.6 Simon’s Algorithm for Phase Estimation .

Definition 4.4. Phase estimation is the process in which one determines the period of a

periodic function.

To solve problems such as integer factorization-we need to perform repeatedly the

phase estimation procedure.

In other words given a periodic function f that maps binary n-tuples to binary

m-tuples, we wish to determine the period, p,.of the function:

f (a) = f(b) a = bmodp

Classic algorithms calculate the period of a function in exponential time. This is because

classic algorithms cannot compute p until it(finds two inputs a and b such that f(a) = fib) In

1994, Dan Simon created a quantum algorithm for phase estimation that requires quadratic

execution time. '

Simon formulates the phase estimation problem as follows [Sim97]:

We are given a,function f : {0,1}? i-> {0, l}n with the prospect that there exists

a p G {0, l}n , p 7^ 0n such that Va 0 £>/ (a) = / (b) <=> b = a®p, find p.

In other words, given a function f(a) we wish to establish whether /(a) is a

periodic function and, if so, to determine its period p.

The algorithm uses two n qubits registers A and A7, with |A| = |A7| = 2n~1 and

Af = {a ® p|a G A}. . t,

42

Figure 4.6: A quantum circuit for phase estimation

You can follow Figure 4.6

Step 1: We start by initializing both registers to state |0).

Step 2: Take the. first register of n qubits in state |0) and apply the Hadamard

transform to it obtaining the superposition:

2-? £ MI0---0)
aG{0,l}n

Step 3: Calculate /(a) and store the result in the second register obtaining:

a

= 2_? £77^ 1° ® p)) 1/ («))

Measure 2"? £ As (|a> + |a ® p)) \ f (a))for random a € A
' ' ' '

Step 4: Apply the Hadamard transform on the output of Step 3 to produce

2-=±l ^2 ((-!)-» +(-l)<^)|fr) =

fce{o,i}"

= 2"“^ £ (-l)“-i>(l + (-l)pfc)|i>> =

_&6{0,l}" ...

= 2-^ £ (-iy-&i&>

b:b-p=0
7 J

We now will start measuring randomly bj such that • p = 0 and then repeat

measuring randomly &2 such that 62 • p = 0, b;$ such that 63 • p — 0 We know that p is

uniquely determined when we have n — 1 linearly independent equations.

Repeating this process (9(n) times will giveus n — 1 linearly independent y’s.

43

Chapter 5

Conclusion

The most used cryptosystem in the world is the RSA.The RSA system was invented

by Rivest, Shamir, and Adleman in 1978 [RSA78] and it is based on the difficulty of factoring

large numbers. In 1994, Peter Shor found a factorization quantum algorithm operating

in polynomial time[Sho94]. This algorithm performs the factorization by determining the

period of a function. By using quantum parallelism, the algorithm produces a superposition

of all values of the function, in one iteration. Then, the algorithm computes the Quantum

Fourier Transform (QFT) of the function. By using QFT, the algorithm organizes the

amplitudes into multiples of the fundamental frequency, the reciprocal of the period. Then,

by using the results of Deutsch’s problem, one can discriminate between the various results.

Here is an example for factoring N=15 using Shor’s algorithm.

(1) Chose number of qubits so 2n > N. In our case, n = 4, 24 > A7

We choose an a such as gcd (a, N) — 1. For example, we pick a — 13.

(2) Initialize two quantum registers of n = 4 qubits to state 10000)

(3) Put the first register through a Hadamard gate obtaining superposition of

states:

10000) -> -L (|0) +11» (|0) + |i)) (|0) +11)) (10) + |i)) = A £ |fc)
v 10 fc—n

The state of the two registers after this step is:

fc=0

(4) Compute the function f(k) = 13^ mod 15,on the second register:

44

A=0

Let us calculate f(k) = 13fc mod 15.

fc = l,/(l) = 131modl5

k = 2, f(2) = 132 mod 15 = (15 -11-1- 4) mod 15-4

k = 3, /(3) = 133modl5 = (15-11 + 4) ■ 13 mod 15 = 7

k = 4, /(4) = 134 mod 15 - (7 ■ 13) mod 15 = 1

Therefore the period is r = 4.

And the state is
l**> = ^El‘)IA‘)> =

k=0

= +=(|0)|l) + |l)|13) + |2)|4) + |3)|7)+

+|4)|1) + |5)'|13) + |6)|4) + |7)|7)+

+|8)|1) + |9)|13) + |10)|4) + |U)|7)+

+|12)|1) + |13)|13) + |14)|4) + |i5)|7)

obtained in one operation due to quantum parallelism.

As you can see, we obtain equal'probabilities for the possible results: |1), |13), |4),

and 17).

(5) Operate on first four qubits by the QFT F

i 15

«=0

, measure the state of the first register and assume that the second register is measured,

as well. Suppose we measure |4)in the second register. Therefore the superposition will

collapse and the state will be:

IW = | (|2) + |6) + |10) + |14)) .

We now apply quantum Fourier transform (QFT)'

45

and obtain:

u=0

u=0

27141110
e 16

2*n*iul4

|10)

Putting these four terms together, we get

4
l<P3) =

n 15
1 \ . / 2?riu2 2tt4»6 27T47i10 2?rinl4 X16 18 +e >• +e « +e ») =

* u u=0

The probability of getting result |u) after first register is' measured is

p — l-A I2
U --- j g ■ U

When we calculate Pu for all 16 cases we get Pq — P^ — Pg = Pj2 — | and all other

probabilities being zero. Therefore, we can get only states |0 >, [4 >, |8 >, and 112 > with

equal probabilities.

We can show the probabilities are non zero only if ur — 16&.

So the probabilities to get the correct period from the first.run are:

|it) =]0)“ does not give "any information - rerun algorithm;

|«) = (4)- gives 4r = 16&, lowest k = 1 :Period is r = 4;

|tt) — |8)- gives 8r = 16&, r = 2 is easy to check is not correct and we rerun the

algorithm ,

|.u) = 112)- gives 12r = 16&, k = 3: Period is r = 4.

Therefore the algorithm has a probability of sucess of

46

Now that we have the period, the factors of N can be found using a classical
computer by calculating gcd(a% 4- 1, N) and gcd(a% — 1, N):

gcd(13% + 1, 15) = 5

gcd(13* - 1, 15) = 3

47

Bibliography

[BFFP10] F. Benatti, M. Fannes, R. Floreanini, and D. Petritis, editors. Quantum inf or-

mation, computation and cryptography, volume 808 of Lecture Notes in Physics.

Springer-Verlag, Berlin, 2010. An introductory survey of theory, technology and

experiments.

[CT65] James W. Cooley and John W. Tukey. An algorithm for the machine calculation

of complex Fourier series. Math. Comp., 19:297-301, 1965.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE

Trans. Information Theory, IT-22(6):644-654, 1976.

[Joz98] Richard Jozsa. Entanglement and quantum computation. In The geometric

universe (Oxford, 1996), pages 369-379. Oxford Univ. Press, Oxford, 1998.

[MM05] D. C. Marinescu and G. M. Marinescu. Approaching Quantum 'Computing. Pear­

son Prentice Hall, Upper Saddle River, New Jersey,'2005.

[NCOO] Michael A. Nielsen and Isaac L. Chuang. Quantum computation and quantum

information. Cambridge University Press, Cambridge, 2000.

[Pap94] Christos H. Papadimitriou. Computational complexity. Addison-Wesley Publish­

ing Company, Reading, MA, 1994.

[RSA78] R. L. Rivest, A. Shamir, .and L., Adleman.,.A method for obtaining digital sig­

natures and public-key cryptosystems. Comm. ACM, 21(2): 120-126, 1978.

[Sho94] Peter W. Shor. Algorithms for quantum computation: discrete logarithms and

factoring. In 35th Annual Symposium on Foundations of Computer Science

(Santa Fe, NM, 1994), pages 124-134. IEEE Comput. Soc. Press, Los Alamitos,

CA, 1994.

48

[Sho97] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete

logarithms on a quantum computer. SIAM J. Comput., 26(5): 1484-1509, 1997.

[Sho02] Peter W. Shor. Introduction to quantum algorithms. In Quantum computation:

a grand mathematical challenge for the twenty-first century and the millennium

(Washington, DC, 2000). volume 58 of Proc. Sympos. Appl. Math., pages 143-

159. Amer. Math. Soc., Providence, RI, 2002.

[Sho03] Peter W. Shor. Why haven’t more quantum algorithms been found? J. ACM,

50(l):87-90 (electronic), 2003.

[Sim97] Daniel R. Simon. On the power of quantum computation. SIAM J. Comput.,

26(5):1474-1483, 1997.

[Tur] A. M. Turing. On’ Computable Numbers, with an Application to the Entschei-
dungsproblem. Proc. London Math. Soc., S2-42(l):230: 1

	Quantum cryptography
	Recommended Citation

