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Abstract

This project is a study of the properties of the modules Z2S3 and Z553, which are 
examined both as modules over themselves and as modules over their respective integer 
fields. We will examine each of these modules separately, since they each hold distinct 
properties. We explore the properties that these modules hold and how those properties 
differ when we change the module it is examined over. The overall goal is to determine 
the simplicity and semisimplicity of each module. In order to achieve this goal, we will 
study the structure of their modules, their radical, and their submodules.
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Chapter 1

Introduction

The following work first began as an undergraduate-level independent study and 
honors project with Dr. Llosent. Initially I began to study the properties of quivers in 

Representation Theory. As I progressed through the Masters Program, the study grew 

into a study of modules and their properties, particularly those properties that relate to 
the simplicity and semisimplicity of modules.

There are a handful of concepts from Ring Theory and Module Theory that 

are necessary to fully understand the concepts that are presented here. In the beginning 
chapters we will submit definitions and prove some of the necessary theorems from Ring 
Theory and Module Theory that are required to move forward, including the notions of 
the radical of a module, comaximal submodules, and the Chinese Remainder Theorem for 

modules. There are many concepts and theorems that originate in Ring Theory, but have 

a likeness in Module Theory. For example, the notion of a submodule of a module carries 

properties similar to those of an ideal within a ring. These definitions and properties will 
be referenced and used frequently throughout this paper.

The next chapter explores the properties of Representation Theory. First we 

look at the definition of a linear representation and examples of quivers and their repre­
sentations. Within Representation Theory we find the vital definition of a .RG-module 

and an algebra. This chapter lays the final ground work so that we may begin to study 

the structure of our modules.

Next we will examine the modules Z2S3 and Z5$3. Although their structures 

are similar, they have properties that make them different from each other. We do 
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not directly compare these two modules to each other, rather we consider each as its 

own module with its own qualities. Because of its importance to the structure of these 
modules, we begin with a review of the group S3. This group is necessary to form the 
modules so it is important that the reader has an understanding of 63, particularly with 
the way that the permutations act upon each other.

As we look at the module Z5S3, we will show that the module ^2^3 is only 

semisimple as a module over Z2, but not as a module over itself. This will be accomplished 

both by the use of Machke’s Theorem as well as by direct examination of the module. 

We will describe much of the structure of the module 2S2S3, both as a module over itself 
and as a module over the field Z2.

Finally we will examine the module Z5S3. This module differs from Z2S3 in 
structure, because we are using the field Z5 instead of the field Z2. At minimum, this 
changes the structure of the module because it gives us a module with more elements 

to consider. More importantly, it changes our methods for determining semisimplicity 

because the order of Z5 does not divide the order of S3. We look again at the simplicity 
and semisimplicity of the module Z5S3.

This paper concludes with a chapter on future research. The overall goal of this 

project is to explore the structures of the modules Z2S3 and Z5S3. There is still much to 
discover about these two modules, so we have included a chapter to discuss intentions of 
continued research into the structure of these modules.
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Chapter 2

Ring Theory

This chapter serves as a basis for understanding the terminology that will be 
used throughout this project. It will provide definitions, theorems, and set the founda­
tions for the connections that will form between Ring Theory and Module Theory.

We begin with Ring Theory. This field of study examines sets with two bi­

nary operations, namely addition and multiplication and relates the two operations by 

the distributive laws [DF91].When most begin to study Ring Theory, they begin with the 
concept of a group and expand their understanding to what are known as rings. Con­
nections are formed between subgroups and subrings, normal subgroups and ideals, and 
group homomorphisms and ring homorphisms.

There are some terms and definitions from ring theory that are used in module 

theory. Their relationship is similar to the relationship between groups and rings. Let 

us first examine these properties as they pertain to rings. In Chapter 3 they will be 

re-examined in relationship to modules.

2.1 Definitions.

We will begin with the definition of a ring.
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Definition 2.1. A ring R is a set together with two binary operations “ + ” and “ x ”, 

called addition and multiplication respectively, satisfying the following axioms:

1. (R, +) is an Abelian group,

2. “ x ” is closed in R:

axb € R for all a,b 6 R, and

3. “ x ” is associative: (a x 6) x c = a x (b x c) for all a, b, cinR,

4- the distributive laws hold in R: for all a,b,c€ R

(a + &) x c = (a x c) + (b x c) and a x (b + c) = (a x &) 4- (a x c).

The ring R is said to be commutative if multiplication is commutative. It is said to have 
identity if there is an element 1 6 R with

1x a = ax 1 = a

for all a e R. Neither of these properties are assumed to exist within a ring R. If R is 
either commutative or has an identity element then we will say so [DF91].

Example 2.2. The ring of integers Z, the rational numbers Q, the real numbers, R, 

and the complex numbers C are all examples of rings, more specifically, they are all 

commutative rings with identity.

Now we will give the definition of a subring. The relationship between a ring and one of 
its subrings is similar to that of a group and one of its subgroups.

Definition 2.3. Let R be a ring. A subset S of R is a subring if the operations of addition 

and multiplication in R when restricted to S give S the structure of a ring. That is, the 

subset S has the same operations of addition and multiplication as the ring R so that S 

itself is a ring [DF91].

The Subring Criterion gives the test that may be used to see if a subset of a ring is 

indeed a subring. It requires that a subset S' of a ring R be nonempty and closed under 

subtraction and under multiplication. Then, to test whether or not a subset is a subring, 
one must first show that the subset is nonempty. Second, one must show that the oper­

ations of subtraction and multiplication are preserved within S. Then 5 is a subring of R.

Now examine a subring I of R which has special properties.
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Definition 2.4. Let R be a ring. A subset I of R is a left ideal of R if

1. I is a subring of R, and

2. I is closed under left multiplication by elements from R, that is to say that rl C I 

for all r 6 R.

This ideal I functions in the ring R similar to the way that a normal subgroup N functions 
within its group S. In order to show that a subset is in fact an ideal, it must be nonempty, 

closed under addition of its elements, and closed under multiplication with elements of 
its ring R [DF91].

Example 2.5. In the ring Z, the subring nZ is an ideal for any n t Z [DF91].

Example 2.6. More specifically, the subring 2Z, representing the even integers, is an 

ideal of the ring of integers Z.

There are a few terms which relate to the study of ideals. They bring attention to the 
properties that ideals hold.

Definition 2.7. An ideal I in an arbitrary ring R is called a maximal ideal if I R and 

the only ideals containing I are I and R. Not all rings will have maximal ideals [DF91].

Example 2.8. The ideal nZ is maximal in the ring Z if and only if n is a prime number.

Example 2.9. The ideal 2Z from Example 2.6 is a maximal ideal in Z because 2 is a 

prime number. The ideal 2Z is not equal to the ring Z. We can also see that the only 

other ideal that will contain 2Z is the entire ring Z.

Definition 2.10. Let A be any subset of a ring R. (A) denote the smallest ideal of a 

ring R which contains A. Then (A) is called the ideal generated by A. An ideal generated 

by a finite set is called a finitely generated ideal [DF91J.

Another type of ring is the quotient ring, which we define below:

Definition 2.11. Let R be a ring and let I be an ideal of R. Then the additive quotient 

group R/I is also a ring under the binary operations:

(r +1) 4- (s 4- I) = (r 4- s) 4- I and (r + I) x (s1) = (rs) 4-1

for all r,s € R-
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Conversely, if I is any subring of R which satisfies the above operations such that the 

operations are well-defined, then the subring I is an ideal of R. We then call the ring 

R/I the quotient ring of R by I [DF91].

Elements of a ring R may also have other useful properties. Some of their many properties 
are listed here:

Definition 2.12. Let R be a ring. An element x G R is called nilpotent if there exists 

some positive integer n such that xn = 0 [DF91 ].

Example 2.13. In the ring the elements {0} and {2} are nilpotent. The element 

{0} is trivially nilpotent in every ring since it is already equal to 0. Additionally,

22 = 4

= 0 in Z4.

The remaining elements {1,3} are not nilpotent in Z4 since there does not exist an n G Z+ 
such that

ln ~ 0 and

3" = 0.

Example 2.14. The ring Z5 has no nontrivial nilpotent elements, since there does not 

exist an n e Z+ such that:

ln = 0,

2n = 0,

3n = 0,

4n = 0.

Again, the element {0} is trivially nilpotent in every ring.

Furthermore, an ideal I may be nilpotent if there exists an n G Z+ such that In is the 

zero ideal. We define In to be the set {a?i ■ X2 ■... • xn \ G I for all i = 1,..., n}. Since 
the subring R of a ring R is also considered to be an ideal, it follows that a ring R may 

be nilpotent if there exists an n 6 Z+ such that Rn is the zero ideal.
Rings may also have properties which show how their ideals interact with each other.
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Definition 2.15. Let A and B be subrings of a ring R. Define

A + B = {a -j- b j a G A, b G By

to be the sum of two subrings [DF04J-

Definition 2.16. Let R be a ring and let A and B be ideals of R. Then A and B are 

said to be comaximal if A 4- B = R [DF91].

Definition 2.17. Let R and S be rings. A ring homomorphism is a map 99 : R —> S 

satisfying

1. <p(a + d) — 99(a) + <p(b) for all afb G R and

2. <p(ab) = for all a,b G R.

[DF91]

Theorem 2.18. The Chinese Remainder Theorem.

Let Ai, A2,..., A/, be ideals in a ring R. The map

R -> R/Ai x R/Az x ■ • • x R/Ak

defined by r (r + Ai, r 4- A2,..., r 4- A^) is a ring homomorphism with kernel A± A A2 fl 
• - ■ n Afc. If the ideals Ai and Aj are comaximal for each Lj G {1, 2,..., k} with i j, 

then this map is surjective and Ai Cl A2 A • • • A A& = Ai • A2 ... Ak. Then

R/(AiA2 • ■ • Afc) = R/(Aj A A2 A • • ■ A Afc) — R/A\ x R/A2 x ■ ■ • x R/A^.

[DF91]

2.2 The Ascending and Descending Chain Conditions.

The Ascending and Descending Chain Conditions are directly related to what are known 

as Noetherian and Artinian rings. These are named after the mathematicians Emmy 

Noether and Emil Artin respectively.

We begin with the definition of a Noetherian ring. Noetherian rings are a particu­
larly important part of commutative algebra. A large portion of the material studied 

in commutative algebra is aimed at discovering properties of Noetherian rings.
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Definition 2.19. Let R be a ring and let Zi,!^ ••• be ideals of R for all i = 1,2,... . We 

say that R is a Noetherian ring if

fyCZ2CZ3C...CZfcCZfc+iC...

is any ascending chain of ideals of R, then there is a positive integer N such that Ik ~ In 
for all k> N where k,N e N. That is to say that the chain becomes stationary at I2y for 

some TV 6 N, meaning

Il 2 Z2 C ... C IN = JN+1 = ...

Then R satisfies the Ascending Chain Condition, or the A.C.C. [DF91]

We also say that a ring 7? is a Noetherian ring if every ideal of R is finitely generated, 

that is I = (ai, fl2j —»an)> for some n e N, for every ideal I of R.

The definition of a Noetherian Ring is used in the following proposition:

Proposition 2.20. Let R be a ring. The following conditions are equivalent:

1. R is a Noetherian ring, that is, R satisfies the A.C.C.

2. Every ideal of R is finitely generated, I = (ai,a2,..., an) for every ideal I of R.

3. Every nonempty collection of ideals of R contains a maximal element under inclu­

sion.

[DF91]

Now we look at Artinian rings, these rings satisfy the ascending chain condition with 
respect to reverse inclusion. This is also known as the Descending Chain Condition.

Definition 2.21. A ring R is said to satisfy the minimum condition or Descending Chain 

Condition, abbreviated as the D.C.C., on left ideals if:

Ii 5 h 2 • • • 5 l£ 2 le+i 2 • • •

is any descending chain of left ideals of R, then there is a positive integer N such that 

b ~ Il for all £> L, where I, L e N. Then the chain becomes stationary at II for some 

L G N, meaning

Ii 2 h 2 • • • 2 II = Il+i = • • • 
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Then R satisfies the Descending Chain Condition, or the D.C.C. Rings that satisfy the 

D.C.C. are also known as Artinian rings [DF91].

We may also say that a ring R is an Artinian ring if every ideal of R is finitely generated, 

that is I = (ai, a2,an) for some n G N, for every ideal of R.

2.3 The Characteristic of a Ring.

Another property of a ring R is its characteristic.

Definition 2.22. The characteristic of a ring R is the smallest positive integer n such 

that 1/? + lj? H------ H 1r = Oh is in R, where 1r is added n times. If no such integer exists

the characteristic ofR is said to be 0 [DF91].

The characteristic of a ring will prove useful when we are examining modules in Chapters 

5 and 6. Consider the following examples:

Example 2.23. In Z5, 5 is the smallest possible positive integer such that

1 + 1 + 1 + 1 + 1 = 5

= 0 g z5.

Therefore Z5 is a ring of characteristic 5.

Example 2.24. We may generalize Example 2.24 to say that Ttn is a ring of characteristic

n.
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Chapter 3

Module Theory

The theory of modules and their structure will prove to be essential to un­

derstanding the proofs in this thesis. Although Module Theory can also be used to 

understand vector spaces, we will be focusing on its relationship to Ring Theory. Module 

Theory also lays a base for some of the concepts from Representation Theory, which will 
be explored in the next chapter. Modules themselves can be viewed as a representation 
of groups; in fact, rings act upon modules as algebraic objects [DF91]. The modules are a 
representation for rings- the action of a ring on an Abelian group preserves the structure 
of the group.

Many of the properties that are examined in this chapter bear a likeness to 
those in Chapter 2. This is because Ring Theory serves as a foundation for Module The­

ory. There is a correlation between the properties of rings and the properties of modules. 
These connections will be explored throughout the chapter in order to help the reader 
see the relationship between rings and modules.

3.1 Definitions.

We begin with the definition of a module.

Definition 3.1. Let R be a ring, not necessarily commutative nor with 1. A left R- 

module, or a left module over R, denoted R-mod, is a set M which satisfies the following 

requirements:
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1. A binary operation “ -I- ” on M, under which M is an Abelian group.

2. A ring action of R on M, that is a map RxM —> M, denoted by rm, for allm E M 

and for allr E R which satisfies the following properties:

(a) (r + sfm = rm + sm, for all m M,r,s E R,

(b) (rs)m — r(sm), for all m E M,r,s E R, and

(c) r(m + n) = rm + rn, for all m,n E M,r E R.

If the ring R has an identity element 1r we impose the additional condition:

(d) iRm = m, for all m E M.

The term “left” module is used because the ring elements appear on the left-hand side 

[DF91J.

Modules over a field F instead of a ring R are the same as vector spaces over a field 

F. Additionally, the modules that we deal with will all be left modules, denoted as 

A-modulcs. Finally, we will only be considering finite-dimensional modules.

Example 3.2. The most basic example of a module is to let the module M = R, where 

R is any ring. We may then say that R is a left R-module, where the action of a ring 

element on a module element is the usual multiplication of the ring R [DF91 ].

Example 3.3. In Chapter 5 we will be examining the module Z2S3. Here we have the 

group S3, which is Abelian under the operation “ + ”. We then impose the action of the 

ring Z2. Together, under the ring action, the two give us the ^-module Z2S3.

The elements of this module look like sums of the elements of S3, where each element of 
S3 has a coefficient from Z2. For example, the elements

Oe + 1(12) + 0(13) + 0(23) + 1(123) + 0(132) and

le + 1(12) + 0(13) + 1(23) + 0(123) + 0(132)

belong to the module Z2S3. The example below shows both action of Z2S3 as well as the 
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addition of elements in Z2S3.

[Oe + 1(12) + 0(13) + 0(23) + 1(123) + 0(132)] x [le + 1(12) + 0(13) + 1(23) 

+0(123) + 0(132)]

= 0e[le + 1(12) + 0(13) + 1(23) + 0(123) + 0(132)]

+1(12) [le + 1(12) + 0(13) + 1(23) + 0(123) + 0(132)]

+0(13) [le + 1(12) + 0(13) + 1(23) + 0(123) + 0(132)]

+0(23)[le + 1(12) + 0(13) + 1(23) + 0(123) + 0(132)]

+1(123) [le + 1(12) + 0(13) + 1(23) + 0(123) + 0(132)]

+0(132) [le + 1(12) + 0(13) + 1(23) + 0(123) + 0(132)]

= l(12)[le + 1(12) + 0(13) + 1(23) + 0(123) + 0(132)]

+1(123) [le + 1(12) + 0(13) + 1(23) + 0(123) + 0(132)]

= 1(12) + le + 0(132) + 1(123) + 0(23) + 0(13)

+1(123) + 1(13) + 0(23) + 1(12) + 0(132) + Oe

= le + 0(12) + 1(13) + 0(23) + 0(123) + 0(132) in Z2S3-

Since this is one of the two modules which we will be focusing on, we will go into greater 
detail regarding the interaction among the elements of this module in Chapters 5.

In Chapter 5 we will see that Z2S3 may be examined as both a Z2S3-module, that is, a 
module over itself, and a Z2-module. In this instance we are examining elements of Z253. 

Alternatively, we could multiply one of the elements above by one of the elements from 
Z2. Then we would be working with a Z2-module. For example, within the Z2-module 

we may have

1 x [le + 1(12) + 0(13) + 1(23) + 0(123) + 0(132)]

= [1 x l]e + [1 x 1](12) + [1 x 0](13) + [1 x 1](23) + [1 x 0](123) + [1 x 0](132)

= le + 1(12) + 0(13) + 1(23) + 0(123) + 0(132)

Now we will look at the definition of a submodule. A submodule’s function is similar to 

that of a subgroup or a subring within its respective group or ring.
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Definition 3.4. Let R be a ring and let M be a left R-module. Then a R-submodule 

of M is a subgroup N of M which is closed under the action of ring elements. That is, 

rn € N, for all n & N and for all r e R.

In other words, a subset N of M is a submodule of M if and only if

1. N 0, and

2. x + aytN for all a 6 R and for all x,ytN.

[DF91]

The two conditions listed above are known as the Submodule Criterion. They are used 
to test whether or not a subset is a submodule of a given module. This criterion will be 
referenced frequently throughout the following chapters.

Example 3.5. If we let R act as a module in the same way we did in Example 3.2, that 

is, if we treat the ring R as a module, then the left submodules of the module R are exactly 

the left ideals of the ring R.

Now let us look at some of the properties and terminology associated with submodules.

Definition 3.6. For any subset A of M let

RA = {aiai + Q2U2 + ... + otmam | cii,..., am <= R, ai,..., am G A, m E Z+}.

[DFOf]

We refer to RA as the submodule of M generated by the subset A. If A = 0 then 

RA = {0}. If A is a finite set (ai, U2,an), then we write RA as + Ra^ +... + Ran- 

In this case we call RA a finitely generated subset of A.

If TV is a submodule of M, not necessarily proper, and N = RA, for some subset A 
of M, we call A a set of generators, or generating set, for N. We also say the submodule 
TV is generated by the set A. If the set A is finite, then we call N a finitely generated 

submodule of M [DF04].

We may extend this definition to say that, when we consider M as a submodule of 
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itself such that M meets the above criteria, the module M is finitely generated. We may 

state this definition more formally:

Definition 3.7. The left R-module M is finitely generated if and only if there exist 

ai, 02,an in M such that for all x in M, there exist n, r2, ...,rn in R with x = rid + 
r2fl2 + • • ■ + rnan. We refer to the set {ai, 02,..., an} as a generating set for M [DF04].

Definition 3.8. Let M be a R-module and let N be a submodule of M. Then the sub­

module N, not necessarily a proper submodule of M, is called cyclic if there exists an 

element a £ M such that N = Ra, that is, if N is generated by one element:

N = Ra = {ra | r € R}.

[DF04]

Again, in the case where the submodule N is equal to the module M, we may say that 
the module itself is cyclic.

Now we should be beginning to see some of the similarities between Ring Theory and 

Module Theory.

Definition 3.9. A submodule N in an arbitrary module M is called a maximal submodule 

if N ± M and the only submodules containing N are the submodule N itself and the 

module M [DF91].

Definition 3.10. Let M be a module. An element x G M is called nilpotent if there 

exists some positive integer n such that xn = Oa/ [DF91 ].

The next definition will prove to be very important to the modules we study in this paper.

Definition 3.11. The radical of a module M to be the intersection of all of the maximal 

submodules of M. It is also the largest nilpotent ideal of a ring. It is denoted as Rad(M) 

[Abp86].

Definition 3.12. Let R be a ring and let M and N be R-modules. Then a map <p : M —> 

N is an R-module homomorphism if it respects the R-module structures of M and N. 

That is to say

1. <p(x -Ay) = tp(x) + tp(y), for all x,y e M, and
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2. <p(ax) = ot<p(x), for alia G R,x 6 M.

An R-module homomorphism is an isomorphism of R-modules if it is both injective and 

surjective. The modules M and N are said to be isomorphic, denoted Af = TV, if there is 
some R-module isomorphism tp : M —> A.
If <p : M N is an R-module homomorphism, let ker</? = {m E M | <p(m) = 0}, the 

kernel of (p, and let y?(ATj = [n E N \ n = <p(m) for some m E M}, the image of of <p 

[DF91].

3.2 The Ascending and Descending Chain Conditions.

Modules also have Ascending and Descending Chain Conditions. These conditions are 
similar to the Ascending and Descending Chain Conditions of rings and ring ideals from 
Chapter 2.

Definition 3.13. Let R be a ring. The left R-module M is said to be a Noetherian 

R-module, or to satisfy the Ascending Chain Condition on submodules, often denoted as 

the A.C.C. on submodules, if there are no infinite increasing chains of submodules.

That is whenever

Afi C A/2 C A/3 C ... C AR C AR4-1...

is an increasing chain of submodules of M and there is a positive integer N such that for 

all k > N,Mk = Mn. The chain will then become stationary at stage N and

My C AR G ,.. C ARv = Aljv+i = A/jY4-2 — ■ ■

This type of left module is also said to be a Noetherian R-module [DF91]. A ring R is 

said to be a Noetherian ring if it is Noetherian as a left module over itself.

Theorem 3.14. Let R be a ring and let M be a left R-module. Then the following are 

equivalent:

1. M is a Noetherian R-module, that is, it satisfies the A.C.C. on modules.

2. Every nonempty set of submodules of M contains a maximal element under inclu­

sion.
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3. Every submodule of M is finitely generated.

[DF91]

Definition 3.15. Similarly, we say that the left R-module satisfies the Descending Chain 

Condition on submodules, often written as the D.C.C. on submodules, if there are no 

infinite decreasing chains of submodules. Whenever

Mi D M2 D ... D Mk D Mk+1...

is a decreasing chain of submodules of M, then there is a positive integer L such that for 

all I > £, Mk = Mk. This chain will also become stationary at stage L and

Mi D M2 ... Ml — Ml+i = ....

Often a module that satisfies the Descending Chain Condition on submodules is referred 

to as an Artinian module. A ring R is said to be an Artinian ring if it is Artinian as a 

left module over itself.

3.3 Simple and Semisimple Modules.

The first definition will prove to be very important. It will be referenced frequently 
throughout this paper.

Definition 3.16. The module M is said to be irreducible, or simple, if its only submodules 

are 0 and M. Otherwise M is called reducible [DF91J.

If a module is not simple, it may have a different property:

Definition 3.17. The module M is said to be completely reducible if it is a direct sum of 

irreducible submodules. In other words, a module is completely reducible, or semisimple, 

if it can be written as a direct sum:

M = Mj © M2 © • • ■ © Mn,

for some n € N, and where each Mi is a simple submodule of M [DF91].

We will also be focusing on the semisimplicity of modules frequently throughout Chapters 

5 and 6.
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Theorem 3.18. Let R be a nonzero ring with 1, not necessarily commutative. Then 

every left R-module is completely reducible if and only if the ring R, considered as a left 

R-module over itself is a direct sum:

R — L\ ® L2 ® ® Ln

where each Li is a simple submodule of the module R.

That is to say that every R-module is completely reducible if and only if the ring R is 

semisimple.

Rings R satisfying the conditions of this theorem also satisfy the D.C.C. on submodules [DF91].

Definition 3.19. The module M is said to be indecomposable if M cannot be written as 

© M2 for any nonzero submodules and M2. Otherwise M is called decomposable

[DF91J.

Definition 3.20. Let R be a ring, let M be a left R-module, and let N be a submodule of 

M. The quotient group M/N can be made into a left module, called a quotient module, 

with the action on the elements of R defined as follows:

a(x + TVj = (ax) + N,

for all a G R and x -f- N G M/N [DF91].

Definition 3.21. If N,K are submodules of M, then define N^-L={n + £\ n^N,lG 

L}.

This definition is similar to the one in Chapter 2. The addition of submodules is similar 

to the addition of ideals.

In Chapter 2 we gave the definition for comaximal ideals. The same property exists 
in Module Theory.

Definition 3.22. We may extend the definition of comaximal ideals A and B in a ring 

R to modules. Then, given a module M and two submodules N, K of M, we say that N 

and K are comaximal if N + K — M.
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Definition 3.23. The socle of a module M, denoted socM, is the largest semisimple 

submodule of M.

Similarly we define the top of a module M, denoted topM, to be the largest semisim­

ple factor module of M, that is topM = M/MJ, where J is the radical of the algebra we 

are working with [Erd90].

Definition 3.24. We may define the socle series of M to be the sequence of submodules

0 C soci(M) C soc2(M) C • • • G socffiM) C • • • C M

with soci(M) = socM and sockfiM)/soCk-i(M) = soc(M/socfc-i(Af)). We define the 

socle length of M to be the first integer r such that soCr(M) = soCr+\(M).

The radical series of M is defined to be the sequence of submodules

0 C • ■ • C radfc(M) C • • • C md2(M) C rad(M} G M

with radk(M) = rad(radfc_1(Af))[= MJk].

It is important to note that M 0 implies socM o and topM / o [Erd90].

3.4 Theorems.

Now examine some theorems which apply to modules. These theorems will allow us to 
use properties of modules.

First we will look at a theorem called the Krull-Schmidt Theorem. This theorem re­

quires that modules satisfy the A.C.C. and the D.C.C., according to their definitions in 

Section 3.2. We may apply this theorem to the modules we will be looking at in Chapters 

5 and 6.

Theorem 3.25. The Krull-Schmidt Theorem.

Let M be a module that satisfies the Ascending Chain Condition and the Descending 

Chain Condition. That is to say that M has finite length. Then M is a direct sum of 

indecomposable modules and such a decomposition is unique up to isomorphism[Erd90].
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In general, the Krull-Schmidt Theorem fails if M is only Artinian and not Noetherian, 

that is, if it only satisfies the Descending Chain Condition.

The next two theorems will help to prove the Chinese Remainder Theorem.

Theorem 3.26. The First Isomorphism Theorem for Modules.

Let R be a ring and let M, N be R-modules and let tp : M N be an R-module ho­

momorphism. Then kertp is a submodule ofM and M/kenp = [DF91J.

Theorem 3.27. The Fourth Isomorphism Theorem for Modules, which is also known as 

the Lattice Isomorphism Theorem.

Let N be a submodule of the R-module M. Then there exists a bijection between the 

submodules of M which contain N and the submodules of M/N. The correspondence is 

given by A (A + N)/N, for all A D N. This correspondence commutes with the pro­

cesses of taking sums and intersections, meaning there is a lattice isomorphism between 

the lattice of submodules of M/N and the lattice of submodules of M which contain N 

[DF91J.

Now we may apply the Chinese Remainder Theorem to modules by considering submod­
ules of a module M instead of ideals of a ring J? as we did in Chapter 2.

Theorem 3.28. The Chinese Remainder Theorem for modules.

We then let Ni, N2,..., Nk be submodules of a module M. The map

M -> M/Ni x M/N2 x ■ ■ ■ x M/Nk

defined by m (m + Ni,m + N2, ...,m + Nk) is a module homomorphism with kernel 

Ni fl N2 n • • • A Nk. If for each i,j G {1,2,..., &} with i / j the submodules Ni and Nj 

are comaximal, then this map is surjective and Ni A N2 A • • - fl Nk = NiN2 ■ ■ • Nk, so

M/(NiN2-- • Nk) = M/(N1QN2Q-- -A TV*)  = M/Ni x M/N2 x ■ x M/Nk.

[DF91]
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Proof, (by induction)

Let M be a module and let Ni,N2, ...,Nk be submodules of M.

Consider the basis for induction: the case where k = 2. That is, the case where there 

are two submodules M and N2 of the module M. Then consider the map <p : M —> 

M/Ni x M/N2 which is defined by 9?(m) = (m 4- Ni, m 4- N2). The submodules Ni and 
N2 are comaximal.

We claim that this map <p is a ring homomorphism. Recall from Definition 3.12 that 
tp must satisfy the following conditions:

1. 4- y) = <f(x) + ^(y), for all x,y E M and

2. (/>(ax) = ct^(a;), for all a E R, x G M.

We check these conditions. Let x, y be elements of the module M and let a be an element 
of the ring R. Then

1. <p(ir4-y) = ((3?4-y) + Ni,(a: + y)4- N2)

= ((a 4- Ni) 4- (y 4- Ni), (x + N2) 4- (y 4- N2))

= ((3;4-N1),(x + N2))4-((y + N1),(y4-N2))

= <p(x) + <p(y)-

2. tp(ax) = (ax + Ni, ax 4- N2)

= a(x + Ni,x + N2)

= ay>(a;).

Then tp is in fact a R-module homomorphism. Now we want to show that the kernel of 
tp, denoted kery? = Ni D N2.

Let x E M such that x is also an element of kery>. Then

<p(x) = (0m + Ni,0m 4- N2)

= (Ni,N2).
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However, according to the definition of yj,

(p(x) = (x + Ni,x + N2).

So p(x) = (x + Ni,x + N2)

= (M + Ay.

This implies that x + M = N2 and x 4- N2 = N2.

Then x £ JVj and x £ N2.

Thus x G IVi Q N2 and ker^> = jVj P N2.

It remains to show that when IVi and N2 are comaximal submodules of M, then <p is a 

surjective mapping and M n N2 = N]N2.

To show that ip is a surjective mapping, let (x 4- + Afe) € M/Ni x M/N2, where
x,y G M. We want to find a m £ M such that m is the preimage of (x + Ni,y + N2) 

such that <p(m) = (x 4- Ni,y 4- IV2).

Now we know that Im G M. Since M and N2 are comaximal, Wi 4- N2 = M. This 
implies that there exists an element m G M and a n2 G N2 such that ni 4- n2 = Im- 

Thenni = l — n2 G Im+^2 and n2 — 1—ni G 1m+M- Furthermore, ni4-W2 = Im+M 
and ^2 + M = Im 4- M.
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Consider an element m G M such that m = ynk 4- xn2. Then

(p[m) = (ptyn-L 4- zn2)

= <?(yni) + 92(^2)

=

= (y 4- Nlty 4- W2)(m 4- A'i,ni 4- 2V2) 4- (z 4- M, 4- AZ’2)(n2 4- Ay n2 4- AT2)

= (y 4- Ni,y 4-7V2)(M,lM 4-AT2) 4- (x + Aya; + Ay (Im 4- Ay Ay,

since Ay Af2 are ideals of Aland by the work above.

= (y 4- M,y 4- AT2)(04-Ay IM 4- N2) 4- (a? 4- Ni,x 4- AT2)(1m + Ay 0 4- N2),

= (y ■ 0 4-Ay y • Im 4-Ay 4-(z • Im 4-Ay a; • 0 4-AT2)

= (0 4- Ay y 4- Ay 4- (x 4- Ay 0 4" AT2)

= ((0 4- x) 4- Ay (y 4- 0) 4- N2)

= (x + Ni,y 4- Ay

So <p is a surjective R-module homomorphism when ATi and N2 are comaximal submod­
ules.

Finally, we know that the submodule N^N2 C N't A N2 according to the definition of 
a submodule from Definition 3.9, which says that rn G A? for all n in a submodule N and 
all r in a ring R. Since Afi and N2 are comaximal submodules, we may define ni and n2 

as we did above so that ni 4- n2 = Im- Then for any c G M A N2,

c = cIm = c(ni 4- n2) = cni + cn2

G NiAZa.

By double inclusion, ATi A N2 = AfiAy

By Theorem 3.26, the First Isomorphism Theorem, we know that given a ring R, a mod­

ule M, and its submodule N, we may define a R-module homomorphism V' : M —> N. 

Then ker0 is a submodule of M and M/kerip =

Since we know that <p is a R-module homomorphism and we have shown that kei’99 = 
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Ah H N2, we may now say:

M/ker<p = <p(M)

M/N! QN2 = M/N! x M/N2.

Thus, for the case when k = 2, the Chinese Remainder Theorem for modules is true.

The general case follows by induction when we define the first submodule to be ZVi as 

before and allow A = N2 .. .Nf. and show that TVi and A are comaximal. By hypothesis, 

for each i G {2,3,..., k}, there are elements ni G Ah and ai € Ni such that mAai — Im- 
Since + 0$ = + Ah, it follows that

Im = (n2 + a2) + ... (nk + a*)  G M + (A-2 • • - Ah).

Thus, by induction, the Chinese Remainder Theorem holds. □

Theorem 3.29. LetR be a ring. A R-module M is semisimple if and only if Rad(R)M = 

0 [Erd90].

Lemma 3.30. Let R be a ring, let M be a R-module, and let Rad(R) be the radical of 

the ring R. If a 6 Rad(R) then 1 — a has a left inverse in R [Ben98].

Lemma 3.31. Nakayama’s Lemma.

Let R be a ring, let M be a finitely generated R-module, and let Rad(R) be the radical of 

R. If the product Rad(R)M = M then M — $[Ben98].

Proof. Suppose that M/0. Choose elements mi,..., mn 6 M such that the mi generate 
M, where n is minimal. Since Rad(R)M =■ M, we can write elements mn of Rad(R)M 

as n
mn = y^aj-mj,

i=l
with Oi G Rad(R). By Lemma 3.30, we know that ] — an has a left inverse in R. Let b 

be the inverse of 1 — an. Note that anmn is the last term of the sum mn = SJLi aimi- 

Then the product

(1 an)mn — l^n anTTln

= anmn
n—1

= y^aimi
2=1
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Since b is the left inverse of 1 — an, we may multiply the last line of the equation above 
on the left side by b. Then

(1 - an)mn

5(1 &n) TTlfi

Lmn

mn

n—1

i=l
n—1

= 6(^2 aimi)
2=1
n—1

= b^^aimi)
i=l
n—1

= b(^ aimf)
i=l

This contradicts the minimality of n. Then our original assumption, M ± 0 is not true, 
and M = 0. □
Theorem 3.32. Rad(R)M = Rad(M) [Erd90].

Proof. Let M' be a maximal submodule of M. Then Rad(R)(M/M') = M/M'. so 

by Nakayama’s lemma, Lemma 3.31, M/M! = 0. We have Rad(R)M C M1, and 
Rad(R)M C Rad(AZ).

Conversely M/Rad(R)M is completely reducible by Lemma 2.2 and so Rad(M/Rad(R)M) = 
0, which implies that Rad(M) C Rad(R)M. □

Lemma 3.33. Lei M be a finitely generated module over an arbitrary ring R. Then a 

submodule N of M is small in M if and only if N C RadM
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Chapter 4

Representation Theory

So far we have examined rings and modules. In Chapter 3 we examined modules 

as the “representation objects” of a ring R [DF91]. In this case, the ring R imposed an 
action upon an Abelian group. This is an example of Representation Theory. This 

chapter will serve as the final foundation for understanding the modules we will examine 
in Chapters 5 and 6.

In the next two chapters, we will be examining the structure of two types of 
modules- modules over a field and modules over an RG-ring, which will be defined in 
this chapter. Changing the type of ring that we represent a module over will change the 
structure of the module itself.

4.1 Definitions.

We begin with the definition of a representation.

Definition 4.1. A linear representation of a group G is any homomorphism from G into 

GL(V), where GL(Vf is the group of nonsingular linear transformations from the vector 

space V to itself [DF91].

Before we examine some examples of representations, we will need the following definition:

Definition 4.2. A quiver Q is a directed graph Q = (Qo,Qf) where Qo is the set of 

verticies and Qi is the set of arrows; together Qo and Qi form quivers. We define a map 

by s : Qi —> Qo where s(a) = i and the map e : Qi —> Qq where e(a) = j. The maps s 

and e form the vertices which yield a : i j, an arrow of Q [ARO97].
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One may think of these maps as the respective starting and ending points of an arrow 

a of a quiver Q. That is, given an arrow ft 6 Qi, we say it starts at vertex s(a) and 

terminates at e(ai).

The quiver is finite if both Qq and Qi are finite.

Example 4.3. Let Q be a quiver and let K be a fixed field. A representation V of the 

quiver Q over the field K is given by (Vi,<pa). For any vertex i G Qo there is a vector 

space Vi, and for any arrow a : i —> j, there is a linear transformation tpa : V —> Vj.

Denote the category of representations over Q over K by

Now we give some basic examples of quivers. The graphs are representations of the 
quivers.

Example 4.4. The finite quiver Q = (Qo, Qi) where Qq = {1,2,3} and Qi — {a, fi} 

with e(a)=l, s(a)=e(fi)=2 and s(j3)=3.

Example 4.5. The finite quiver Q = (QojQi) Qo = {1,2,3} and Qi = {a,/?,?,</■} 
with e(a)=s(/3)=l, s(cn) =e(/3) =e (7) =s ((£)=£, e((fi)=s[y)=3.

1

4>

Definition 4.6. Let G be an Abelian group, let R be a ring, and let M be a module such 

that M is formed using G. A representation may be given by <p : G —> M on a module 

over R. Under this correspondence we say that the module M affords the representation 

p of G [DF91].

Definition 4.7. Define the group ring RG of a group G over a ring R to be the set of 

all formal sums of the form

22 &g € R-
g&G
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This group ring is also referred to as a AG-ring [DF91].

Two formal sums are equal if and only if all corresponding coefficients of group elements 
are equal. Addition in RG is defined as

n n n

52ai^+52 = 52^+
Multiplication is defined as

Definition 4.8. Let G be a group and let F be a field and let V be a vector space. The 

degree of a representation ofG is the dimension ofV [DF91],

Now we will look at some properties of representations. Many of the following properties 

focus on how one representation may relate to another representation.

Definition 4.9. Let M be a module over a ring R. We may then form the trivial 

representation by setting gm = m for all g G G and allm G M [DF91].

Definition 4.10. Two representations of G are equivalent if the RG-modules afford­

ing them are isomorphic modules. Representations which are not equivalent are called 

inequivalent [DF91J.

Definition 4.11. Let R be a ring and let M be a nonzero R-module. A representation 

is said to be irreducible, reducible, or completely reducible according to whether the RG- 

module affording it has the corresponding property [DF91].

4.2 Algebras.

Now we will examine algebras and their properties within Representation Theory.

Before we give the definition for an algebra, we need to define the center of a ring.
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Definition 4.12. The center of a ring R is {z E R \ zr = rz for all r E R}. That is, it 

is the set of all elements which commute with every element of R [DF91].

Definition 4.13. Let R be a commutative ring with identity. An R-algebra is a ring A 

with identity together with a ring homomorphism f : R—t A mapping 1# to I4 such that 

the subring f(R) of the ring A is contained in the center of A [DF04]-

Definition 4.14. A path in the quiver Q is an ordered sequence of arrows p = an ... 

with e(af) = s(ai£+i) for 1 < t < n [ARO97].

Definition 4.15. A path algebra KQ of the quiver Q over the field K is the K-vector 

space with paths of Q as a basis. We may define a linear map f : KQ —> Endx(KQ), 

where End^KQ) is the set of endomorphisms of KQ [ARO97].

Definition 4.16. Let K be a field. A ring R is a K-algebra if K is contained in the 

center of R and the identity of K is the identity of R [DFOJQ-

Definition 4.17. Let R be a ring. The ring S is a finitely generated R-algebra if S is 

generated as a ring by R together with some finite set Ti,r2, .-.,rn of elements of S, for 

some n E N [DF04].

Definition 4.18. Let R be a ring and let S and T be R-algebras. A map ip : S —> T is a 

R-algebra homomorphism if ip is a ring homomorphism that is the identity on R [DF04]-

Corollary 4.19. The ring Ris a finitely generated K-algebra if and only if there is some 

surjective K-algebra homomorphism

<p : K[xr,X2, R

from the polynomial ring in a finite number of variables onto R that is the identity map 

on K. Any finitely generated K-algebra is therefore Noetherian[DF04]-

The Noetherian algebra above satisfies similar conditions to Noetherian rings and Noethe­

rian modules. Then a Noetherian algebra satisfies the Ascending Chain Condition on its 

left ideals. Algebras may also be Artinian, satisfying the Descending Chain Condition 

on its left ideals in the same way that rings and modules satisfy the Descending Chain 

Condition.

The notion of a radical also applies to algebras.
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Definition 4.20. The radical of an algebra A consists of the elements of A which annihi­

late every simple A-module, in other words, the radical of A consists of the elements which 

annihilate every semisimple A-module. Note that the radical of A is an ideal [DF04].

We will.see that the radical has many interesting properties. In addition to the properties 
listed in the theorem below, we may say that the algebra A is semisimple if rad A = 0. 
It follows that the algebra A is semisimple if and only if A is semisimple.

Theorem 4.21. The radical of A is equal to each of the following:

1. the smallest submodule of A whose corresponding quotient is semisimple;

2. the intersection of all the maximal submodules of A;

3. the largest nilpotent ideal.

[Alp86]

4.3 Theorems.

The following are very important theorems in Representation Theory.

The first theorem we will be examining is best-known as Machke’s Theorem. It will be 
very useful in discovering properties of the modules which will be examined in Chapters 
5 and 6.

Theorem 4.22. Machke’s Theorem.

Let G be a finite group and let F be afield whose characteristic does not divide | G |. IfV 

is any FG-module, and U is any submodule of V, then V has a submodule W such that 

V = U © W. That is, every submodule is a direct summand of its submodules [DF91].

Lemma 4.23. Let R be an arbitrary nonzero ring. If M and N are simple R-modules and 

(p : M —> N i,s a nonzero R-module homomorphism, then <p is an isomorphism [DF91].

Lemma 4.24. Schur’s Lemma.
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Let R be a nonzero ring. If M is a simple R-module, then HomxfM, M) is a divi­

sion ring, where is the set of all R-module homomorphisms from M into

M [DF91].

Theorem 4.25. The categories and KQ are equivalent, where R(C) is the category 

of representations and KQ is a path algebra according to Definition 4.15 [Erd90].

Theorem 4.26. Gabriel’s Theorem.

Any basic finite dimensional K-agebra is of the form KQ/I for a unique quiver Q and 

some ideal I with (KQ+)n C I C (KQ+)2, for some n > 2 [Erd90].

Theorem 4.27. Let A be a KG-algebra where K is a field, G is a group, and A has an 

identity 1a- Let Rad(A) denote the radical of A. Then A/Rad(A) is semisimple [Erd90].

Proof. Let A be an algebra and let Rad (A) be the radical of A. To show that A/Rad(A) 

is semisimple, we need to show that

A/Rad(A) =< ai > © < a2 > © ■ ■ ■ © < an >,

where < at >= {oaf | a G A} is an ideal of A. This is true if and only if A/Rad(A) = 
fci © k2 © • • ■ © kn where ki are fields, i = 0,..., n and n G N, such that ki = k for all i.

□
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Chapter 5

A Look at the Module Z2S3

5.1 The Group S3.

Before we examine the module Z2S3, let us first describe the elements of the permutation 
group in three letters, which is better-known as S3. We will reference these permutations 

throughout this chapter as well as Chapter 6.
The even permutations of S3:

The odd permutations of S3:
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So the elements of S3 are {e, (12), (13), (23), (123), (132}.

Define the action between two elements of S3 to be the normal multiplication be­

tween permutations. For reference, the products of the elements of S3 are given below 

in Table 5.1:

Table 5.1: The Multiplication Table of S3
e (12) (13) (23) (123) (132)

e e (12) (13) (23) (123) (132)
(12) (12) e (132) (123) (23) (13)
(13) (13) (123) e (132) (12) (23)
(23) (23) (132) (123) e (13) (12)

(123) (123) (13) (23) (12) (132) e
(132) (132) (23) (12) (13) e (123)

We will use these products throughout Chapters 5 and 6.

It will also be useful to define the subgroups of S3 since they will also be referenced 
throughout Chapters 5 and 6.

The subgroups of S3 are:

Hy = {e, (12)}

H2 = {e, (13)}

H3 = {e, (23)}

= {e, (123), (132)}

It is easy to prove that these are indeed subgroups of S3, since each subset is closed under 

multiplication among permutations and each element has an inverse within the subset. 
For example, in the subset Hy.

e is its own inverse,

(123) (132) = e, and

(132) (123) = e,

making (132) the inverse element of (123) and (123) the inverse element of (132). Thus 

#4 is a subgroup of S3.
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5.2 The Left Module Z2S3.

Now let us take the ring of integers mod 2, Z2 = {[0], [1]}, and the group S3 that was 
described above to form the left module Z2S3.

First we will examine Z2S3 as a left Z2S3-module. The elements of the set Z2S3 are 
formed using formal sums of the elements of Z2, which are {0,1}, and the permutations 

of S3 described in Section 5.1. This is to say that we are taking formal sums of the 
elements

0e, 0(12),
le, 1(12),

0(13), 0(23), 0(123), 0(132),
0(13), 0(23), 0(123), 1(132).

Then the elements of Z2S3 are of the form:

a>ie + a2(12) + a3(13) + 04(23) + os(123) 4*  06(132),

where a^. G Z2. Since there are only two elements in Z2, the ai are equal to either 0 or 1. 

For example, an element of the form Oe + 0(12) + 1(13) + 1(23) + 1(123) + 0(132) would 

belong to Z2S3.

We make Z2S3 into an Abelian group by defining an operation:

Addition “ + ” is defined as:

digi + ojpi — (0^ + aj)gi 

ai91 + Oj'^2 — ai91 + Ujg2,

where the +, a,j = 0 or 1 since they are elements of Z2, and the gk are elements of S3.

We make the Abelian group Z2S3 into a left Z2S3-module by defining an action “ • ”

Z2S3 X Z2S3 —> Z2S3 :

(<*91)  • (ajP2) = (a*  • afifigi ■ g2)

= dkgs where afe = • aj and £3 = 9a • 92, 
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where ai,aj,ak G Z2 and gi,g2,gs 6 S3-

The additive identity in Z2S3 is:

Oe + 0(12) + 0(13) + 0(23) + 0(123) + 0(132).

The multiplicative identity in Z2S3 is:

le + 0(12) + 0(13) + 0(23) + 0(123) 4- 0(132).

5.3 The Simplicity and Semisimplicity of the Module Z2S3.

First let us examine Z253 according to the structure of an RG-group ring. Recall from 

Chapter 4 that an RC-ring is a set of formal sums of the form

g&G

Then we will be examining Z253 as a Z2 S3-module.

We know from Example 2.24 that the characterisitc of Z2 is 2. The order of the group S3 
is found by calculating 3! = 6. In this case, 2 does divide 6, so when we apply Theorem 
4.22, which is better known as Machke’s Theorem, we find that Z253 is not semisimple 
as a Z253-module.

Let us momentarily examine Z253 as a Z2-module instead. Then we need to find simple 
submodules of Z2S3 as a Z2-module so that Z25'3 may be written in the following way:

^2^3 — ® G2 ® ' ' ‘ ® Gk

for some k e N.

As a Z2-module, we can represent Z253 in the following way:

Z2S3 = Z2e ® S2(12) © Z2(13) © Z2(23) © Z2(123) © Z2(132).

Since each of the submodules Z2e, Z2(12), Z2(13), Z2(23), Z2(123), and Z2(132) are gen­

erated by a single element, they are all simple submodules. For example, the entire 
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submodule 2^(12) is generated by the element (12).

So Z2S3 is semisimple as a Z2-module, since it can be written as the direct sum of 

simple submodules.

What then can we learn about Z2S3 as a Z2S3-module?

The number of elements in Z2S3, written | Z2S3 |, is found by calculating 26 = 64. 

At the beginning of Section 4.3 we used Machke’s Theorem, Theorem 4.22, to show that 

Z2S3 is not semisimple as a Z2S,3-module. Therefore, it cannot be simple as a Z2S3- 
module. What about the simplicity of Z2S3 as a Z2-module? Earlier in Section 5.3 we 

showed that Z2S3 is semisimple as a Z2-module.

Since Z2S3 is finite, we know that it is Artinian. This means that it satisfies the De­
scending Chain Condition. If Z2*$3  is both cyclic and generated by every one of its 

elements then it is simple. If Z2»!?3 is simple then its only submodules are 0 and M, as 

defined in Chapter 3. So we will examine the submodules of Z253- In doing so, we will 

be able to determine whether or not Z2S3 is simple as a Z2S3-module.

5.4 Submodules of Z2S3.

We will examine the submodules of Z2S3. Recall the Submodule Criterion from Chapter 
3: Let R be a ring and let M be a module. Then a subset N of M is a submodule of M 

if and only if

1. N =4 0, and

2. x + ay 6 N for all a G R and for all x,y 6 N.

We will be using the field Z2 as R and the module Z253 as M. Define a subset A of 

Z253 where each component of an element shares the same coefficient from Z2. Then an 
arbitrary element a of A is of the form:

a = ke + fc(12) + fc(13) + fc(23) + A; (123) + fc(132),
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where k is an element of Z2. Since k E Z2, a of A is either of the form

I Oe + 0(12) + 0(13) + 0(23) + 0(123) + 0(132), or 
a= /

[ le + 1(12) + 1(13) + 1(23) + 1(123) + 1(132)

For simplicity, define these two elements of A as:

a0 = Oe + 0(12) + 0(13) + 0(23) + 0(123) + 0(132), and

<*1  = le + 1(12)+ 1(13)+ 1(23)+ 1(123)+ 1(132).

If A is in fact a Z2-submodule of Z2S3, then it will satisfy the Submodule Criterion. 
First, we know that A is nonempty, since, by definition of A, «o and ai belong to A. 

Next, consider an element of the form x + /3y, where x = k'e + A/(12) + V(13) + k'(23) + 

fc'(123) + A/(132) and y = ke + fc(12) + A:(13) + &(23) + &(123) + fc(132) belong to A, and 
/3 is an element of Z2. Then

x + fry = [Ve + fc'(12) + V(13) + *'(23)  + fc' (123) + fc'(132)]

+/3[ke + fc(12) + fc(13) + fc(23) + fc(123) + *(132)]

= [fc'e + *'(12)  + *'(13)  + fc'(23) + (123) + *'(132)]

+[(Z?fc)e + (^)(12) + (/3*)(13)  + (W(23) + (/5*)(123)  + (/tt) (132)]

= [k'e + kf (12) + fc'(13) + fc'(23) + fc'(123) + *'(132)]

+[ce + c(12) + c(13) + c(23) + c(123) + c(132)], where c = /3k E Z2

= (kf + c)e + (A/ + c)(12) + (A/ + c)(13) + (kr + c)(23) + (kr + c)(123) + (kf + c)(132)

— de + d(12) + d(13) + d(23) + d(123) + d(132), where d ~ kl + c E Z2

6 A, since each element of S3 shares the same coefficient d from Z2.

Note that c and d are indeed elements of Z2 since Z2 is a field and is closed under both 

addition and multiplication. Additionally, Z2 is closed, so the product of /3 and y remains 

in Z2.

Therefore, by the Submodule Criterion, A = {00,01} is a Z2-submodule of Z2S3. By 
definition of a submodule, A is closed under addition and multiplication.
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Since A is a proper submodule of Z2S3, we know that Z2S3 is not simple as a ^-module. 

According to its definition in Chapter 3 the only submodules of a simple submodule are 

0 and the module itself.

5.5 Generating Z2S3.

Consider further evidence against the simplicity of Z2S3 as a Z25'3-module. If Z2S3 is 

simple, then it will be generated by each of its elements. Then is it possible for Z2S3 to 
be generated by each of its elements?
First let us consider Z2S3 • [le +0(12)+ 0(13)+ 0(23) + 0(123) + 0(132)]. In this case, it is 

possible for Z2S3 to be generated by the element le+0(12)+0(13)+0(23)+0(123)+0(132).

We will refer to the sum le + 0(12) + 0(13) + 0(23) + 0(123) + 0(132) as le.

Then

[le + 0(12) + 0(13) + 0(23) + 0(123) + 0(132)] • le = le,

[Oe+ 1(12)+ 0(13)+ 0(23)+ 0(123) +0(132)]-le = 1(12),

[Oe+ 0(12)+ 1(13)+ 0(23)+ 0(123) +0(132)]-le = 1(13),

[Oe+ 0(12)+ 0(13)+ 1(23)+0(123)+0(132)]-le = l(2e),

[Oe+ 0(12)+ 0(13)+ 0(23)+ 1(123) +0(132)]-le = 1(123),

[Oe+ 0(12)+ 0(13)+ 0(23)+ 0(123) + 1(132)]-le = 1(132).

The remaining elements of Z2S3 can be formed by sums of these products. For example,

[le + 1(12) + 0(13) + 0(23) + 0(123) + 0(132)]le = le + 1(12).

Other elements of Z2S3, such as the element 1(13) + 1(123) can be formed in a similar 

fashion. So we can say that Z2S3 = Z2S3 ■ le.

Now consider Z2S3 ■ [Oe + 1(12) + 0(13) + 0(23) + 0(123) + 0(132)]. Is it possible to 
generate Z2S3 by an element other than the multiplicative identity element?
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We will refer to the sum Oe + 1(12) + 0(13) + 0(23) + 0(123) + 0(132) as 1(12).

Then

[le + 0(12) + 0(13) + 0(23)+0(123) + 0(132)] 1(12) = 1(12)

[0e +1(12)+ 0(13)+ 0(23)+ 0(123)+ 0(132)] 1(12) = le

[0e +0(12)+ 1(13)+ 0(23)+ 0(123)+ 0(132)] 1(12) = 1(123)

[0e +0(12)+ 0(13)+ 1(23)+ 0(123)+ 0(132)] 1(12) •= 1(132)

[Oe + 0(12) + 0(13) + 0(23) + 1(123) + 0(132)] 1(12) = 1(13)

[0e +0(12)+ 0(13)+ 0(23)+0(123)+ 1(132)] 1(12) = 1(23)

Then the element 1(12) can also generate Z2iS*3,  meaning each element of Z2S3 can be 

formed using combinations of the products above, similar to the way that they were 

formed in the previous example. So Z283 = Z2S3 • 1(12) as well.

Similarly, the elements 1(13), 1(23), 1(123), and 1(132) generate Z2S3:

Z2S3 = S2S3 ■ 1(13) : [le + 0(12) + 0(13) + 0(23) + 0(123) + 0(132)] 1(13) = 1(13)

[0e +1(12)+ 0(13)+ 0(23)+ 0(123)+ 0(132)] 1(13) = 1(132)

[0e +0(12)+ 1(13)+ 0(23)+ 0(123)+ 0(132)] 1(13) = le

[Oe + 0(12) + 0(13) + 1(23) + 0(123) + 0(132)] 1(13) = 1(123)

[0e +0(12)+ 0(13)+ 0(23)+ 1(123)+ 0(132)] 1(13) = 1(23)

[0e +0(12)+ 0(13)+ 0(23)+ 0(123)+ 1(132)] 1(13) = 1(12)
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Z2S3 = Z2S3 • 1(23) : [le + 0(12) + 0(13) + 0(23) + 0(123) + 0(132)] 1(23) = 1(23)

[Oe + 1(12) + 0(13) + 0(23) + 0(123) + 0(132)] 1(23) = 1(123)

[Oe + 0(12) + 1(13) + 0(23) + 0(123) + 0(132)] 1(23) = 1(132)

[Oe + 0(12) + 0(13) + 1(23) + 0(123) + 0(132)] 1(23) = le

[Oe + 0(12) + 0(13) + 0(23) + 1(123) + 0(132)] 1(23) = 1(12)

[Oe +0(12)+ 0(13)+ 0(23)+ 0(123)+ 1(132)] 1(23) = 1(13)

Z2S3 = Z2S3 • 1(123) : [le + 0(12) + 0(13) + 0(23) + 0(123) + 0(132)] 1(123) = 1(123)

[Oe + 1(12) + 0(13) + 0(23) + 0(123) + 0(132)] 1(123) = 1(23)

[0e +0(12)+ 1(13)+ 0(23)+ 0(123)+ 0(132)] 1(123) = 1(12)

[Oe + 0(12) + 0(13) + 1(23) +0(123) + 0(132)] 1(123) = 1(13) 

[Oe + 0(12) + 0(13) + 0(23) + 1(123) + 0(132)] 1(123) = 1(132)

[Oe + 0(12) + 0(13) + 0(23) + 0(123) + 1(132)] 1(123) = le

Z2S3 = . 1(132) : [le + 0(12) + 0(13) + 0(23) + 0(123) + 0(132)] 1(132) = 1(132)

[0e + 1(12)+ 0(13)+ 0(23)+ 0(123)+ 0(132)] 1(132) = 1(13) 

[Oe + 0(12) + 1(13) + 0(23) + 0(123) + 0(132)] 1(132) = 1(23)

[Oe + 0(12) + 0(13) + 1(23) + 0(123) + 0(132)] 1(132) = 1(12)

[Oe +0(12)+ 0(13)+ 0(23)+ 1(123)+ 0(132)] 1(132) = le

[Oe + 0(12) + 0(13) + 0(23) + 0(123) + 1(132)] 1(132) = 1(123)

It is the case that Z2S3 can be generated by any of its single elements; Z2S3 is cyclic. 

However, this is not enough to determine whether or not Z2S3 is simple. In addition to 
being cyclic, it must also be generated by every one of its elements, not only the single 

elements {le, 1(12), 1(13), 1(23), 1(123), 1(132)}.
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5.6 Generating Z2S3 from led-1(12).

Can we also generate Z2*S3  from the other, non-single elements? Let us try le + 1(12):

[le + 0(12) + 0(13) + 0(23) + 0(123) + 0(132)] [le + 1(12)] = le + l(12)

[Oe + 1(12) + 0(13) + 0(23) + 0(123) + 0(132)] [le + 1(12)] = 1(12) + le

[Oe + 0(12) + 1(13) + 0(23) + 0(123) + 0(132)] [le + 1(12)] = 1(13) + 1(123)

[0e +0(12) + 0(13) + 1(23) + 0(123) + 0(132)] [le + 1(12)] = 1(23)+ 1(132)

[Oe + 0(12) + 0(13) + 0(23) + 1(123) + 0(132)] [le + 1(12)] = 1(123) + 1(23)

[Oe + 0(12) + 0(13) + 0(23) + 0(123) + 1(132)] [le + 1(12)] = 1(132) + 1(13)

This is not injective, as the first two products equal the same sum, le + 1(12). So Z2S3 

is not generated by the element le + 1(12).

We may see further evidence that Z2S3 is not generated by le + 1(12) by examining 

the product of an arbitrary element from Z2S3 and the element le + 1(12).

Is it possible to obtain the element le as the product of le + 1(12) and some element a 

of Z2S3?
Suppose that this element a does exist in Z2S3. Then a is of the form a^e + o2(12) + 
03(13) + 04(23) + 05(123) + 06(132) such that

o[le + 1(12)] = le + 0(12) + 0(13) + 0(23) + 0(123) + 0(132).

Then,

a[le + 1(12)] = [aie + o2(12) + o3(13) + 04(23) + og(123) + 06(132)] [le + 1(12)]

= le + 0(12) + 0(13) + 0(23) + 0(123) + 0(132)

= aie + o2(12) + 03(13) + 04(23) + 05(123) + ag(132)

+o2e + Oi(12) + Os(13) + oe(23) + o3(123) + 04(132)

= (01 + o2)e + (ai + o2)(12) + (03 + os)(13) + (04 + Oe)(23)

+ (a3 + 05) (123) + (ae + O4)(132)
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According to the structure of the element a, we know that ctf = 0 for i = 3,4,5, and 6, or 

ai ~ 1 for i = 3,4,5, and 6, since (a3+as) — 0, (ch+05) = 0, (^3+^5) = 0, and (as+04) = 
0. More importantly, since this sum is equal to le+0(12)+0(13)+0(23)+0(123)+0(132), 

we may equate the and conclude that

(ai + a2) = 1 and (a2 + oj) = 0.

However, this is a contradiction, since Z2S3 is closed under addition and the sum of the 

elements ai and a2 cannot be equal to both 1 and 0.
We may then conclude that there does not exist an element a € Z2S3 such that a[le + 

1(12)] =. le + 0(12) + 0(13) + 0(23) + 0(123) + 0(132). This means that le + 1(12) does 

not generate Z2S3. We know that Z2R3 is generated by six of its sixty-four elements. 

However Z2S3 is not generated by all of its elements. In order to be a simple module, 
Z253 must be generated by each of its elements.

Finally we may conclude that Z253 is not simple.
Consider the following proposition, which follows as a consequence of the properties we 
examined above.

Proposition 5.1. If a module is generated by a one-element it does not follow that the 

module is simple. A module is simple if and only if it is generated by each of its elements.

5.7 Other Submodules of Z2S3.

Let us return to examining the submodules of which we began to examine in Section 
5.4. We proved in Section 5.4 that the set A = {0e + 0(12) + 0(13) + 0(23) + 0(123) + 

0(132), le + 1(12) + 1(13) + 1(23) + 1(123) + 1(132)} was a Z2-submodule of Z2S3.

Now consider that same subset A of Z2S3. Is A a Z2S3-submodule of Z2S3? Again, 

we will apply the Submodule Criterion from Section 5.4:
First, we know that A is nonempty, since A — {0e + 0(12) + 0(13) + 0(23) + 0(123) + 
0(132), le + 1(12) + 1(13) + 1(23) +1(123) + 1(132)}.

Now let x,y G A and let /3 — ft^e + 62(12) + 63(13) + 64(23) + 65(123) + 5g(132) G Z2S3. 
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According to the Submodule Criterion, let us show that x + fry belongs to A.

x + frj

= [k'e + *'(12)  + *'(13)  + *'(23)  + *'(123)  + *'(132)]

+[6je + 62(12) + 63(13) + 64(23) + 65(123) + 66(132)] • [fee + *(12)  + *(13)

+*(23)  + *(123)  + *(132)]

= [k'e + *'(12)  + *'(13)  + *'(23)  + *'(123)  + *'(132)]

+6je[fce + *(12)  + fc(13) + *(23)  + *(123)  + *(132)]

+62(12)[fce + *(12)  + *(13)  + *(23)  + *(123)  + *(132)]

+63(13) [*e  + *(12)  + *(13)  + *(23)  + *(123)  + *(132)]

+64 (23) [*e  + *(12)  + *(13)  + *(23)  + *(123)  + *(132)]

+65(123)[fce + *(12)  + fc(13) + fc(23) + *(123)  + *(132)]

+6e(132)[fce + fc(12) + fc(13) + fc(23) + *(123)  + *(132)]

= [k'e + *'(12)  + *'(13)  + *'(23)  + *'(123)  + *'(132)]

+[6i*][ee]  + [6i*][e(12)]  + ]&i*][e(13)]  + [6i*][e(23)j  + ]6i*][e(123)]  + [6i*][e(132)]  

+[62*][(12)e]  + ]62*][(12)(12)]  + ]62*][(12)(13)]  + [62*][(12)(23)J  + [62*][(12)(123)]  

+[62fc][(12)(132)]

+[63*][(13)e]  + [63*]  [(13) (12)] + [63*]  [(13) (13)] + [63*]  [(13) (23)] + [&3*][(13)(123)]

+[6s*][(13)(132)]

+[64*][(23)e]  + [64*]  [(23) (12)] + [64*]  [(23)(13)] + [64*][(23)(23)]  + [64*][(23)(123)]  

+[64*][(23)(132)]

+[66*][(123)e]  + [65*]  [(123) (12)] + [65fc][(123)(13)] + [65*]  [(123) (23)]

+[65*][(123)(123)]  + [65*]  [(123) (132)]

+[66*][(132)e]  + [66*]  [(132) (12)] + [66*][(132)(13)]  + [66fc] [(132) (23)]

+[66*]  [(132) (123)] + [65*]  [(132) (132)]

= [*'e  + *'(12)  + *'(13)  + *'(23)  + *'(123)  + *'(132)]

+[6i*]e  + [6i*](12)  + [61*]  (13) + [6ifc] (23) + [61*]  (123) + [61*]  (132)

+[62*](12)  + [62fc]e + [62*](132)  + [62fc](123) + [62*](23)  + [62*](13)

+[63*](13)  + [63*]  (123) + [63*]e  + [63*]  (132) + [63*](12)  + [63*]  (23)
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+[M] (23) + [d4&] (132) + [M] (123) + [M]e + [M](13) 4- [&4fc](12)] 

+[d5fc](123) + [6sM(13) + [&5fc](23) 4- [d5fc](12) + [65fc](132) + [b5k]e 

+[d6fc](132) + [d6fc](23) + [d6fc](12) + [fe6&](13) + [Me+ M](123) 

[k’e + fc'(12) + V(13) + fc'(23) 4- fc'(123) + fc'(132)]

4-[bifc]e + [M] (12) 4- [M (13) + [Ink] (23) + [bifc] (123) + [bifc] (132) 

+[b2k]e+[b2k](12) + [&2fc](13) + [62fc](23) + [62fc](123) 4- [M](132) 

+[Mh+ M(12) + [&s^](13) + M(23) + [M](123) 4- [63fc](132) 

+[M]e+ M](12) + [fe4fc](13) + [b4fc](23) + [£>4fc](123) + [64fc](132) 

+[M]e+ [M](12) + [d5fc](13) + [dsfc](23) + [E>sfc](123) + [d5fc](132) 

+[M]e + [M] (12) + [b6k] (13) + M (23) + [b6fc] (123) + [b6fc] (132) 

[k'e + fc'(12) + V(13) + V(23) 4- V(123) + V(132)]

+[bifc + b2k 4- bak 4- d4/c 4- bsk + b&k]e 4- [b±k 4- b2k + b^k + b^k 4- bsk + (12)

+[&1 k 4- b2k 4- b^k 4- b^k 4- b^k + bek] (13) + [&i& + b2k 4- b$k + b^k 4- b$k 4- b^k] (23) 

[61 k 4- b2k + 63 A; + &4fc + 65k + (123) 4- [61 k 4- b2k 4- b2k + b^k 4- 65k 4- b$k] (132)

[A/e + A/(12) + fc'(13) + A/(23) + A/(123) 4- A/(132)]

+fc[6i 4- 62 4- 63 4~ 64 4- 65 4- freje + k[61 4- 62 4- 63 4- 64 4- 65 4- 6g] (12)

+fc[&i + b2 4- d3 4- &4 4- 65 4- &6](13) + fc[&i 4“ b2 4- 63 + 64 + 65 4- 6g](23)

4~A;[6i 4- &2 4- 63 4~ 64 4- 65 + 60] (123) + k[bi 4- 62 4*  63 4- 64 4*  65 4~ 6g] (132)

k'e + fc[&i 4" 62 4~ 63 4- &4 4" 65 4- &e]e

4-A/(12) 4- &[&i 4" 62 4- 63 4" 64 4~ 65 4*  &e] (12)

-rA/(13) + k[bi 4~ 62 4" 63 + &4 4" 65 4- (13)

4-A/(23) 4- A:[61 4- 62 4- 63 + 64 4- 65 4- (23)

4-A/(123) + k[bi + 62 4~ 63 + 64 4" 65 4" i>e](123) 

4-A/(132) 4*  A[6i 4~ 62 4" 63 4“ b4 4- 65 4- &q] (132)
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Now k G Z2, so k — 0 or k = 1. If k — 0, then we are left with

= k'e 4 0[£>i 4 &2 4 £>3 + ^4 4 + &6]e 4" A/(12) 4 0[bi + b2 4 63 4 b$ 4 65 4 £>g](12)

4A/(13) 4 0[6i + b2 + 63 4- 64 4 65 4 6g](13)

4A/(23) + 0[&i + 62 + i>3 + 64 + 65 + (23)

4A/(123) 4 0[&i + b2 4 63 4 £>4 4 65 4 £>6] (123)

4A/(132) 4 0[&i 4 b2 + £>3 4 64 4 65 4 6g](132)

= k'e 4 fc'(12) 4 fc'(13) 4 A/(23) + fc'(123) 4 fc'(132)

= Oe 4 0(12) 4 0(13) 4 0(23) 4 0(123) 4 0(132) or

le 4 1(12) 4 1(13) 41(23) 41(123) 4 1(132)

€ A by definition of A.

However, if k = 1 we have

= k'e 4 1 [61 4 b2 4 63 + 64 + £>5 4 &6]e 4 A/(12) 4 l[bi 4 b2 4- 63 4 64 4 b& 4 dg](12)

4A/(13) 4 l[£>i 4 b2 4 £>3 4 &4 4 £>5 4 £*6]  (13)

+A/(23) 4 1 [&i -J- b2 4 63 4 64 4 &5 -J- (23)

+A/(123) 4 l[£?i 4 b2 4 £>3 4 £*4  + 65 4 be] (123)

+A/(132) 4 l[£?i 4 b2 4 £>3 4 £>4 + £>5 4 £?g](132)

= kfe 4 [£>1 4 b2 4 £>3 + £*4  d- b$ 4 £>e]e 4 A/(12) 4 [£>i 4 b2 4 b2 4 64 4 65 4 bg](12)

4A/(13) + [£>1 4 b2 4 63 4 64 4 £>5 + £>g] (13)

4 A/(23) 4 [&i 4 b2 4 £>3 4 64 4 £>5 + be](23)

+A/(123) 4 [£>1 + &2 4" £>3 4" £>4 4*  £*5  4" be] (123)

4A/(132) 4 [£>1 4- 62 4- ?>3 4 £>4 4- 65 + (132)

= [A/ 4 61 4 62 4 i>3 + £>4 + £>5 4 b6]e 4 \k' 4 £>1 4 £>2 4 63 + £>4 4 £>s + M(12)

4 [A/ 4 bi 4 b2 4 £>3 4 64 + ^5 + £>g](13) 4 [kf 4 £>1 4 b2 4 63 4 £>4 4 £>5 + £>6] (23)

4 [A/ 4 £>i 4 &2 4 £»3 4 64 4 65 4- bg] (123) 4 [kf 4 £>1 4 b2 4 £>3 4 £>4 4 £>5 4 be] (132)

It is important to note that each of the elements of S3 has the same coefficients from Z2: 

[A/ 4 £>1 4 £>2 4 £>3 4 £>4 4 £>5 4 &e]« Then all that remains is to evaluate [A/ 4 £>1 4 £>2 4 £>3 4
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64 + 55 + 5q]. Since k' and each bi G Z2, the k' and b/s are either equal to 0 or 1 e Z2. 
Then the sum of every coefficient could be equal to 0,1, 2, 3,4,5,6, or 7. However, this 

sum is an element of Z2, so it will be congruent to either 0(mod2) or l(mod2). Thus the 

sum [k' + 61 + 52 + 63 + 64 + 5$ + be] is either equal to 0 or 1 and we have:

= [k' + 5j + 52 + 63 + 64 + 65 + 5e]e + [kf + bi + b2 + 63 + b4 + 65 + be] (12)

+[fcz + 5i + 62 + 63 + 64 -j- 65 + dg](13) + [kf + bi + b2 + b3 + 64 + bg + be] (23)

+[A/ + bi + b2 + b3 + 64 + bg + 65] (123) 4- [kf + bi + b2 + 63 4~ 64 + 65 4- be] (132)

= Oe + 0(12) + 0(13) + 0(23) + 0(123) + 0(132),

or

= [kf + bi + b2 4- 63 4" &4 4" bg 4- be]e + [V + bi + b2 + b3 + 64 + 65 + be] (12)

+[V + 61 + 52 + 63 + 64 + 55 + bg] (13) + [kf + bi + b2 + b3 + 64 + 65 + be] (23)

+[A/ + bi + b2 + 63 + 64 + 65 + be](123) + [kf + bi + b2 + 63 + 64 + 65 + be] (132)

- le + 1(12) + 1(13) + 1(23) + 1(123) + 1(132).

In either case, these elements belong to A since each element of S3 has the same coefficient 

from Z2S3. Then A satisfies the Submodule Criterion and is a Z2 ^-submodule of Z2S3.

We will attempt to find another submodule of Z2S3, different from A. This elements of this 
submodule have the form A = {aie + a2(12) + a3(13) + a4(23) + a5(123) + ae(132) | o?- — aj 

for all i,j}. Now we will test other sets to find.Z2-submodules of Z2S3.

Define B to be a subset of Z2<$3 such that

6

B = {die + 02(12) + o3(13) + 0:4(23) + (15(123) + 06(132) | }di — 1}.

We may apply the Submodule Criterion to B. Then let x = a±e + a2(12) + oe(13) + 

04(23) + 05(123) + 05(132) and y = bie + b2(12) + b3 (13) + 64(23) + 65 (123) + be (132) G B 

and let 7 = cie + c2(12) + c3(13) + 04(23) + Cs(123) + 06(132) G Z2S3. We apply the
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Submodule Criterion:

x + 'ty

— [aie + 02(12) -J- 03(13) + 04(23) + 05(123) + 05(132)]

+[cle + 02(12) + 03(13) + 04(23) + 05(123) + 06(132)] ■ [bie + &2(12) + 63(13)

+64(23) + 65(123) + 66(132)]

= [aie + 02(12) + 03(13) + 04(23) + 05(123) + Os(132)]

+cie[6ie + 62(12) + 63(13) + 64(23) + 65(123) + 65(132)]

+C2(12)[6ie + 62(12) + 63(13) + 64(23) + 65(123) + 6s(132)]

+c3(13)[6ie + 62(12) + 63(13) + 64(23) + 65(123) + 65(132)]

+c4(23)[6ie + 62(12) + 63(13) + 64(23) + 65(123) + 66(132)]

+c5(123)[6ie + 62(12) + 63(13) + 64(23) + 65(123) + &6(132)]

+C6(132)[6ie + 62(12) + 63(13) + 64(23) + 65(123) + 65(132)]

= [oje + 02(12) + 03(13) + 04(23) + 05(123) + 06(132)]

+[ci6i][ee] + [ci62][e(12)] + [ci&3][e(13)] + ]ci64][e(23)] + [0165] [e(123)J + [ci66][e(132)]

+[026i][(12)e] + [c262][(12)(12)] + [0363] [(12) (13)] + [0364] |(12)(23)] 

+]C265][(12)(123)] + [c265][(12)(132)]

+[0361] [(13)e] + [0362] [(13) (12)] + [0363] [(13) (13)] + [0364] [(13) (23)]

+[C365][(13)(123)] + [0365] [(13) (132)]

+[0461] [(23)e] + [c462][(23)(12)] + [0463] [(23)(13)] + [0464] [(23) (23)]

+[C465][(23)(123)] + [0465] [(23) (132)]

+[c56i][(123)e] + [0563] [(123) (12)] + [0563] [(123) (13)] + [c564][(123)(23)]

+[c56e][(123)(123)] + [0565] [(123) (132)]

+[056i][(132)e] + [0562] [(132) (12)] + [0563] [(132) (13)] + [0564] [(132)(23)J

+[C565][(132)(123)] + [c666][(132)(132)]
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= [a4e + 02(12) 4- 03(13) + 04(23) + ag(123) + og(132)j

+[cii>i]e+ [ci&2](12) + [ci63](13) + [ci&4](23) + [ci6s](123) + [cide](132) 

+[c2&i] (12) + [c262]e 4- [0263] (132) 4- [0264] (123) 4- [0265] (23) + [c2&6](13) 

+[c3^i](13) + [C3&2] (123) + [C3&3]e + [0364] (132) + [0365] (12) 4- [0365] (23) 

+[0464] (23) + [c4d2](132) + [C4&3] (123) + [C4&4] e 4- [0465] (13) + [0460] (12) 

+^564] (123) + [0562] (13) + [0563] (23) + [05641(12) + [C565K132) + [c566]e 

+[^1] (132) + [c662](23) + [C663K12) 4- [05641(13) + [0565] e + [0665] (123)

= [aie + a2(12) + 03(13) 4- 04(23) 4" os(123) + 06(132)]

+[ci6i]e 4- [0462] (12) + [0463] (13) 4- [04641(23) 4- [0465] (123) + [0465] (132) 

4'[c262]e4- [C264K12) + [c26q](13) 4- [c2^s](23) + [c264](123) 4- [c263](132) 

+[c3^3]e + [C365K12) 4- [C364KI3) + [c36e](23) + [0362X123) + [C364KI32)

+[0464)6 + [C466K12) + [0465] (13) + [0464] (23) + [0463] (123) + [0462] (132)

-{-[csbcje 4- [0564](12) + [0562](13) + [C563K23) + [C564K123) + [C565K132)

+ [c6^5]e+ [C6^3](12) + [C6&4](13) + [C662](23) + [C666](123) + [06641(132)

= [04 + 0464 + c262 + 0363 + 0464 + 0566 + C66s]e

4"[°2 + c1^2 4" C264 + C365 + C4&6 + C564 4- C663KI2)

+ [03 4" C463 + C2&6 + 0364 + C465 + C562 + 06641(13)

+[04 4*  0464 4- C265 + C366 4- 0464 + C563 + C662](23) 

+[05 + 0465 + 0264 + 0362 + 0463 4- 0564 + C666](123) 

= [06 + 0466 4- 0263 + 0364 + 0462 + 0565 + 05641(132)

Again, each of these coefficients is in Z2. If they belong to B then their sums will be 

congruent to l(mod2). This presents a significant number of cases to test the values of 
the ai,bj and Ck as well as their different combinations.

Additionally, note that the element Oe + 0(12) + 0(13) 4- 0(23) + 0(123) + 0(132) B, 

since at least one of the a/s must be 1 in order for their sum to equal 1. Then B cannot 

be a submodule of Z2S3. In fact, there are no other submodules of Z2S3.

We know that Z2S3 is not a simple Z2-module and that A is a submodule of Z21$3.
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Earlier we showed that Z2S3 is semisimple as a Z2-module.

What else can we learn from the module Z2S3?

5.8 The Radical of Z2S3.

Recall from Definition 3.11 that the radical of a module is defined to be the intersection of 

the maximal submodules of M. The radical of a module is also defined to be the largest 
nilpotent ideal of the ring M. Recall that, as we did in Theorem 4.21, we may examine 

Z2S3 as either a ring or as a module.

The ideal A is nilpotent. This means that there exists an n G N such that An = 

Oe + 0(12) + 0(13) + 0(23) + 0(123) + 0(132). To see this, examine the elements Qo 
and cki of A.

Consider each element of A. We can see that ao = 0e + 0(12) + 0(13) + 0(23) + 0(123) + 
0(132) is nilpotent, since — 0 for all ai.

Consider the case where a ~ eq. Then

(«i)2

= [le + 1(12) + 1(13) + 1(23) + 1(123) + 1(132)] [le + 1(12) + 1(13) + 1(23) 

+1(123)+ 1(132)]

= le[le + 1(12) + 1(13) + 1(23) + 1(123) + 1(132)]

+1(12) [le + 1(12) + 1(13) + 1(23) + 1(123) + 1(132)]

+1(13) [le + 1(12) + 1(13) + 1(23) + 1(123) + 1(132)]

+1(23) [le + 1(12) + 1(13) + 1(23) + 1(123) + 1(132)]

+1 (123) [le + 1(12) + 1(13) + 1(23) + 1(123) + 1(132)]

+1(132) [le + 1(12) + 1(13) + 1(23) + 1(123) + 1(132)]
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= [le + 1(12) + 1(13) + 1(23) + 1(123) + 1(132)] + [1(12) + le + 1(132)

+1(123)+ 1(23)+ 1(13)]

+[1(13) + 1(123) + le + 1(132) + 1(12) + 1(23)] + [1(23) + 1(132) + 1(123) 

+le +1(13)+ 1(12)]

+[1(123) + 1(13) + 1(23) + 1(12) + 1(132) + le] + [1(132) + 1(23) + 1(12) 

+1(13)+ le +1(123)]

= 6e + 6(12) + 6(13) + 6(23) + 6(123) + 6(132)

- Oe + 0(12) + 0(13) + 0(23) + 0(123) + 0(132).

So ai is nilpotent, since (ai)2 = 0.
Thus, we may square the entire ideal A2 = 0, and A is in fact nilpotent. In fact, A is 

the largest nilpotent ideal, since it’s the unique Z2-submodule of Z2S3. According to 
Definition 2.35, A is the radical of Z2S3, or Rad^I^Ss) ~ A.

The radical of a module is also defined to be the intersection of the maximal submodules. 

Then the intersection of the maximal submodules of Z2S3 is equal to A.

5.9 The Submodules of ^zSz/Radt^S^).

Now recall the set A = {qo,qi}. Consider the quotient module Rad^aSs) =

^283/A. We can find the number of elements of Z2+3/A:

|Z253/A| = |Z253|/|A|

= 64/2

= 32.

Is Z2S3/A semisimple? If it is semisimple, then it can be represented as a direct sum of 
simple submodules.

Let us form a sumbodule of l^Ss/A with the set M — {[aie + a2(12) + a3(13) + 04(23) + 

^5(123) + 06(132)] + A | = 0}.
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For example, the following elements are in M, since the sum of their coefficients equal 
zero:

le + 1(12) + 0(13) + 0(23) + 0(123) + 0(132) + A,

Oe + 0(12) + 1(13) + 1(23) + 1(123) + 1(132) + A,

Notice that the elements of M have an even number of components whose coefficient di 

is 1. That is, each element of M has either

zero a>i= 1,

two at = aj = 1,

four di = dj = ak = d^ = 1,

or six d^ — dj ■— ak — dg — ' 1•

Then what are the elements of M?

There is only one element in M with zero di = 1:

Oe + 0(12) + 0(13) + 0(23) + 0(123) + 0(132) + A

6

} di = 0 + 0 + 0 + 0 + 0 + 0 = 0.
i=0

Now we will give the elements with two di = aj = 1. Consider the following fifteen 
elements:

le + 1(12) + 0(13) + 0(23) + 0(123) + 0(132) + A,

le + 0(12) + 1(13) + 0(23) + 0(123) + 0(132) + A,

le + 0(12) + 0(13) + 1(23) + 0(123) + 0(132) + A,

le + 0(12) + 0(13) + 0(23) + 1(123) + 0(132) + A,

le + 0(12) + 0(13) + 0(23) + 0(123) + 1(132) + A,
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Oe + 1(12) + 1(13) + 0(23) + 0(123) + 0(132) + A, 

Oe + 1(12) + 0(13) + 1(23) + 0(123) + 0(132) + A, 

Oe + 1(12) + 0(13) + 0(23) + 1(123) + 0(132) + A, 

Oe + 1(12) + 0(13) + 0(23) + 0(123) + 1(132) + A, 

Oe + 0(12) + 1(13) + 1(23) + 0(123) + 0(132) + A, 

Oe + 0(12) + 1(13) + 0(23) + 1(123) + 0(132) + A, 

Oe + 0(12) + 1(13) + 0(23) + 0(123) + 1(132) + A, 

Oe + 0(12) + 0(13) + 1(23) + 1(123) + 0(132) + A, 

Oe + 0(12) + 0(13) + 1(23) + 0(123) + 1(132) + A, 

Oe + 0(12) + 0(13) + 0(23) + 1(123) + 1(132) + A.

Without loss of generality, J2i=o = 1 + 1 + 0 + 0 + 0 + 0 = 0 is in Z2 for each of the 
fifteen elements listed above.

So far we have found sixteen elements of M. a subset of Z253/A. However, M is defined 

similar to the way in which a quotient ideal is defined. That is, each element in M is added 

to the submodule A = {ao> «i) of Z2S3. This means that the element 0e+0(12)+0(13) + 
0(23)+0(123)+0(132)+A equals the element le+l(12)+l(13)+l(23)+l(123)+l(132)+A, 
which is also an element of M since aj = l + l + l + l + l + l = 0inZ2. Finding 
the elements with two — a3 = 1 as we did above will automatically yield the elements 
with four cti = a,j = — ag, = 1 in the sense of equality on this quotient module. Thus,
there is no need to list these additional elements, as we have already found equal elements.

Then we have found sixteen elements which belong to the subset M of Z2S3/A. At 

the beginning of Section 5.9 we showed that there are thirty-two elements in Z253/A.

Is it then the case that the remaining sixteen elements of Z253/A form another set N 

such that AT = {[a>ie + n2(12) + a3(13) + U4(23) + as(123) + ag(132)] + A | (i{ = 1}?

For example, the elements

le + 0(12) + 0(13) + 0(23) + 0(123) + 0(132) + A, and

Oe + 1(12) + 1(13) + 1(23) +1(123) + 1(132) + A
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belong to N since the sum of their coefficients equals one.

In the same way that the elements of M have an even number of components whose 

coefficient Oi is equal to one, the elements of N will have an odd number of components 

whose coefficient cij is equal to one. That is, each element of N has either

one di = 1,

three di = dj = dk = 1,

or five d^ — dj —- d^ •—■ d^ — d^ — 1.

The following are the elements of N.

le + 0(12) + 0(13) + 0(23) + 0(123) + 0(132) + A,

Oe + 1(12) + 0(13) + 0(23) + 0(123) + 0(132) + A,

Oe + 0(12) + 1(13) + 0(23) + 0(123) + 0(132) + A,

Oe + 0(12) + 0(13) + 1(23) + 0(123) + 0(132) + A,

Oe + 0(12) + 0(13) + 0(23) + 1(123) + 0(132) + A,

Oe + 0(12) + 0(13) + 0(23) + 0(123) + 1(132) + A, 

le + 1(12) + 1(13) + 0(23) + 0(123) + 0(132) + A, 

le + 1(12) + 0(13) + 1(23) + 0(123) + 0(132) + A, 

le + 1(12) + 0(13) + 0(23) + 1(123) + 0(132) + A, 

le + 1(12) + 0(13) + 0(23) + 0(123) + 1(132) + A,

Oe + 1(12) + 1(13) + 1(23) + 0(123) + 0(132) + A,

Oe + 1(12) + 1(13) + 0(23) + 1(123) + 0(132) + A,

Oe + 1(12) + 1(13) + 0(23) + 0(123) + 1(132) + A,

Oe + 0(12) + 1(13) + 1(23) + 1(123) + 0(132) + A,

Oe + 0(12) + 1(13) + 1(23) + 0(123) + 1(132) + A,

Oe + 0(12) + 0(13) + 1(23) + 1(123) + 1(132) + A.

Let us return to the subset M that we defined earlier. Does M form a Z2 S3-sub module 
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of Z253/A?

For some mi m2 G Z253, let mi + A, m2 + A be elements of the subset M such that 

mi + A / m2 + A. This implies that mi — m2 $ A. We want to show that M is closed 

under addition by showing that (mi + m2) + A 6 M. As elements of Z253, mi is of the 

form aie + o2(12) + a3(13) + 04(23) + as(123) + 06(132). Similarly, m2 is of the form 

Oje + o2(12) + o3(13) + o^(23) + 0^(123) + 0^(132).

Consider the following case: without loss of generality, suppose that two coefficients 
di and dj of mi + A are each equal to 1 such that the remaining dk = 0, for all k j i. 

Then, according to the structure of M, either oj = 1 or oj = 0 in m2 + A.

Without loss of generality, consider the case where aj = 1. Then there will be only 

one other coefficient d'k = 1, for k 7^ i. If it happens that a} = 1, that is that j = k, 

then mi = m2 and mi + A = m2 + A. This is a contradiction. Then a/ must be equal 
to 0 and some other dk must be 1, for some k 7^ j 7^ i. Then mi + m2 has a zero at 
d{ + aj = 1 + 1 = 0. Additionally, dj + dj ~ 1 + 0 = 1 and «& + a*.  = 0 + 1 = 1 implies 

that (dj + dj) + (ak + dk) = 1 + 1 = 0 in Z2. The sums of all remaining ag and a/ are zero, 
where I / i 7^ j 7^ k. Therefore, mi + A + m2 + A G M and M is closed under addition.

To show that M is a submodule of Z2S3/A, it remains to show that M is closed un­
der the multiplication of elements of Z2S3/A.

Let r G Z2S3/A and let m G M. Then r = die + a2(12) + o3(13) + 04(23) + as(123) + 
06(132) + A and m = bie + 62(12) + 63(13) + 64(23) + 65(123) + 6g(132) + A, where 

52i=o k ~ 0- Consider

rm

= [die + a2(12) + o3(13) + 04(23) + 05(123) + 06(132) + A][6ie + 62(12) + 63(13)

+64(23) + 65(123) + 66(132) + A]
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°le[6ie + 62(12) 4- 63(13) + 64(23) 4- 65(123) 4- 6g(132) 4- A]

4-a2(12)[6ie 4- 62(12) 4- 63(13) 4- 64(23) 4- 65(123) 4- 66(132) 4- A]

4-a3(13)[61e 4- 62(12) 4- 63(13) 4- 64(23) 4- 65(123) 4- 6e(132) 4- A]

4-a4(23)[6ie 4- 62(12) 4- 63(13) 4- 64(23) 4- 6s(123) 4- 6e(132) 4- A]

4-a5(123)[6ie 4- 62(12) 4- 63(13) 4- 64(23) 4- 65(123) 4- 6g(132) 4- A]

4-Od(132)[6ie 4- 62(12) 4- 63(13) 4- 64(23) 4- 65(123) 4- 66(132) 4- A]

[ai6i][ee] 4- [ai62][e(12)] 4" [oi63][e(13)] 4- [ai64][e(23)] 4" [oi6s][e(123)] 4*  [<ii66][e(132)] 

4-[a26i][(12)e] 4- [<1262][(12)(12)] 4- [a263][(12)(13)] 4- [a264][(12)(23)J

4-[0265][(12)(123)] 4- [a266][(12)(132)]

4-[a361][(13)e] 4- [a362][(13)(12)] 4- [a363][(13)(13)] 4- [a364][(13)(23)] 

+[a365][(13)(123)] 4- [a366][(13)(132)]

4-[a46i][(23)e] 4- M2][(23)(12)] 4- [a463][(23)(13)] 4- [a464][(23)(23)]

4-[a465][(23)(123)] 4- [a466][(23)(132)J

4-Mi][(123)e] 4- [a562][(123)(12)] 4- [a563][(123)(13)] 4- [a564][(123)(23)]

4-[a66s][(123)(123)] 4- [a566][(123)(132)]

4-[a«6l][(132)e] 4- M2][(132)(12)] 4- Ms][(132)(13)] 4- [0564] [(132) (23)] 

4-[a665][(132)(123)] 4- [Me][(132)(132)]

[ai6i]e 4- [ai6a](12) 4- [a463](13) 4- [ai64](23) 4- [0165](123) 4- [ai6e](132)

4-[a26i](12) 4- [a262]e 4- [a263](132) 4- [a264](123) 4*  [<1265](23) 4- [a26e](13)

4-[a36i](13) 4- [a362](123) 4- [a363]e 4- [a364](132) 4- [o36s](12) 4- [a36g](23)

4-[a46i](23) 4“ [0462](132) 4“ [a463](123) 4“ [<z464]e 4“ [<z465](13) 4“ [<Z46g](12) 

4-[«s6i](123) 4- [a562]( 13) 4- [as63](23) 4- [0564](12) 4- [a56s](132) 4- [a56g]e 

4-M’i](132) 4- [0562] (23) 4- [<2563](12) 4- [ag64](13) 4- [t^sje 4- [a^](123)
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= [ai£>ie 4 0162(12) 4 0163(13) + 0164(23) 4 0165(123) 4 0465(132)]

4[o262e 4 0264(12) -j- a266(13) 4 0265(23) 4 0264(123) 4 0263(132)]

4(0363® + 0365(12) 4 0361(13) 4 o366(23) 4 a362(123) 4 0364(132)]

4(04648 4 0460(12) 4 0465(13) 4 0461(23) 4 0463(123) 4 0462(132)]

4(05608 4 0564(12) 4 0562(13) 4 0563(23) 4 0561(123) 4 0565(132)]

4(00658 4 0563(12) 4 0564(13) 4 O662(23) 4 0565(123) 4 0561(132)

— oi(6ie 4 62(12) 4 63(13) 4 64(23) 4 6s(123) 4 65(132) 4 A]

4o2(6ie 4 62(12) 4 63(13) 4 64(23) 4 65(123) 4 65(132) 4 A]

403 [61 e 4 62(12) 4 63(13) 4 64(23) 4 65(123) 4 66(132) 4 A]

404(648 4 62(12) 4 63(13) 4 64(23) 4 65(123) 4 6e(132) 4 A]

405 [61 e + £*2(12)  4 63(13) 4 64(23) 4 65(123) 4 65(132) 4 A]

405(618 4 62(12) 4 63(13) 4 64(23) 4 65(123) 4 &6(132) 4 A]

Since we have already shown that M is closed under the addition of its elements, we may 
consider each line of the sum above separately. If each line in the sum above is an element 
of M, then the entire sum will be an element of M. Recall that the group S3 is closed 

under the permutation of its elements, so each line will preserve all of the elements of S3. 

We need only to consider the sums of the coefficients of each line. For example,

ai [£»1 4 62 4 63 4 64 4 65 4 &6] Oi E6-
-2=1 .

oi[0], by definition of the element m in M

= 0.

Each of the coefficients from the sum above will behave in the same way:

a 2 [61 4 62 4 63 4 64 4 65 4 6e] a2

a2[0], by definition of the element m in M

= 0.
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0-3 [61 + ^2 + 63 + 64 + 65 + M
~ 6

0>3 bi
_i=l

a3 [0], by definition of the element

0.

r 6 1

04 [61 + b2 + 63 + 64 + 65 + 66] 04 E6*

in Mm

04 [0], by definition of the element m in M

= 0.

O5 [61 + 62 + 63 + 64 + 65 + 6q] O5

' 6

E6<
.1=1

a5 [0] > by definition of the element m in M

= 0.

oc [61 + 62 + 63 + 64 + 65 + 6g] 06 E&«
.i=l

06 [0], by definition of the element m in M

= 0.

Then we may say that the sum of the coefficients below

= oi[6ie + 62(12) + 63(13) + 64(23) + 65(123) + 66(132)]

+a2[6ie + 62(12) + 63(13) + 64(23) + 6s(123) + 6e(132)]

+a3[6ie + 62(12) + 63(13) + 64 (23) + 65(123) + 6e(132)]

+04(616 + 62(12) + 63(13) + 64(23) + 65(123) + 66(132)]

+05(646 + 62(12) + 63 (13) + 64(23) + 65(123) + 6e(132)]

+O6[6ie + 62(12) + 63(13) + 64(23) + 65(123) + 66(132)]

will equal 0 and the element rm belongs to M. 
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Then M is a submodule of X2S3/A since it is closed under the addition of its elements and 

it is closed under the action of elements from Z2S3/A. Since M is a proper submodule 
of Z2S3/A, Z2S3/A is not a simple Z2^-module.
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Chapter 6

A Look at Z5S3

6.1 The Left Module Z5S3.

Now let us consider the left module Z5S3. The elements of Z5S3 are formed by taking 

formal sums of the elements of Zg, which are {0,1,2,3,4}, and the permutations of S3, 
which are {e, (12), (13), (23), (123), (132)}. The elements of S3 are discussed in more de­
tail in Section 5.1. That is, we are taking formal sums of the elements

Oe, le, 2e, 3e, 4e,
0(12), 1(12), 2(12), 3(12), 4(12),
0(13) 1(13) 2(13) 3(13) 4(13)
0(23), 1(23), 2(23), 3(23), 4(23)
0(123), 1(123), 2(123), 3(123), 4(123)
0(132), 1(132), 2(132), 3(132), 4(132).

The elements of Z5S3 are of the form:

die + a2(12) + 03(13) + 04(23) + 05(123) 4- ag(132), 

where are elements of.Zg.

For example, the element

4e + 3(12) + 3(13) + 0(23) + 2(123) + 1(132)

belongs to the module Z5S3.
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Addition “ + ” is defined as:

+51 4- o-jyi — (at + %*)pi)  and

ai<7i + ajg2 = a>ig\ + %y2,

where aj,a.j are elements of Z5 and the are elements of S3.

Multiplication “ ■ ” is defined as:

(fliPi) ■ (%-y2) = (<H • aj)(gi • y2)-

The additive identity is:

Oe + 0(12) + 0(13) + 0(23) + 0(123) + 0(132)

and the multiplicative identity is: le 4- 0(12) + 0(13) 4- 0(23) + 0(123) + 0(132).

6.2 The Simplicity and Semisimplicity of Z5S3.

First we will look at Z5 S3 as an RG group ring. Recall from Chapter four that an RG-ring 

is a set of formal sums of the form

52 as E R'
9&G

By Example 2.24 we know that the characteristic of Z5 is 5, and the order of the group 

S3 can be found by finding 3! = 6. It is clear that 5 does not divide 6, so we may apply 

Theorem 4.22, Machke’s Theorem. Since the characteristic of Z5 does not divide the 

order of S3, this theorem tells us that Z5S3 is semisimple as a left ZsSs-module. This 
means that Z5S3 can be written as a direct sum of simple submodules. -

Let us look at Z5S3 as a Zs-module. Is Z5S3 simple as a Zs-module? 



60

Examine the submodules of Z5S3 as a Zg-module. Does it have any proper submod­

ules?

Recall the Submodule Criterion from Chapter 3: Let R be a ring and let M be a module. 

Then a subset N of M is a submodule of M if and only if

1. TV 7^ 0, and

2. x 4 ay 6 N for all a G R and for all x, y G N.

We are still working with S3, so we will be referencing the properties from Chapter 5. 

Recall the subgroups of S3 that were defined in Section 5.1 :

H, = {e, (12)}

H2 = {e,(13)},

H3 = {e, (23)}, and

lb = {e, (123), (132)}.

Consider the submodule Z5R1 = Zs{e, (12)}. This is closed in Z5, since

cv(aie + 02(12)) = ceaie + ao2(12)

= cie + c2(12)

G Z5R1 for all a G Z5,

where ci = bai,c2 = ba2, and ci,c2 G Z5, since Z5 is multiplicatively closed.

We now use the Submodule Criterion, as defined in Section 3.1. We can see that Z5H1 
is nonempty, since Hi is nonempty. We now apply the second part of the Submodule 

Criterion and check to see if an element of the form x + ay belongs to Z5S3, where x and 
y are elements of Zs53 and a is an element from Z5. Then

[a^e + 03(12)] + a[aie + o2(12)] = [oje 4 0^(12)] -I- [aaie 4 0:02(12)]

= [a^e 4 02(12)] + [cie 4 c2(12)], where a = aa,i G Z5

— [04 4 ci]e 4 [o2 4 c2](12)

Since Z5 is closed under addition, [a7- 4 Cj] G Z5. Thus, according to the Submodule 

Criterion, [o/e 4 02(12)] 4 a[aie 4 o2(12)] G Z5S3.
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Then Z5H1 is a proper submodule of Z5S3 as a Zs-module. By Definition 3.16 a module 
is simple if its only submodules are 0 and the module itself. Since Z5S3 has proper sub­

modules as a Zg-module, it is not simple.

We have yet to check whether or not Z5S3 is semisimple as a Zg-module. If Z5S3 is 
semisimple then it is a direct sum of simple submodules.

We can represent our module as follows:

Z5S3 = Z5H1 © Z5H2 © Z5A3 ® Z5H4,

where the Hi are the submodules of S3 that were given in Section 6.2.

It is clear that Hi Ci H2 C\ H3 ft H4 = e. Then the elements of Z5S3 can be uniquely 

represented as an element of Z5Hi © Z5H2 © Z5.H3 © Z5H4©. For example, the element 

1(12) + 4(23) can be represented as a sum of elements from Z5H1 and

1(12) + 4(23) = 1(12) + 0(13) + 4(23) + 0(123) + 0(132).

So Z5S3 = ZgFZ*!  © Z5JZ2 ® Z5A3 ffi Z5H4. However, it might be possible to find another, 

perhaps simpler, representation for Z5S3 as a semisimple submodule of Z5S3.

Consider Z5S3 = © Z5{(12)} © Z5{(13)} © Z5{(23)} ® Z5{(123)} © Z5{(132)}.
Each of these submodules are generated by a single element, which makes them simple 
submodules.

Then Z5S3 is said to be completely reducible, since all of the submodules are are ir­
reducible, or simple.

Additionally, Zs53 is finite, so it satisfies the Descending Chain Condition, or we say 

it is Artinian as a Z5-module. Since the module Z5S3 satisfies the Descending Chain 

Condition and the module is completely reducible, it is therefore semisimple as a Zg- 

module.

We may further examine the semisimplicity of Z5S3 by looking at its radical. By Def­

inition 3.11, the radical of Z5S3 will be the intersection of the maximal submodules of 
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Z5S3. Let us examine the maximal submodules of Z5S3 as a Zs-module. These maximal 
submodules are formed by removing one of the elements of S3 from the module Z5S3. 
These maximal submodules are:

Z5S3\le = Zs{l(12), 1(13), 1(23), 1(123), 1(132)}

Z5S3\1(12) = Z5{le, 1(13), 1(23), 1(123), 1(132)}

Z5S3\1(13) = Z5{le, 1(12), 1(23), 1(123), 1(132)}

Z5S3\1(23) = Z5{le, 1(12), 1(13), 1(123), 1(132)}

Z5S3\1(123) = Z5{le, 1(12), 1(13), 1(23), 1(132)}

Z5S3\1(132) = Z5{le, 1(12), 1(13), 1(23), 1(123)}

The intersection of these maximal submodules is zero. Thus the radical of Z5S3 is zero.

According to Theorem 3.29, Z5S3 is semisimple as a Zs-module if and only if Z5S3 • 

Rud(Z5S3) = 0.

In this case, RadfZsSz) = 0, so we have

Z5S3 • 7?ad(ZgS3) = Z5S3 • 0

= 0.

Additionally recall that the radical of Z5S3 is also defined to be the largest nilpotent ideal 

of Z5S3.

Since Z5 is a field, Z5 is not nilpotent. Furthermore, (S3)71 0 for any n G N.

Therefore 0 is the largest nilpotent ideal of Z5S3 and the radical of Z5S3 is 0. This con­

firms what Theorem 3.29 told us earlier, that ZgS3 is semisimple.

Thus by Theorem 4.22, Z5S3 is semisimple as a ZgSs-module and by Theorem 3.29 

Z5S3 is semisimple as a Z5-module.

6.3 Submodules of Z5S3.

Now let us examine all of the submodlues of Z5S3. So far we have only examined maximal 

submodules. Once again we will recall the Submodule Criterion, which we defined in 
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Definition 3.4: Let R be a ring and let M be a module. Then a subset N of M is a 
submodule of M if and only if

1. N 0, and

2. x-A ay G N for all a G R and for all x,y G N.

Examine a subset N of Z5S3 such that N = Zs-e C Z5S3. Now, N =4 0 since 0-e G N. Let 

ae+0(12)+ 0(13)+0(23)+ 0(123)+0(132) and 6e + 0(12)+0(13) + 0(23) + 0(123)+0(132) 
be elements of TV and let {3 be an element of Z5S3 where /3 = ae + c2(12) + c3(13) + 

c4(23) + Cs(123) + cs(132) and Ci is an element of Z5 for i = 0,1, ...,6. For simplicity, 

we will refer to the element ae + 0(12) + 0(13) + 0(23) + 0(123) + 0(132) as ae and 
be + 0(12) + 0(13) + 0(23) + 0(123) + 0(132) as be.

Consider

ae + [cie + c2 (12) + 03(13) + c4 (23) + 05(123) + C6( 132)] be

= ae + [cie][6e] + [c2(12)][6e] + c[3(13)][6e] + [c4(23)] [de] + [c5(123)][6e] + [c6(132)][6e]

= ae + [cid][ee] + [c2&] [(12)e] + [c3d] f(13)e] + [c46][(23)e] + [cg&J [(123)e] + [056] [(132) e]

= ae + [ci6]e + [c2&] (12) + [c36] (13) + [c4d] (23) + M (123) + [c6&] (132)

= [a + ci&]e + [c26] (12) + [c3&] (13) + [c4d] (23) + [c56] (123) + [c66] (132)

N, unless c2b, 03b, 04b, c^b, and c^b are all zero.

So the Submodule Criterion does not hold for all /3 = c4e + c2(12) + c3(13) + c4(23) + 
cs(123) + C6(132) G Z5S3. Then Z5 • e is not a ZsSs-submodule of Z5S3.

However, if Z5S3 is semisimple as a Zs^-module, it remains to show that it is a di­
rect sum of simple modules:

Z5S3 — Afl © M2 © • • • © Mk,

where the Mi are simple submodules of Z5S3 and for some k G N.

We then want to find the simple submodules of Z5S3 as a Z5S3-module.

Let A be a subset of Z5S3 such that an element a of A is of the form:

a = ke + fc(12) + fc(13) + fc(23) + fc(123) + 6(132), 
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where k is an element of Z5. This is the same way that we defined the submodule A in 

Chapter 3. Then A will satisfy the Submodule Criterion. Let x = ke + fc(12) + fc(13) + 

fc(23) + fc(123) + fc(132) and y = kfe + *'(12)  + *'(13)  + *'(23)  + *'(123)  + V(132) be 

elements of the subset A and let /3 — die + 62 (12) + 63(13) + 64(23) +65(123) + 6g(132) 
be an element from Z553.
Then consider

= [k'e + fc'(12) + fc'(13) + V(23) + fc'(123) + fc'(132)]

+[6ie + 63(12) + 63(13) + 64(23) + 65(123) + 66(132)] ■ [ke + *(12)  + *(13)

+&(23) + *(123)  + *(132)]

= [k'e + A/(12) + V(13) + fc'(23) + k' (123) + k' (132)]

+6ie[A;e + fc(12) + k(13) + fc(23) + fc(123) + *(132)]

+62 (12) [ke + fc(12) + *(13)  + *(23)  + *(123)  + *(132)]

+63 (13) [ke + fc(12) + *(13)  + fc(23) + *(123)  + *(132)]

+64(23)[fce + *(12)  + *(13)  + *(23)  + k(123) + *(132)]

+65(123)[fce + *(12)  + *(13)  + *(23)  + *(123)  + *(132)]

+66(132)[fce + *(12)  + fc(13) + *(23)  + *(123)  + *(132)]

= [k'e + fc'(12) + *'  (13) + fc'(23) + V(123) + *'(132)]

+[61*]  [ee] + [61*]  [e(12)] + [djfc] [e(13)] + [61*]  [e(23)] + [61*]  [e(123)j + [61*]  [e(132)] 

+[62fc][(12)e] + [62*][(12)(12)]  + [62*]  [(12) (13)] + [62*]  [(12) (23)] + [62*]  [(12) (123)] 

+M[(12)(132)]

+[63fc][(13)e] + [63*][(13)(12)]  + [63A>] [(13)(13)] + [63*]  [(13)(23)] + [d3fc] [(13) (123)]

+(63*][(13)(132)]

+[64*][(23)e]  + [64*][(23)(12)]  + [64k] [(23) (13)] + [64*]  [(23)(23)] + M [(23) (123)]

+ [64*][(23)(132)]
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+[b5fc][(123)e] + [65*]  [(123) (12)] + [65fc][(123)(13)] + [65fc][(123)(23)]

+[65*][(123)(123)]  + [65*]  [(123) (132)]

+[66fe][(132)e] + [6#*]  [(132) (12)] + [66fc][(132)(13)] + [be*]  [(132) (23)]

+[6S*][(132)(123)]  + [&6*][(132)(132)]

[k'e + *'(12)  + *'(13)  + *'(23)  + *'(123)  + *'(132)]

+[bifc]e + [bifc](12) + [&i*]  (13) + [bi*]  (23) + [bi*](123)  + [bi*](132)

-t-[b2*]  (12) + [b2fc]e + [b2*](132)  + M (123) + [b2fc](23) + [62fc](13)

+[b3*]  (13) + [b3*](123)  + [bsfcje + [bs*](132)  + [b3*]  (12) + [bs*](23)

+[64*](23)  + [64*:](132)  + [64*](123)  + [64*]e  + [64*](13)  + [64fc](12)]

+[65fc](123) + [65fc](13) + [65*](23)  + [65*](12)  + [65*](132)  + [65*]e

4-[b6*](132)  + [£?6*](23)  + (12) 4- [&©*]  (13) + [&6*]e  + [bg*]  (123)

[k'e + *'(1 2) + *'(13)  + *'(23)  + *'(123)  + *'  (132)]

+[6i k] e + [&].*]  (12) + [bi*]  (13) + [6i*]  (23) + [6X *]  (123) + [bi *]  (132)

+[b2*]e  + [b2*]  (12) + [b2*]  (13) + [b2*]  (23) + [b2*]  (123) + [b2*]  (132)

+[63*]e+  [63*]  (12) + [63*](13)  + [63*](23)  + [b3*](123)  + [b3*](132)  

+[64fc]e+ [b4*](12)  + [64fc](13) + [64fc](23) 4- [64*](123)  4- [64*](132)

+[65*]  e + [b5*](12)  + [65*]  (13) + [b5*]  (23) + [65*](123)  + [b5fc](132)

+[b6*]e  4- [b6*](12)  + [66*](13)  + [66fe](23) 4- [be*](123)  + [b6*](132)

[*'e  + *'(12)  + *'(13)  + *'(23)  + fc' (123) + *'  (132)]

4-[6x* 4- 62/l 4~ bjk 4" b^k 4- b&k 4- 6Q*]e  4- [6XA: 4- 62& 4- b%k + 64fc 4- 6gfc + bs*] (12) 

-F[6i*  + 62* 4- b$k + b±k 4- b$k 4- b©*] (13) + [61 k + 62A; 4- b$k 4- 64*  + b$k + 65*]  (23) 

[bi*  4~ 62Aj 4~ b$k 4~ b^k + b$k 4- 65*]  (123) 4*  [^lA: 4- 62/c 4~ b$k 4- b^.k 4" b§k 4" 65*]  (132) 

[k'e + *'(12)  4- *'  (13) + A/(23) + *'(123)  + *'  (132)]

4~*[61  4*  62 4- 63 4~ 64 4- 65 4- 6c jC + *[61  + 62 4- 63 4~ 64 4- 65 + 65](12)

4~*[6i  4" 62 4~ 63 4*  64 4" 65 4~ bg] (13) + A:[6X 4- 62 + 63 + 64 + 65 4- 65] (23)

+*[61  4~ 62 4~ 63 4- 64 4" 65 4" 60] (123) + *[6 X 4- 62 4~ 63 4~ 64 4- 65 4- 63] (132)
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= k'e 4- k[b± + b2 + b3 + 64 + bg + bg]e

4-V(12) + k[bi + b2 + b3 4- b4 4~ bg 4- bg](12)

+//(13) + k[b\ 4- b2 + b3 + b^ + b-t + bg](13)

4~A/(23) + k[bi + b2 + b3 + b4 + bg + bg](23)

4-A/(123) + k[bi + b2 + b3 + b4 + bg + bg] (123)

4-V(132) 4- &jbi + b2 + b3 + b4 + bg + be] (132)

= [k' + kb\ + kb2 + fcb3 + kb^ 4- &bg 4- kb$]e

+ fcbi + fcb2 + fcb3 + kb 4 + fcbg + fc&6] (12)

4-[A/ 4~ kb]_ 4" A;b2 4- fcb3 4- kb^ 4- kb§ 4~ A:bg](13)

4-[A/ 4~ kb± 4~ fcb2 4*  fcb3 4- kb^ 4- kb§ 4- A;bg](23)

4-[A/ + kbi + fcb2 4- &b3 4- kb^ 4- kb$ 4- kbo\(123)

4-[A/ + kbi + kb2 + kb% 4- kb^ 4- A:bg 4- Zcbg](132)

Then each element of S3 that is listed above shares the same coefficient: [A/ 4- kbi + fcb2 4- 

fcb3 + kbi + kb& 4- kbs] G Zg. Thus the sum above may be rewritten as

£e + £(12) + €(13) 4- £(23) + £(123) + £(132),

where £ = [kf 4- kbi 4- fcb2 + kb$ 4- kb± 4- kb§ 4- fcbe] G Zg.
According to the Submodule Criterion, A is a Z5S3-submodule of ZgS3. Since A is a 
submodule, it is closed under the addition and the ZgS3 action on its elements.

Now, consider a second subset of ZgS3:
6

C = {die + d2(12) + a3(13) + d4(23) 4*  dg(123) + dg(132) | = 0}.
2=0

We want to show that C is a submodule of the ZgS3-module ZgS3. Recall the Submodule 
Criterion that we introduced in Chapter 3.

We know that C is nonempty since Oe + 0(12) 4- 0(13) 4- 0(23) 4- 0(123) 4- 0(132) G C.

Now consider x = aie + a2(12) + a3(13) + d4(23) + dg(123) + a6(132) and y — Cie4-c2(12)4- 
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C3(13) + 04(23) + 05(123) + 05(132) be elements of C. Note that this means a, = 0 
and 52®=1Cj = 0 in Z5. We also let p = 6]O + 62(12) + 63(13) + 64(23) + 6s(123) + 6s(132) 

be an element of Z5S3. Then

x + Py

= [aie + 02(12) + 03(13) + 04(23) + 05(123) + 05(132)]

+[6ie + 62(12) + 63(13) + 64(23) + 65(123) + 65(132)] • [cje + 02(12)

+c3(13) + 04(23) + c5(123) + 05(132)]

= [oie + o2(12) + 03(13) + 04(23) + 05(123) + 05(132)]

+6ie[cie + 02(12) + 03(13) + 04(23) + 05(123) + 06(132)]

+62(12)[cie + 02(12) + 03(13) + c4(23) + 05(123) + 05(132)]

+63(13)[cie + 02(12) + c3(13) + c4(23) + c5(123) + 05(132)]

+64(23)[cie + 02(12) + c3(13) + 04(23) + cs(123) + 05(132)]

+65(123)[cie + 02(12) + c3(13) + c4(23) + 05(123) + c6(132)]

+66(132) [cie + 02(12) + c3(13) + c4(23) + c5(123) + c6(132)]

= [aie + 02(12) + 03(13) + 04(23) + 05(123) + 06(132)]

+(6ici][ee] + [61 c2] [e(12)| + [6103] (e(13)] + [6404] (e(23)] + [6ic6][e(123)]

+(6iC5][e(132)]

+[62ci][(12)e) + ]62c2][(12)(12)] + [62C3][(12)(13)] + ]62O4][(12)(23)]

+(62C5][(12)(123)] + [62O5]((12)(132)]

+[&3Ci][(13)e] + ]63C2]((13)(12)] + [6303] [(13) (13)] + [6304] [(13) (23)]

+[63C5][(13)(123)] + [6305] [(13) (132)]

+[64Ci][(23)e] + [64c2] ](23)(12)] + ]64O3][(23)(13)] + ]64C4][(23)(23)]

+[64C5][(23)(123)] + [64O5][(23)(132)]

+[66c1][(123)e] + [65C2][(123)(12)| + [65C3] [(123)(13)] + [65o4][(123)(23)]

+[65C5][(123)(123)] + [65C5][(123)(132)]
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+[b6ci][(132)e] + [t6C2][(132)(12)] + [b6c3] [(132) (13)] + [b6c4] [(132) (23)]

+[&6c5][(132)(123)] + [66cb][(132)(132)]

= [aie + a2(12) + 03(13) + 04(23) + 05(123) + 06(132)]

+[6iC1]e+ [6ic2](12) + [61C3](13) +[6ic4](23) + [&ic5](123) + [6ic6](132) 

+[62ci](12) + [i^^]6 + [62C3](132) + [&2C4](123) 4- [62C5j(23)] 4- (62C6](13) 

+[63ci](13) + [i?3C2](123) 4- [&3c3]e + [63c4](132) + [63C5](12) 4- [63C6](23) 

+[64ci](23) + [&4c2] (132) + [64c3](123) + [&4C4]e + [64C5](13) + [d4ce](12) 

+[6501] (123) 4- [&5C2] (13) 4- [65C3] (23) 4- [65c4](12) + [6505] (132) + [ftsceje 

+[6eCi](132) 4- [66C2] (23)] + [5ec3](12) + [&6C4] [(13) 4- [de^e + [beC6](123) 

= [oie + a2(12) + a3(13) + a4(23) 4- 05(123) 4- 06(132)]

+[6iCi]e + [&ic2](12) 4- [&ic3](13) 4- [&ic4](23) + [&iC5](123) 4- [&ice](132)

+[62c2]e+ [62ci](12) 4- (d2C6](13) + [62C5](23) + [62c4](123) 4- [62c3](132)

+[fc3c3]e+ [63c5](12) + [63c6](23) + [63ci](13) + [63c2](123) + (63c4](132)

+[54c4]e+ [64C6](12) + [64c5](13) + (64ci](23) + [64c3](123) + [d4c2](132)

+[&5c6]e+ [65c4](12) + [&sc2](13) + [6sc3](23) + [Z>5Ci](123) + [6505] (132)

+[6gc5]g + [&6C3](12) + [&6C4][(13) + [6ec2](23) 4- [66^(123) + [6eci](132) 

= [aie + o2(12) + a3(13) + a4(23) + 05(123) + ae(132)]

+&i[cie + c2(12) + c3(13) 4- c4(23) + cs(123) 4- cg(132)]

+62[c2e + ci (12) + ce(13) + cs(23) + c4(123) + c3(132)]

+d3[c3e 4- cs(12) + C6(23) + ci(13) + c2(123) + c4(132)]

+64[c4e + C6(12) 4- 05(13) + ci (23) + c3(123) + c2(132)]

+&5[c6e 4- c4(12) 4- c2(13) + c3(23) + ci(123) + c3(132)]

+&6[c5e + c3(12) + c4(13) + c2(23) + ce(123) + ci(132)]

Note that, as it was in Chapter 5, the last six elements in the sum above are of 

the form bj[ae + c2(12) 4- c3(13) 4- c4(23) + 05(123) + ce(132)]. The coefficients of each of
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these elements may be represented as

bi E*
Then

_&i[cie 4 C2(12) 4 c3(13) 4 04(23) 4 05 (123) 4 06(132)]

61 E^
.i=l

= 61 [0], by definition of the element y in C

We may continue to treat the other elements of this sum in a similar fashion:

b2[c2e 4 ci(12) 4 cg(13) 4 cs(23) 4 04(123) 4 c3(132)]

= 0.

b2 E^
b2 [0], by definition of the element y in C

= 0.

63[c3e 4 c5(12) 4 cs(23) 4 ci(13) 4 c2(123) 4 04(132)]

63 E*
.i=l .

63(0], by definition of the element y in C

= 0.
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64(048 + cg(12) 4 85(13) 4 Ci(23) 4 03(123) 4 02(132)]

= 64

= 64(0], by definition of the element y in C

= 0.

65[c6e 4 c4(12) 4 c2(13) 4 c3(23) 4 ci(123) 4 c5(132)]

= 65

= 65 [0], by definition of the element y in C

= 0.

60(058 4 03(12) 4 04(13) 4 c2(23) 4 05(123) 4 ci(132)]

65(0], by definition of the element y in C

= 0.

Then we have

= (die 4 02(12) 4 o3(13) 4 04(23) 4 os(123) 4 Og(132)]

46i (0] 4 62 (0] 4 63 [0] 4 64 [0] 4 61 [0]

= (oie 4 o2(12) 4 03(13) 4 o4(23) 4 os(123) 4 06(132)] 4 0

= [oie 4 o2(12) 4 o3(13) 4 o4(23) 4 05(123) 4 06(132)]

eC

Then C satisfies the Submodule Criterion and is a Z5S3-submodule of Z5S3.

Now we would like to show that = A ® C. This means that every element of Z5S3 

can be represented as a sum of elements from A and C. Take a = ke 4 fc(12) 4 &(13) 4 
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k(23) 4k(123) 4&(132) G A and c = c^e4c2(12)4c3(13) 4c4(23) 405(123) 4cg(132) G C

such that Ci — 0. Then

a 4 c = [ke 4 fc(12) 4 A:(13) 4 fc(23) 4 fc(123) 4 fc(132)J

4[cie 4 c2(12) 4 c3(13) 4 c4(23) 4 c3(123) 4 cg(132)]

= (fc 4 ci)e 4 (k 4 c2)(12) 4 (A: 4 c3)(13) 4 (A; 4 c4)(23) 4 (A; 4 cg)(123) 4

(fc4c6)(132)

The sum of the k and Ci,i = 1,6 are in Z5 and can be represented as

6 6 6

J2(A:4ci) = 22 k + 52 Ci
2=1 2=1 2=1

6

= 22^+°
2=1

6

= Efc
2=1

= 6k

Since 6A; is an element of Z5, it is equal to one of the elements of the set {0,1,2,3,4}.
If k = 0, then we have

6 6
22(fc+ci) = 52(o 4 Ci) 
i=l i=l

6 6

= E°+E^
2=1 2=1

= 040

0.
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If k = 1, then we have

+ Ci) = y^(l + a) 
i=l i=l

6 6

= E1+ZA
1=1 1=1

= 6 + 0

= 6

= 1 in Z5S3.

If k = 2, then we have

52(^ + ci) = y?(2 + fr) 
i=i i=i

6 6

= £2+l>
i=l i=l

= 12 + 0

= 12

= 2 in Zs53.

If k = 3, then we have

6 6
+ Ci) = 52(3 + Ci) 

i=i i=i

= £s+i>
1=1 1=1

— 18 + 0

= 18

= 3 in Z5S3.
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If k = 4, then we have
6 6

^2(k + ci) = 22(4 + a)
i=l 2=1

6 6

= 524+Z+
2=1 2=1

= 24 + 0

= 24

= 4 in Z5S3.

If Z51S3 = A © C, then we must be able to represent each element of Z5S3 as a unique 
sum of elements from A and C.

Is it possible to write any a G Z5S3 in the form a + c, where a G A and c G C?

For example, choose an arbitrary element a of Z5+3. We will try to represent this element 
a as a sum a + c, where a G A and c G C.

Let a = 4e+1(12) +0(13)+3(23)+2(123) + 1(132) G Z553. Then choose a = le + l(12) + 
1(13)+1(23)+1(123)+1(132) G A and c = 3e+0(12)+4(13) + 2(23) + l(123)+0(132) G C, 

since — 3 + 0 + 4 + 2 + 1 + 0 — 10 — 0 G
Then

a + c = [le + 1(12) + 1(13) + 1(23) + 1(123) + 1(132)]

+[3e + 0(12) + 4(13) + 2(23) + 1(123) + 0(132)]

- (1 + 3)e + (1 + 0)(12) + (1 + 4)(13) + (1 + 2)(23) + (1 + 1) (123) + (1 + 0) (132)

= 4e + 1(12) + 0(13) + 3(23) + 2(123) + 1(132)

= a.

If we add the of a, we have

6
} a>i — 4 + 1 + 0 + 3 + 2 + 1

i=0
= 11

= 1 in Z5.
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As we demonstrated in the cases above, the sum of the of a is equal to the value of k, 

the coefficient of the components of a. That is, both k = 1 and Xw=o ai =

Consider a second example. Let fi be another element of Z5S3, /3 different from a. We 

wish to represent fi as a! + o', where af G A and d G C.

Let fi = 3e + 1(12) + 3(13) + 4(23) + 4(123) + 2(132) G Z5S3. We may then choose 
a' = 2e + 2(12) + 2(13) + 2(23) + 2(123) + 2(132) G A and d = le + 4(12) +1(13) + 2(23) + 

2(123)+ 0(132) G C, since
6

c^ = l + 4+ l + 2 + 2 + 0 = 10 = 06 Z5S3
2=0

Then

a! + d = [2e + 2(12) + 2(13) + 2(23) + 2(123) + 2(132)]

+[le + 4(12) + 1(13) + 2(23) + 2(123) + 0(132)]

= (2 + l)e + (2 + 4)(12) + (2 + 1)(13) + (2 + 2)(23) + (2 + 2)(123) + (2 + 0)(132)

= 3e + 1(12) + 3(13) + 4(23) + 4(123) + 2(132)

= fi­

ll we add the a\ of fi, we have
6

= 3+1+3+4+4+2
i=o

= 17

= 2 in Z5.

Once again, the sum of the at of fi is equal to the value of k. Both are equal to 2.

Now we want to see if it is possible to represent each of the single elements of Z5S3. 

Consider the element le. We want to represent le as the sum of some a + c where 

a G A and c G C. Then let a = le + 1(12) + 1(13) + 1(23) + 1(123) + 1(132) and let 

c = Oe + 4(12) + 4(13) + 4(23) + 4(123) + 4(132) G C, since
6

Cj =0+4+4+4+4+4= 20 — 0 G Z5.
2=0
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So -

a + c = [le + 1(12) + 1(13) + 1(23) + 1(123) + 1(132)]

+[0e + 4(12) + 4(13) + 4(23) + 4(123) + 4(132)]

= le + 5(12) + 5(13) + 5(23) + 5(123) + 5(132)

= le + 0(12) + 0(13) + 0(23) + 0(123) + 0(132) in Z5S3

= le.

Now try to represent the element 2e G Z5S3 in a similar fashion. We would like to find 

d G A and c G C so that a + c = 2e. Let a = 2e + 2(12) + 2(13) + 2(23) + 2(123) + 2(132) 
and let c = Oe 4-3(12) 4-3(13) 4-3(23) 4-3(123) 4-3(132). The element c belongs to C since

6
} Ci = 0 + 3 + 3 + 3 + 3 + 3 = 15 = 0G Z5.

i=0

Then

d + c = [2e + 2(12) + 2(13) + 2(23) + 2(123) + 2(132)]

+ [0e + 3(12) + 3(13) + 3(23) + 3(123) + 3(132)]

= 2e + 5(12) + 5(13) + 5(23) + 5(123) + 5(132)

= 2e + 0(12) + 0(13) + 0(23) + 0(123) + 0(132) in Z5S3

= 2e.

Let us now write the element 3e € Z5S3 as a sum of a 6 A and c G C. Let a = 3e+3(12) + 
3(13) + 3(23) + 3(123) + 3(132) and let c = Oe + 2(12) + 2(13) + 2(23) + 2(123) + 2(132). 
This element c is in C since

6
) Ci = 0 + 2 + 2 + 2 + 2 + 2 = 10 = 0G Z5.

i=0

Then

d + c = [3e +3(12)+ 3(13)+ 3(23)+ 3(123)+ 3(132)]

+ [0e + 2(12) + 2(13) + 2(23) + 2(123) + 2(132)]

= 3e + 5(12) + 5(13) + 5(23) + 5(123) + 5(132)

= 3e + 0(12) + 0(13) + 0(23) + 0(123) + 0(132) in Z5S3

= 3e.
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Finally let us represent 4e as a sum of a + c 6 A + C. Let a — 4e + 4(12) +4(13) +4(23) + 
4(123) + 4(132) and c = Oe + 1(12) +1(13) +1(23) +1(123) +1(132). Now c E C because

6
22 Ci = 0 +1 +1 +1 +1 +1 = 5 = 0 e ZsSs.
i=0

So

a + c = [4e +4(12)+ 4(13)+ 4(23)+4(123)+4(132)]

+ [Oe + 1(12) + 1(13) + 1(23) + 1(123) + 1(132)]

= 4e + 5(12) + 5(13) + 5(23) + 5(123) + 5(132)

= 4e + 0(12) + 0(13) + 0(23) + 0(123) + 0(132) in Z5S3

= 4e.

We may represent the remaining elements of Z5S3 in a similar fashion:

1(12) = [le + 1(12)+ 1(13)+ 1(23)+ 1(123)+ 1(132)]

+ [4e + 0(12) + 4(13) + 4(23) + 4(123) + 4(132),

2(12) = [2e + 2(12) + 2(13) + 2(23) + 2(123) + 2(132)]

+[3e + 0(12) + 3(13) + 3(23) + 3(123) + 3(132),

3(12) = [3e + 3(12) + 3(13) + 3(23) + 3(123) + 3(132)]

+ [2e + 0(12) + 2(13) + 2(23) + 2(123) + 2(132),

4(12) = [4e + 4(12) + 4(13) + 4(23) + 4(123) + 4(132)]

+[le + 0(12) + 1(13) + 1(23) + 1(123) + 1(132),

1(13) = [le + 1(12) + 1(13) + 1(23) + 1(123) + 1(132)]

+[4e + 4(12) + 0(13) + 4(23) + 4(123) + 4(132),

2(13) = [2e +2(12)+ 2(13)+ 2(23)+2(123)+ 2(132)]

+[3e + 3(12) + 0(13) + 3(23) + 3(123) + 3(132),

3(13) = [3e +3(12)+ 3(13)+ 3(23)+ 3(123)+ 3(132)]

+[2e + 2(12) + 0(13) + 2(23) + 2(123) + 2(132),

4(13) = [4e +4(12)+ 4(13)+ 4(23)+ 4(123)+ 4(132)]

+[le + 1(12) + 0(13) + 1(23) + 1(123) + 1(132),
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1(23) = [le + 1(12) + 1(13) + 1(23) + 1(123) + 1(132)]

+[4e + 4(12) + 4(13) + 0(23) + 4(123) + 4(132),

2(23) = [2e + 2(12) + 2(13) + 2(23) + 2(123) + 2(132)]

+[3e + 3(12) + 3(13) + 0(23) + 3(123) + 3(132),

3(23) = [3e + 3(12) + 3(13) + 3(23) + 3(123) + 3(132)]

+[2e + 2(12) + 2(13) + 0(23) + 2(123) + 2(132),

4(23) = [4e +4(12)+ 4(13)+4(23)+ 4(123)+ 4(132)]

+[le +1(12) +1(13) + 0(23) + 1(123) + 1(132),

1(123) = (le +1(12) +1(13) + 1(23) +1(123) + 1(132)]

+[4e + 4(12) + 4(13) + 4(23) + 0(123) + 4(132),

2(123) = [2e + 2(12) + 2(13) + 2(23) + 2(123) + 2(132)]

+[3e + 3(12) + 3(13) + 3(23) + 0(123) + 3(132),

3(123) = [3e + 3(12) + 3(13) + 3(23) + 3(123) + 3(132)]

+[2e + 2(12) + 2(13) + 2(23) + 0(123) + 2(132),

4(123) = [4e + 4(12) + 4(13) + 4(23) + 4(123) + 4(132)]

+[le + 1(12) + 1(13) + 1(23) + 0(123) + 1(132),

1(132) = [le +1(12)+ 1(13)+ 1(23)+ 1(123)+ 1(132)]

+[4e + 4(12) + 4(13) + 4(23) + 4(123) + 0(132),

2(132) = [2e + 2(12) + 2(13) + 2(23) + 2(123) + 2(132)]

+[3e + 3(12) + 3(13) + 3(23) + 3(123) + 0(132),

3(132) = [3e + 3(12) + 3(13) + 3(23) + 3(123) + 3(132)]

+[2e + 2(12) + 2(13) + 2(23) + 2(123) + 0(132),

4(132) = [4e + 4(12) + 4(13) + 4(23) + 4(123) + 4(132)]

+[le + 1(12) + 1(13) + 1(23) +1(123) + 0(132),

If we can prove that these representations are unique, then we may say that Z5S3 = AffiC, 

and that Z5S3 is semisimple. This supports the findings of Theorem 4.22, Machke’s 

Theorem.
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Chapter 7

Future Research

The overall goal of this research has been to explore the structure of Z2S3 and 
Z553. There is still much to be learned about these two modules. This chapter contains 

the goals that we have set for future research and study of the modules Z2S3 and Z5S3.

First we would like to find the simple submodules of Z2S3/Rad(Z253) which 
make ^Ss/Rad^Ss) a semisimple module. We will consider it both as a Z^ZR-submodule 

as well as a Z2S'3/Rad(Z2S3)-submodule in Z2S3. The progress that has been made thus- 
far is given below in Section 7.1.

In Chapter 3 we gave the definition of the socle and socle series of a module. 
We aim to find the socle of the modules ZgS3 and Z2S3. To do this, we will find the 
largest semisimple submodule of each module, which is called the socle, or socAf. Then 
we will find the quotient modules that result from dividing each submodule by the socle 
of the module. These resulting quotient modules will yield a sequence of submodules 

which cause the module M to be a Noetherian module as well as an Artinian module.

7.1 The Simple Submodules of ^S^/Rad^Sz).

We have started looking for the simple submodules which cause Z253/Rad(Z2S3) to be 
semisimple. Below is some of the work that has been made towards this goal.
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Consider a subset AZi of Z2R3/A:

Mi = {A, le + 1(12) + 1(123) + A}.

Since A = {oo, cti}, we may define the elements of Mi in two ways:

A = le+ 1(12) + 1(13) + 1(23) + 1(123) + 1(132) + A 

= Oe + 0(12) + 0(13) + 0(23) + 0(123) + 0(132) + A 

le + 1(12) + 1(123)+ A = 1(13)+ 1(23)+ 1(132) +A

Mi is also closed under the multiplication of elements of Z2S3:
We can see that le • A = A, as it was with the two previous submodules.

[le + 1(12) + 1(13)] • [le + 1(12) + 1(13) + A]

= lele + lel(12) + lel(13) + l(12)le + 1(12)1(12) + 1(12)1(13) + 1(13) le 

+1(13)1(12) + 1(13)1(13) + A

= le + 1(12) + 1(123) + 1(12) + le + 1(23) + 1(123) + 1(13) + 1(132) + A

= 2e + 2(12) + 1(13) +1(23) + 2(123) + 1(132) + A

= 1(13)+ 1(23)+ 1(132)+A

= le +1(12)+ 1(123) +A

G Mi.

We can prove that Mi is a submodule of X2S2/A and that it is generated by its element 

< le + 1(12) + 1(123) + A >. Therefore it is a simple submodule of Z2S3/A.

So in the future we would like to find other simple submodules of Z2S3/A and 
prove its semisimplicity.
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Chapter 8

Conclusion

In Chapters 2 and 3, we have demonstrated the connections that exist between 

Ring Theory and Module Theory. The aim of these two chapters has been both to create 

the necessary foundation for understanding modules as well as for helping the reader to see 

the similarities between the two fields of study. In Chapter 4 we explored Representation 
Theory. This particular field of study has many different aspects to it. Our focus has 
remained within the representations of a group using modules.

In Chapter 5 we examined the module Z2S3. After examining the elements 
of Z2S3 and the action that they have on each other, the module Z2S3 was examined 

both as a Z2-module and as a Z2S3-module. We have shown that the module Z2S3 is 

not semisimple as a Z253-module. As a direct result it is not simple as a Z2S3-module 

either. The subset A = {ao,«i}, which was defined in Section 5.4, has been shown 
to be both a Z2($3-submodule of Z2S3 and a Z2-submodule of Z2S3. Because A is a 
proper submodule, the module Z2S3 is not simple, neither as a Z2S3-module or as a 
Z2-module. The submodule A is the radical of Z253. We then used the submodule A to 
form a quotient module Z2S3/A. Finally we showed that the subset M forms a proper 

Z2S3-submodule of the quotient module Z253/A.

In Chapter 6 we looked at the structure and properties of the module Zs53. We 

examined its elements and their actions in relation to one another in a similar fashion to 

the way we examined those of the module Z2S3 in Chapter 5. Because the order of the 

module Z563 is larger than the order of the module Z5S3, the structure of ZsS3 differs 

from the structure of Z2S3. We then considered ZsS3 as a Zs-module as well as a Zg53- 
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module. Upon examination we concluded that, according to Machke’s Theorem, Z5S3 is 

semisimple as a Z5 S3-module. It is also semisimple as a Zg-module, since we found that 

the radical of Z5S3 is equal to zero. The module is also semisimple because Z5S3 can be 

viewed as a vector space over Z5. However, Z5S3 is not simple as a Zs-module because we 

found that Z5S3 has proper submodules. In Section 6.3, we found two ZsSs-submodules 
of Z5S3 and named them A and C. We then gave evidence that Z5S3 = A © C.

There is still much that remains to be explored within the structures of Z2S3 
and Z5S3. Chapter seven is dedicated to future research. Our future goal is to find the 

simple submodules of Z2S3/A which make it semisimple as a ZsSb-module as well as a 
ZsSs/A-module.
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