
California State University, San Bernardino California State University, San Bernardino 

CSUSB ScholarWorks CSUSB ScholarWorks 

Theses Digitization Project John M. Pfau Library 

2011 

An open source infrastructure for 3D virtual worlds An open source infrastructure for 3D virtual worlds 

Amita Kale 

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project 

 Part of the Software Engineering Commons 

Recommended Citation Recommended Citation 
Kale, Amita, "An open source infrastructure for 3D virtual worlds" (2011). Theses Digitization Project. 
3924. 
https://scholarworks.lib.csusb.edu/etd-project/3924 

This Project is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has 
been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks. 
For more information, please contact scholarworks@csusb.edu. 

https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd-project
https://scholarworks.lib.csusb.edu/library
https://scholarworks.lib.csusb.edu/etd-project?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F3924&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F3924&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd-project/3924?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F3924&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu


AN OPEN SOURCE INFRASTRUCTURE

FOR 3D VIRTUAL WORLDS

A Project

Presented to the

Faculty of
California State University, 

San Bernardino

In Partial Fulfillment
of the Requirements for the Degree

Master of Science
in

Computer Science 

by
Amita Kale
June 2011 ■I i



AN OPEN SOURCE INFRASTRUCTURE

FOR 3D VIRTUAL WORLDS

A Project

Presented to the
Faculty of

California State University, 
San Bernardino 

by

Amita Kale
June 2011

Approved by

Dr. David A. Turner, Advisor, School of 
Computers Sc/ence/and Engineering



© 2011 Amita Kale



ABSTRACT

Geng is an ongoing project at the School of Computer Science and Engineering at Cal­
ifornia State University San Bernardino. Geng is derived from the words “Game” and 
“Engine”. Geng is a platform independent library that can be used to construct 3D 
virtual worlds. The Geng library provides an API that can be used by applications to 
create 3D games or simulations. The Geng library is written to facilitate integration 
with application code written in other languages such as C++, Java, C#, Python, 
etc. In addition to 3D graphics, the Geng library also provides integration with the 
Bullet Physics Library through the Geng Physics API. Geng has gone through three 
iterations in past. The first iteration included rendering models and integration with 
the Bullet Physics Library. The second iteration included implementing game Al 
using expert systems. The third iteration included creating a multi platform graphics 
engine in which, CG shaders were used to render the game assets and Simple Direct 
Media Layer(SDL) library was used to handle input events. This project is the fourth 
iteration of Geng. The main purpose of this iteration is to re-structure and enhance 
the Geng library. The re-structuring involves defining and adhering to clearly stated 
organizational principles and coding standards. The enhancements involve eliminat-

51

ing the dependencies on third party applications Simple Direct Media Layer(SDL) 
and CG. It also involves creating exporters for the 3D modeling applications Maya 
and Blender.

iii



ACKNOWLEDGEMENTS

I would like to thank my project advisor Dr. David Turner for his guidance, help, and 
support. I would also like to thank my committee members Dr. Arturo I. Concepcion 
and Dr. Tong Lai Yu for their help and support. I would like to thank Dr. Mendoza, 
my graduate advisor.

Last but not the least I would like to thank my husband Chinmay for his love and 
support.



TABLE OF CONTENTS

Abstract............................................... iii

Acknowledgements....................................... iv

List of Tables........................................... viii

List of Figures.......................................... ix

1. Introduction ................................... 1
1.1 Background...................................... 1
1.2 Purpose......................................... 1
1.3 Project Scope..................................... 2
1.4 Project Limitations................................. 2

2. System Architecture and Organizational Principles............... 4
2.1 Restructuring..................................... 4
2.2 Geng API.........   6
2.3 Organizing Principles . ... '................  9

2.3.1 Restrict global functions to the Geng API............. 9
2.3.2 Associate handles with pointers through C++ maps......  10
2.3.3 Follow capitalization rules........................  11
2.3.4 Use consistent singleton patterns....................  11
2.3.5 Put platform dependent logic/code in sub-classes......... 12

v



2.3.6 Assets should be in the Geng specific format............ 13
2.4 Coding Standards.................................. 14

3. Graphical User Interface (GUI) 15
3.1 Geng GUI....................................... 15
3.2 Geng GUI Primitive 17

4. Scene Rendering 25
4.1 Geng Scene 25
4.2 Geng Scene Primitive................................ 26

5. Picking .................     34
5.1 Object Picking.................................... 34
5.2 Picking in Geng.................................... 36

6. Art Asset Processing.................................... 40
6.1 Shaders for Asset Rendering........................... 40
6.2 Geng Asset Conversions.............................  42
6.3 Image Converter ..................................  44
6.4 Exporter for Maya................................. 45
6.5 Exporter for Blender................................ 50

7. Geng Library Usage 57
7.1 Geng Initializations................................. 57
7.2 Geng Graphics 58
7.3 Event Handling.................................. 59
7.4 Geng Physics Library................................ 61

8. Conclusion and Future Direction 65
8.1 Conclusion...................................... 65

vi



8.2 Future Direction ..................................  66
8.3 Definitions, Acronyms, and Abbreviations ................. 67

References.............................................  70

vii



LIST OF TABLES

2.1 Dynamic Library Files Produced from the Geng Project ....... 7

5.1 Pickable Object Map................................ 37

viii



LIST OF FIGURES

2.1 The Previous Geng Architecture........................   5
2.2 The New Geng Architecture........................... 6
2.3 The Four Builds of Geng............................. 8
2.4 Graphics Class Hierarchy.............................  13

3.1 Screen Positions.................................... 17
3.2 The GuiPrimitive Class and its Associated Classes............ 19
3.3 The GuiVertex Class................................ 20
3.4 The VertexBuffer Class............................... 20
3.5 The IndexBuffer Class............................... 21
3.6 The Shader Class.................  21
3.7 The Matrix Class..................................... 22
3.8 The Texture Class ................................. 22
3.9 The Font Class.................................... 22
3.10 Rendering GUI Primitives............................ 24

4.1 The ScenePrimitive Class and its Associated Classes........... 28
4.2 The Mo del Vertex Class...............   29
4.3 The VertexBuffer Class............................... 29
4.4 The IndexBuffer Class............................... 30
4.5 The Shader Class..................................  30
4.6 The Matrix Class.................  31

IX



4.7 The Texture Class   31
4.8 Rendering Scene Primitives . ........................... 33

5.1 The Picker Class..................................  35
5.2 Normal Rendering ................................. 38
5.3 Pick Rendering.................................... 39

6.1 Gengrimage File Format.............................  42
6.2 Geng_model File Format.............................  43
6.3 Maya Application..................................  47
6.4 Maya Application Creating a Mesh...................... 48
6.5 Select Texture File................................. 49
6.6 Maya Application Texturing a Mesh . ...................... 50
6.7 Blender Application.......................   53
6.8 Mesh Menu...................................... 54
6.9 UV Image Editor..................................  55
6.10 Load Texture..................................... 55
6.11 Draw Type Textured................................ 56
6.12 Export................................. ;....... 56

7.1 Entity Class Hierarchy..............................  63

x



1. INTRODUCTION

1.1 Background

Geng is an ongoing project at the School of Computer Science and Engineering at 
California State University San Bernardino(CSUSB). Geng is derived from the words 
“Game” and “Engine”. Geng has gone through three major iterations in the past. 
The first iteration was done by William Herrera, a former CSUSB student. His 
contribution included terrain generation, integration with the Bullet Physics Library 
[2], loading and rendering of models, and implementing a multi-player system. The 
second iteration was done by Christopher Ballinger, a former CSUSB student. He 
experimented with embedding a web browser inside the game. He also implemented 
game Al using expert system called Drools [8]. The third iteration was done by David 
Stover, a former CSUSB student. He created a Multi-Platform All-Purpose Graphics 
Engine. He integrated Geng with the Bullet Physics Library. He used CG shaders to 
render 3D models and animations [11].

1.2 Purpose

This project is the fourth iteration of Geng. The purpose of this iteration is three­
fold. The first purpose is to completely re-structure the Geng library, to improve the 
efficiency and the maintainability of the code. The second purpose is to enhance the 
Geng library by eliminating the dependencies on third party applications and adding 
utilities to broaden the scope of assets, which can be rendered using the Geng library.

1



The third purpose is to build exporters to export 3D models from 3D modeling ap­
plications to the Geng specific file format.

1.3 Project Scope

The scope of this project includes creating a new architecture and defining organiza­
tional principles for the Geng library. The Geng library provides a set of functionality 
in the form of an API. The functions in the API can be used to create the following,

• Scientific simulations

• Multi-player games

• Shared virtual worlds

This project also eliminates dependencies on the third party applications Simple 
Direct Media Layer(SDL) and CG shaders. Simple Direct Media Layer(SDL) was 
used in the previous Geng library, mainly to create the application window and to 
handle input events. CG shaders were used by the previous Geng library to render 
assets. However, in this project, these dependencies are eliminated. In place of 
Simple Direct Media Layer (SDL), this project uses the operating system functions, 
to create the application window and to handle input events. Also, in place of CG 
shaders, this project uses OpenGL Shader Language(GLSL) and High Level Shader 
Language(HLSL) to program the video system. This project provides two exporters 
to convert assets created in the 3D modeling applications Maya [7] and Blender [1] 
to the Geng specific file format.

1.4 Project Limitations

This project has the following limitations.

2



• The Geng library can not be used as a complete general purpose game engine to 
create a game; it provides a basic starting point for a 3D application. However, 
eventually the users will have to make changes to the Geng library to match 
their requirements.

• The Geng library currently does not support animated 3D models and particle 
systems.

3



2. SYSTEM ARCHITECTURE AND ORGANIZATIONAL PRINCIPLES

2.1 Restructuring

Re-structuring of the previous Geng library is motivated by its architectural limita­
tions. The previous Geng architecture is shown in Fig. 2.1. This digram was taken 
from [11]. It consists of components such as core graphics, GUI, text, video and 
model. Core graphics include the functionality that uses the OpenGL and DirectX 
components.

4



External Program

Fig, 2.1: The Previous Geng Architecture

GENG API

GENG CORE

GUI Text Video Model Terrain

SDL 
MuhTThrcmi 

& 
Events

Bullet Physics
& 

Mash

Core Graphics

OpenGL Direc53O SDL 
Graphics

The limitations of the previous architecture are as follows.

• The separation of concerns shown in Fig. 2.1 is not clearly expressed in the 
code. The existing code can be re-organized into separate libraries to increase 
maintainability of the code.

• There is a dependency on the third party applications Simple Direct Media 
Layer(SDL) and CG shaders. Simple Direct Media Layer(SDL) is used to create 
an application window and to handle input events, whereas CG shaders are used 
to render assets. This adds complexity to the build and confines Geng to the 
limitations of these libraries.

• There are inadequate coding conventions and organization principles followed, 
which makes it difficult to maintain and enhance the code.

5



• Previously only .x file format was supported for loading static 3D models.

The new Geng architecture is an attempt to overcome all the limitations listed 
above. Fig. 2.2 shows the new Geng architecture.

Fig. 2.2: The New Geng Architecture

Game

portabilityjayer SoundSystem

SDL 1.3 OpenGL/DirectSD FMOD

The new Geng architecture has a clearly defined API. This API acts as a platform 
independent graphics engine providing graphics functionality to the user application. 
It internally accesses OpenGL or DirectX graphics APIs depending on the platform. 
Sound System is a C# wrapper for FMOD [4] functions. This hides the complexity 
of FMOD functions from the user application. Sound System functions can be used 
by the user application to get interactive audio functionality. Geng Physics is a C++ 
wrapper for the Bullet Physics Library. Bullet is an open source physics library 
that provides the functionality such as soft and rigid body dynamics and collision 
detection. Geng Game is our example application that uses functions form the Geng 
API. Geng Game is written in C#. However, Geng Game can be written in C++, 
Python, Java or any other language that integrates with libraries that have C linkage.

2.2 Geng API

Geng is a library that provides a set of functionality to facilitate creation of real­
time graphical simulations such as video games and scientific simulations. The Geng 

6



library is implemented for the commdn desktop operating systems Linux, Windows 
and OSX. For Windows, there are two versions of the library: one that relies on 
OpenGL and another that relies on DirectX. Therefore, there are four builds of the 
Geng project, which lead to four distributable binary versions of the library. These 
library binaries are listed in Tab. 2.1

Thb. 2.1: Dynamic Library Files Produced from the Geng Project

Dynamic Libraries Description

geng_win_dx.dll Geng API for Windows based applications that make use of DirectX

API for graphics.

geng_win_gl.dl Geng API for Windows based applications that make use of OpenGL

API for graphics.

geng_osx.dylib API for Mac based applications that make use of OpenGL API for 

graphics.

geng_linux.so Geng API for Windows based applications that make use of OpenGL

API for graphics.

The Geng library internally uses object-orientated techniques. However, its ex­
ported functions have C linkage. The reason for this is to make use of object-oriented 
architecture in order to improve readability of the code, yet provide a C-style inter­
face to outside users of the code in order to make it easy to integrate Geng with code 
written in other languages. Another .reason to give the exported functions C linkage 
is to provide a standard object format that can be used by all compilers. (C++ 
linkage is not standardized, and not all compilers produce compatible library files.) 
The Geng library has been tested with programs written in C++, C# and Java.

The exported functions in Geng are referred to as the Geng API. This interface does 
not include classes, enums, strings, and other C++ constructs that do not appear in 
the C language because it is designed as a C interface. However, C++ classes, enums, 

7



and strings are used extensively in the internal implementation of the Geng API.
One of the architectural principles that was followed was to minimize the use of 

global C-style functions. However, global C-style functions are needed to implement 
the API functions, and they were also convenient in a few cases for implementing 
callback functions needed to interact with the operating system and other libraries. 
The implementation of the Geng API functions was organized into seven files. This 
was done to allow maximum reuse of identical code across the different builds of the 
Geng library. These seven API implementation files are shown in Fig. 2.3.

I I '■ I I
gengLwin_dx.dll gengLwin_gIJll geng_osx.dylib geng_linux.so

Fig. 2.3: The Four Builds of Geng

All the seven files shown in the Fig. 2.3 directly implement the functions declared 
in the Geng API. The file geng.cpp contains the code that works for all the builds. 
This includes functions such as Tick(), which is used to process user input events 
and generate video frames. The file geng_win.cpp contains the code that works for 
the two Windows builds. This code is responsible for creating an application win­
dow, handling windows events, and initializing the graphics sub-system. The file 
geng_win_dx.cpp contains the code that works for the Windows build for DirectX. The 

8



file geng_win_gl.cpp contains code that works for the Windows build for OpenGL. The 
file geng.gl.cpp contains the code that works for OpenGL builds for Linux and OSX. 
The file geng_osx.cpp contains the code that works for the OSX build for OpenGL. 
The file gengJinux.cpp contains the code that works for the Linux build for OpenGL.

2.3 Organizing Prin ciples

The Geng library adheres to the organizational principles that are listed as follows.

1. Restrict global functions to the Geng API.

2. Associate handles with pointers through C++ maps.

3. Follow capitalization rules.

4. Use consistent singleton patterns.

5. Put platform dependent logic/code in sub-classes.

6. Assets should be in the Geng specific format.

Each of the organizational principles listed above are explained in detail as follows.

2.3.1 Restrict global functions to the Geng API.

All the global functions are restricted only to the Geng API. The Geng API functions 
are global, C functions. The code that directly implements these API functions calls 
into the internal object oriented architecture. Thus, all global functions should be a 
part of the Geng API. All the other functionality should be written in the form of 
classes and objects.

Consider the function SetBackgroundColor(). This function sets the background 
color of the application window according to the color values passed to it. The 
function is declared in geng.h as a global function as shown in the following code.

9



GENG_API void SetBackgroundColor(float red, float green, float blue, float alpha);

However the implementation of this function is as follows.

void SetBackgroundColor(float red, float green, float blue, float alpha)

(

graphics->setBackgroundColor(red, green, blue, alpha);

)

In the above code, the setBackgroundColor() function of the Graphics class is 
invoked through the graphics pointer.

2.3.2 Associate handles with pointers through C++ maps.

The user application can create Geng primitives, such as GUI primitive objects or 
scene primitive objects using the functions provided by the Geng API. To perform 
operations on a primitive object, the user application has to pass a reference of that 
particular primitive object to the Geng API. However, as mentioned earlier, the Geng 
API has C linkage. Hence, pointers to the primitive objects cannot be directly passed 
through the Geng API. To resolve this problem, the Geng API uses integer handles 
that correspond to the Geng primitive objects. When a Geng primitive is created by 
the user application using a Geng API function, the Geng API function returns an 
integer handle corresponding to that Geng primitive object. This handle is stored by 
the user application and can be used to perform operations on the Geng primitive. 
Inside Geng, this integer handle is converted into an object pointer using a C++ map 
that associates the integer handles with the object pointers.

The following example shows how the maps associating handles with pointers work.
V I

To use Geng to implement a label, the user application needs to call two functions 
from the Geng API. Firstly, the user application has to call CreateGuiPrimitive() in 
order to create an instance of a GUI primitive. This call is shown in the following 
code sample.

10



int titleHandle = Geng.CreateGuiPrimitive

(Geng.ScreenPositionUpperCenter ,

0, -40, Geng.True);

’ As shown in' the code sample above, CreateGuiPrimitive () function returns the 
integer handle corresponding to the GUI primitive. The user application stores this 
handle. Also internally Geng creates a map entry for the GUI primitive handle 
corresponding to the GUI primitive object pointer.

Secondly, the user application should call SetGuiPrimitiveLabel() from the Geng 
API to configure the GUI primitive to render a string of text. To do this we need 
to pass the GUI primitive handle as well as the font to use and the string to render. 
This function invocation is shown in the following code.

Geng.SetGuiPrimitiveLabel (titleHandle, "fonts/miso_32", 0, "Welcome", 0, 0);

The SetGuiPrimitiveLabel function converts the integer handle passed by the user 
application to GUI primitive object pointer.

2.3.3 Follow capitalization rules.

The following capitalization rules should be followed by the Geng library.

• All the API functions should start with the first letter capitalized. This is to be 
consistent with C#, which is the primary user language of the Geng API.

• All the .h files that have class declarations should be first letter capitalized.

• All the classes should start with the first letter capitalized.

• All the class member functions should start with the first letter lower cased.

2.3.4 Use consistent singleton patterns.

All the platform independent code in the Geng library is coded in the generic parent 
classes and the platform dependent code is coded in a sub-class of the platform 

11



independent class. These platform independent classes are singletons and a specific 
style is used to access the platform dependent code using these singletons.

Consider the following example.
Graphics is a generic class that has sub-classes GraphicsDx and GraphicsGl as 

shown in Fig. 2.4. These sub-classes contain the platform specific code. Graphics is a 
singleton class. The following pattern is .used to instantiate it and access the platform 
dependent code.

In GraphicsDx.cpp and GraphicsGl.cpp, a pointer to the sub-class is created and 
it is assigned to the pointer to the base class as shown in the following code.

For Dx:

GraphicsDx * graphicsDx •= new GraphicsDx () ;

Graphics * graphics = graphicsDx;

For Gl:

GraphicsGl * graphicsGl = new GraphicsGl();

Graphics * graphics = graphicsGl;

Wherever there is need to access the platform dependent code from the Graphics 
class, the pointer is declared as shown in the following code.

extern Graphics *graphics;

This graphics pointer can be used to access the member functions of the Graphics 
class which in turn would call the platform specific functions.

2.3.5 Put platform dependent logic/code in sub-classes.

The object oriented code in the Geng library is divided into two types of classes: 
the generic parent classes, which have the functionality common across the platforms 
and the sub-classes, which define platform specific code. The generic parent classes 
have pure virtual functions. These functions are defined in the sub-classes. Consider 
the Graphics class. Graphics is a generic parent class that has the functionality 

12



common across the platform. The Graphics class also has pure virtual functions, 
which have different definitions in the platform specific sub-classes: GraphicsDx and 
GraphicsGl. Consider the init() function. It is a pure virtual function that is declared 
in the Graphics class and is defined in GraphicsDx and GraphicsGL respectively. The 
following Fig. 2.4 shows the Graphics class hierarchy.

Fig. 2.4: Graphics Class Hierarchy

The init() function is declared as pure virtual and defined in the sub-classes.

2.3.6 Assets should be in the Geng specific format.

Assets are the building blocks of any game or simulation. Assets can be images or 
static models that need to be rendered in the game. Geng has different types of assets 
such as images, static 3D models, font descriptors etc.

The format of these assets should be converted into the format that is specific to 
Geng. The Geng specific format makes it simpler to run platform independent code. 
Thus, all the assets must be converted into the Geng specific format before loading 
them in Geng. This is done using the exporters. Two exporters are written for the 
3D modeling applications, Maya and Blender. These exporters convert static models 
created using Maya and Blender into Geng specific file format. The model file names 
end with .geng_model. Also there is an asset conversion tool to convert images to the 
Geng specific file format. The Geng image file names end with geng_image format.

13



Having Geng specific formats for the assets makes it easier to render them in any 
platform. In addition, it moves the code complexity to the exporters, keeping the 
implementation of the Geng API simpler.

2.4 Coding Standards

The advantages of specifying and adhering to a coding standard include the following.

• Enforcing the style increases the readability of code.

• Coding standards make the code consistent, which increases maintainability of 
code.

• The coding standards allow the use of C++ language features more effectively.

Geng follows the Google style guide for C++ [6] coding with several exceptions. These 
exceptions are as follows. , :

• Variables and constants naming conventions are different for Geng. They start 
with lower case and have no underscores. Consider the following sample code 
that shows how variables are declared in the Geng library.

static int sceneViewHandle = 0;

static int nextHandle = 1; // Zero handle means null pointer.

• Functions naming rules are different for Geng. All the functions start with the 
lower case except for the Geng APIS functions, which start with the upper case. 
Consider the following sample code that shows how the Geng API functions are 
declared in the Geng library.

GENG_API void InitWindowed(unsigned int screenwidth,

unsigned int screenHeight,

const char * title);

GENG—API void SetWindowClosingHandler(WindowClosingHandler windowClosingHandler);

14



3. GRAPHICAL USER INTERFACE (GUI)

3.1 Geng GUI

The graphical user interface (GUI) is an important part of any graphical application. 
For the gaming application or any graphical simulation, GUI plays an important role 
to display status information, provide navigation etc. For a game application, GUI 
can also be referred as the Heads Up Display (HUDj. The HUD is used to display 
player related information such as the game level, player’s health, weapons etc.

The Geng library provides a single GUI primitive object to the users of this library. 
This GUI primitive can be used to render a line of text or an image. This can be 
used in combination to create controls such as labels, input boxes, buttons, images 
and other controls.

The GUI is rendered on the top of a 3D scene. When the user clicks anywhere 
on the application window, first it is checked if a GUI primitive is clicked. Then it 
is checked if a scene primitive is clicked. Thus the GUI primitive has the highest 
priority for the mouse click event.

In the Geng library, the GUI class functions as a manger of the GUI primitives.
This class maintains the list of all the GUI primitives created by the user application. • 
The GUI class makes use of the following functions to manage the GUI primitives.

• void init()
This function initializes the GUI primitive, creates an empty quad and initializes 
an orthographic projection matrix.

15



• void determines creenCo ordinates (int screenPosition, int xOffset, int yOffset, int
* screenX, int * screenY)
This function returns the screen, co-ordinates, which are screenX and screenY 
depending on the given screen position and offset.

• Matrix * getGuiOrthoProjectionMatrix()
This function returns a pointer to an orthographic projection matrix.

• IndexBuffer * getQuadIndexBuffer()
This function returns a pointer to the index buffer used for rendering GUI prim­
itives.

• void addGuiPrimitive(GuiPrimitive * guiPrimitive)
This function adds the GUI primitive to the list of the GUI primitives that are 
rendered. This is done when the user code sets the GUI primitive visibility to 
true.

<• void removeGuiPrimitive(GuiPrimitive * guiPrimitive)
This function removes the GUI. primitive from the list of the GUI primitives being 
rendered. This is done when the user code sets the GUI primitive visibility to 
false.

• void render(bool picking)
This function renders all the GUI primitives in the list of the GUI primitives 
to be rendered. If the picking parameter is set to true, then the pick shader is 
activated and pick rendering mode is selected. If the picking parameter is set to 
false, then the normal rendering happens.

• void removeAllGuiPrimitives()
This function removes all the GUI primitives from the list of the GUI primitives 
to be rendered.

.16



3.2 Geng G UI Primi ti ve

The Geng library provides the functions to create a GUI primitive. Creating a GUI 
primitive is a two step process.

The first step involves creating an empty GUI primitive and the second step in­
volves setting the GUI primitive to display text or display image or display both. The 
following is the code for the function that is used to create a GUI primitive. This 
function returns the integer handle to that GUI primitive, which is used for invoking 
subsequent operations on the GUI primitive.

GENG_API int CreateGuiPrimitive(

int screenPosition,

int xOffset,

int yOffset,

int visible);

In Geng, the application screen is divided into nine regions as shown in Fig. 3.1.

Fig. 3.1; Screen Positions

Upper Left Upper Center Upper Rght

Middle Left Desd Center Middle Right

Lower Left Leaver Center Lower Right

The screen position value identifies on where on the screen the user wants the
GUI primitive to be rendered. The xOffset and the yOffset are the x, y offsets from 

17



the origin of the given screen position for the GUI primitive. The visible flag sets 
the visibility for the GUI primitive. When its value is true, then the GUI primitive 
is visible. The CreateGuiPrimitive() function returns an integer handle to the GUI 
primitive.

Once the handle to the GUI primitive is acquired, then according to the user’s 
requirement, the GUI primitive can be set to display either image or text or both. 
The following code sample shows the function that is used to set the GUI primitive 
to render an image.

GENG_API void SetGuiPrimitivelmage(

int guiPrimitive,

const char * genglmageFilename);

This function tells the GUI primitive to render an image. The integer handle of 
the GUI primitive is passed to the SetGuiPrimitivelmage() function along with the 
image filename for the image that needs to be rendered.

The following is a function that is used to set the GUI primitive to render text.

GENG^API void SetGuiPrimitiveLabel(

int guiPrimitive,

const char * fontName,

int maxCharacters,

const char * text,

int textOffsetX,

int textOffsetY) ;

This function tells the GUI primitive to render text. The integer handle is passed 
to the SetGuiPrimitiveLabel() function along with the font and the text that needs to 
be rendered. The following is the C# code sample that uses the Geng API functions 
to render the GUI primitive text.

int titleHandle =

18



Geng.CreateGuiPrimitive(Geng.ScreenPositionUpperCenter,

0, -40, Geng.True);

Geng.SetGuiPrimitiveLabel(

titleHandle,

"fonts/miso_32",

0, "Welcome1’, 0, 0) ;

The code above, renders the GUI text “Welcome”. CreateGuiPrimitive() returns 
the handle to the GUI primitive. This handle is passed to the SetGuiPrimitiveLabel() 
along with the font and the string to be rendered.

The Geng library for now supports only one font miso_32. The font files are 
generated using AngleCode Bitmap Font Generator. It runs under windows and 
generates bit-mapped fonts from true type fonts. The files miso_32.fnt and miso_32.tga 
were generated from the AngleCode Bitmap Font Generator. The miso_32.fnt file was 
converted into miso_32.gengjmage file to transform it into the Geng specific image 
file format. The image file has the actual letters and numbers for the font and the 
miso_32.fnt file has information such as width, height, kerning etc.

The GuiPrimitive class is the main class that has functions to create the GUI 
primitives. The GuiPrimitive class has the associated classes as shown in the Fig. 3.2.

Fig. 3.2: The GuiPrimitive Class and its Associated Classes

19



All the classes in the Fig. 3.2 are explained as follows.
The VertexBuffer class creates a vertex buffer. A vertex buffer contains the vertex

data. The GuiVertex class defines the data each vertex holds for a GUI primitive.
As shown in Fig. 3.3, the GuiVertex class holds x, y, z co-ordinates and u,v texture 
co-ordinates.

GuiVertex
tx: float
+y: float 
■s-z: float
+u: float 
fv; float
adding[3]: float

Fig. 3.3: The GuiVertex Class

A vertex buffer is implemented differently in OpenGL and DirectX. Hence, there 
are different classes for the OpenGL and DirectX implementations as shown in Fig. 3.4.

VertexBuffer

| Vei texBufferDx | |VertexBufferGl|

Fig. 3.4: The VertexBuffer Class

The IndexBuffer class creates an index buffer. An index buffer contains the list of
vertices in the required drawable order. An index buffer is implemented differently 
in OpenGL and DirectX. So there are different classes for the OpenGL and DirectX 
implementations as shown in Fig. 3.5.

20



Fig. 3.5: The IndexBuffer Class

The GUI primitives are rendered using shaders. The Shader class gives access 
to the shader programs. The Shader class functions activate shaders and pass pa­
rameters to them. There are two types of shader languages, High Level Shader 
Language(HLSL) and OpenGL Shader Language(GLSL).

HLSL shader code for the GUI primitives is stored in a file called gui.fx. This 
gui.fx file has the code for both vertex shaders and fragment shaders.

GLSL shader code for the GUI primitives is stored in two files gui.vert and gui.frag. 
The gui.vert file has the code for vertex shader and the gui.frag file has the code for 
the fragment shaders.

The shaders are implemented differently for OpenGL and DirectX. Hence there 
are different implementations of the Shader class for the different platforms. This is 
shown in Fig. 3.6.

Fig. 3.6: The Shader Class

The Matrix class is used to set the world matrix and projection matrix. Matrices 
are set differently in DirectX and OpenGL so there are different implementations of 
the Matrix class as shown in Fig. 3.7.-

21



Fig. 3.7: The Matrix Class

The Texture class is used to load images for the GUI primitives. It gets the x, 
y and u,v co-ordinates for the image that are used to render GUI primitive Image. 
Textures are implemented using different derived classes for DirectX and OpenGL as 
shown in Fig. 3.8.

Fig. 3.8: The Texture Class

The Font class is used by the GUI primitive to render text. To render a single 
character, a quad is created and is textured with the image from the font image file. 
The information about the position of a character in the image file and also the height 
and the width of character is stored in the font descriptor file and is retrieved using 
the Glyph structure.

Fig. 3.9: The Font Class

The Geng Library provides the functionality to handle events for the GUI primi­
tives. The GUI primitives such as text and image can be associated with events such 
as mouse clicks. To check if any GUI primitive is clicked, a picking technique is used.

22



This picking technique is explained in detail in chapter 5. The following C# code 
sample shows how to handle mouse click events.

int woodHandle » Geng.CreateGuiPrimitive(

Geng.ScreenPositionDeadCenter, 0, 0, Geng.True);

Geng.SetGuiPrimitivelmage(woodHandle, "gui/wood_64_64.geng_image");

Geng.SetGuiPrimitiveHandler(woodHandle, HandleTitleClick);

public void HandleTitleClick(int handle)

{

Geng.SetKeyHandler(null);

Geng.UnloadGraphics();

Program.Instance.ChangeState(null);

}

After creating an empty GUI primitive and setting it to render an image, Set- 
GuiPrimitiyeHandlerQ function is called. This function needs to be called to associate 
an integer event handle with a function. Here the function HandleTitleClick() is asso­
ciated with the handle for the GUI primitive. Thus the function HandleTitleClickQ 
is called on the mouse click event. The images, that are used to texture the GUI 
primitives can be created using image manipulation programs such as GIMP. These 
images have to be converted to the Geng specific file format using asset conversion 
tool or using the Geng exporters for Blender or Maya.

The following Fig. 3.10 shows how GUI primitives are rendered on the application 
window. It shows three GUI primitives. One is rendered as text which is “Geng 
Game” and the other two are rendered as images.

23



Fig. 3.10: Rendering GUI Primitives

24



4. SCENE RENDERING

4.1 Geng Scene

The scene is an important part of any game or graphical simulation. It is the 3D 
space in which game objects move around or are placed in. In a typical 3D game, a 
scene consists of static 3D objects such as trees and houses, game characters (which 
can be static or animated 3D models), and particle systems such as clouds and water.

In Geng, the scene is rendered using the scene primitives. These scene primitives 
can be static models, animated models or particle systems. Currently Geng supports 
rendering of only static models.

While rendering the application, the scene primitives are rendered before the GUI 
primitives. So the GUI primitives, are rendered on the top of scene primitives.

The difference between rendering the GUI and rendering the scene is that the GUI 
is rendered in 2D with no depth value. However scene is 3D space, which is rendered 
with the Z-buffer enabled. The Z-buffer is also called the depth buffer, which stores the 
depth information. The Z-buffer allows rendering of geometry behind other geometry. 
While rendering GUI objects the user needs to provide x and y co-ordinates. However, 
while rendering scene objects, the user needs to provide x, y, and z co-ordinates. The 
z co-ordinate represents the depth.

In the Geng library, scene class functions as a manger of the scene primitives. This 
class maintains the list of all the scene primitives created by the user application. The 
Scene class makes use of the following functions to manage the scene primitives.

25



a void addScenePrimitive(ScenePrimitive * scenePrimitive)
This function adds the scene primitive to the list of the scene primitives that are 
rendered. This is done when the user code sets the scene primitive visibility to 
true.

• void removeScenePrimitive(ScenePrimitive * scenePrimitive)
This function removes the scene primitive from the list of the scene primitives 
being rendered- This is done when the user code sets the scene primitive visibility 
to false.

a void render(bool picking)
This function renders all the scene primitives in the list of the scene primitives 
to be rendered. If the picking parameter is set to true, then the pick shader is 
activated and pick rendering mode is selected. If the picking parameter is set to 
false, then the normal rendering happens.

a void init()
This function initializes the scene primitive, sets the view matrix and sets pro­
jection matrix.

a void removeAllScenePrimitives()
This function removes all the scene primitives from the list of the scene primitives 
to be rendered.

a Matrix * getViewMatrix()
This function returns the pointer to the view matrix.

4.2 Geng Scene Primitive

The process of creating a scene primitive is a two step process

26



The first step involves creating an empty scene primitive and the second step 
involves setting the scene primitive to display a 3D static model. The following is the 
code for the function that is used to create a scene primitive. This function returns 
the integer handle to that scene primitive, which is used for invoking subsequent 
operations on the scene primitive.

GENG_API int CreateScenePrimitive(

float axisX, float axisY, float, axisZ,

float angle,

float x, float y, float z,

int visible) ;

The parameters axisX, axisY, axisZ, wangle, x,y,z decide the scene primitives posi­
tion in the screen space. The value for axisX is set to 1 if there is a rotation around 
x axis. The value for axisY is set to 1 if there is a rotation around y axis. The value 
for axisZ is set to 1 if there is a rotation around z axis. The angle is the angle of 
rotation, x, y and z are displacements along x-axis, y-axis and z-axis respectively. 
The visible flag sets the visibility for the scene primitive. This function returns the 
handle to the scene primitive. This handle is stored by the user application.

The following code shows the function provided by Geng API to set the scene 
primitive to render a 3D model.

GENG_API void SetScenePrimitiveModel(

int scenePrimitive,

const char * modelFilename);

This function tells the scene primitive to render a static 3D model. It takes as 
an argument, an integer handle to the scene primitive and the model filo name and 
displays a 3D static model. The following is a C# code sample, which shows how to 
set the scene primitive to render a 3D model,

int scenePrimitiveHandle -

27



Geng. CreateScenePriruitive (

0, 0, 0, 0, -10, 0, -1, 1);

Geng.SetScenePrimitiveModel(

scenePrimit iveHandle,

"scene/tiger.geng_model");

In the example above, a scene primitive is created and a model is assigned to the 
scene primitive. Tiger.geng_model is the static 3D model in geng compatible format.

The Sceneprimitive class is the main class that has functions to create the scene 
primitives. The ScenePrimitive class has the associated classes as shown in the 
Fig. 4.1.

Fig. 4.1: The ScenePrimitive Class and its Associated Classes

All the classes in the Fig. 4.1 are explained as follows.
The VertexBuffer class creates a vertex buffer. A vertex buffer contains the vertex 

data for the scene primitive. The ModelVertex class defines the data each vertex 
holds for a. scene primitive. As shown in Fig. 4.2, the ModelVertex class holds x, y, z 
co-ordinates, normals nx, ny, nz and u,v texture co-ordinates.

i

28



ModelVertex
+x-: .float 
+y:" float 
+z: float 
+nx: float 
■fny: float 
4nz>: flo'at 
'+u: ..float 
-kv:’ ;.fld'a.t.

Fig. 4.2: The ModelVertex Class

A vertex buffer is implemented differently in OpenGL and DirectX. So there are 
different classes for the OpenGL and DirectX implementations as shown in the fol­
lowing Fig. 4.3.

Fig. 4.3: The VertexBuffer Class

In VertexBufferGl class, the information about the location of vertex data(x, y, z) 
r texture co-ordinates(u, v) and normals(nx, ny, nz) in the ModelVertex is defined 
using the sample code shown as follows.
//point to the normals.

glNormalPointer (GL_FLOAT, sizeof (ModelVertex) ., BUFFER_OFFSET (normalDataOf f set) ) ; 

//point to the texture co-ordinates.

glTexCoordPointer(2, GL_FLOAT, sizeof(ModelVertex), BUFFER_OFFSET(uvDataOffset)); 

//point to the vertex data.

glVertexPointer(3, GL_FLOAT, sizeof(ModelVertex), BUFFER_OFFSET(0));

The IndexBuffer class creates an index buffer. An index buffer contains the list of 

29



vertices in the required drawable order. An index buffer is implemented differently in 
OpenGL and DirectX. Hence, there are different classes for the OpenGL and DirectX 
implementations as shown in the following Fig. 4.4.

Fig. 4.4: The IndexBuffer Class

The scene primitives are rendered using shaders. The Shader class gives the access 
to the shader programs. The Shader class functions activate shaders, pass param­
eters to them. There are two types of shader languages, High Level Shader Lan- 
guage(HLSL) and OpenGL Shader Language(GLSL)..
HLSL shader code for the scene primitives is stored in a file called model.fx. This 

model.fx file has the code for both vertex shaders and fragment shaders.
GLSL shader code for the scene primitives is stored in two files model.vert and 

model.frag. The model.vert file has the code for vertex shader and the model.frag file 
has the code for the fragment shaders.

Shaders are implemented differently for OpenGL and DirectX. Hence there are 
different implementations of the Shader class for the different platforms. This is 
shown in Fig. 4.5.

Fig. 4.5: The Shader Class

The Matrix class is used to set the world matrix and projection matrix. Matrices 

30



are set differently in DirectX and OpenGL so there are different implementations of
the Matrix class as shown in Fig. 4.6.

Fig. 4.6: The Matrix Class

The Texture class is used to load images for the scene primitives. It gets the x, y, 
normals nx, ny, nz and u,v co-ordinates for the image that are used to texture the 
scene primitive model. Textures are implemented using different derived classes for 
DirectX and OpenGL as shown in Fig. 4.7.

Fig. 4.7: The Texture Class

The Model class is used to load and render static 3D models.
Events on the scene primitives are handled in the same way as for the GUI prim­

itives. To check if any scene primitive is clicked, a picking technique is used. This 
picking technique is explained in detail in chapter 5. When it is confirmed that a 
particular scene primitive is clicked, then the function passed to the SetScenePrimi- 
tiveHandler() is invoked.

The following C# code is an example of handling mouse click event on a scene 
primitive.

int scenePrimitiveHandle =

Geng.CreateScenePrimitive(

31



0, 0, 0, 0, -10, 0, -1, 1);

Geng.SetScenePrimitiveModel(

scenePrimitiveHandle,

"scene/tiger.geng_model") ;

Geng.SetScenePrimitiveHandler( ■ '

scenePrimitiveHandle,

HandleTigerClick);

public void HandleTigerClick(int handle)

{

Geng.SetKeyHandler (null);

Geng.UnloadGraphics();

Program.Instance.ChangeState(null);

}

After creating an empty scene primitive and then telling the scene primitive to 
render a static 3D model, the SetScenePrimitiveHandler() function is called. This 
function associates the an integer handle for the scene primitive to a function. In this 
case the integer handle to the scene primitive is associated with the HandleTigerClick 
function. Hence when the user clicks on the scene primitive, the function Han­
dleTigerClick () is called. The static 3D models are created in the 3D modeling ap­
plications Maya or Blender. These models have to be converted to the Geng specific 
format using the Geng exporters.

The following Fig. 4.8 shows how a scene primitive is rendered on the application 
window.

32



Fig. 4.8: Rendering Scene Primitives

33



5. PICKING

5.1_ Object Picking

Object picking is a technique that determines if the user has selected a particular 
3D object (or a 3D primitive) with the mouse. Picking is often a necessity in 3D 
games and applications where the user interacts with the 3D world using the mouse. 
An object picking technique is used in the Geng library to check if a Geng primitive 
such as a GUI primitive or a scene, primitive is selected. The primitives in Geng are 
rendered in a particular order. First the scene primitives are rendered and then GUI 
primitives are rendered. Thus, when the user clicks on the application window, the 
following things happen.

• The Geng API functions first check if a GUI primitive is clicked. If a GUI 
primitive is clicked then the function corresponding to that GUI primitive is 
called.

© If a GUI primitive is not clicked, then the Geng API functions check if a scene 
primitive is clicked. If a scene primitive is clicked, then the function correspond­
ing to that scene primitive is called.

Object picking is coded in a platform, independent class called the Picker class. This 
class is shown in the Fig. 5.1.

34



Picker

+FlCker'(-) '
void - ,. . ■; <

■faUdGuiPrimitive'(■.*’guxEsdasitPriiitltive)": void 
+rembyeGuiPriiiiitive ( *+iPrlnative : GuiPxiitit;ivej : 'void 
-i-addSceriePrlmindveX* sceheFrisEEtxve: SceiseFrisiitxvej : void 
-t-reir.oveS cenePriifXtive (* scene Er irrit ive': ’Scene Primitive) ■: void 
-iTpipcessi^ftf,!b’aseButtcHippwn;(.sc£eenX:imsigned int:,

screenY:unsigned xr.r) : ^bool
-?clear() : void
-rigenexateC olorl ids; (inputCbiorId.1’4},: float, 

foutputCoXorld:unsigned xntf; void

Fig. 5.1: The Picker Class

The Picker class has the following functions.

• void init()
This function initializes the Picker class. It creates a projection matrix, sets
shaders, creates a vertex buffer and an index buffer for use in generating color
IDs.

• void addGuiPrimitive(GuiPrimitive * guiPrimitive)
This function generates an output color ID from a randomly selected input color
ID. It makes sure that a unique input color ID is generated for each GUI primi­
tive. Then it adds the GUI primitive to the list of pickable objects.

• void removeGuiPrimitive( GuiPrimitive * guiPrimitive)
This function removes the GUI primitive from the list of pickable objects.

• void addScenePrimitive(ScenePrimitive * scenePrimitive)
This function generates an output color ID from a randomly selected input color
ID, It makes sure that a unique input color ID is generated for each scene prim­
itive. Then it adds the scene primitive to the list of pickable objects.

• void removeScenePrimitive(Sceneprimitive * scenePrimitive)
This function removes the scenePrimitive from the list of pickable objects.

35



• bool processLeftMouseButtonDown(unsigned int screenX, unsigned int screenY)
■i-

This function checks if the event is consumed by objects click handler. Then it 
returns true otherwise it returns false.

• void clear ()
This function clears the list of pickable objects.

• void generateColorIds(float inputColorId[4], unsigned int * outputColorld);
This is a private function of the Picker class. It is called by addGuiPrimitive() 
and addScenePrimitive() functions of the Picker class. It returns the output 
color ID for the given input color ID.

Whenever a Geng primitive is created, such as a GUI primitive, or a scene primitive, 
it is added to the map for the pickable objects.

, 5.2 ' Picking in Geng

Each pickable object in Geng is is mapped to an input color ID and an output color 
ID. These are unique color IDs, which are generated when a primitive is created. 
The input color ID is randomly selected and the output color ID is generated using 
generateColorldsQ function from the1 Picker class. The need for two color IDs come 
from the fact that shaders are used to render the primitives in Geng. For a given 
input color ID, shaders can render different colors. In order to get the output color 
ID, a picker shader renders a small triangle in the middle of the screen with the input 
color ID and then a pixel is picked from that triangle and its color is determined and 
returned as an output color ID. So every time a pickable object is created by the user 
application, it is added to the map of pickable objects and then it is mapped to an 
input color ID and output color ID. This is shown in the Tab. 5.1.



Tab. 5.1: Pickable Object Map

Object Name float inputColorlD [4] unsigned int outputColorlD

Object 1 ColorOl ColorOS

Object 2 Color04 Color 11

Assets are rendered in Geng using shaders. There are different types of shaders 
for different platforms. There are two types of rendering in Geng. These are listed as 
follows.

• Normal Rendering is the default type of rendering. Every asset is rendered with 
its original color and texture settings.

• Pick Rendering is triggered by a mouse click. In this type of rendering, only the 
pickable objects are rendered with the input color IDs form the pickable object 
map; non-pickable objects are rendered with the color pure black.

Whenever a mouse click happens on the application window, the following events 
happen:

® The pick rendering is used for the Geng primitives.

• As a result of pick rendering, all the pickable objects are rendered with their 
input color IDs.

• Then, the color at the point on the application window, where the mouse click 
happened is obtained.

® Once the output color ID is acquired, the map of pickable objects is searched for 
that output color ID value.

• If an object corresponds to that particular output color ID, then the click event 
for that object is called.

37



Consider the Fig. 5.2. It shows how three GUI primitives are rendered with normal 
rendering. Each of these GUI primitives is pickable and hence has an input color ID 
and corresponding output color ID.

Fig. 5.2; Normal Rendering

Whenever the user clicks on the application window, pick render mode is triggered 
and each of the three GUI primitives are rendered with their input color IDs as shown 
in the Fig. 5.3. After the back video frame buffer is filled from a pick rendering 
operation, the system does not swap the video buffers, so the pick rendering has no 
visual effect except to possibly slow the frame rate by a small amount.

38



Fig. 5.3: Pick Rendering

Once it is determined which object is clicked, all the objects are rendered with 
normal rendering.

39



6. ART ASSET PROCESSING

6.1 Shaders for Asset Rendering

A shader is an executable program that runs on the graphics hardware. Shaders allow 
developers to write custom algorithms that can operate on the data that compose their 
virtual scenes. Shaders can be used to create just about any effect you can think of, 
which gives developers a high level of freedom and flexibility regardless of the graphics 
API being used. There are three types of shaders. They are listed as follows.

1. Vertex shader is the code executed on each vertex of the geometry passed to 
the graphics hardware. Input to the vertex shaders come from application itself. 
Vertex shaders perform calculations that are needed to be performed per vertex.

2. Geometry shaders sit between vertex shaders and pixel shaders. Once data 
is processed for vertex shaders, it is then passed to geometry shaders. These 
shaders are optional. The Geng library does not use geometry shaders.

3. Pixel shaders are also known as fragment shaders. These operate on each pixel of 
the geometry. The input to pixel shaders come from vertex shaders or geometry 
shaders.

Each of these shaders operates on various types of information. Combined together, 
they create one shader program. During rendering of a scene, only one shader can be 
active at a time. There are three shaders used in Geng.

1. Gui shader, to render the GUI for Geng.

40



2. Model shader, to render static 3D models.

3. Pick shader, to render models and Gui for picking.

Shader Languages:
In Geng, there are two shader languages used. These languages are listed as follows.

1. High Level Shader Language (HLSL), which is High Level shading language 
created by Microsoft for their DirectX graphics API.

2. OpenGL Shader Language(GLSL), which is OpenGL shading language for the 
OpenGL graphics API.

In the Geng project, workingjdir is the default place where the Geng library functions 
look up the files. Every opened file is opened relative to this working.dir. The shader 
code is written in different files and should be present in the working_dir. This code 
is dynamically loaded from working.dir depending on the Geng build used.

For High Level Shader Language (HLSL) there are .fix files created for each shader. 
This file contains the code for both vertex and pixel shaders. The .fx files are called 
effect files. Effect Files are useful to separate art form the core.graphics engine. Effect 
files have three parts: variable declarations, techniques and passes, and functions. 
Functions are shader code written in High Level Shader Language (HLSL). Techniques 
and passes define the rendering techniques. These rendering techniques can be chosen 
based on the hardware specifications.

For OpenGL Shader Language (GLSL), there are two shader files; one for each 
shader. By convention, for vertex shader there is a .vert file and for fragment shader 
there is a .frag file. ‘ ’.

The code to load the shaders is called in the init() function of the Graphics class. 
According to the Geng build, corresponding code from the GraphicsDx and Graph- 
icsGL classes are called.

41



6.2 Geng Asset Conversions

Assets are the building blocks of any game or simulation. Assets can be images or 
static models that need to be rendered in the game. These assets should be converted 
into the Geng specific file format. Having the Geng specific file formats for the assets, 
makes it easier to render them in any platform. Also, it moves the code complexity to 
the exporters, keeping the Geng library implementation simpler. In the Geng project, 
working_dir is the folder that contains the files needed in the working directory when 
the program runs. Every opened file is opened relative to the working directory. The 
working directory has various sub folders for assets such as fonts, GUI primitives, 
arid scene primitives etc. All the converted assets should be placed in the appropriate 
folders in the working directory. Geng has two types of tools that convert assets to 
the Geng compatible file format: an image converter and two static model exporters.

The image converter is a C++ program that runs on the command line. It converts 
images in various formats to the Geng specific image file format. Fig. 6.1 shows the 
geng_image file format. ■

Fig. 6.1: GengJmage File Format

g eng i mage
<Height> Image height
<Widfh> Image width
<Padded -width> Padded height
<Padded Height> Padded width
<Pixel data> Pixel data in RGBA 

format

In the Fig. 6.1, image height and width are the actual height and width for the 
given image. Padded height and width are the extra width and height added to the 
actual width and height to make them into nearest powers of 2. For example, consider 
an image file with actual width equal to"28 and actual height equal to 14; the padded 

42



width would be calculated as 32 and padded height as 16.
The static model exporters are plug-ins written in python that export static models 

from 3D modeling applications such as Maya and Blender to the Geng specific file 
format. Fig. 6.2 shows the Geng specific static-model file format.

Fig. 6.2: Geng_niodel File Format

geng model
<2Vo ofvertices> Noofvertices forthe 

model
< Vertex data> V ertex d ata for th e mo del
<No ofindices> No of indices for the 

model
<Index data> Index data for the model
<No of sub -m esh es> No of sub-meshes forthe 

model
For each sub-mesh.
<Texturefie name> Texture file for each sub- 

mesh
< Vertex start> Start vertex for each sub- 

mesh
< Vertex count> No ofvertices for each 

sub-mesh
<Face stari> Start face for each sub­

mesh
<Face count> No effaces for each sub­

mesh

A model is created using a mesh. A mesh is a shape made up of polygons connected 
together. A mesh can be made up of several connected sub-meshes, where each sub­
mesh is made up of several polygons connected together. In the Fig. 6.2, numbar of 
vertices is the total number of vertices for the complete mesh. Vertex data is data for 
each vertex such as x, y, z co-ordinates, normal vector, color. The number of indices 
is the total number of indices to render the complete mesh. Index data is the integer 
data that specifies the order in which the vertices should be rendered. Now the whole 

43



mesh for the model can be a combination of several sub-meshes. The number of 
sub-meshes gives the total number of sub-meshes that were combined to form a mesh 
for the model. The information about each sub-mesh is stored in order. The texture 
file name is the name of the image file that textures a particular sub-mesh. Vertex 
start is the starting vertex for that particular sub-mesh. Vertex count is the number 
of vertices for that particular sub-mesh. Face start is the starting polygon number 
for that particular sub-mesh. Face count is the number of polygons in that particular 
sub-mesh. Design standards for the static models:

The following are the design standard should be followed while creating static 3D 
models in any of the 3D modeling applications.

• The static model should be in the form of one mesh. There can be several 
sub-meshes but all should be joined together to form a single mesh.

• The main mesh for the model should have at least one uv mapped texture.

6.3 Image Converter

Image converter, also called asset conversion tool, for the Geng library is written in 
C++. It converts images from bitmap, targa, JPEG formats to the Geng specific 
format. These images can be, used to render GUI images. This converter is supposed 
to run on the windows operating system. After conversion, the loading and rendering 
of assets is platform independent. The asset conversion tool is a command line utility. 
This utility can be used as follows. (t <

To convert an image the following command should be used:

assets.exe image <image filename>

This converts the image filename into a Geng compatible image file with an ex­
tension geng -image.

44



6.4 Exporter for Maya

Maya is a 3D modeling application being developed by Autodesk Inc [7]. Maya 
is used to generate 3D assets for game development. It has comprehensive tools 
for modeling, animation, visual effects, and rendering solution [7]. The Geng Maya 
exporter converts the static 3D model created in Maya to the Geng specific file format.

Maya Software Development Kit (SDK) functions can be used to create custom 
shaders and nodes in maya. The SDK includes a C++ API that provides functionality 
for querying and changing the Maya model [7]. In addition, the SDK contains Python 
bindings to the Maya API [7]. These bindings allow to call the Maya API from 
Python. This is called as Maya Python API [7].

Using any of these APIs, you can add new elements to Maya such as: shapes, 
shaders, commands etc. The exporter for Geng is written in Python using Maya 
Python API. At the lowest level, Maya1 stores all the graphical information in Depen­
dency Graph (DG). Information in the DG is stored in objects called nodes. Nodes 
have properties called attributes that store the configurable characteristics of each 
node.

The Maya exporter uses the following classes the Maya Python API.
The MFnMesh class is a mesh class that provides access to polygonal meshes. This 

is one of the main classes of Maya. An example of this class is shown in the following 
sample code.

mesh.getVertices( verts, vertexList )

This function gets the list of vertices for all the polygons in the mesh.
The MItSelectionList is a class used to iterate over the items in the selection list 

(MSelection). A selection criteria can be specified so that only those items of interest 
on a selection list can be obtained. < If a .criteria is specified then the children of 
DAG will be searched if the selection item does not match the selection criteria. The 
following code shows an example of the' class MItSelectionList.

45



selectionList = OpenMaya.MSelectionList()

OpenMaya.MGlobal.getActiveSelectionList( selectionList )

itList ~ OpenMaya.MltSelectionList( selectionList, OpenMaya.MFn.kTransform ) 

while not itList.isDone():

<code> . - 

itList.next()

In the code above, an iterate itList is created for the filer equal to 
OpenMaya.MFn.kTransform.

The MFnDagNode class is the DAG node Function Set. It provides methods for 
attaching Function Sets to DAG nodes, querying, and adding children to DAG nodes. 
The following code shows an example of the MFnDagNode class.
fnDagNode - OpenMaya.MFnDagNode( path )

numchildren = fnDagNode.childCount()

In the example above, the MFnDagNode class is used to get the child count for 
the DAG node.

The MItDependencyNodes class is..a .dependency Node iterator. It is used to tra­
verse all the nodes in Dependency Graph. A selection criteria can be provided to select 
a particular node. The following code shows an example of the MItDependencyNodes 
class.
itDN = OpenMaya.MItDependencyNodes( OpenMaya.MFn.kDependencyNode )

while not itDN. isDone () :

<code>

itDN.next()

In the example above dependency node iterator is used with 
filter as OpenMaya.MFn.kDependencyNode

To run the Geng Python script in Maya, the following steps should be followed.

. 46



• Create static 3D model.

• Open Script Editor.

• In the Python tab write the following commands:
import GengExport
G engExport. UI ()
Where the GengExport is the Python exporter script name and UI() is the entry 
level function name in Python exporter script.

The following is an example to show how to create a simple static 3D model in
Maya.

Fig. 6.3 show the Maya Application window.
Autodesk

Fite/1 Edit Modify/ Create Display Window Assets Animate: ►Gegmety Cache Create Deformert_ Edit Defoririert ^ Skeleton Skin Constrajn_ Character Muscle Help • 

iri H } I'I fI+j4 ®[•£fo [ ? JJ 4? O I -B Q-[la I ® 3^
General] Curve* [ Surface* |subdv*| Defonralion| Animatipn|:D^ramiaJ Rendemgj PamOectaj Toon FUd* |'Fw. ] Har ] nOoth | Custom 9

View Shading Lighting Show tenderer Pandl

w Rrn’iEiEaEa List Selected Focvi Attributes Show Hdp 
, Make a tdeefon to view allrbulw

b+ in] H|j4[l>|yl 
|No Arim Lofa jNoOwacta Set

|| Mole*:

1 | Load AUirbiAet | I irtr

- . ' - - -T 77 . .7LD B

tsersji ■

n
2 4 6 a "llT 11

_______ I____ I I I I 
i|i.tt) [too ijj ' ; ~
; Python |

.. .......—-------:... ■.

Fig. 6.3: Maya Application

Using the range of primitives in Maya, such as polygon sphere and polygon cube, 

47



in combination with all the transformation tools, create a mesh model. Fig. 6.4 shows 
a screenshot of mesh created using polygon torus primitives.

Fig. 6.4: Maya Application Creating a Mesh

After creating the mesh, it should be textured. To texture a mesh in Maya, assign 
a material to the mesh. After assigning a material, in the materials menu, from 
common materials attribute, select color. A menu to select texture will be displayed 
as shown in Fig. 6.5. Select File option and provide the texture file name.

48



TCreate Render Node

Het? “ .
Mnte.idt Textures ] Liohlt pUUEties’|f menial ra/| 

17 With now textile placement
■ — 12D Texture*

■ f* Normal
C As projection

J C A* itencil

-n

,f

Fractal

Mountah

I^Movie TKXC'
t^^.Ncho

PSPFte
S OcMn__ 

j Remp

1 ^|3D Toitturoa 

1 E%jB,owian

: Oder iFluid Texture 30

Leather

Fig. 6.5: Select Texture File

E r

i

After assigning the texture file name, select the textured button from the menu
which will texture the whole mesh with selected texture as shown in Fig. 6.6

49



i ''
■ J!

Fig. 6.6: Maya Application Texturing a Mesh

To export this model, click on the script editor button on the bottom right corner. 
The script editor will appear. In the Python tab write the following commands: 

import GengExport
GengExport. UI ()
A file Save As box will appear with default file extension as geng_model. Type the 

name for the model and the model will be converted into gengunodel format along 
with the texture file in geng_image format.

6.5 Exporter for Blender

Blender [1] is a 3D modeling application. It is an open source available for all major 
operating systems [1]. Blender can be used to create models, shaders, animation and

50



interactive 3D [1]. Exporter for Blender is written in Python. The Blender Python 
API is used.

Blender uses an object oriented architecture [1]. Blender objects and their at­
tributes are same for both, Blender Python API and the user interface (the GUI). 
This makes it easy to understand the Blender objects and attributes. Each Blender 
graphic element is composed of two parts: an Object and Object Data [1]. The Ob­
ject holds basic information of an object like its size, position etc. This is common

.!•» 4
information for all the objects. The Object Data holds information specific to that 
particular type of element and which is not common for all the objects. Each Object 
has a link to its associated Object Data. A single Objects Data may be shared by 
many objects [1]. All the Blender objects have a unique name. The Blender Python 
API provides the functions can create user interface elements such as menus and pan­
els [1]. The Blender Python API also provide functions that can edit data such as 
meshes and scenes. Blender Python API has top module and sub-modules that have 
functions that can be used to manipulate Blender data [1].

The Geng Blender exporter uses the following modules from the Blender Python 
API
The Blender.Draw sub-module provides access to a windowing interface in Blender 
[1]. This include many kinds of buttons such as push, toggle, menu, number, string, 
slider, scrollbar [1]. It also supports string drawing. The following is the example 
code to illustrate how to use this module.

pupMenuResult = Blender.Draw.PupMenu("Selected object is not a mesh.%t|OK")

The PupMenu method from Blender.Draw sub-module is used to create a message 
box.

The Blender.sys sub-module provides a set of functions called as helper functions 
[1]. These functions are mostly related to the files operations. The following is the 
example that shows how to use this sub-module.

51



fname = Blender.sys.makename(ext = ".geng_model")

The makename function from the Blender.sys sub-module is used to force “geng.model” 
to be the extension to exported files.

The Blender.Window module provides access to Window functions in Blender. 
The following is the example that shows how to use this module.

Blender.Window.Fileselector(self.on_file_select, "Export Geng", fname)

FileSelector is a function from the Blender.Window sub-module. It is used to open 
the file selector window in Blender. After the user selects a filename, it is passed as 
a parameter to the function callback given to FileSelector() [1].

The Blender.Mesh module provides access to Mesh Data objects in Blender.
The following procedure is an example to show how to create a simple static 3D 

model in Blender. This procedure creates a textured cube.

• The Blender application provides a lot of mesh primitives that can be used to 
create various shapes and objects. To create a cube, add a primitive cube mesh 
to the Bender application. This is shown in Fig. 6.7.

52



liKendtr

Fig. 6.7: Blender Application

• After creating the mesh, it should be textured. To texture a mesh in Blender, 
perform the following steps.

— Change the mode from object mode to edit mode.
— Then, from the mesh menu, select option UV Unwrap as shown in the 

Fig. 6.8.

53



‘+rf?ro"p6rtlo nahFatloff I .P'/'-k:::- !

- Proportional Editing ■O

Normals. -
■■ . ' Faces; '

Edges ; ■I-
Vertices ► .

Delete... ; . X
Make Edge/Face ‘ F
Duplicate Shift D
Extrude E

Delete Keyframe Alt 1
Insert Keyframe 1

Snap ► ,
Mirror < '
Transform ►

Q Transform Properties. N

Undo History
Redo Editing, Ctrl Shift Z
Undo Editing Ctrl Z

WMil A Edit Mode

Fig. 6.8: Mesh Menu

— In the split view, select UV Image editor view. This is shown in Fig. 6.9.
This mode will give an access to the image menu. Load the texture image 
to texture the mesh as shown in Fig. 6.10.

54



.Window type:
Scripts Window

2? File Browser 
$ Image Browser

Node Editor
Buttons Window 
Outliner

i User Preferences 

i^l Text Editor
Audio Window

® Timeline
S3 Video Sequence Editor

NLA Editor j
Action Editor

M Ipo Curve Editor j

3D View J

Fig. 6.9: UV Image Editor

Fig. 6.10: Load Texture

- Once the texture is selected, to apply it to the whole mesh, Set the Draw
type to Textured and change the mode to object mode as shown in Fig. 6.11.

55



Drawtype:

■0 Shaded

{fj Solid

■Jp Wireframe

Bounding Box

Fig. 6.11: Draw Type Textured

• After the model is created and ready to be exported to Geng, Select the menu
option File and Export and export it as geng_model as shown in Fig. 6.12.

W Add Timeline: Game Render. Help,| -|SR:Z~Model

New
Open,,. /,
Open Recent ~ '
Recover Last Session ;

Save
-.Save As...

Compress File

I
‘‘ Save Rendered Image... 

ScreenshotSubwindow ’ .

Screenshot Ail
I Save Game As Runtime...

Save Default Settings
I Load Factory Settings

I Append or Link

i Append or Link (Image Browser)
I Import

Txll c|sCE:Scene j

Ctrl X
' F.1

'Ctrl FZ 
Shift FZ

VRML'1.0...
DXF...
STL...

& 3D Studio (,3dS)... 
. Orl U&AC3D(.ac)....

& Autodesk DXF (.dxt/dwg) 
Shift Fl ^ Autodesk FBX (.M..’ 

Ctrl F1 & COLLADA 1:3.1 (.dae) ... 
_____ ► & COLLADA 1.4(.dae)...

DEC Object File Format (.oft). 
DirectX (4-_________ J

% Ctrl F3 

Ctrl Shift F3

: Lq . Oh I a r t! Mnri q —.1* — ■ I

Export - . fl

1 External Data 
i
1 Quit Blender Ctrl q‘ (.two).

Fig. 6.12: Export

56



7. GENG LIBRARY USAGE

7.1 Geng Initializations

The Geng library can be used to create a 3D game or simulation. The user application 
can be written in languages such as C++, C#, Java, Python or any other language 
that integrates with libraries that have C linkage. Geng Game is the example user 
application written in C#. The Geng API provides a set of functions that need to 
be imported by the user application. These functions in turn call OpenGl or DirectX 
depending on the build of the Geng library.

The syntax for importing the functions provided by the Geng API in C# is shown 
below:,

[Dlllmport(dllFilename)]

public static extern creturn type> funcName(parameter list);

The dllFilename is the Geng build file name for the platform being used. For 
example, for Windows Directx build; the Geng build filename is“geng_win_dx.dll". 
The extern modifier is used to declare that the method is implemented externally. 
The Geng API is written in C .To import a function from the C API into the C# 
code, it is declared as static.

To handle events on the GUI primitives, callback functions are used. For this, a 
delegate heeds to be defined. Below is the example code that creates a delegate called 
GuiPrimitiveHandler for GuiPrimitives.

public delegate void GuiPrimitiveHandler(int guiPrimitive);

57



The Geng API provides a set of functionality to create an application window, 
unload graphics etc. These functions are called only once during a game life-cycle.

The sample code below shows how to create an application window using the Geng 
API function.

Geng.InitWindowed(800, 600, ’'Gaming Application");

The API function InitWindowed() creates the application window of 800 pixels 
width and 600 pixels height and with the title “Gaming Application”.

The Geng API also provides a very important function called Tick(). This function 
processes user input events and generates video frames. This function can be used 
by the user application in a loop and should keep it running until the user exits the 
application.

7.2 Geng Graphics

GUI primitives can be used to render different effects such as text, images or both. 
Following code sample shows how to use a GUI primitive to display text.
int titleHandle = Geng.CreateGuiPrimitive

(Geng.ScreenPositionUpperCenter,

0, -40, Geng.True);

Geng.SetGuiPrimitiveLabel(

titleHandle, "fonts/miso_32", ,

0, "Welcome", 0, 0);

CreateGuiPrimitive() function creates an empty GUI primitive with the screen 
position and x and y offsets and visible equal to true. It returns handle for that par­
ticular GUI primitive. This handle is-passed to the SetGuiPrimitiveLabel() function 
along with the font and string that needs to be rendered. The SetGuiPrimitiveLabel() 
function tells the GUI primitive to render string. The above code renders the string 
“Welcome” for the given font miso_32.

58



The following code sample shows how to use GUI primitive to render image.

int woodHandle = Geng.CreateGuiPrimitive(Geng.ScreenPositionDeadCenter,

0, 0, Geng.True);

Geng.SetGuiPrimitiveImage(woodHandle, "gui/wood_64_64.geng_image");

CreateGuiPrimitive() function creates an empty GUI primitive with the screen 
position, x and y offsets and visible equal to true. It returns handle for that particular 
GUI primitive. This handle is passed to the SetGuiPrimitiveImage() function along 
with the image that needs to be rendered. The SetGuiPrimitiveImage() function tells 
the GUI primitive to render an image. In this case the image wood_64_64.geng_image 
would be set for the GUI primitive. The image can have events such as click that can 
be handled using the Geng API function, This is explained in the next section.

Scene primitives can be created to render 3D static models. The code to render 
the scene primitives is as follows.

int scenePrimitiveHandle = Geng.CreateScenePrimitive(

0, 0, 0, 0, -10, 0, -1, 1.) ; . ; .

Geng. SetScenePrimitiveModel (scenePrimitiveHandle, " scene /tiger. geng_model’') ;

CreateScenePrimitive() creates an empty scene primitive with the x, y, z positions 
and visible equal to true. It returns the handle to that particular scene primitive. 
This handle is then passed to the SetScenePrimitive() function along with the model 
that needs to be rendered. The SetScenePrimitive() function tells the scene primitive 
to render a static 3D model.

7.3 Event Handling

The Geng API functions can be used to handle input events. Event handling is done 
using callback functions. A callback function is a function that is called through a 
function pointer. In Geng, function pointers are used to call the respective event 

59



handler function for the GUI and scene primitives. From a C# program, a delegate 
must be declared and used as a data type for the callback function. The following is 
an example of a delegate that can be used to set GUI primitive handlers.

public delegate void GuiPrimitiveHandler(int guiPrimitive);

This delegate takes one argument, which is the integer handle to the GUI primitive 
that was clicked. A function whose signature matches this delegate is passed as an 
argument to the Geng API function SetGuiPrimitiveHandler(). The following is the 
C# declaration of SetGuiPrimitiveHandler().

[Dlllmport(dllFilename)]

public static extern void SetGuiPrimitiveHandler

(int guiPrimitive, GuiPrimitiveHandler guiPrimitiveHandler);

When a GUI primitive is created, an event handler function can be created by the 
user application. The following code is an example of defining and registering a GUI 
primitive event handler function.

int woodHandle = Geng.CreateGuiPrimitive(Geng.ScreenPositionDeadCenter,

0, 0, Geng.True);

Geng.SetGuiPrimitiveImage (woodHandle, "gui/wood_64_64.geng_image"); 

Geng.SetGuiPrimitiveHandler(woodHandle, HandleTitleClick);

public void HandleTitleClick(int handle)

I

Geng.SetKeyHandler (null)

Geng.UnloadGraphics();

Program.Instance.Changestate (null);

}

The HandleTitleClick0 is passed as an argument to the SetGuiPrimitiveHandler 
function. Whenever, user clicks on this particular GUI primitive, HandleTitleClick() 

60



function is called. The events on Geng Primitives and any other user input events 
are handled in the same fashion as shown above.

7.4 Geng Physics Library

The Bullet Physics Library is a library of functions that can do 3D collision detection 
and rigid body dynamics for games and animation. The Bullet Physics Library has 
a collection of components for collision detection, rigid body and soft body dynamics 
[2].
The Geng Physics library uses three main components from the bullet physics engine: 
Bullet Collision, BulletDynamics and LinearMath. The Geng Physics library is a 
wrapper around the Bullet Physics Library. It uses the functions of the Bullet Physics 
Library to create custom bodies and objects that can be used by the Geng Game 
application. The Geng Physics library provides an API. The functions of this API 
can be imported by the user application.
PS_ API void Physlnitf);

This function initializes the physics system, creates the ground and rigid bodies.
PS_API void PhysShutdown ();

This function deletes the physics system created by Physlnit().
PS—API void PhysTick(float dt) ;

This function generates the next step for the physics simulation. This function 
should be called in the loop by the user application.
PS_API int PhysCreateBoxShape(

float xHalfExtent,

float yHalfExtent,

float zHalfExtent);

This function creates a bounded body in shape of a box with the given x, y and z 
values.

61



PS_API int PhysCreateStaticBox(

int boxShapeHandle,

float axisX, float axisY, float axisZ,

float angle, float x, float y., float z) ;

This function creates a static rigid body for the given box shaped handle. This 
static rigid body is then added to the dynamics world. This static box is then trans­
formed to the position given by the rotation axis x, y, z and angle of rotation and 
positions x, y and z. Static rigid bodies have infinite mass. They cannot move once 
placed in a particular position. However they can participate in collision.

FS_AP1I void PhysDestroyStaticBox(int staticBoxHandle);

This function removes the given static rigid body from the dynamics world and 
deletes the static rigid body object.

PS_API int PhysCreateDynamicBox( ■■

int boxShapeHandle,

float axisX, float axisY, float axisZ,

float angle, float x,

float y, float z,

float mass,

TransformUpdateHandler transformUpdateHandler);

This function creates dynamic rigid bodies for the given boxShapeHandle. Dy­
namic rigid bodies have mass and for every simulation frame when the dynamic rigid 
body moves, its world transform is updated. These dynamic rigid bodies are then 
added to the dynamics world.

PS_API void PhysDestroyDynamicBox(int dynamicBoxHandle);

This function removes the given dynamic rigid body from the dynamics world and 
deletes the dynamic rigid body object. These functions provided by the Geng Physics 

62



API can be used by the user application Geng Game to create various visual effects 
such as flying boxes and collisions, etc.

The following Fig. 7.1 shows the Entity class hierarchy in the Geng Game ap­
plication. These classes make use of the functions provided by the Geng Physics 
API.

Fig. 7.1: Entity Class Hierarchy

The Entity class uses the PhysCreateBoxShape() function from the Geng Physics 
API and updates the BoxS hap eHandle. The StaticBox class inherits the Entity class 
and uses the Geng Physics API function PhysCreateStaticBox(), passing a BoxShape- 
Handle to create a bounding volume for the Geng Primitive. The DynamicBox class 
inherits the Entity class and uses the Geng Physics API function PhysCreateDy- 
namicBox(), passing a BoxShapeHandle to create a bounding volume for the Geng 
Primitive. The StaticBox and DynamicBox classes can be used to create bounding 
volumes for the Geng Primitives as shown in the code below:

List<StaticBox> staticBoxes = new List<StaticBox> ();

for (int i = 0; i < 16; ++i)

( . ■ '

float x = -100 + (float)random.NextDouble() * 200;

float y = 10 + (float)random.NextDouble() * 200;

63



float z = -100 + (float)random.NextDouble() * 200;

StaticBox box = new StaticBox(0, 1, 0; 0, x, y, z) ;

box.PickHandler = steeringPlayerController.PickHandler;

staticBoxes.Add(box);

}

The above code shows how to create a list of static boxes at random x, y, z 
positions.

StaticBox box = new StaticBox(0, 1, 0, 0, x, y, z) ;

When a StaticBox is created, the Init() function from StaticBox class is called. 
The code for the Init() function is as follows.

private void Init (float axisX, float axisY, float axisZ,

float angle, float x, float y, float z)

(

this.x = x;

this.y = y;

this.z = z;

scenePrimitiveHandle = Core.CreateScehePrimitive(

axisX, axisY, axisZ,

angle, x, y, z, Core.True);

Core.SetScenePrimitiveModel(

scenePrimitiveHandle, "scene/model.geng_model"};

physicsHandle = Physics.PhysCreateStaticBox(

BoxShapeHandle, axisX, axisY,

axisZ, angle, x, y, z);

}

The code in Init() creates a bounding volume for the scene primitive.

•64



8. CONCLUSION AND FUTURE DIRECTION

8.1 Conclusion

Geng is a platform independent library, which can be used to create graphical effects in 
games and scientific simulations. The Geng library provides an API that can be used 
by applications. The user of this API does not need to think about the underlying 
platform or write complex code to create graphical effects such as rendering images, 
text, or 3D models. The visual effects for the user application are the same irrespective 
of the underlying platform. The Geng library provides the user with two plug-ins for 
the 3D modeling applications Maya and Blender. This makes it easy for the user 
to import 3D models. Thus, game asset rendering is simplified because of these 
plug-ins. During the development of the Geng library, a lot of attention was paid to 
developing and adhering to organizational principles. This helped in increasing the 
maintainability of the code and should make future development a lot easier. The 
Geng library has no external dependencies on third party applications for handling 
user events or creating application windows. This makes the Geng library flexible. 
Currently, the Geng library provides support for the Bullet Physics Library through 
the Geng Physics API. The Bullet Physics Library can be used to do rigid and soft 
body dynamics and collision detection. These are very important features for any 
interactive game.

This iteration of Geng has the following advantages.

• The restructuring makes the Geng library maintainable and extensible.

65



• Removing additional dependencies on the third party applications make the 
Geng library more flexible.

• The exporters give the user application, a flexibility to create assets.

This iteration of Geng has the following disadvantages.

• In this iteration, more emphasis was on re-factoring and re-structuring. As a 
result all the features from the previous iterations are not supported by this 
iteration. The Geng library does not support animated models, which were 
supported by the previous iteration.

• As a result of removing the dependency on the Simple Direct Media Layer (SDL) 
library, the Geng library has to maintain more code.

8.2 Future Direction

In spite of all the functionality that the Geng library provides, it needs some more 
work to make it robust. The Geng library needs the following functionalities:

• Exporter for animated models.
Currently Geng provides an exporter for static 3D models. There are two ex­
porters written in Python for Maya and Blender, However, Maya and Blender 
can also be used to create animations. Animation is a very important part of 
any 3D game application. Geng needs exporters that would convert animations 
created by Maya and Blender into the Geng compatible file formats. This also 
requires a change in the Geng library functionality, and new shaders will have 
to be coded to render the animated 3D models.

• Exporter for the particle systems.
Particle systems are used for modeling fuzzy objects such as water, cloud, fire, 
smoke, etc. These objects do not have well defined shapes and boundaries. Such 

66



effects are desirable in gaming applications. The 3D modeling applications Maya 
and Blender can be used to create these effects. Geng needs exporters to convert 
particle systems created by Maya and Blender to the Geng specific format. In 
addition to these exporters, Geng needs changes to the Geng library to add the 
functionality to render the particle'systems. Also new shaders should be created 
to render the particle systems. . „

• Shadows.
Shadows are an important part of a game. Shadows make any scene more realis­
tic. Currently shadows are not a part of the Geng library. The scene primitives 
currently do not have any shadows. However in future, this feature needs to be 
added to the Geng library so that every scene primitive can render its shadow.

• Complete refactoring of the Geng library.
Geng coding standards are still evolving. Geng coding standards are merged 
with some of the coding standards provided by Google’s style guide for C++. 
The Geng library needs a complete refactoring to adhere to these evolving coding 
conventions.

• Expand the example user code to a complete game.
Geng Game is an example user application written in C# to demonstrate the 
capabilities of the Geng library. However, this Geng Game application can be 
enhanced and expanded to create a complete game.

8.3 Definitions, Acronyms, and Abbreviations

• 3D: Abbreviation for three-dimensional computer graphics which are graphics 
that use a three-dimensional representation of geometric data.

• Al: Artificial Intelligence.

67



• GUI: Graphical User Interface.

• Geng: Game Engine being developed at CSUSB.

• HLSL: High Level Shader Language for DirectX.

• GLSL: OpenGL Shader Language.

• Shader: Set of software instructions which are used primarily to calculate ren­
dering effects on graphics hardware with a high degree of flexibility.

• HUD: Stands for Heads up display.

• CG Shader: CG is shading languages created by Nvidia.

• UV Mapping: UV Mapping is a process texturing 3D models with 2D images.

• Mesh: Mesh is a shape made up of polygons connected together.

• Vertex Buffer: Vertex buffer holds information about a vertex such as x, y, z 
co-ordinates, normal vector, color etc.

• Index Buffer: Index buffers store index data. Indices are integer offsets into the 
vertex buffers.

• SDL: Simple Direct Media Layer. SDL is an open source library that provides 
interface to graphics, sound and input devices.

• Bullet Physics: Bullet Physics is an open source physics library that is used in 
game programming for the visual effects.

• FMOD: It is an audio library used in gaming applications to provide audio 
functionality.

• Blender: Blender is an open source 3D modeling application.

• Maya: Maya is 3D animation visual effects software developed by Autodesk.

68



• DAG: Directed Acyclic Graph.

• Python: Python is a powerful scripting language that is used in a wide variety 
of application domains.

69



REFERENCES

[1] Blender, http://www.blender.org/ .

[2] Bullet physics libreary. http://bulletphysics.org/wordpress/.

[3] Calling dll functions, http://msdn.microsoft.coni/en-us/library/be80xase.aspx .

[4] Fmod. http://www.fmod.org/.

[5] Geng website, http://cse.csusb.edu/geng/.

[6] Google style guide, http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml .

[7] Maya, http://usa.autodesk.com/maya/ .

[8] Chris Ballinger. Mythic game project addition of artificial intelligence and quest 
system components. CSUSB Masters Project, June 2010.

[9] Dave Shreiner et. al. The OpenGL Programming Guide - The Redbook. Addison- 
Wesley Publishing Company, 2006.

[10] A. Sherrod. Game Graphics Programming. Course Technology PTR, 2008.

[11] David Stover. An open source graphics engine for three-dimensional video games. 
CSUSB Masters Project, June 2010.

70

http://www.blender.org/
http://bulletphysics.org/wordpress/
http://msdn.microsoft.coni/en-us/library/be80xase.aspx
http://www.fmod.org/
http://cse.csusb.edu/geng/
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml
http://usa.autodesk.com/maya/

	An open source infrastructure for 3D virtual worlds
	Recommended Citation


