
California State University, San Bernardino California State University, San Bernardino

CSUSB ScholarWorks CSUSB ScholarWorks

Theses Digitization Project John M. Pfau Library

2013

Developing focused auditing tools: A practical framework for Developing focused auditing tools: A practical framework for

creating formalized multi-level security policy specifications creating formalized multi-level security policy specifications

Barbara Ann Brough

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project

 Part of the Information Security Commons, and the Management Information Systems Commons

Recommended Citation Recommended Citation
Brough, Barbara Ann, "Developing focused auditing tools: A practical framework for creating formalized
multi-level security policy specifications" (2013). Theses Digitization Project. 3965.
https://scholarworks.lib.csusb.edu/etd-project/3965

This Project is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has
been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks.
For more information, please contact scholarworks@csusb.edu.

https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd-project
https://scholarworks.lib.csusb.edu/library
https://scholarworks.lib.csusb.edu/etd-project?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F3965&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F3965&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/636?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F3965&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd-project/3965?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F3965&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

DEVELOPING FOCUSED AUDITING TOOLS: A PRACTICAL

FRAMEWORK FOR CREATING FORMALIZED MULTI-LEVEL

SECURITY POLICY SPECIFICATIONS

A Project

Presented to the

Faculty of

California State University,

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree

Master of Business Administration

by

Barbara Ann Brough

June 2013

DEVELOPING FOCUSED AUDITING TOOLS: A PRACTICAL

FRAMEWORK FOR CREATING FORMALIZED MULTI-LEVEL

SECURITY POLICY SPECIFICATIONS

A Project

Presented to the

Faculty of

California State University,

San Bernardino

by

Barbara Ann Brough

June 2013

£ — O

Date

Dr. Jake Zhu, Department Chair

ABSTRACT

Designing and maintaining the security of system

information is the primary duty of the cyber security

professional. In today's world, nearly all government

agencies manage some form of financial, defense, national

security, and/or privacy information security policies. It

is also necessary in this environment that government

agencies are accountable for auditing the security systems

that protect this information. However, the great number

of security auditing tools and methodologies available

still do not solve one key issue: How can auditors create

a standard for verifying their security policies are being

enforced correctly using these methodologies and tools? It

is the premise of this paper that formalized policy

specifications and focused penetration testing are needed

to effectively audit any information system. This paper

offers a framework for creating the semi-formal to formal

policy specifications needed to produce a focused auditing

tool capable of verifying such policies are being enforced

in a Multi-Level Security environment.

iii

ACKNOWLEDGMENTS

I would like to acknowledge the following people

without whom this thesis would not have been possible. I

would like to thank Dr. Joon Son without whose patience,

assistance, and absolute dedication to the work presented

in this paper, my thesis would not have been completed. I

would also like to thank Dr. Walt Stewart and Dr. Tony

Coulson for their help, pestering, and sense of humor in

the face of my countless questions. Lastly, I would like

to thank Dr. Jake Zhu for his enthusiasm, faith, and

support of the work completed in this paper.

iv

TABLE OF CONTENTS

ABSTRACT.. iii

ACKNOWLEDGMENTS .. iv

LIST OF TABLES... vii

LIST OF FIGURES... viii

CHAPTER ONE: INTRODUCTION

1.1 Policy Based Management 1

CHAPTER TWO: BACKGROUND AND RELATED WORK

2.1 Multi-Level Security (MLS) 10

2.2 Multi-Level Security (MLS) Policy Model 11

2.3 Lightweight Directory Access Protocol
(LDAP) .. 15

2.4 Related Work.................................. 25

CHAPTER THREE: MULTI-LEVEL SECURITY ACCESS CONTROL
POLICY

3.1 Multi-Level Security Access Control
within a Department.......................... 32

3.2 Information Flow between Sub Departments 40

CHAPTER FOUR: DEVELOPING AUDITING TOOLS

4.1 Verifying Multi-Level Security Policies 46

4.2 Designing a Tool for Focused Auditing...... 50

4.3 Database Entity Relationship Diagram 52

CHAPTER FIVE: FUTURE WORK

5.1 Direction for Future Research 54

APPENDIX: INSTRUCTIONS FOR IMPLEMENTING THE
CUSTOMIZED SCHEMA IN LIGHTWEIGHT
DIRECTORY ACCESS PROTOCOL 55

v

REFERENCES.. 62

NOTES... 66

vi

LIST OF TABLES

Table 1. Network Specification Languages 28

Table 2. Security Specification Languages 29

vii

LIST OF FIGURES

Figure 1. Process of Creating an Multi-Level
Security Aware Lightweight Directory
Access Protocol and Designing the
Focused Testing Tool 7

Figure 2. Generic Information Flow Policy 15

Figure 3. A Generic Directory Information Tree 17

Figure 4. Generic Lightweight Directory Access
Protocol Entry 19

Figure 5. Slapd.conf File Schema List................ 21

Figure 6. Generic Custom Schema 23

Figure 7. Generic LDAP Data Interchange Format
File.... 25

Figure 8. Multi-Level Security Access Control
Policy Diagram Creation 32

Figure 9. Multi-Level Security Information Flow
Policy Diagram 33

Figure 10. Multi-Level Security Lightweight
Directory Access Protocol Directory
Information Tree for the Research Sub
Department of the Research and Design
Department.................................. 34

Figure 11. Customized Schema for Multi-Level
Security Access Control 36

Figure 12. Multi-Level Security Access Control
Diagram..................................... 39

Figure 13. Multi-Level Security Directory
Information Tree For the Research and
Design Department 42

Figure 14. Multi-Level Security Access Control
Diagram between Sub-Departments
Research and Publicity 44

Figure 15. Focused Penetration Testing (ERD) 52

viii

CHAPTER ONE

INTRODUCTION

1.1 Policy Based Management

Designing and maintaining the security of system

information is the primary duty of the cyber security

professional. In today's world, nearly all government

agencies manage some form of financial, defense, national

security, and/or privacy information security policies.

Whether they are NIST1, FISMA2, or FIPS3 policies, the

accountability and enforcement of these policies remain in

the domain of security management and these policies

outline the computer security management requirements of

agencies operating within this environment. Such

policy-based management is considered key in managing

large-scale distributed systems such as government

agencies operating in a Multi-Level Security (MLS)

environment using the Bell-LaPadula model of security

classification and categories.

However, due to the complexity of this type of

management there is an issue in establishing a benchmark

for policy enforcement. While auditing is generally

thought of as the standard method for assessing and

verifying security policy, the fundamental problem

1

remains: How to create a standard auditing methodology to

achieve policy verification? For most government agencies,

auditing is an incomprehensible web of law, best

practices, training, and policy standards that make up the

requirements of auditing, whether it is financial,

operational, or technology based. In addition, government

organizations now have the added responsibility of

implementing security audits that are used to assess the

security and the verification of policy within the network

information system.

After completing the audit of the security system,

additional testing is normally done to verify if the

security policies are, in fact, in place and enforced.

Black Box Penetration testing4 is used to "blindly" look

for vulnerabilities that can be exploited, allowing

unauthorized access to the system. Verifying the security

of systems using black box "blind" testing does establish

whether a hacker, without previous knowledge of the

system, can find a vulnerability. However, it is still

unclear whether relevant security policies are being

enforced when it is the normal practice in Black Box

testing to only look for a single way in. This is

particularly important when the skill level of penetration

testers may vary significantly. Without building a

2

benchmark or framework for the correct enforcement of

security policies, a security standard cannot be

maintained.

However complex) this type of distributed

policy-based management does have one advantage. Its very

structure allows for a more standardized approach to

configuring the systems according to security policy and

allows for the universal implementation of security

system-wide. This is particularly important when dealing

with large, multi-segmented, distributed systems, covering

different geographic areas. By creating semi-formal

specifications, security policies can be visualized in

diagrams demonstrating how users, objects, permissions,

and the various trust boundaries interact from the

security policies being employed. By formalizing these

policies through the use of specification languages such

as XACML, they can be translated into formalized, or

programmed, machine-readable "specifications" that can be

used to automate the configuration process. In this

manner, the security policies are put into "formalized"

scripts that are then directly configured to devices on

the network. This eliminates much of the human error

resulting from manual configuration, as well as

3

maintaining configuration consistencies while reducing the

cost of implementing security policies system-wide.

The main goal of this paper is to create a practical

framework for translating these policies into a

"semi-formalized" form. These semi-formal specifications,

or diagrams, defining MLS access control information flows

will allow the reader to translate them in more formal

specifications using the programming language of their

choice, whether that is extensible Access Control Markup

Language5 (Moses, 2005), Ponder6 (Damianou, 2001), or

something else. The motivation behind this framework is to

assist agencies in standardizing their approach to

implementing policies and thereby increase the level of

security, enforce policies correctly throughout the

network, and automate policy configuration. This is

especially useful when creating and implementing policy on

new systems early in the system design phase of the System

Development Life Cycle7 (SDLC). By implementing this

framework on new systems, the need for the verification of

policy is mitigated. In addition, when applying this

framework to existing systems, it adds an extra step in

the verification of existing policy specifications through

the use of an auditing tool, the penetration-testing

database. By formalizing specifications, through the use

4

of high-level programming languages, agencies will not

only be able to automate their configuration process but

also verify their system's policies using this more

focused auditing and penetration testing method. Without

creating a semi-formal or, more specifically, a more

formalized policy specification, auditing and testing

cannot be accurately performed on a system. It is through

the process of auditing and testing a system that make it

possible to determine whether the security policies in

place are actually being enforced correctly.

Specifically, this paper proposes a practical

framework for combining the LDAP information directory

tree (DIT) and MLS information flow policy to create

semi-formalized MLS policy specifications. To gain the

granularity necessary, this paper also proposes using the

Lightweight Directory Access Protocol model (LDAP). The

LDAP, through its own physical model, mimics the

organizational structure of the agency. Combining the LDAP

DIT with the MLS information flow policy permits the

"allowed" information flows between agency organizational

units to be defined. By mapping the information flows to

the organization, security personnel can see distinctly

the trust boundaries where access control becomes

paramount.

5

To account for the additional security requirements

within the MLS environment, we also propose adding

additional attributes to the LDAP model. By creating

additional LDAP attributes to filter these latent security

requirements, shown by overlapping the LDAP DIT with the

MLS information flow policy, we create an MLS "aware"

LDAP. Through this approach it is possible to design

greater granularity in security policy enforcement, such

as security sensitivity and classification, category and

IP address range. By carrying these additional security

attributes, the information flows show the direction and

level of the flow of information as it pertains to each

user request.

6

Aware Lightweight Directory Access Protocol and Designing

the Focused Testing Tool

The semi-formalized, or formalized,

specification represents a security topology of the

users' permissions similar to a map and also shows

the location of trust boundaries8 within the system.

By analyzing semi-formal specifications, agencies can

identify how policies translate to devices on the

network and determine where the vulnerabilities

resulting from such policies may impact the system as

a whole.

7

By basing our method on this type of

semi-formalized policy specifications, agencies can

implement policies governing the authorized

activities of legitimate users and more accurately

mediate user access to resources on the system. It is

also possible to specify the permissible location of

the user and assets, verify whether authentication

and authorization have been implemented correctly,

and determine through audit and testing whether

information flows contradict security requirements in

any way.

In addition, organizing more focused penetration

testing could be accomplished by designing a database

to reflect our practical framework and information

flow policy diagram to generate queries regarding

potential vulnerabilities. Applying the LDAP's

customized MLS attributes to query the target and

user's permissions, the auditor could be given the

corresponding vulnerabilities to be tested

determining whether the required mitigation was

actually in place. It is through using this tool that

auditors would know, whether policies were being

enforced across the board, rather than using black

8

box testing to look blindly for a single hole in the

system.

9

CHAPTER TWO

BACKGROUND AND RELATED WORK

In order to fully understand the requirements of the

MLS environment and the corresponding need for this

framework, it is necessary to completely understand the

origins and basis of the security environment, Multi-Level

Security9 (MLS), and the access control therein. This

chapter details general background information about the

Multi-Level Security (MLS), Bell-LaPadula (BLP) access

model, and Lightweight Access Directory Protocol (LDAP).

Related work focusing on verification of policy, access

control mechanisms, specification languages and the

results of the work already done in these areas are also

discussed below.

2.1 Multi-Level Security (MLS)

"Many organizations, such as the military services,

intelligence organizations, related government agencies,

and their supporting defense industries require

Multi-Level Security (MLS) model systems. These systems

enable concurrent processing of data that is classified

with respect to different levels of security. MLS has a

capability that allows information with different

sensitivity levels to be'simultaneously stored and

10

processed in a system accessed by users that have

different levels of security clearance, as seen in NISTIR

731610" (Son, 2008). In this paper the sensitivity or

security levels are unclassified, classified, secret, and

top secret.

"The rationale behind the MLS model is to secure

information at a higher security level from access by

users at a lower level of security clearance. One

mechanism for implementing this policy is to assign

security labels to all assets in a system" (Son, 2008).

The labels represent the level of sensitivity of the

information or the level of sensitivity to which a subject

is allowed access. This mechanism prevents subjects from

accessing information with a security label for which they

are not cleared. To decide whether a specific access mode

is allowed, the clearance of a subject is compared to the

classification of an object. This is the approach taken in

the well-known Bell-LaPadula (BLP)11 access model (Bell,

2005). The BLP model is explained in the next section.

2.2 Multi-Level Security (MLS) Policy Model

The main goal of MLS policies is to regulate how

information may flow between designated sensitivities. MLS

polices are designed to control the confidentiality of

11

information flows and prevent the information leakage from

an entity of a higher sensitivity level (High) to an

entity of a lower sensitivity level (Low). Protecting

against such a leakage of information from High to Low is

very important to nearly any organization whether

governmental, military or private commercial enterprise.

Information flow policy12 in MLS systems can be

defined by a lattice model13, which was introduced to

describe policies and channels of information flow: an

information flow policy is defined by a lattice (SC, ^),

where SC is a finite set of security classes (or

entities), and is a binary relation partially ordering

the classes of SC. For example, for security classes High

and Low, the relation Low i High means class Low

information is lower or equal to class High information

(it is said that class High dominates class Low).

Information is permitted to flow within a class or upward,

but not downward or to unrelated classes. Thus, class Low

information is permitted to flow into class High if and

only if Low i High. The most famous and influential

security policy model which deals with information flow in

the MLS system was first introduced by David Bell and

Elliot LaPadula in 1973 for the Department of Defense

(Son, 2008) .

12

Bell-LaPadula (BLP) access model was proposed to

enforce access control in government and military

applications and supports Mandatory Access Control14 (MAC)

by determining the access right from the sensitivity

levels associated with subjects and objects. These

subjects are given a sensitivity level or security

clearance, and objects are also given a similar security

classification. To properly enforce access control in a

MLS environment, the Bell-LaPadula access model defines

two security properties:

• Simple Security (SS) property: subject S can

read to object o only if the security level L

of s dominates the security level of o, i.e.,

Io i ls. This property is also known as

"no-read-up" (Son, 2008).

• *-property: subject s can write to object o only

if the security level of o dominates the

security level of of s, i.e., i lo . This

property is also known as "no-write-down" (Son,

2008).

To allow for greater granularity of information

control, the BLP model was expanded by adding categories

that group information into a need-to-know-basis. These

13

categories serve to restrict access to certain types of

information, while keeping users within the confines of

their security clearance. A subject must have a superset

of the object's categories to dominate the object. The

categories and security sensitivity or clearance allow for

a more granular restriction of information assets as well

as tighter information control throughout the system as a

whole.

Figure 2 illustrates an MLS information flow policy

enforced by BLP model. The arrows in the figure show the

direction of permissible information flow. For example, as

shown in the figure, information can flow from entity A

with a sensitivity of unclassified and {Cl} as the

category to entity B with a sensitivity of classified and

{cl, c3} as the categories; This is because the

sensitivity of classified dominates the sensitivity of

unclassified '(classified < unclassified), and {cl, C3} is

a superset of {cl} (i.e., {cl} c {cl, c3}). However, the

security policy is violated if information flows from an

entity with sensitivity classified and {cl, c3} as the

categories to an entity with a sensitivity of secret and

{cl, c2} as the categories. This is because classified <

secret, and {cl, c2} is not a superset of {cl, c3} (i.e.,

{cl, c3} <z {cl, c2}) - this is why there is no arrow

14

drawn from classified with {cl, c3] to secret with {cl,

c2} .

Generic Information Flow Policy

2.3 Lightweight Directory Access Protocol (LDAP)

As a protocol for accessing directory services,

development of the LDAP began in the 1980s by the

International Telecommunications Union and

Telecommunications standardization sector (ITU-T) and the

15

International Standards Organization (ISO) for Unix and

Linux to improve network communications. LDAP was

initiated in conjunction with the development of

Transmission Control Protocol and Internet Protocol

(TCP/IP) and is the standard for internet communication

today. The LDAP model is outlined in Request for

Information (Wahl, 1997). The LDAP was intended to provide

access to directories supporting the x.500 model.15 The

LDAP is referred to as "lightweight" because it does not

require the same intensive amount of resources as x.500

and it is not as complex to implement. As a directory

service, X.500 was a weighty and complex platform that

required the use of the OSI stack and was not compatible

with TCP/IP. The x.500 protocol lacked the flexibility of

the LDAP model and could not be used with TCP/IP, which

was quickly becoming the standard for internet packet

transmission. In addition, unlike the x.500 model, the

LDAP protocol was designed specifically for management

applications and browser applications that offer

read/write interactive access to directories (Wahl, 1997).

LDAP directories use a hierarchical model to store

data about the system. The LDAP protocol assumes that

there are one or more servers, with each providing access

to the Directory Information Tree (DIT). The DIT is a

16

collection of entries, where each has several attributes

that declare a Distinguished Name (DN), that is made up of

one or more of these attribute values. The Distinguished

name (DN) must be unique within the DIT and can be created

from a concatenation of several attributes. For example:

DN: CN = Betty Brown, 0 = Federal Energy Regulatory

Commission, C = US.16

Figure 3. A Generic Directory Information Tree

Each entry must also have an objectclass. The

"objectclass" refers to the class that is assigned to the

17

entry. Objectclasses define what attributes are required,

optionally required and their attribute type. It also

refers to how many values can be stored, as well as the

kind of attribute stored. Attribute type refers to what

kind of information is being stored, outlines the syntax

that is to be used when creating the attribute, the kinds

of matching that can be applied to the values of each

attribute, and any other functions allowed.

As added flexibility in the LDAP model, clients can

modify the values for each objectclass; however, servers

can restrict these modifications to prevent the basic

structure of the class from becoming too altered. Servers

must also prevent clients from adding additional classes

not already introduced in the schemas. There are many

different types of attributes ranging from operational-

which cannot be modified because they are used for

administering the directory itself- to optional and naming

attributes, which can be altered to suit the needs of the

client.

In addition to the (DN), the LDAP also calls for

attributes such as organizational unit (OU), which refers

to the name of the container the entry belongs to, e.g.,

department, type, or location of an entry. The

organizational unit allows the LDAP to break down the

18

organizational structure into smaller and smaller units,

or containers, within the directory. These mandatory

attributes may also be single or multi-valued as well

(Arkills 2003). In addition, there are naming attributes

that make up the LDAP directory, like Common Name (CN),

and Domain Component (DC) which give the entry's name and

the type of network it is on, such as .org, .com, or .edu.

Naming attributes are used for access control, such as

User ID (UID), Group ID (GID), User ID Number (uidNumber),

and Group ID Number (gidNumber), all of which control user

access authentication on the system (Wahl, 1997).

objectclass: Person
dn: dc= energy, dc=org
ou: RND
cn: John Smith
sn: Smith
uid: smithj@rnd23543
uidNumber: 1200
gidNumber: 510
homeDirectory: /home/rnd/research/smithj

phone number: 212-254-0876
address: 1234 Main Street,

Washington, DC 12034

Figure 4. Generic Lightweight Directory Access Protocol

Entry

19

To maintain control over the various attribute types,

the LDAP model uses the schema as a way to sort and order

the attribute type definitions, object class definitions,

and other information. The server uses this information to

find how to match a filter, or attribute value insertion,

when comparing an operation request from a client against

the attributes of an entry (Wahl, 1997). There are several

default schemas used when creating an LDAP server, as well

as option of creating a customized LDAP schema. These

default schemas are available for download on the various

LDAP websites for all the different LDAP software

platforms. OpenLDAP, for instance, offers several default

distributed schemas on their website: core.schema,

cosine.schema, inetorgperson.schema, misc.schema,

nis.schema, and openldap.schema (OpenLDAP Software 2.4

Administrator's Guide, 2013).

To create a customized schema for an LDAP directory,

a local.schema must be employed. The local.schema allows

customized attributes to be created and defined for

implementation into the directory. The schemas are located

in Linux as: /etc/openLDAP/slapd.conf. The local.schema

would be added to this file with the rest of the

distributed schemas in order to include the customized

object class and attribute definitions. It is through the

20

DIT organizational structure and use of the additional

attributes in the custom schema that allows more

transparency in the security filtering process and allows

auditors to see how security policies impact the system.

The following is some of the content of a slapd.conf file

showing how to implement a local.schema using CentOS 5.8

(Linux).

#See slapd.conf [5] for details on configuration options.
#This file should not be world readable.

include
include
include
include
include

/etc/openldap/schema/core.schema
/etc/openldap / schema/cosine.schema
/etc/openldap/schema/inetorgperson.schema
/etc/openldap/schema/nis.schema
/etc/openldap/schema/local.schema

Figure 5. Slapd.conf File Schema List

The local.schema, or custom schema, would include the

object classes, matching rules, and data type rules for

value insertion, as well as definitions for the attributes

themselves (See Appendix A for an example of implementing

a custom schema based on this framework). Based on the

above DIT, the attribute definitions would include the

following information: the heritance (if any), the

equality (comparison rules), Substring rules (if any), and

21

the syntax rules (OpenLDAP Software 2.4 Administrator's

Guide, 2013).

To begin creating a new schema for an LDAP design,

the local.schema will need to be renamed to reflect the

custom object class and attributes being added to the

directory. For example, if making a custom schema for

mapping an IP range and location to a local person type,

make a local.schema and use the following path:

/etc/openLDAP/schema/local.schema.

The attributes are included in the schema first

because they must be read first by the LDAP before being

included in the object class definitions. As is shown in

the following example:

22

#New attribute definitions:
attributeType (1.1.2.2.1 NAME 'ipRange'

DESC TP Range’
EQUALIITY caseExactMatch
SUBSTR caseExactSubstringsMatch
SYNTAX 1.1.2.2.1.1466.115.121.1.15(1024))

attributetype (1.1.2.2.2 NAME 'location'
DESC ‘location’
EQUALIITY caseExactMatch
SUBSTR caseExactSubstringsMatch
SYNTAX 1.1.2.2.1.1466.115.121.1.15(1024))

objectclass definitions for ‘misPerson' depends on the core.schema.

objectClass (I.I.2.2. Name 'IocalPerson’
DESC “local person type’

SUP top Structural
MUST (ipRange $ location)
MAY (userPassword)

)
Figure 6. Generic Custom Schema

Following the creation of the custom schema, the LDIF

file would need to be configured to accept the new data

attributes, create the directory structure, and would

allow new entries to be created. The slapd.conf file is

important because it outlines the structure of the LDAP

directory service on the server. It also specifies all the

objectclass and attribute's rules (schemas), global and

otherwise, which govern the LDAP directory. The order of

the schema files listed in the slapd.conf file is also

important (OpenLDAP Software 2.4 Administrator's Guide,

2013). Like the custom schema, the attributes need to be

23

read before they can be included in the new objectclass

definition.17

Once the schemas are complete, the slapd.conf file is

amended to reflect the new schemas (see Figure 6}. The

LDIF file is built to outline the directory's structure,

and the LDAP can be used and new entries added. By

including LDAP model to the design of the MLS access

control, there is flexibility to use it as an auditing

tool. Because of the methodology in designing the DIT,

mapping the Information Flow policy to its structure is a

natural process and creates a visual representation of the

access control mechanism itself. Designing an auditing

tool necessary to utilize this information is the next

logical step following creating the methodology for

generating the semi-formal specifications of the MLS

information flow policy.

24

dn: dc=energy, dc=.org, o=ferc
Description: Custom objectClass for MLS sensitivity and category objects in
LDAP

cn:energy
objectclass: top
objectClass: person
objectClass: misPerson
name: Betty Brown
sn: Brown
ou: R&D Dept
location: Washington, DC
ip range: 192.168.1.10/254
phone: 212-234-0987
email: brownb@energy.org

Figure 7. Generic LDAP Data Interchange Format File

2.4 Related Work

Access control is one of the most important and

widely used authorization policies available. It controls

which subjects such as users or processes have access to

which resources, or objects, in a system. Over the past

several decades, many access control policies, or models,

have been proposed. Some of models introducing the early

concepts of access control mechanisms were Discretionary

Access Control (Lampson, 1971), Mandatory Access Control

(Bell & LaPadula, 1976), Task Based Authorization Controls

(TBAC) (Thomas, 1997), Role Based Access Control (RBAC)

(Ferraiolo, Sandhu, & Gavrila, 2001), and Organization

Role Based Access Control (ORBAC) (Kalam et al., 2003) .

25

mailto:brownb@energy.org

While these studies lay the foundation for access control

as we know it today, none of these models were able to

prescribe the methodology for verifying security policies.

However, the study by Kalam et al (2003), does add some

insight in its focus on the concept of organization; it

proposes the Organizational Role Based Access Control

policy model (ORBAC). Using the concept of organization, a

security policy can be applied to a target organization

and is defined as a collection of permissions,

prohibitions, obligations, and recommendations. Even so,

it does not offer the added granularity of the MLS

configuration or the flexibility and organization of the

LDAP directory configuration. The ORBAC model does not

offer the same stringent access control that is offered in

the combination of the MLS aware LDAP model and can be

complex in its administration. The use of an LDAP is

proposed to simplify the task of managing security in a

large distributed system (DMTF: DEN Initiative, n.d.,

Jamhour, 2001) .

As today's information systems are rapidly growing in

scale and complexity due to an emergence of new

technologies and security requirements, policy-driven

management is gaining popularity. Policy driven management

systems have been researched to specify their targets,

26

constraints, and access control mechanisms in the form of

policies. Policy languages are used to write

specifications for the policy-driven management systems

and categorized into network management policy languages

and security management policy languages (Han & Lei,

2011). Network management policy languages aim to allocate

resources within a network according to the system

requirements (e. g. bandwidth, device configuration, access

control, etc.) whereas Security management policy

languages focus on the protection of system resources and

the administrator's method of security management. For the

purpose of reference, lists of the most widely used in

this paper are as follows.

27

Table 1. Network Specification Languages

Network Policy Language Reference Paper
Knowledge Acquisition in
automated Specification
(KAOS)

Dardennen, A. V. (1993). Goal Directed
Requirements Acquisition. Science of
Computer Programming 20, 3-50.

Policy Description Language
(PDL)

Lobo, J. B. (1999). A Policy Description
Language. 16th National Conference on
Artificial Intelligence (pp. 291-298).
Orlando, FL: Association for the
Advancement of Artificial Intelligence.

Ponder Damianou, N. D. (2001). The Ponder
Policy Specification Language. Policy
2001: Workshop on Policies for
Distributed Systems and Networks
(pp. 18-39). Bristol, UK: Springer.

CIM Simplified Policy
Language

DMTF Policy Working Group: Lobo, J. B.
(2009). CIM Simplified Policy Language
DSP0231. Portland, OR: Distributed
Management Task Force, Inc.

28

Table 2. Security Specification Languages

Security Policy Language Reference Paper
A P3P Preference Exchange
Lange (APPEL)

Cranor, L. L. (2002, April). A P3P
Preference Exchange Language 1.0
(APPEL1.0). Retrieved April 2013, from
World Wild Web Consortium:
http://www.w3.org/TR/P3P-preferences/

Rei: A Policy Specification
Language

Kagal, L. F. (2003). A policy Language
for a Pervasive Computing Environment.
IEEE 4th International Workshop on
Policies for Distributed Systems and
Networks (pp. 6374). Lake Como,
Italy:IEEE

extensible Access Control
Markup Language (XAMCL)

Mosses, T. (2005, February). OASIS
extensible Access Control Markup
Language (XAMCL) Version 2.0 Retrieved
April 2013 from OASIS Open:
http://docs.oasis­
open, org/xacml/2 .o/access_controll-
xacml-2.0-core-spec-os.pdf

Platform for Privacy
Preferences Project (P3P)

Cranor, L. D. M. (2006, November). The
Platform for Privacy Preferences 1.1
(P3P1.1) Specification. Working Group
Note. Retrieved April 2013, from World
Wide Web Consortium:
http://www.w3.org/TR/P3Ppll/

Currently, out of all the known security policy

languages listed in table 2, XACML is the most widely

accepted, both in industry and academia, as a de facto

standard. XAMCL is a declarative, XML based policy

language, mainly employed for access control management in

distributed systems. The framework proposed in this paper

is offered as a method of preparing policy implementation

for translation into formalized form through the use of

policy languages such as XACML. By creating this

29

http://www.w3.org/TR/P3P-preferences/
http://docs.oasisopen
http://www.w3.org/TR/P3Ppll/

methodology, the process of simplifying policy into

machine readable or formalized specifications becomes

standardized and lends itself towards the correct

implementation of security policy. While many of the

papers mentioned previously discuss the access control

mechanism or language model, they do not offer a similar

framework for its application, nor a method of verifying

that the policies are being applied effectively.

As access control policies become more complex and

are implemented to manage large distributed networks with

many different organization units, policy makers and

auditors will find it difficult to assure that policy

specifications are correct, thereby allowing that these

policies are incorrectly enforced or implemented. Much

research has been developed to deal with the conformance

checking of access control policies for different security

levels (Hu et al., 2007, 2011, Bryans, Fitzgerald, &

Periorellis, 2006, Bryans, 2005, Hughes & Bultan, 2008).

These approaches are based upon formal methods such as CSP

(Hinchey & Jarvis, 1995), Alloy model checker (Jackson,

2000), Vienna Development Method Specification Language

(Hansen & Bruun, 1996), among others. Besides being

focused on Role Based Access Control, these models are

heavily math based in nature, making them problematic for

30

use by people not well versed in this area. In addition,

these formal verification models do not easily map onto

implementation mechanisms (e.g., organizational structure

and units), making it harder for auditors to test whether

a target network has implemented or enforced the access

control policy correctly.

31

CHAPTER THREE

MULTI-LEVEL SECURITY ACCESS CONTROL POLICY

The main objective of this chapter is to demonstrate

a practical way to create an MLS access control policy

from an information flow policy diagram and an. MLS LDAP

model of an organization.

Information Flow
Policy

+ MLS Access
Control Policy

LDAP Directory
of the

Organization

Figure 8. Multi-Level Security Access Control Policy

Diagram Creation

3.1 Multi-Level Security Access
Control within a Department

The MLS Information Flow Policy relates the security

policies (clearances, classifications and categories) and

how they interact with the information flows between

entities. In the example shown above, we have created an

32

information flow policy based on our fictitious example of

the Department of Energy. Within this information flow

policy there are four clearances/classifications and five

categories for the agency depicted.

Figure 9. Multi-Level Security Information Flow Policy

Diagram

The clearances/classifications range from

unclassified, classified, secret and top secret. The

categories or need to know can be tailored to any agency's

specific information security requirements and are

33

therefore not described within this thesis. However, when

combined, the access control mechanism is a combination of

clearance, classification, and categories.

Access Protocol Directory Information Tree for the

34

Research Sub Department of the Research and Design

Department

Figure 10 outlines a simple example of an MLS

Directory Information Tree (DIT) and contains the

additional attributes for security sensitivity and

categories discussed in the previous chapters. The MLS DIT

shows many different attributes for the Research

Department. These attributes assist in the defining of

permissions by filtering location or IP address, role,

sub-department, and department information. The additional

attributes created in the custom schema demonstrate the

MLS attributes of sensitivity and categories.

35

#base OID 1. 2. 3.4. 5.1021. x. y
#x - 4 for objectclass
#y = 3 for attributetype
objectidentifier MLSschema 1.2.3.4.5.1021

attributeType (MLSschema: 3.1 NAME 'sensitivity'
DESC ‘MLS sensitivity level'
EQUALITY caselgnoreMatch
SUBSTR caselgnoreSubstringsMatch
SYNTAX 1. 3. 6.1.4.1.1466.115.121.1.15(40}
)
attributeType (MLSschema: 3. 2 NAME 'categories’

DESC 'MLS categories’
EQUALITY caselgnoreMatch

SUBSTR caselgnoreSubstringsMatch
SYNTAX 1.3. 6.1.4.1.1466.115.121.1.15(40}
)

Objectclass (MLSschema: 4.1 NAME 'misperson’
DESC 'MLS person type'
SUP inetOrgPerson STRUCTURAL
MUST (sensitivity $ categories)
MAY (userpassword)

J__
Figure 11. Customized Schema for Multi-Level Security

Access Control

Demonstrating the application of these new

attributes, the two subjects, John Smith, Scientist and

Betty Brown, staff also illustrates the flexibility of the

LDAP model. John Smith has a clearance of top secret, with

a category of (Cl, C2, C3}. This clearance and category

give John Smith access to information at top secret or

lower with the necessary categories, or need-to-know, to

access workgroup, sub Department, and Department

information. As the objects listed in the DIT apply the

36

MLS information flow policy showing classification level,

as well as category restrictions, the subject wishing to

commit an action on a particular object must hold a

clearance equal to or greater than the classification of

the object, as well as a superset of the object's

categories, to commit any action on any particular object.

According to the MLS information flow policy, John

Smith can access certain resources, assets, or devices on

the network, such as a printer or server. However, there

are also objects that he cannot access because he does not

hold the correct category superset to do so. To

demonstrate the filtering that takes place when the

sensitivity and category attributes are implemented in the

LDAP, please refer to Figure 12 showing the MLS Access

Control Diagram for John Smith (scientist) and Betty Brown

(staff) in which the relationship between the two subjects

and the available objects within the research

sub-department interact under the influence of the

information flow policy. The MLS access control policy

diagram illustrates the filtering process between objects

and the permission restrictions of John Smith and the

permissions restrictions of Betty Brown.

It is through combining the attributes of

sensitivity, category, location, and object that the

37

focused auditing tool can determine the potential

vulnerabilities and allows the auditor to focus their

penetration tests to verifying that the policies

protecting the security of these assets have been

implemented correctly. In comparison, black box testing

blindly looks for a single hole throughout the entire

system rather than focusing on where the holes are most

likely to be. By employing both methods of penetration

testing, completing a thorough and productive audit of the

system's security is much more likely.

38

MLS Access Control Diagram
Research Department

(jj
<£>

Figure 12. Multi-Level Security Access Control Diagram

The MLS access control policy diagram applies the MLS

information flow policy to the DIT and demonstrates how

the subject may access, or is prevented from accessing,

resources and devices on the research network, and this

depends on the sensitivity and category restrictions. The

subject John Smith holds a top secret clearance and

categories of {Cl, C2, C3} and has access to

classification levels of top secret or lower as long as he

holds a superset of the objects' categories. For

classification levels lower than top secret, it is

no-read-up and no-write-down. This indicates that John

Smith can access or read objects at a lower level, but he

cannot change or alter these objects in any way. This also

assumes that he holds a superset of the objects'

categories as well. The same holds true for Betty Brown,

who can access or read objects at a classified or lower

level but cannot change or alter those objects in any way;

This maintains the objects' information integrity at all

times.

3.2 Information Flow between Sub Departments

The below DIT includes added people, resources, and

devices and shows the sensitivity restrictions that

filters and controls the subject's access of objects and

40

the corresponding object classifications and protections.

As the complexity of the DIT increases the object classes

and attributes built in the schemas of the LDAP,

particularly those built into the custom schema, acts as

the filters for the access control mechanism defined by

the MLS Information Flow Policy. By building these

additional security "filters" in the LDAP, access control

become significantly more transparent, effectively

applying the permissions/restrictions of the MLS

environment. Within the LDAP model directory, it is

possible to see the organization as a whole, defined by

the access control attributes which give the DIT its

filtering power.

41

Categories
ci

Clearance/Classification

Public Access — No Category

Classified

Secret

Top Secret

C2

C3

C4

CS

John Smith

O u
OU = Servers nll = printl

jsmith @ energy.org

212-345-9987

Research Dept

Top Sercret

Cl, C2.C3, CS

DNS 1

192,168.15.2

Network

System

Research Dept

Top Sercret

C4

Webl

192.163.15.4

Network

Staff

Research Dept

Top Sercret

C1.C2

Printer 1

192.168.15.12

Network

Scientists

Research Dept

Top Sercret

C3,C5

Printer 2

192.168.15.13

Network

Staff

Research Dept

Classified

Cl, C2

MLS Directory
Information Tree

ou = Files

; Research 435

RD/Research

John Smith

Research Dept

Top Secret

C5

HR Project 1

RD/Research

Staff______

Research Dept

Classified

Cl

o

ou = Directory

Research

RD

Scientists

Research Dept

Top Secret

CS

Archive

RD/Research

Research

R & D Dept

Classified

Cl

ou = Publicists

James Ash

Payroll 122013

RD/Pubiicity

Payroll

HR Dept

Top Secret

ou = Files ou = Directory
Payroll

RD/Pubiicity

^Payroll __ ~

HR Dept

Top Secret

C4

AshleyJ@energy.org

212-345-9997

Publicity Dept

; Secret

Cl, C3

PR Planning

RD/Pubiicity

Staff

Publicity Dept

Classified

C3

I News Feature

I RD/Publicity
|-------------------
I Publicists

Publicity Dept

Classified

Cl

Archive

RD/Publicity

Publicists

Publicity Dept

Classified

Cl

News

i RD/Pubiicity

Publicists

Publicity Dept

Classified

f
' Cl

u
ou = Servers
?Web2

192.168.10.4

Network

f-------------------
System

' Publicity Dept
i
I Public Access

| No Category

| HR Server
1192.168.10.6

(Network

[Payrol
I--------------
| HR Dept

iTop Secret

0

ou = Printers
Printer 1

192.168.10.15

Network

Publicists

Publicity Dept

Secret

Cl, C3

Printer 2

192.168.10.14

Network

Staff____

Publicity Dept

Classified

a

Figure 13. Multi-Level Security Directory Information Tree For the Research and

Design Department

energy.org
mailto:AshleyJ@energy.org

Figure 14 details the effect of sub-department flows

on the MLS Access Control Diagram between Sub-Department

Research and Sub-Department Publicity. Here the

relationship between the Research personnel and objects

from both the Research and Publicity Sub-Departments are

illustrated. By creating this MLS Access Control Diagram

trust boundaries can be identified and potential threats

and vulnerabilities can be identified for the auditor to

investigate.

43

between Sub-Departments Research and Publicity

The relationship between subjects of differing

sub-departments demonstrates the filtering and

compartmentalization process of applying the MLS

Information Flow Policy of the organization. Enforcing the

"no-read-up, no-write-down" can be clearly seen in the

44

"flows" between sub departments and the subject John

Smith. Using the LDAP to create additional filtering, or

application of the MLS policies, can create synergies in

controlling the flow of information from one subject to

another. This assists auditors and security professionals

in creating new methodologies and tools for verifying that

these MLS policies are being enforced properly. By

standardizing this process of building semi-formal

specifications, it allows security professionals and

auditors to become familiar with their policies and

systems in such a way that the potential vulnerabilities

become very apparent to them. In addition to applying

black box testing to find the "unknown" vulnerability in

the system using this auditing tool allows the IT staff to

continually look for holes in the implementation of their

security policies. Without the white box testing suggested

earlier in this paper, organizations are only as secure as

the skill level of the ad hoc talent of their testing

personnel.

45

CHAPTER FOUR

DEVELOPING AUDITING TOOLS

4.1 Verifying Multi-Level Security Policies

Auditing and the process of verifying security

policies can overwhelm the best security professionals.

Depending on .the security requirements that an

organization adopts, security audits can require hundreds

of man-hours and often interrupt business processes if not

managed correctly. Auditing often becomes a messy business

and can impose high costs on both agencies and private

organizations if not properly prepared. It is imperative

that through the process of the security assessment

auditors are able to clearly define the security goals of

the organization. A security audit may be different for

every organization, but they typically they include the

following.

Auditors must first determine the scope of their

security audit. By doing so, they can limit the depth and

focus of the audit, controlling the size and organization

of the audit process. The Management Planning Guide for

Information Systems Security Auditing (December 2001)

outlines the auditing planning process written as a joint

initiative by the National State Association (NSAA) and

46

the U.S. General Accounting Office (GAO). In this

document, the GAO describes the security auditing planning

process and creates a guide for organizations looking to

set up auditing within their agency. However, the

remaining problem still exists in what is the most

effective way to verify that security policies are being

implemented and enforced correctly, and that the risk of

lost, stolen or destroyed information is minimized.

Typically the following steps are included in the audit

process.

1. Define the physical scope of the audit. This

usually involves determining the area of the

organization being audited and tabulating the

physical assets that have been determined to be

critical to the organization.

2. Define the process scope of the audit. This

means determining the critical processes to the

organization and their security.

3. Develop a historical reconstruction of any known

security breaches, known vulnerabilities, and

issues that relate to the defined scope of the

audi t.

4. Create the actual plan for conducting the audit

itself. Where will you start and how will you

47

assess the system? This usually involves

creating a description of the audit, any

significant dates, participants to the

organization and dependencies.

5. Complete a thorough security assessment of the

assets and processes within the organization.

This includes:

a. Identify the exact location of assets

within the organization.

b. Identify the potential threats to these

assets.

c. Document the perceived vulnerabilities to

these assets and processes.

d. Outline the current security controls in

place protecting these assets and

processes.

e. Determine the quantitative likelihood of

threats being realized and the monetary

impact of these threats would have if

successfully exploited.

6. Document the results of the audit.

7. Specify and update assets with regards to any

new mitigation scenarios and newly established

controls.

48

8. Usually accompanying a thorough audit is the use

of black box penetration testing to verify that

there are no unknown vulnerabilities and that

the policies are being effectively enforced.

While this might sound clear in its direction, the

problem remains of how black box testing will verify that

all of the policies are being effectively enforced. This

is particularly troubling when it becomes clear that it is

the usual practice to have penetration testers blindly

look for only one way into the system. How does "blind"

black box testing verify the complete and correct

implementation and enforcement of policy? How can

organizations be sure that the testing is thorough given

that the skill levels between penetration testers may vary

greatly?

By its nature, black box testing does not and cannot

accomplish this. This lack of effectiveness forms one of

the main problems in conducting a thorough audit of any

security system. Without focused penetration testing,

there cannot be a thorough audit of an information

system's security.

By adding this practical framework to the audit

planning, security auditors are now able to standardize

the process in which policies are specified more formally

49

within their system. This gives them the design tools for

creating a database for focused penetration testing and

the ability verify security policies within their

organization.

4.2 Designing a Tool for Focused Auditing

The following Entity Relationship Diagram (ERD)

outlines the design of the penetration-testing database

that supports this framework. Based on the MLS directory

scheme of the LDAP model, the database matches

vulnerabilities to the permissions of object

classification, categories, and users. By imputing the

information flow policy and detailing all of the subjects'

permission sets, auditors can query the relationship

between subject and objects allowing them to see where the

information flow policies should be enforced. The database

can correlates the vulnerabilities associated with these

relationships and directs the auditor to the appropriate

penetration test to verify the policy's enforcement.

Organizations would need to input their own users,

objects, and permission sets. After populating these

entries, the organization would input all known potential

vulnerabilities associated with the trust boundaries

outlined within their system. These vulnerabilities could

50

be matched with the appropriate penetration testing method

to ascertain whether, or not, the organization's security­

policies are being enforced. After building this database,

auditors would then develop queries to look at subjects

and their permissions related to the objects within the

system.

Given the information provided in the query, auditors

would have a list of testing to be done based on each user

or groups of users that they examine. Figure 16 examines

the Entity Relationship Diagram (ERD) for a penetration

testing database modeled after the example used in the

previous chapters. This model could be applied to suit any

organization using this framework.

51

Department

Peat ID

People

PK Person ID

Person.LName
Person.FName
DeptJD
SenJD
Cat.lD

FK1 location. ID

Object

PK Object ID

LocationJD
DeptJD
ClassificatlonJD
Cat.lD
Path/IP Address

Location

PK
PK,FK1

Location ID
Dept ID

IPAddress/Path

H<
Access

PK Access ID

FK2
FK3
FK4

5
Pol icy J D
PersonJD
ObjertJD

Policy

PK Policy ID

Policy Description
SenJD
cat.lD

Potential Vulnerability

PK Vul ID

FK1 Access J D
Vul.Type
Vul Description

Sen si11 vity/Cl a ss i flea 11 o n:

PK Sen ID

FK1
Sen.Level
PolicyJD

i
i
i
i
i
r
i
i
I
i

Pen Testing

PK Pen ID

FK1 Vul.lD
Pen.Type
Pent test
Pen test Description

Policy/Categories

PK Cat ID

FK1
Catlist
PolicyJD

Categories

PK,FK1 Cat ID

Cl
C2
C3
C4
C5

4.3 Database Entity Relationship Diagram

While the idea behind a penetration-testing database

and its implementation can be complex, the design itself

is simple. Figure 15 illustrates that table People

52

connects to table Object when selecting an object, the

query is sent to the bridge table Access in order to

create a primary key using the Person_ID, Object_ID, and

Policy_ID and then table Policy then pulls the sensitivity

and categories of both the Person_ID and Object_ID,

matching the sensitivity and category set of the Object_ID

to the superset of the Person_ID. Once this is achieved,

and confirmed, the Potential Vulnerability table creates a

vulnerability ID from the Access_ID in the Access Table,

listing the vulnerability type and description, showing

the vulnerabilities associated with the subject, object,

and permission sets allowed/not allowed. The Potential

Vulnerability table then matches the penetration test

types and lists the penetration tests for the potential

vulnerabilities in the Pen Testing table. By using this

tool, the auditor can query each user and their

permissions on each object within the system to test for

potential holes in the system. Organizations, if they

prefer, can also apply role based permission sets instead

of each individual persons in order to simplify the

testing process.

53

CHAPTER FIVE

FUTURE WORK

5.1 Direction for Future Research

While this paper has helped to answer questions held

by the author, it has also created additional ones, in

particular, the application and proper use of categories.

While a small question, it affects the use and control of

attributes when designed into the information flow policy.

This has become an important issue in access control and

one that needs to be explored more fully.

The next step is to build a penetration testing

Database based on something real. This is necessary to

test the aptitude of the ERD design and application, of the

database in verifying security policies in a real world

setting. In addition, automating the actual testing by

creating scripts to run the tests, allowing the system to

monitor itself constantly would be ideal. This would allow

security policy people and system administrators to

automate the policy configuration. In addition they would

be able to standardize the security policy implementation

process for devices on the network and also automate the

process by which these policies are verified.

54

APPENDIX

INSTRUCTIONS FOR IMPLEMENTING THE CUSTOMIZED

SCHEMA IN LIGHTWEIGHT DIRECTORY

ACCESS PROTOCOL

55

Instructions For Implementing The Customized Schema
In Lightweight Directory Access Protocol

In this appendix, the following procedure is demonstrated for implementing custom

shemas in the LDAP model(for complete LDAP installation and configuration

instructions, please visit www.openlap.org):

1. Create a new custom schema called MLS.schema.

2. Based upon the MLS.schema, create a LDIF file (MLSl.lidf) and construct a

new directory structure.

First, in order to create a MLS schema as shown in the following diagram, the

MLS.schema contains two attribute defintions for sensitivity and categories and three

objectClass definitions for MLSpersonl, MLSperson2, and MLSperson3. Note that

MLSpersonl, MLSperson2 and MLSperson3 are sub-classes of Person,

organizationalPerson, and inetOrgPerson object class, respectively.

56

http://www.openlap.org

phase OID: 1.2.3.4.5.1021.x.y
#x » 4 for Object classes
#x = 3 for Attribute types
objectidentifier MLSschema 1.2.3.4.5.1921

File Edit View Search Tools Documents Help

[R Open v save j, k Undo i & % a [m is
©slapdxonf X 10 MLSl.ldlf [fj MLS. sell ema K j ■ ■ .

attributetype (MLSschema:3.1 NAME 'sensitivity'
DESC 'MLS sensitivity level’
EQUALITY caselgnoreMatch
SUBSTR caselgnoreSubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15(40}

)

attributetype (MLSschema:3.2 NAME 'categories'
DESC 'MLS categories'
EQUALITY caselgnoreMatch
SUBSTR caselgnoreSubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15(40}

)

objectclass (MLSschema:4.1 NAME 'MLSperson*
DESC 'MLS person type 1 basic'
SUP Person STRUCTURAL
MUST { sensitivity)
MAY (userPassword $ telephoneNumber $ seeAlso description

objectclass (MLSschema:4.2 NAME 'MLSperson2‘
DESC 'MLS person type 2’
SUP organizationalPerson STRUCTURAL
MUST (sensitivity $ categories)
MAY (userPassword $ telephoneNumber $ seeAlso description

objectclass (MLSschema:4.3 NAME 'MLSperson3'
DESC 'MLS person type 3* '
SUP inetOrgPerson STRUCTURAL
MUST (sensitivity $ categories)
MAY (userPassword $ telephoneNumber $ seeAlso description

Plain Text x Tab Width: B Ln 1, Col 1 INS

i

i

$

$

$

))

))

))
V

Figure 16: MLS schema.

57

Three objects (John, Betty and Jennica) of class MLSperson, MLSperson2, and

MLSperson3 are created in the MLSl.ldif file.

file Edit View VM labs Help

Applications Places System

’b MLSl.ldif (/etc/openldap) - gedlt _ □ x
Eile Edit View Search Tools Qocuments Help

A Open v Save | Undo Vr 1 Ct» ’ 7 j @1 i

|g) slapd.conf X fei MLS. sc hem a X © MLSl.ldif X @ initldif X init2.ldif X]

dn: cn=john,ou=research,ou=r&d,dc=energy,dc=gov
sensitivity: High
cn: John
sn: Smith
objectClass: Person
objectclass: MLSperson

dn: cn=betty,ou=research,ou=r&d,dc=energy,dc=gov ,
sensitivity: High
cn: Betty
sn: Brown
categories: Cl
objectClass: Person

1 objectClass: organizationalPerson
1 objectclass: MLSperson2

dn: cn=jennica,|au=research,ou=r&d/dc=energy,dc=gov
sensitivity:
cn: Jennica
sn: Son
categories:
objectclass:
objectclass:
objectclass: inetOrgPerson
objectClass: MLSperson3

High

C2
Person
organizationalPersan

— .IT!---------

To direct input to this VM dick inside or pres Ctrl * 6,

Figure 17: MLS LDIF.

I

E

Plain Text -fob Width: 8 v Ln 18. Col 16 ibIS : '
-------------- i-.’’

►

58

The below diagram shows that three objects (John, Betty, and Jennica) are added to

create a LDAP tree, using the ldapadd command with MLSl.ldif as an input.

CentOS63 - VMware Workstat on

file Edit View VM labs Help

Applications Places System
HI ______ !___ *__ J.______________________ :_____________

. fa root@localhost:/etc/openldap _ □ X

adding

File Edit view Search Terminal Help
[root@localhost openldapj# ldapadd -x -D ncn=Manager,dc=energy,dc=gov“ -W -f MLSl.ldif
Enter LDAP Password:

new entry “cn=john,ou=research,ou=r&d,dc=energy,dc=govH

new entry "cn=betty,ou=research,ou=r&d,dc=energyfdc=govBadding

adding new entry “cn=jennica,ou=researchtou=r&d,dc=energy,dc=gov“

[root@localhost openldap]# |
1

E
o direct input to this VM, click inside or press Ctrl+G.

Figure 18: Adding new entries to the customized MLS LDAP.

The LDAP directory displays all the entries in the LDAP tree using the ldapsearch

command as seen in Figure 20.

59

3 i CentOS63 .* VMwareLWortstaiia

®______________________root@local host:/etc/o p e n I d a p „ □ x
4

[rootglocalhost openldap]# Idapsearch -x -D "cn^anager.dc-energy.dc^gov" -b "dc=energy,dc=gov
'(objectClass=*)1 -W
Enter LDAP Password:
extended LDIF
#
#. LDAPV3
base <dc=energy,dc=gov> with scope subtree
filter; (objectClass=*)
requesting; ALL

I

1

energy.gov#
dn: dc=energy,dc=gov
objectclass: top
objectclass: domain
de: energy

r&d, energy.gov
dn: ou=r&d,dc=energy,dc=gov
objectclass: organizationalUnit
ou: r&d

research, r&d, energy.gov
dn: ou=research,ou=r&d,dc=energy,dc=gov
objectclass: organizationalUnit
ou: research

john, research, r&d, energy.gov
dn; cn=john,ou=research,ou=r&d,dc=energy,dc=gov
sensitivity: High
cn: John
sn: Smith
□bjectClass: person
objectclass: MLSperson

betty, research, r&d, energy.gov
dn; cn=betty,ou=research,ou=r&d,dc=energy,dc=gov
sensitivity: High
cn: Betty
sn: Brown
categories: Cl
objectclass: person
objectclass: organizationalPerson
objectclass: MLSperson2

To direct input to this VMt dick inside or press Ctrl+G,

►
§ ei 1

V

iI

t
<

f

L,

•rraiincAt—■—"lau vviuui. u *----- urn

r

Figure 19: LDAP Tree in the OpenLDAP file.

60

energy.gov
energy.gov
energy.gov
energy.gov
energy.gov

The complete ldapsearch result is shown below in Figure 21.

Enter LDAP Password:
extended LDIF
#
#LDAPv3
base <dc=energy,dc=gov> with scope subtree
filter: (objectCIass^*)
requesting: ALL
#

energy.gov
dn: dc=energy,dc=gov
objectCIass: top
objectCIass: domain
de: energy

r&d, energy.gov
dn: ou=r&d,dc=energy,dc=gov
objectCIass: organizationalUnit
ou: r&d

research, r&d, energy.gov
dn; ou=research,ou=r&d,dc=energy,dc=gov
objectCIass: organizationalUnit
ou:research

john, research, r&d, energy.gov
dn: cn=john,ou=research,ou=r&d,dc=energy,dc=gov
sensitivity: High
cn: John
sn: Smith
objectCIass: person
objectCIass: MLSperson
betty, research, r&d, energy.gov
dn: cn=betty,ou=research,ou=r&d,dc=energy,dc=gov
sensitivity: High
cn: Betty
sn: Brown
categories: Cl
objectCIass: person
objectCIass: organizationalPerson
objectCIass: MLSperson2

jennica, research, r&d, energy.gov
dn: cn=jennica,ou=research,ou=r&d,dc=energy,dc=gov
sensitivity: High
cn: Jennica
sn:Son
categories: C2
objectCIass; person
objectCIass: organizationalPerson
objectCIass: inetOrgPerson
objectCIass: MLSperson3

search result
search: 2
result: 0 Success

numResponses: 7
numEntries: 6

Figure 20: LDAP search results.

61

energy.gov
energy.gov
energy.gov
energy.gov
energy.gov
energy.gov

REFERENCES

Arkills, B. (2003). LDAP directories explained. An
introduction and analysis. New York, NY:
Addison-Wesley Press.

Bell, D. A. (1976). Secure computer systems: Unified
exposition and multics interpretation. Tech report.
ESD-TR-75-306. Bedford, MA: The MITRE Corporation.

Bell, D. E. (2005). Looking back at the Bell-LaPadula
model. Proceedings of the 21st annual computer
security applications conference (pp. 337-351).
Reston, VA: ACSAC.org.

Bryans, J. (2005) . Reasoning about XACML policies using
CSP. Workshop on secure web services (pp. 28-35) .
Fairfax, VA: ACM.

Bryans, J. F. (2006). Model based analysis and validation
of access control policies. Technical-report series.
Newcastle Upon Tyne, England: University of Newcastle
Upon Tyne Computing Science.

Cranor, L. D. M. (2006, November). The platform for
privacy preferences 1.1 (P3P1.1) specification,
working group note. Retrieved April 2013, from World
Wide Web Consortium: http://www.w3.org/TR/P3Ppll/

I

Cranor, L. L. (2002, April) . A P3P preference exchange
language 1.0 (APPEL1.0). Retrieved April 2013, from
World Wide Web Consortium:1 http://www. w3 . org/
TR/P3P-preferences/

Damianou, N. D. (2001). The ponder policy specification
language. Policy 2001: Workshop on policies for
distributed systems and networks (pp. 18-39) .
Bristol, UK: Springer.

Dardennen, A. V. (1993). Goal directed requirements
acquisition. Science of Computer Programming, 20,
3-50.

Distributed Management Task Force. (1998). Directory
enable networks (DEN) initiative. Retrieved from DMTF
Distributed Management Task Force.
http://www.dmtf.org/standars/standar_den.php

62

ACSAC.org
http://www.w3.org/TR/P3Ppll/
http://www.dmtf.org/standars/standar_den.php

Ferraiolo, D. S. (2001) . Proposed NIST standard for
role-based access control. ACM Transactions on
Information and System Security, 4(3), 222-274.

Han, W. A. (n.d.). A survey on policy languages in network
and security management. Computer Networks, 56(1),
477-489.

Hinchey, M. A. (1995). Concurrent systems: Formal
development in CSP. New York, NY: McGraw-Hill, Inc.

Hu, V. H. (2007) . Conformance in XACML. 31st Annual IEEE
International checking of access control policies
specified Computer software and applications
conference (pp. 275-280). Beijing, China: IEEE.

Hu, V. K. (2011) . Model checking for verification of
mandatory access control models and properties.
International Journal of Software Engineering and
Knowledge Engineering, 21(1), 103-127.

Jackson, D. (2000) . Alloy: S lightweight object modeling
notation. Technical report 797. Cambridge, MA: MIT
Laboratory for Computer Science.

Jamhour, E. (2001). Distributed security management using
LDAP directories. Proceedings of the XXI
international conference of the Chilean computer
science society (pp. 144-153). Antofagasta, Chile:
SCCC.

Kagal, L. F. (2003). A policy language for a pervasive
computing environment. IEEE 4th international
workshop on policies for distributed systems and
networks (pp. 63-74). Lake Como, Italy: IEEE.

Kalam, A. B. (2003). Organizational based access control.
Policies for distributed systems and networks,
proceedings. IEEE 4th International Workshop
(pp. 121-131). Lake Como, Italy: IEEE.

Keliiaa, C. (2001). Directory enabled policy based
networking, SAND2001-2899. Eubank, Albuquerque:
Sandia National Laboratories.

Lampson, B. (1971). Protection. Princeton, NJ: 5th
Symposium on Information Science and Systems.

63

Lobo, J. B. (1999). A policy description language. 16th
National Conference on Artificial Intelligence
(pp. 291-298). Orlando, FL: Association for the
Advancement of Artificial'Intelligence.

Lobo, J. E? (2009). CIM simplified policy language
DSP0231. Portland, OR: Distributed Management Task
Force, Inc.

Moses, T. (2005, February). OASIS extensible access
control markup language (XACML) version 2.0.
Retrieved April 2013, from OASIS Open:
http://docs.oasis-open.org/xacml/2.0/
access_control-xacml-2.0-core-spec-os.pdf

National Institute of Standards and Technology. (2006,
September). Publication NISTIR 7316. Retrieved
January 2013, from National Institute of Standards
and Technology: http://csrc.nist.gov/publications/
nistir/7316/NISTIR-7316.pdf

National State Association and U.S.General Accounting
Office. (2001) . The management planning guide for
information systems security auditing. Washington,
D.C.: National State Association and U.S.General
Accounting Office.

OpenLDAP. (2013, March). OpenLDAP software 2.4
administrator's guide. Retrieved March 2013, from
OpenLDAP: http://www.openldap.org/doc/admin24/
OpenLDAP-Admin-Guide.pdf

Son, J. (2 008) . Covert timing channel analysis in MLS
real-time systems. University of Idaho.

Thomas, R. (1997) . Task-based authorization control
(TBAC): A family of models fort active and
enterprise-orientation management. 11th IFIP Working
Conference on Database Security. Lake Tahoe, CA:
International Federation for Information Processing.

Wahl, M. H. (1997, December). Lightweight directory access
protocol (v3) (RFC 2251). Retrieved February 2013,
from The Internet Engineering Task Force (IETF):
http://www.ietf.org/rfc/rfc2251.txt

64

http://docs.oasis-open.org/xacml/2.0/
http://csrc.nist.gov/publications/
http://www.openldap.org/doc/admin24/
http://www.ietf.org/rfc/rfc2251.txt

Zeilenga, K. (2006, June). Lightweight directory access
contro (LDAP)1: Technical spec! fications road map
(RFC 4510). Retrieved March 2013, from RFC Editor:
http://www.rfc-editor.org/rfc/rfc4510.txt

65

http://www.rfc-editor.org/rfc/rfc4510.txt

NOTES

1 National Institute of Standards and Technology is the
federal technology agency that works with industry to
develop and apply technology, measurements, and
standards. For more information see
http://www.nist.gov and
http://csrc.nist.gov/\publications/PubsSPs.html

2 Federal Information Security Management Act is a federal
law enacted as title III of the E-Government Act of
2002. For additional information see
http://csrc.nist.gov/groups/SMA/fisma/overview.html
for additional information.

3 Federal Information Processing Standard issued under the
Information Technology Management Reform Act of 1996
began to issue standards and guidelines developed by
the National Institute of Standards and Technology
(NIST) for Federal computer systems. For additional
information see
http://www.itl.nist.gov/fipspubs/geninfo,htm

4 Black Box Penetration Testing requires no knowledge of
the system being tested and simulates the approach of
an uninformed attacker, or hacker, attempting to
breach the system.

5 XACML stands for extensible Access Control Markup
Language and is used in programming access control
policies. The language is implemented in XML and used
a process model to evaluate access control queries
according to the information flow policy of an
organization.

6 The Ponder language provides a common means of
specifying security policies that map onto various
access control implementation mechanisms for
firewalls, operating systems, databases and Java
(Damianou, 2001).

7 A conceptual model used in project management through
which a new information system develops from the
initial feasibility study and Design stage of the new
system to maintenance of the completed system.

66

http://www.nist.gov
http://csrc.nist.gov//publications/PubsSPs.html
http://csrc.nist.gov/groups/SMA/fisma/overview.html
http://www.itl.nist.gov/fipspubs/geninfo,htm

8 Trust boundaries, according to Microsoft, are determined
by identifying whether an asset's upstream data
flows, or user input, are trusted or not and the
method used to authenticate, or authorize, these data
flows, or user inputs, if they are not.

9 Multi-Level Security is the application of security
controls in a computer system to restrict the access
of information/resources/assets based on security
clearance/sensitivity (i.e. top secret, secret, etc...)
and the need to know level (categories) of people
using the system.

10 NISTIR 7316, National Institute of Standards and
Technology, Gaithersburg, MD 20899-8930 September
2006. http://csrc.nist.gov/publications/nistir/
7316/NISTIR-7316.pdf

11 Bell-LaPadula Model is used to define access control in
government and military organizations and was
developed by David Elliott Bell and Leonard J.
LaPadula, to establish U.S. Department of Defense
(DoD) Multi-Level Security (MLS) policy.

.1

12 An information, flow policy defines the different
classes of information in an agency that can exist in
a system and how information flows between them.

13 The lattice based security model (access control
model)is based on a complex interactions between any
combination of objects (assets or resources) and
subjects (people or groups of people).

14 Mandatory Access Control (MAC) is a security mechanism
that restricts the level of control that users
(subjects) have over the objects that they create.
Unlike in a Discretionary Access Control (DAC)
implementation, where users have full control over
their own files, directories, etc., MAC adds
additional labels, or categories, to all file system
objects. Users and processes must have the
appropriate access to these categories before they
can interact with these objects. Source:
http://www.centos.org/docs/5/html/5.l/Deployment_Guid
e/sec-mac-introl. html

67

http://csrc.nist.gov/publications/nistir/
http://www.centos.org/docs/5/html/5.l/Deployment_Guid

15

16

17

X.500 data model has been adopted by the LDAP protocol.
For additional information please refer to RFC 2251.

For more detailed information regarding attributes,
please refer to RFC 2251.

Newer versions of CentOS have changed the method of
implementing OpenLDAP; please refer to the website
www.openldap.com for updated instructions.

68

http://www.openldap.com

	Developing focused auditing tools: A practical framework for creating formalized multi-level security policy specifications
	Recommended Citation

