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Abstract

This paper is an investigation of the decision making theories, their develop­
ments, and especially, their applications. After locating the two rivals, the Expected 
Utility Theory (EUT) and the Prospect Theory (PT), within the general context of deci­
sion making situations, it compares their main features and examines the PT extensions. 
EUT and PT as descriptive models are then shown coexisting within the same grand 
likelihood function, thus providing a detailed example for Finite Mixture Models. Other 
illustrative application examples in the fields of astronomy and medical diagnosis expose 
some of the technical difficulties when constructing maximum likelihood functions.
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Chapter 1

Introduction

There is a lot written in the literature comparing Expected Utility Theory and 
Prospect Theory. For one, EU theory is very old, dating back to Bernouilli himself, and 

Prospect Theory grew out of its shortcomings.
The second chapter of this study reviews the important basic concepts such as 

decision making under certainty, decision making under risk, utility functions, decision 

under uncertainty and a few others that are used in this document. It will also review 

the desirable properties any theory of human decision might want to have.
’ The third chapter presents examples of utility theory and details its specific fail­

ures. This section will show, for instance, that Expected Utility Theory being true for any 

utility function is equivalent to a set of axioms: the Von-Neumann Morgenstern axioms. 
In fact, Prospect Theory initially noted that some of these axioms are not empirically 

true: people just don’t make decisions like that. The relation between the curvature of the 

utility function and risk aversion is analyzed at this point. This section then shows the 

remedies suggested by the Prospect Theory before assessing this same theory’s limitations 
and extensions. For instance, a short section will show that important properties of the 

Prospect Theory such as first order stochastic dominance, and transitivity come into play 
only when there are more than 2 outcomes. Additionally, Cumulative Prospect Theory, 

which is the most theoretically sound formulation of PT because it respects stochastic 

dominance and transitivity, is mostly useful when there is a continuum of outcomes.

The fourth chapter analyzes the more recent models developed by Glenn W. 

Harrison, E. Elisabet Rutstrom in 2008 [GH08]. These authors suggest that a finite 
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mixture model can be used to estimate the parameters of each decision process while 

simultaneously estimating the probability that each theory applies to the sample. This 

section compares EUT versus PT and the degree to which they satisfy the properties 

of Von-Neumann Morgenstern properties, stochastic dominance, transitivity, certainty, 

reflection and isolation effects. In addition to these properties, we will look at scale 

independence of these models: do the behavioral predictions of these models depend on 

the denomination/units of the rewards/losses. It could be that people’s decisions are 

influenced by the denominations or units in which rewards are counted; however this 

might seem unlikely. What are the conditions on the families of utility functions and 
EUT and PT frameworks for the decisions predicted to be unchanged by rescaling the 

rewards/losses, once the model parameters have been inferred?
The fifth and last chapter will review some real world applications of the finite 

mixture models developed by Glenn W. Harrison, E. Elisabet Rutstrom. One of the main 

objectives of this study has been, all along, to construct the background concepts and 

understanding necessary for a full appreciation of the application examples presented 

in this chapter. This is done through four application cases. The first two cases are 

practical overviews with the intension of introducing how the finite mixture models are 
used for identifying subpopulations, and fitting them into their respective appropriate 
mathematical models. The two cases presented are in the area of blood cell sampling 
for diagnosis purposes, and in the field of astronomy investigation. Then, the more tech­
nically involved section of this chapter starts with another application example in the 

field of medical diagnosis. This application example exposes the technical aspects and 

difficulties involved in the mathematical construction of the finite mixture models. It 

lays out the mathematical heart of the finite mixture modeling. As such, through this 

application example we see how the engine of the, finite mixture model is actually put 

together. Finally, the fourth application example is in the field of consumer spending. 

This application example addresses additional technical difficulties involving cases where 
we don’t even know in advance how many subpopulations exist out there to be mod­

eled. Building on the previous application example in the medical diagnosis field, and 

by comparison to it, this consumer spending modeling application also illustrates other 

important components of the finite mixture modeling process such as the procedure of 

“Expectation Maximization”, commonly referred to as EM in the specialized literature
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Chapter 2

Decision Making Environments

This chapter reviews the important basic concepts such as decision making under 
certainty, decision under uncertainty, decision making under risk, and utility functions, 
used in this document. It will also review the desirable properties any theory of human 
decision might want to have.

A general reference for this chapter will be [RT75], and [FH05],

Decision problems usually involve a finite number of alternatives. The tools used 

to solve these problems depend basically on the type of context and their specific data. 
The main families of context are:

1. Deterministic, or under certainty, involving mainly rational thinking,

2. > Uncertain, involving personal attitudes and feelings towards uncertainty,

3. Probabilistic, or under risk, involving theoretical modeling.

These three broad families of decision making situations have their own corre­

sponding decision making tools. Yet, in the real world, any combination of these three 

situations can be present and interacting among them. The next few pages of this docu­

ment therefore introduces the decision making tools for each of these three situations.

2.1 Analytic Hierarchy Process, AHP.

The analytic hierarchy process involves rational thinking, and is used in deter­

ministic situations where decision making takes place under certainty. The process of 
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rational thinking needs to be constructed. Such construction converts the context of sub­

jective judgment into its quantified translation, and therefore, made ready for rational 

decision making. The first step is usually done through determination of weights in a 

logical manner [FH05].

2.2 Determination of the Weights.

The objective of this step is to determine relative weights in order to obtain a 

ranking among decision alternatives. For instance, dealing with 7i criteria arranged under 

a given hierarchy, the procedure constructs an n x n pairwise comparison matrix, A. This 

matrix quantifies the decision maker’s judgment regarding the relative importance of the 
different criteria. This pairwise comparison ranks each criterion in row i (i = 1,2, ...,n) 

relative to every other criterion as follows: Letting dij define the element (i,j) of A, 
AHP uses a discrete scale from 1 to 9 in which a^ = 1 means that i and j are of equal 
importance, a^ = 5 indicates that i is strongly more important than j, and a^ = 9 in­

dicates that i is extremely more important than j. Other intermediate values between 

1 and 9 are interpreted correspondingly. Obviously, a^ = k would automatically imply 

that aji = 1/k. Also, all the diagonal elements an of A must equal 1, because they rank 

a criterion against itself.

Example: Let us imagine a context where Location and Reputation of a town 
play an important role in choosing it for an investment decision. Further, suppose that 
we have a ranking analysis comparing three candidate towns of A, Y and Z as follows:

Reputation is strongly more important than the location, hence ai2 = 5. And 

the corresponding comparison matrix is:

L R

Normalizing A would give us the relative weights of R and L into a new matrix
N. This can be obtained by dividing the elements of each column by the sum of the 

elements of the same column. Thus, to compute N, we divide the elements of columns 1 
by (5 + 1 = 6) and those of column 2 by (1 4- | = 1.2).
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L R 
n=l(-17 -17Y

Hy.83 .83 J

The relative weights , Wr and wr, are then computed as the row average:
Wr = = J7 Wr = .83^83 = <g3

The columns of N are identical, since the decision maker exhibits perfect consis­

tency in specifying the entries of the comparison matrix A. These relative weights with 

respect to Location versus Reputation will be used for the final Decision Mating calcula­

tion. At this point, we need to compare the relative importance of Location among the 

three towns, as well as the relative importance of Reputation among them. Matrices Ar- 

and A# compare these two sets of relative importance.
Within each of the two criteria Location and Reputation, the relative importance 

among the three towns, are given by the decision makers best judgment as follows: The 

relative importance of location for the towns X, Y, and Z are respectively 1,2 and 5. For 

their Reputation, these relative numbers are respectively 1, 1/2, and 1/3.

Expressed into Ar and Ar we obtain:

X

X

i 1

Y
1
2

Z

n
Ar = Y 2 1 1

2

z V 2 V

X Y z
X P 2 3\

Ar = Y 1
2 1 3

2

z VI 2
3 1/

Adding the columns, we get: AL-column sum = (8, 3.5, 1.7) A/i-column sum 

= (1.83, 3.67, 5.5) Then normalizing through division of all the entries by the respective 

column-sums, we obtain:
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X Y Z

X <.125 .143 .118 \

NL= Y .250 .286 .294
z \.625 .571 .588 )

X Y Z

X Z.545 .545 .545 \

Nr= Y .273 .273 .273
z .182 .182 .182 )

Calculating the corresponding row averages, we get:

WLA = .125+.143+.11S = 129
WLB = .250+.286+.294

3 .277
.625+.571+.588 _  594

WRA = .545+.545+.54S = 545

WRB = -273+.273+.273 = 273

wRC - -182+-182+-182 = .182

Thus, the Location weights, and Reputation weights for the towns X, Y, and Z 
can be summarized as follows:

Criterion Town X Town y Town Z Sum
Location .129 .277 .594 1
Reputation .545 .273 .182 1

And finally, using the normalized relative weights WR= .17 and WR~ .83 cal­

culated at the beginning, the final ranking among the three candidate towns can now be 

obtained by:

Town X wins the investment decision.

Rank = Weight X Location + Weight X Reputation
X .17 X .129 + .83 X .545 = .4743
Y .17 X .277 + .83 X .273 = .2737
Z .17 X .594 + .83 X .182 = .2520
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2.3 Decision under Uncertainty

Under uncertainty, the payoffs depend on the random states of nature [FH05].

The payoff matrix of a decision problem with m alternative actions and n states of nature 

can be represented as:

si
ai / u(ai,si)
a2 v(a2,si)

S2 

v(ui,s2) • ■ • 
v(a2,s2)...

sn •

v(ai,Sn)
v(a2,sn)

flm. v(am, s2) • ■ • sn) /

where the elements Oi stand for action i, and the element Sj for state of nature j. The 
payoff associated with action a-L and state Sj is v(ai,Sj). These payoff value elements 

v (ai, Sj) are known in advance for every state of the nature.
Making a decision under risk involves probability, whereas in the case of uncer­

tainty, the probability distribution associated with the states Sj,j = 1,2, is either 

unknown or cannot be determined,

This lack of information has led to the development of the following alternative 
strategies for analyzing the decision problem [RT75]:

1. Laplace,

2. Minimax,

3. Savage regret,

4. Hurwicz.

These strategies differ in how conservative the decision maker is when facing 

uncertainty.

The Laplace criterion uses the principle of insufficient reason. Since the prob­
ability distribution for the states of nature is not known, the alternatives are simply 
evaluated using the optimistic assumption that all states are equally likely to occur, 
meaning: P {si} = P {s2} = ... = F{sn} = Given v (a$, Sj) > 0, the best alternative
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is the one that yields

max 
i

If v(a,i, sj) < 0, then minimization replaces maximization.

The minimax (maximin) criterion is a conservative attitude of making the best 

of the worst possible conditions. Therefore the decision maker uses:

mini

max

max v (ai, Sj) 
j

mint> (a^ Sj)

when v (a$, Sj) < 0,

when v (ai, Sj) > 0.

The Savage regret criterion tries to moderate the conservatism in the minimax 

(maximin) criterion by replacing the (gain or loss) payoff matrix v (ai, Sj) with a loss (or 

regret) r (ai, Sj) matrix, using the following transformation:

I v (ai, Sj) — min{v (a*,  s^)}, if v is loss 
r (a^ Sj) = < k

I max{v (a^, Sj)} — v (ai, Sj), if vis gain
X k

For instance, consider the minimax criterion in the following loss matrix, where 

the unsigned elements of the matrix represent losses. Without the regret matrix, in this 

case, one would select a2, but when applied to the regret matrix, a± will be selected 

instead.
In fact, in the case of minimax we have:

51 
ai / $11,000 

a2 y$10,000

52

$90 

$10,000

But, converting to its corresponding regret matrix, we get:

si 52

ai / $1,000 $0 \

a2 y $0 $9,910y

The Hurwicz criterion is designed to let a parameter a fit the decision-making 
attitudes into ranges going from the most optimistic to the most pessimistic (or conser­
vative). Assuming v(&i,Sj) represents gain, define 0 < a < 1. Then the selected action 
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must be associated with

max < amaxr (o$, sA + (1 — a) mint’ (a$, Sj)
i ( j 3

The parameter a is called the index of optimism. When ct = 0, the criterion 

is conservative because it applies the regular minimax criterion. If a = 1, the criterion 

produces optimistic results because it seeks the best of the best conditions. The proper 
selection of the value of a would therefore indicate the degree or the index of optimism 

desired. In the absence of strong feeling regarding optimism and pessimism, a = .5 may 

be an appropriate choice. If v (a,i, Sj) represents loss, then the criterion is changed to

min < ciminv (o^, sA 4- (1 — a) maxt (of, Sj) 
i { 3 3

Finally, another variation of decision making environment is situations in which 

two intelligent opponents with conflicting objectives are trying to outdo one another. 
Game theory best models these situations where aiming at the best out of the worst 
conditions available is the main concern. Typical examples include advertising campaigns 

for competing products and planning strategies for warring armies.

The so called players of the game will each have a finite or infinite number of 

alternatives or strategies. Such games are known as two-person zero-sum games because 

a gain by one player signifies an equal loss to the other.
A payoff is associated with each pair of strategies, which is what one player 

receives from the other. It suffices, then, to summarize the game in terms of the payoff to 
one player. Designating the two players as A and B with m and n strategies, respectively, 
the game is usually represented by the payoff matrix to player A as:

Bi B2... Bn

Ai on 012 ■ Oln

A.2 O21 022 • • • O2n

Am Om2 • • Omn /

This representation indicates that if A uses strategy i and B uses strategy j, the 

payoff to A is ay, which means that the payoff to B is — aij.
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2.4 Probabilistic, or Decision Making under Risk Situa­
tions.

Decision making under risk is based on the expected value criterion because in 

this situation each decision alternative is described by a probability distribution. Maxi­

mizing the expected profit or minimizing the expected loss can be achieved here through 

the formation of decision trees, themselves subjected to utility functions.

Under conditions of risk, the payoffs associated with each decision alternative 

are described by probability distributions. For this reason, decision making under risk 
can be based on the expected value criterion, in which decision alternatives are compared 

based on the maximization of expected profit or the minimization of expected cost.

The probabilities used in the expected value criterion are usually determined 

from historical data. These probabilities may need to be adjusted using additional sam­

pling or experimentation. The resulting probabilities are referred to as posterior (or 

Bayes) probabilities, as opposed to the prior probabilities determined from raw data. In 

practice, there usually are cases where the utility rather than the real value should be 
used in the analysis. This is done through utility functions.

2.4.1 Utility Functions.

The determination of the utility is subjective [Cen06]. Suppose there is a 50-50 

chance that a $20,000 investment will produce a net profit of $40,000 or be lost completely. 

The associated expected profit is 40,000 x .5 — 20,000x.5 = $10,000. Although there is 
a net expected profit of $10,000, an investor who is willing to accept risk may undertake 
the investment for a 50% chance to make a $40,000 profit. Conversely, a conservative 
investor may not be willing to risk losing $20,000. Thus, we say that different individuals 
exhibit different attitudes towards risk, meaning that individuals exhibit different utility 
regarding risk.

The determination of utility therefore depends on one’s attitude toward accept­

ing risk. Let’s see how a utility function can take the place of real money: In the preceding 

investment example, the best payoff is $40,000, and the worst is -$20,000. We thus estab­

lish an arbitrary, but logical, utility scale, U. from 0 to 100, in which U (- $20,000) = 0 

and U ($40,000) = 100. We can define the Utility Function for this example as follows: If 
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the decision makers attitude is indifferent toward risk, then the resulting utility function 

will be a straight line joining (0,-$20,000) and (100, $40,000).

Figure 2.1: Utility Function for Risk Averse (X), Indifferent (F), and Risk Seeker (Z) 

Decision Makers

In this case, both the real money and its utility will produce the same decisions. 

More realistically, the utility function takes over forms that reflect the attitude of the 
decision maker toward risk. Figure 2.1 illustrates the cases of individuals X, Y, and Z. 

Individual X is risk-averse because of exhibiting higher sensitivity to loss than to profit. 

Individual Z is the opposite, and hence is a risk-seeker. The figure demonstrates that for 
the risk averse individual, X, the drop in utility be corresponding to a loss of $10,000 is 
larger than the increase ab associated with a gain of $10,000. For the same ± $10,000 
changes, the risk seeker, Z, exhibits an opposite behavior because de > ef. Further, 
individual Y is risk neutral because the suggested changes yield equal changes in utility.

In general, an individual may be both risk averse and risk seeking, in which case 

the associated utility curve will follow an elongated S-shape.

Utility curves similar to the ones demonstrated in the above figure are deter­

mined by quantifying the decision maker’s attitude toward risk for different levels of cash 

money. In our example, the desired range is -$20,000 to $40,000, and the corresponding 

utility range is 0 to 100. What we would like to do is specify the utility associated with 

intermediate cash values, such as -$10,000, $0, $10,000, $20,000, and $30,000. The proce­
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dure starts by establishing a lottery for a cash amount x whose expected utility is given 

as:

U (x) = pU (-20,000) + (1 - p) U ($40,000), 0 < p < 1

= 0p+100 (1-p)

= 100 - lOOp.

To determine U (x), we ask the decision maker to state a preference between a 

guaranteed cash amount x and the chance to play a lottery in which a loss of $20,000 

occurs with probability p, and a profit of $40,000 is realized with probability 1 — p. The 

decision maker translates the preference by specifying the value of p that will render him 

indifferent between the two choices. For example, if x = $20,000, the decision maker may 

say that a guaranteed $20,000 cash and the lottery are equally attractive if p = .8. In this 

case, we can compute the utility of x = $20,000 as U ($20,000) = 100 — 100 x .8 = 20.
We continue in this manner until we generate enough points [x , U (a?)] to identify 

the shape of the utility function. We may then determine the desired utility function using 

regression analysis or simply by using a piecewise-linear function.

Although we are using a quantitative procedure to determine the utility function, 

the approach is far from being scientific. The fact that the procedure is entirely driven by 
the contributed opinion of the decision maker casts doubt on the reliability of the process. 

In particular, the procedure implicitly assumes that the decision maker is rational. But, 
this requirement that cannot always be reconciled with the wide changes in behavior and 
mood that typify human beings. In this regard, decision makers should take the concept 

i of utility in the broad sense that monetary values should not be the only critical factor 

in decision making (see [FH05], Chapter 13).
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Chapter 3

Expected Utility Theory Versus 
Prospect Theory

The two major decision theories that have undertaken to model human decision 

making processes are the Expected Utility Theory, and the Prospect Theory [DK79].

In Chapter 2 we saw the three major situations where decision making takes 

place. Also, we have analyzed the utility function as the basic tool used in the third 

situation, that of decision making under risk. The Expected Utility Theory, EUT, and the 

Prospect Theory, PT, have both used the concept of utility function [Cen06]. Although 

the Expected Utility Theory, EUT, has used this basic approach presented in the previous 
chapter as its backbone, it has considerably enriched the concept of utility function and 
has constructed specific expected utility functions that can be used in modeling data 

pertaining to different real world situations. While doing so, the expected utility has 

also raised important questions, especially in the areas where it has failed to realistically 

explain the actual human decision making behaviors. As we will see in the second half 

of this chapter, the Prospect Theory has been trying to identify and remedy EUT’s 

shortcomings. At this point let’s begin by asking the following question: What are the 
desirable properties any theory of human decision making might want to have? In the 

following section we illustrate the approach adopted by the Expected Utility Theory.
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3.1 Expected Utility Theory

This theory essentially assumes that human decisions are taken based on ratio­

nal analyses. The ingredients of this rationality are formalized by the Expected Utility 

Theory. These assumptions constitute the heart of EUT. Interestingly, we will see how 

EUT’s assumptions do not fit into the moods and attitudes of real human beings. In fact, 
most of EUT’s assumptions will end up either being adjusted or plainly replaced by the 

components of the prospect theory’s decision making model. The Prospect Theory will 
then be capable of better explaining and modeling the process of human decision making 

in many situations.

This third chapter therefore includes examples of utility theory and details its 

specific failures. In this section we will show, for instance, that the Expected Utility 

Theory being true for any utility function is equivalent to a set of axioms: the Von- 

Neumann Morgenstern axioms. In fact, as we will see, the Prospect Theory initially 

noted that some of these Von-Neumann Morgenstern axioms are not empirically true: 
people just don’t make decisions like that. The relation between the curvature of the 

utility function and risk aversion will be further analyzed at this point.

■The next section then shows the remedies suggested by the Prospect Theory 

before assessing this same theory’s limitations and extensions. For instance, a short 

section will show that important properties of the Prospect Theory such as first order 

stochastic dominance, and transitivity come into play only when there are more than 

2 outcomes. Additionally, cumulative Prospect Theory, which is the most theoretically 
sound formulation of PT because it respects stochastic dominance and transitivity, is 
mostly useful when there is a continuum of outcomes.

3.1.1 The Expected Utility Property

A utility function u is seen as having the expected utility property if, for a 

gamble g with prospects ai, ..., an, with effective probabilitiesPi,P2i -^Pn respectively, 

we have: u(g) = pi«(ai) +^2^(02) + Fpnu(an) where u(a.i) is the decision-maker’s 
utility for prospect ai. Definition: An individual who chooses one gamble over another if 

and only if its expected utility is higher is called an expected utility maximizer.
The main contribution of Von-Neumann and Morgenstern is to prove that, in 

order for a utility function to exist, and to fulfill the expected utility property, all the 
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preference axioms must be respected (adapted from [Cen06]).

The Preference Axioms Before we construct examples of utility functions over lotter­

ies, or gambles, we need to make the following assumptions on decision makers’ pref­

erences. In these examples > designates the binary preference relation “is weakly 

preferred to”, which would include both “strictly preferred to”, and “indifferent to”.

Completeness For 2 given gambles g and g( in G, either g < g! or g > g'. Meaning, 

people have preferences over all lotteries, and rank them all.

Transitivity For 3 gambles g, gf, and g" in G, if g > g' and gl > g>(, then g > g". In 

English, if g is preferred (or indifferent) to g!, and gf is preferred (or indifferent) to 
g,!, then g is preferred (or indifferent) to g'!.

Continuity Mathematically, this assumption claims that the upper and lower contour 

sets of a preference relation over lotteries or gamble are closed. In conjunction with 

the other axioms, continuity is needed in order to ensure that for any gamble in G, 

there exists some probability where the decision-maker is indifferent between the 

’’best” versus the ’’worst” outcome. This might seem irrational if the best outcome 

was, for instance, $1,000, and the worst outcome was to be run over by a truck. 
However, one could expect that most rational people would be willing to travel 

across town to collect a $1,000 prize, even if this might involve some probability of 
being run over by a truck.

Monotonicity This ugly word simply means that a lottery which assigns a higher proba­
bility to a preferred prospect will be preferred to one that assigns a lower probability 

to a preferred prospect, as long as the other prospects in the lottery remain un­

changed. In this case, we are referring to a strict preference over prospects, and 

do not consider the case where the decision-maker would be indifferent between 

possible outcomes.

Substitution If a decision-maker is already indifferent between two possible prospects, 

then they will be indifferent between two gambles which offer them equal proba­

bilities, should the gambles be identical in every other way, meaning the outcomes 

can, therefore, be substituted. Thus, if outcomes x and y are indifferent, then one 

would be indifferent between a lottery giving x with the probability p, and z with 
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the probability (1—p), and a lottery yielding y with the probability p, and z with 

the probability (1—p). Much the same way, if x is preferred to y, then a lottery 

yielding x with the probability p, and z with the probability (1—p), is preferred to 

a lottery yielding y with the probability p, and z with the probability (1— p). This 
last axiom is usually referred to as the Independence axiom, because it refers to the 
Independence of Irrelevant Alternatives (IIA). This last axiom allows us to reduce 

compound prospects to simple prospects, since one can also be indifferent between 

a simple lottery yielding an outcome a: with a probability p, and a compound lottery 

where the prize might yet be another lottery ticket, allowing one to take part in a 

lottery with £ as a possible reward, such that the effective probability of obtaining 

x would be p.

3.1.2 Human Decision Making Behaviors Inconsistent with the Ex­
pected Utility Theory

In 1979, Daniel Kahneman and Amos Tversky conducted a series of experiments 

testing the Allais Paradox in Israel, at the University of Stockholm, and at the University 

of Michigan [GII08]. Everywhere the results produced the same pattern. The problem was 

even framed in many different manners, with prizes involving money, travels, vacation, 
and so on. In every case, the substitution axiom was violated in exactly the same pattern. 

Kahnemann and Tversky called this pattern the certainty effect. This would mean that 
people overweight outcomes which are certain, compared to outcomes which are merely 
probable. Using the term ’’prospect” to designate a set of outcomes with a probability 

distribution over them, Kahnemann and Tversky also state that whenever winning is 
possible but not probable, meaning when probabilities are very low, most people choose 

the prospect which offers the larger gain. This fact is illustrated by the second decision 

stage of the Allais Paradox. Generalizing, if x and y were outcomes with 0 < p,q,r < 1, 

where p, q, and r would refer to probabilities, then they state that:

(v,pq) (re,p) => (y,pqr) > (x,pr)-, where the term (outcome, probability) 

means a prospect.
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The Reflection Effect

Kahnemann and Tversky also discovered strong evidence of what they called 

the reflection effect. To illustrate the reflection effect: Imagine a typical Allais Paradox 

problem, framed in the following manner. You first have to choose one of the two gam­

bles, or prospects: Gamble A: A 100% probability of losing $3000. Gamble B: An 80% 
chance of losing $4000, and a 20% probability of losing nothing. Next, you will have to 

choose between: Gamble C: A 100% probability of receiving $3000. Gamble D: An 80% 
probability of receiving $4000, and a 20% probability of receiving nothing. Kahnemann 

and Tversky discovered that 20% of people actually chose D, while 92% would chose 

B. A similar pattern was observed not only for varying positive, but also for negative 

prizes. This led them to conclude that for decision problems involving possible losses, 

people’s preferences over negative prospects are often a mirror image of their preferences 
over positive prospects. In other words, the same way they are risk-verse over prospects 

involving gains, people often become risk-loving when prospects involve losses [NB07].

Combination of the Certainty and Reflection Effects

In case of positive prospects, the certainty effect results in a risk-averse pref­

erence for a sure gain, rather than a gain which might be larger but merely probable. 

However, in case of negative prospects, symmetrically, people adopt risk-loving prefer­
ences for larger losses which remain probable, over smaller but certain losses. At this 
point, one would imagine that if this observation held universally then one would never 
see people buying insurance. Yet, what this really means, as we will see again in the 
section on probability transformations, is that when losses are involved with moderate 
or high probabilities, then risk seeking is often predicted. Prospect theory does, in fact, 

predict risk-aversion behavior for small-probability losses, which is normally the case in 

insurance decisions.

The Isolation Effect

Imagine now another lottery problem. Having to choice between the following, 

which one would you choose? Gamble A: A 25% chance of winning $3000. Gamble B: 

A 20% chance of winning $4000, and an 80% chance of winning nothing. Now imagine 

having to make a decision in a two-stage problem. The first stage involves a probability of 
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0.75 for ending the game without losing nor winning anything, and a probability of 0.25 

for moving to the second stage, where you are to face with the following choice: Gamble C: 

A 100% probability of winning $3000. Gamble D\ An 80% probability of winning $4000, 

and a 20% probability of winning nothing. 65% of people would chose B. while 78% 

would chose C. Why would this seem surprising? In fact, the true probabilities involved 

in the second choice can be rewritten as: 0.25 x 1 = 0.25 probability of winning $3000, 
and 0.25 x 0.8 = 0.2 probability of winning $4000. Kahnemann and Tver sky interpreted 

this discovery in the following terms: When simplifying the choice between alternatives, 

people usually disregard components that are shared among, and only focus on those 

which distinguish them. Because different choice problems can often be decomposed in 

different ways, this could lead to inconsistent preferences, as seen above. Kahnemann 

and Tversky called this phenomenon the isolation effect.
The above discoveries about the human decision making behavior are inconsis­

tent with the purely rational assumptions made by the Expected Utility Theory. There­
fore, one would need another explicative model which would better fit the contours of the 
human soul. This is precisely what The Prospect Theory has the ambition to accomplish.

3.2 The Prospect Theory

Given the effects presented above, Kahneman and Tversky suggested a new 

theory of decision-making under risk, which they called Prospect Theory (see [Wik09], 
and [DK79]). Prospect Theory differs from Expected Utility Theory in many fundamental 
ways. Firstly, it distinguishes two phases in the decision-making process: An editing 

phase, which represents a preliminary analysis of the offered prospects, followed by an 

evaluation phase, where the prospect perceived as the highest value is chosen among the 

edited prospects.

3.2.1 The Editing Phase

In the editing phase, a decision-maker reorganizes and reformulates the available 

options, in an effort to simplify the choice. It consists of the following operations (adapted 

from [Cen06]):
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Coding People perceive prospects as gains or losses, as seen in the above examples, as 

opposed to final states of wealth or welfare. A gain or loss is, therefore, defined in 

comparison with some reference point. The location of the reference point affects 

whether the outcomes are coded as gains or as losses.

Combination Prospects are simplified by combining the probabilities associated with 

identical outcomes. For instance, the prospect (200, 0.25; 200, 0.25), meaning 

having two consecutive 25% chances of winning 200 dollars, will be reduced to 
(200, 0.5). In this example the subject is expected to choose between a prospect 
where a 25% chance of winning 200 dollars is offered twice in a row, versus some 

other prospect not mentioned here. Therefore, before even considering the other 

prospect, the Combination component of the Editing Phase would add the two 

consecutive 25% chances of winning 200 dollars, by a 50% chance of winning 200 

dollars.

Segregation The riskless part of any prospect is separated from its risky part. For in­

stance, the prospect (300, 0.8; 200, 0.2) is decomposed into a sure component of 
200 and a risky prospect (100, 0.8). A similar process is applied for losses.

The above editing operations are applied to each prospect separately. Whereas, the 

following are applied to combinations of two or more prospects:

Simplification Prospects are exposed to be rounded off. For example, a prospect of 

(101, 0.49) could be seen as a 50-50 chance to win 100 dollars. Also, extremely 
unlikely outcomes could just be discarded.

Identification of Dominance Outcomes that are strictly dominated are identified and 

rejected without further evaluation.

Note that some editing operations would allow or prevent others from being 

carried out. The sequence of editing operations could often vary with the offered setting 

and the format of the display. As we can imagine, many preference anomalies can arise 

from the act of editing. For instance, inconsistencies described by the isolation effect, 
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would result from the cancellation of common components. Also, intransitivity cases can 

result from a simplification that would eliminate small differences between prospects.

3.2.2 The Evaluation Phase

During the evaluation phase, an individual examines all the available prospects 

and chooses the one perceived to represent the highest value. The overall value of a 

prospect, V, is expressed in terms of two scales, 7r and v. The first scale, tt, associates 

some decision weight 7r(p) with each probability p. This would reflect the impact of p on 

the global value of the prospect. It is important to mention that 7r is not a probability 
measure. Also, Kahneman and Tversky prove that %(p) + 7r(l — p) is frequently less than

1. The second scale, v, assigns a number v(x) to each outcome x. This would reflect 

the subjective value of that outcome. Recalling that outcomes are defined relative to a 

reference point, used as a zero point, v measures deviations from that reference point. 

Considering a simple prospect of the form where the subject would win x

with probability p, y with probability q. and nothing with probability 1 — p — q, and 

where p 4- q < 1, we say: An offered prospect is strictly positive if its outcomes are all 
positive. Meaning (x, p; y. q) where x, y > 0 and p + q = 1. It is strictly negative when 
all its outcomes are negative. It is regular when it is neither strictly positive, nor strictly 
negative. Therefore, for a regular prospect, where either p 4- q < 1, or, x <0 <y, we 

would'have: V(x,p\y,q) = ir(p)v(x) 4- where n(0) = 0,7r(0) = 0, and 7r(l) = 1.
V is defined on prospects, whereas v is defined on outcomes. The evaluation of strictly 

positive or strictly negative prospects would follow a different rule, described below: If 

p 4- q = 1, where either x > y > 0, or x < y < 0, then:

V(x,p;y,q) — v(y) 4- tf(p)[v(^) — f(y)], so that the value of a strictly positive 
or strictly negative prospect will equal the value of the riskless component augmented by 
the difference between the values of the two outcomes, multiplied by the weight assigned 

to the more extreme outcome. Note that a decision weight is only applied to the risky 

component, not to the riskless one.

For example: V(400,0.25; 100,0.75) = v(100) 4- 7r(0.25)[v(400) — v(100)J Meaning that a 

decision weight is only applied to the difference in value v(x)—v(y), but not to the riskless 

component, v(100). Also note that the right side of the equation above is simplified to 

ir(p)v(x) + [1 — 7r(p)]f (p)- This, in turn, reduces to 7r(p)v(a;) -\-n(q)v(y), the equation for 
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a regular prospect, when 7r(p) + 7r(l — p) = 1. However, this is usually not satisfied.

While the Prospect Theory equations might appear to resemble those of the 

Expected Utility Theory, their crucial differences are:

1. Values are attached to changes with respect to reference point, rather than to final 

states, and

2. The decision weights do not need to coincide with probabilities.

3.3 Additional Observations on Value Functions

The focus on changes as the carriers of value shall not mean that the value of a 

particular change is totally independent of the initial position. In fact, value functions can 

become more linear with increases in assets. A change going from $100 to $200 would 

likewise have a much higher value than one from $1100 to $1200. The value function 
is, in fact, concave above the reference point (v"(x) < 0 for x > 0), and convex below 

it > 0 for x < 0). Meaning, it is concave for gains but convex for losses. For

instance, most people do not like symmetric gambles of the type (50,0.5; -50,0.5). Thus, 
if x > y > 0, then (y, 0.5; —y, 0.5) will be preferred to (x, 0.5; — x, 0.5). This would mean 
that u(y) +v(—y) > v(x) +v(—x). Letting y = 0 gives us v(x) < —v(—x), while letting y 
approach x gives vf(x) < v'(—x), as long as v remains differentiable. Therefore the value 
function for losses would be steeper than that for gains.

Thus, for instance, choosing between the prospect of winning or losing $100 with 

a 50% chance in either case, expressed as (100,0.5 ; -100,0.5) against another prospect 
of win or lose, but this time on $10,000 and with the same 50% chance in either case, 

expressed as (10000,0.5 ; -10000,0.5), most people would choose the first prospect where 

the exposure is only a loss of $100. Yet, from the strict viewpoint of the EUT assumptions 

the two prospects are equivalent with their respective Utilities equal to 0.

Remark on the weighting function: The weighting function 7r, which associates 

decision weights to given probabilities, is an increasing function of p, where 7r(0) = 0 and 

7r(l) = 1. However, people usually overweight very small probabilities, like 0.001, so that 

7r(p) > p in cases of very small p.
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Definition 1. In probability and statistics theory, a stochastic order quantifies the concept 

of a random variable being “larger” than another. These are often partial orders, so that 

one random variable A might be neither stochastically larger than, less than, nor equal to 
another random variable B. Many different orders exist, and have different applications.

A real random variable A is said to be less than a real random variable B in the 

“usual stochastic order” if > x) < p(B > x) for all x G (—00,00).

Definition 2. Stochastic dominance is a type of stochastic ordering. The term is used in 

decision theory and decision analysis in order to refer to situations where one prospect, 

can be ranked as superior to another prospect. It is based on preferences regarding the 

outcomes. A preference may be a simple ranking of outcomes from the most to the least 

favored, or it may also use a value measure, meaning a number associated with each 

outcome which allows comparison of multiples between one outcome and another outcome, 
such as two instances of winning a dollar versus one instance of winning two dollars. Only 

limited knowledge of preferences is needed for determining dominance. Risk aversion, 

using this definition, is therefore a factor in second order stochastic dominance only.

In our comparison of Expected Utility Theory versus the Prospect Theory, the 

first order stochastic order and stochastic dominance are only mathematically modeled 
by the EUT. Whereas the PT identifies, defines, and uses human interpretations of the 

otherwise pure quantitative values, in order to re-establish stochastic order and dominance 
that better fit and explain human decision making behaviors.

Definition 3. Statewise dominance. The simplest case of stochastic dominance is state­

wise dominance, also referred to as state-by-state dominance, defined as follows: Prospect 

A is statewise dominant over prospect B if A yields a better outcome compared to B in 

every possible state. More precisely, A would yield at least as good an outcome in every 

state, with strict inequality in at least one state. For instance, if a dollar is added to 
one or more prizes in a lottery, then the new lottery would statewise dominate the old 

one. Similarly, if a risk insurance policy offers a lower premium and a better coverage 

than another policy, then with or without damage, the outcome will be better. In simple 

terms, anyone who prefers more to less, or said in formal terminology, anyone having 

monotonically increasing preferences, will always prefer the statewise dominant prospect.
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In our comparison of EUT versus PT, the feature of statewise dominance is 

assumed to be true and operational by the EUT whereas the PT may easily accept to 

ignore it through the Editing step of its Utility Function.

3.3.1 First-Order Stochastic Dominance

Statewise dominance is a special case of the first-order stochastic dominance. 
First order dominance is defined as follows: Prospect A has first-order stochastic dom­

inance over prospect B if for any outcome x, A yields at least as high a probability of 

winning at least x as does B, and for some x, A yields a higher probability of winning at 

least x. In notation form, p(A > x) > p(B > x) for all x, and, p(A > x) > p(B > x), for 

some x [Wik09]. Now, let us define Fa and Fb as the cumulative distribution functions of 

the prospects. In terms of the cumulative distribution functions of the two prospects, A 

dominates B, means that Fa(x) > Fb(x) for all x, with strict inequality for some x. For 
instance, consider a die toss where 1 through 3 would win $1 and 4 through 6 would win 
$2 in prospect B. This is dominated by a prospect A that yields $3 for 4 through 6 and 

$1 for 1 through 3, and also dominated by a prospect C which yields $2 for 3 through 

6 and $1 for 1 and 2. Prospect A would, in this case, have statewise dominance over 
B if we re-order the values won by the die toss outcomes, whereas prospect C will keep 

first-order stochastic dominance over B, and without statewise dominance, no matter 

what the order of prospects. Further, although whenever A dominates B, the expected 

value of the payoff in A is greater than the expected value of the payoff in B, this is not a 
sufficient condition for dominance, and thus, one cannot order lotteries using the concept 
of stochastic dominance simply by comparing their probability distribution means.

Every expected utility maximizer with an increasing utility function will prefer 

gamble A over gamble B if and only if A first-order stochastically dominates B. But 

then again, the concept of expected utility maximizer is a necessary assumption for EUT, 

whereas the PT at the cost of loosing some coherence provides for deviation even from the 

first-order stochastic dominance [NB07]. In fact, we will see in the following chapter the 

extent to which the human behavior in decision making for a subpopulation can deviate 

from the EUT model, in which case EUT would then apply only to the other portion of 

the population. Modeling these disparities .is exactly the motivation behind the mixture 

theories that we are analyzing in the following chapter.
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3.3.2 Second-Order Stochastic Dominance

The other commonly used type of stochastic dominance is second-order stochas­

tic dominance. Roughly speaking, for two gambles A and B, gamble A has second-order 

stochastic dominance over gamble B if A is more predictable, meaning involves less risk, 

and has at least as high a mean. All risk-averse expected-utility maximizers (that is, 

those with increasing and concave utility functions) prefer a second-order stochastically 

dominant gamble to a dominated gamble. The same is true for non-expected utility 

maximizers with utility functions that are locally concave.
For an example, let’s compare the die toss gamble A as seen previously, with 

the gamble B respectively as follows:

Gamble A $1 $1 $1 $2 $2 $2
Probability 1/6 1/6 1/6 1/6 1/6 1/6 £-i.o
Exp. Utility $1/6 M/6 $1/6 $2/6 $2/6 $2/6 £ = 1.5
Gamble B -$1 $1 $2 $2 $2 $3
Probability 1/6 1/6 1/6 1/6 1/6 1/6 E = i-o
Exp. Utility -$l/6 $1/6 $2/6 $2/6 $2/6 $3/6 E = 1.5

Note that the Expected Utility of prospect A = $1.50, while that of prospect B 

also carries a the total Expected Utility of $1.50.
Yet, gamble B will be dominated by the gamble A, because, as we have seen previously, the 

$-1 which represents a possible loss of 1 dollar, is perceived as involvement in additional 

risk involved in the gamble B. compared to the gamble A.

Using cumulative distribution functions Fa and Fr, A second-order stochasti­
cally dominates over B if and only if the area under Fa from minus infinity to x is greater 
than or equal to the area under Fr from minus infinity to x for all real numbers x, with 

strict inequality for some x.

For an example, let us consider the gamble C, compared to the gamble D both 

laid out below [WikOO]. In this example we are using discrete measures, but the example 

illustrates the cumulative distribution functions (CDF) of Fc and Fr, and shows the 

dominance of D over C.

Gamble C -$2 -$1 $1 $2 $3 $4
Probability 1/12 0/12 5/12 4/12 1/12 1/12 £ = 1.0
Exp. Utility -$2/12 $0 $5/12 $8/12 $3/12 $4/12 £ = 1-5
CDF -$2/12 -$2/12 $3/12 $11/12 $14/12 $18/12 £ = 1.5
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Gamble D will dominate gamble C if and only if its Cumulative Distribution 

Function, meaning its cumulative densities provided by the last line CDF dominates that 

of the gamble C in at least one area.

Gamble D -$2 -$1 $1.2 $7/4 $3 $4
Probability 1/12 0/12 5/12 4/12 1/12 1/12 £ = i.o
Exp. Utility -$2/12 $0 $6/12 $7/12 $3/12 $4/12 £ = 1.5
CDF -$2/12 -$2/12 $4/12 $11/12 $14/12 $18/12 £ = 1-5

Thus gamble D dominates gamble B since Fq, the CDF for D is greater or 

equal to Fc for all x, and strictly greater at x = $1.2.

3.3.3 Cumulative Prospect Theory

Cumulative Prospect Theory (CPT) is a model to describe decisions under risk 

which has been introduced by Amos Tversky and Daniel Kahneman in 1992 [DK79]. 
CPT is therefore a further development and a variant of Prospect Theory. Its main 

difference compared to the original version of Prospect Theory is that the weighting 
is applied to the cumulative probability distribution function, as it also is the case in 

rank-dependent Expected Utility Theory, rather than to the probability distributions of 
individual outcomes. For his contributions to behavioral economics, and specially for his 

development of the Cumulative Prospect Theory (CPT), Daniel Kahneman has received 

the prize in Economic Sciences in 2002.

Outline of the Model

(Adapted from [Wik09]) The value function both in Prospect Theory and in 
Cumulative Prospect Theory, is based on a reference point. This is in contrast with the 

Expected Utility Theory which deals with final outcomes. The reference point in PT and 

CPT corresponds to what the subjects perceive as the breakpoint between losing and 

winning. In Figure 3.1, we can see that the reference point is placed at the origin. This 

figure also shows that the slope on the negative side is sharper than on the positive side, 

corresponding to the loss prospects looming more than prospects of gain.

.Figure 3.1 shows a typical value function in Prospect Theory and Cumulative 

Prospect Theory. It assigns values to possible outcomes of a lottery. On the other hand,
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Figure 3.1: A Typical Value Function for Prospect Theory and Cumulative Prospect
Theory 

a typical weighting function in the Cumulative Prospect Theory, represented graphically 

by Figure 3.2, overweights both ends of the probability distribution, not due to the over 

weighing of very small and very large probabilities, but instead, due to the relative values 

that usually coincide with those probabilities.

Figure 3.2: Typical Weighting Function in Cumulative Prospect Theory

Figure 3.2 is a typical weighting function in Cumulative Prospect Theory [MA07]. 

It transforms objective cumulative probabilities into subjective cumulative probabilities. 
To summarize, the main observation of CPT, and its predecessor Prospect Theory, is that 

people usually think of possible outcomes relative to a certain reference point, often the 

status quo, rather than based on to the final status. This phenomenon is called the fram­

ing effect. Moreover, people have different risk attitudes towards gains, meaning simply 

towards outcomes above the reference point, compared to their attitudes towards losses, 

or outcomes below the reference point. In essence, people feel generally more strongly 

about potential losses than they do about potential gains. And finally, people in CPT
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tend to overweight extreme, and unlikely, prospects, while they underweight “average” 
prospects. This would mean, for example, that both small amounts in a lottery prospect 
as well as the very large amounts, at the other end will be overweighted, while most people 
would underweight the intermediary amounts. This last point is in contrast to Prospect 

Theory which assumes that people overweight unlikely events, without regard to where in 

the spectrum of amounts they are located. Thus, CPT incorporates these facts in a mod­

ification of Expected Utility Theory by replacing final wealth with outcomes relative to a 

reference point, replacing the utility function by a value function that depends on relative 

outcomes, and replacing cumulative probability distributions with weighted cumulative 

probability distributions. In the general case, this can be represented by the following 

formula for the subjective utility of a risky outcome described by the probability measure 

P- 

where v is the value function, whose typical form was shown in Figure 3.1, and w is the 

weighting function, as graphed in Figure 3.2. In this formula, F(x) := dp, represents 

the integral of the probability densities over all values up to x, thus it is the cumulative 

probability. It is what we have been referring to as cumulative probability densities. The 

function w, therefore, represents the twist that the decision maker’s subjective perceptions 
inflict to F(x) rather than to the individual probabilities. This formula generalizes the 
original formulation by Tversky and Kahneman from finitely many distinct outcomes to 

infinite, and therefore continuous, outcomes.
The main modification to Prospect Theory is that, as in rank-dependent Ex­

pected Utility Theory, cumulative probability distributions are transformed, rather than 

the probabilities themselves. This takes us to the overweighting of extreme events which 

occur only at both ends, carrying for instance very small or very large outcomes, with 

small probabilities, rather than to an overweighting of every small probability regardless 

of outcome values. The modification helps to avoid the violation of first order stochastic 

dominance by the PT, and makes the generalization to arbitrary outcome distributions 
easier. CPT is therefore from a theoretical standpoint an improvement over Prospect 

Theory (See [Wik09]).
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Chapter 4

Finite Mixture Models

This chapter analyzes the more recent models developed by Glenn W. Harri­
son, E. Elisabet Rutstrom in 2008. These authors suggest that a finite mixture model 

can be used to estimate the parameters of each decision process while simultaneously 

estimating the probability that each theory applies to the sample. We will then look at 

scale independence of these models: Do behavioral predictions of these models depend 

on the denomination/units of the rewards/losses? It could be that peoples’ decisions are 

influenced by the denominations or units in which rewards are counted; however this 

might seem unlikely. What are the conditions on the families of utility functions and 

EUT and PT frameworks for the decisions predicted to be unchanged by rescaling the 
rewards/losses, once the model parameters have been inferred?

A finite mixture model can be used to estimate the parameters of each decision 
process while simultaneously estimating the probability that each process applies to the 
sample [Evc96]. In this chapter we will be using the canonical case of lottery choices 

in a laboratory experiment. The main focus of this section is the heterogeneity of the 

subpopulations and its treatment by the mixture model. More precisely, dealing with 

heterogeneity, we want to identify which people behave according to what theory and 

where. This would allow for heterogeneous theories to co-exist within a grand likelihood 

function. As a result, we will no more need to pose the famously extreme, unrealistic, and 

increasingly criticized assumption known as Representative Agent. In fact, the idea of 

Representative Agent and his expected decision making behavior in society have long been 

used in the Economic Theories, before being recently severely criticized and essentially 
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abandoned. Let us first summarize our experimentation context, or frames, and the 

specifications of the two models EUT and PT that we are intending to nest within one 

same Grand Likelihood function. This would mean that although we admit that the 

heterogeneity can involve more than two different families of populations, for our purpose, 
and without loss of generality, we are using a model that would only contain EUT and PT 
decision making patterns. The decision making contexts or frames used in this chapter 

for the purpose of building a finite mixture model are as follows:

The data gathered by Glenn W. Harrison, E. Elisabet Rutstrom involves 158 

subjects who took part in their experiment. They will be making a total of 9311 choices. 

That is, each individual would be making about 60 decisions. Our gain frame contains 

0, 5, 10, 15 dollar prizes, involving 63 subjects. The loss frame starts off with a 15 

dollar initial endowment, then 0, -5, -10, -15 dollar prizes, involving 53 subjects. The 
purpose of the initial endowment for decisions involving possible losses is to make sure 

the net final outcomes remain positive. The mixed frame offers an $8 initial endowment 
to each subject, and then -8, -3, 3, 8 dollar prizes, involving 37 subjects. Again, the 

initial endowment is offered in order to avoid negative net prospects. An initial random 
endowment of 1 to 10 dollars is affected to all participants in order to further raise the 

possible outcomes towards the positive side. Probabilities used in the decision making 

situations are: 0, 0.13, 0.25, 0.37, 0.5, 0.62, 0.75, and 0.87. These probabilities are roughly 

evenly spread across the interval 0 to 1. In fact, the steps are either +0.12 or +0.13. For 
every prospect, these probabilities indicate the chances of receiving the indicated prize. 
The even distribution of the probabilities would help avoid possible biases due to abrupt 

changes in the chances of winning the prospects. In fact; the experimentation is based 

on presenting to the decider one pair of prospects on the left side of the screen, and 
one pair of prospects on the right hand side. The subject would therefore choose the 

pair of prospects that seems more worthy than the other pair. Thus, given the above 

probabilities a typical question presented to a given individual would involve two amounts 

x and y on the left hand side, and two amounts z and w on the right hand side. Each 

amount would have an associated probability of win. The formalized representation of 

such questions would look like the following:

Left prospect (x, .13; y, .37) versus Right prospect (z, .25; w, ,75).
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4.1 Expected Utility Specification

The CRRA, Constant Relative Risk Aversion, called the parameter r, is defined 

over the final monetary prize [GH08]. As seen above, the monetary prize is forced to 

be positive due to initial endowments. We assume that the utility function is given by: 

U (s, x) = (s + x)r where,
- r is the CRRA parameter to be determined,
- s is the fixed endowment mentioned above, and
- x is the lottery prize.

4
- The expected utility of every lottery EU = Pk-Uki where U is the utility

k=l
function specified above and indexed here from 1 to 4 since 4 outcomes are presented to 

the subject in each lottery. And, Pk represents the probability associated to Ur The 

values-used for probabilities Pk are chosen from the evenly distributed values seen above.

- For a given r, XEU = EUr — EUl is called index XEU. This index represents 

the difference between the pair of lottery prizes presented to the subject on the right 

hand side of the screen, and the pair of prize presented on the left.

- Logistic function: G {VEU) =

This Logistic Function can be interpreted as: The probability that the right 
outcome be chosen is G (\7EUj. Thus, the probability that the left outcome be chosen is 

(l-G(VFU)).

Now using the binary notation y± = 1 if right, yi — 0 if left, we can write:
Yi = (Gyi) (1 — G)^~yi^ . This means Yj = G when choice of Right, and, F = 

1 — G when choice of Left.

Note: Y represents a given person; i, a given bet; Yi, the probability of observing 

the response yi.

Considering that each bet is independent, the probability of one given set of 

outcomes, or likelihood, is the product ffy Yi, which obviously results in an extremely 

small number. Too small to work with in fact! Therefore we use their Logs, which will 

of course be negative values.
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The function Log-likelihood will thus end up looking like:

LnEUT (r-,y,X) = Yi IsnLiEUT = [ijtLnG (VEIL) + (1 - K) Ln (1 - G (VBtTi))],
i i

where X is a vector of individual characteristics that implicitly conditions VEU through 

r.

That is: r = + (fp x F) + (rfi x B) + (fn x H) + (r^izs x BUS) + (tgpa x GPA) +

{fage x age). This function will ultimately be going to be maximized.

4.2 Prospect Theory Specification

Tversky and Kahnman have used a popular parametric specification which is 

the one used here. The two main components of this specification are the utility function, 

and the probability weighting function.
The Utility function applies over gains and losses separately and relative to a reference 

point, as opposed to applying to final outcomes as in EUT.
A probability weighting function humanizes the pure rational probabilities and gives us 

subjective probabilities, thus more humanized.

Other characteristics of the model are as follows:

Losses, loom larger than gains, since the humans would behave as such. 

Non linearity in the transformed probabilities accounts for different risk attitudes.

This mixture model also provides for individual characteristics (called vector X) 

built into r for EUT and into a, fi, X for PT.

The separate functions defined for gains and losses are:
Gains (x > 0) => U (x) = xa,

Losses (e(0) => (7 (x) = —X(—x)^ 
where and /3 are risk aversion parameters, and A is the coefficient of loss aversion.

Subjective probabilities which characterize the Prospect Theory are here mod­

eled by:
p-y

[P7+(l-P)'1']7 ’ 
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where w humanizes the propabilities, or said differently, introduces the decision maker’s 

subjectivities. The rest of procedures are identical to EUT; meaning :

VPU = PUR - PUL.

The likelihood, therefore, will depend on estimates of a,/?, A, 7 and on ingredi­

ents of X.

And finally, the function Log-likelihood for the Prospect Theory component of 

the mixture model at this point is:

LnL^ (a,0, A,7; y, X) = £ [yiLnG (VPUi) + (1 - yi)Ln(k- G (VPl/,))]
i

=
i

4.3 Nesting of the Expected Utility Theory and Prospect 
Theory Models Inside the Function Grand-Log-Likelihood

Let denote the probability that EUT is the correct model, and, ff
denote the probability that PT is the correct model. Then: — The

/ FT/T*  \function GrandLog-Likelihood can now be written as: LnL lr,a,p,A,7,fI =
[(n^r x Lf^J + (IT x L^)]

At this point, the right choices of the parameter arguments will be the ones that 
maximize the Grand-Log-Likelihood.

4.3.1 The Results of the Finite Mixture Model Experimentation

Table 4.1 Table 4.1 shows that EUT and PT probabilities indicate that each is equally 

likely for the data we had [GH08]. They are 0.550 versus 0.450.

Secondly, we see that the estimates for PT specification are only weekly consistent 

with a priori predictions of the theory: A = 1.380 while7 = 0.911, are both too close 

to 1; a = 0.710 and = 0.723 are almost identical., d > 0

Whereas, When the mixture model is used, the value for A = 5.781, while 7 = 0.681 

becomes, both more PT like. While, a — 0.614 and 0 = 0.132, are no more identical. 

Using the PT model for the subpopulation that has a better probability of fitting
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Parameter Estimates tiwn Conditional Models Estimates from Mixture Model
or Test Estimate Standard Error p-vofue Lower 95% 

Confidence 
Interval

Upper 95%
Confidence
Interval

Estimate Standard Error p-vaiue Lower 95%
Confidence
Interval

Upper 95%
Confidence
Interval

r 0,867 0.029

a 0.710 0.046
p 0.723 0.065
X 1.380 0.223
r
aEWT

W,o:sEUT=rrPT

Hq: a sa fl 
Hq; X ■=> I 
Hq: y = I

0.911 0.061

0.861
0.090
0.151

0.000 0.809 0.924 0.846 0.044 0.000 0.759 0.933

0.000 0.620 0.801 0.614 0.057 0.000 0.501 0.727
0.000 0.695 0.851 0.312 0.132 0.019 0.052 0.572
0.000 0.940 1.820 5.781 1,612 0.000 2.598 8.965
0.000 0.790 1.033 0.681 0.047 0.000 0.587 0.774

0.550 0.072 0.000 0.407 0.692
0.450 0.072 0.000 0.308 0.592

0.490

0.046
0.003
0.000

Table 4.1: Estimates for Parameters in Conditional and Mixture Models

into that model and letting EUT talk for the rest of the population seems therefore 

to be better modeling of this set of data.

Table 4.2 Table 4.2 shows the optimal estimates calculated under mixture model with 
individual characteristics included- For example, a 21 year old non Hispanic black 

female, who did not have a business major and had an average GPA, would have 

an estimate of r given by:

r = r0 + r FEM ALE + rBLACK + rAGE x 21.

Notice that the set of estimated characteristics is reasonably large, allowing consid­

erable heterogeneity for a given subject and among subjects.

Figure 4.1 Figure 4.1 shows the distribution of predicted probabilities of the two com­

peting models. The two panels are by construction the mirror image of each other. 

In fact, we have had “ FI^7 ) ? since we 0I1br have two competing

models.

Figure 4.2 Figure 4.2 indicates the uncertainty of these predicted probabilities. Note 

that uncertainty is smaller at the end points. This result is consistent with the use 

of discrimination functions such as the logistic function. Also, EUT has more of its 
support closer to the upper end-point where some subjects are better characterized 

by it.
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The two panels are by construction the mirror image of each other.

1 i i------- 1------ 1------ 1------- 1------ 1------ r----- 1-------r
0 .1 2 .3 .4 5 ,6 .7 .8 .9 1

Probability
0 .1 2 .3 .4 .5 .6 .7 .8 .9 1

Probability

Figure 4.1: Probability of Competing

Predicted 
Standard 
Error of 
Probability

Figure 4.2: Predicted Probability of Expected Utility Theory Model
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Figures 4.3 and 4.4 Figures 4.3 and 4.4 clearly indicate that males are more likely to 

behave according to EUT model. Whereas females density is highest on the smaller 

probabilities, indicating that their behavior is less likely to be according to 

EUT.

On the other hand, the black almost never make their decisions on the EUT model. 

For the others, they are mixed, with majority of them on the right side of Jj = 

0.5.

Figures 4.5 and 4.6 Another benefit of using a mixed model can be seen here: Among 
those with at least 25% chance of being EUT-consistent, that is 126 subjects out of 

our total of 158, their CRRA, or risk aversion coefficient average of 0.98.

As expected from an EUT subpopulation.

Whereas, the same CRRA components among those with at least 25% chance of 

being PT-consistent, that is 114 out of 158 subjects, are as follows: a < 0.5 avg
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Figure 4.4: Ethnicity, Expected Utility Theory and Prospect Theory

0.44 > 0.5 avg 0.51 A > 1 avg 5.81 7 < 1 avg 0.89

As expected from a PT-inclined subpopulation.

4.4 Scale Independence of Finite Mixture Models

A utility function is a function U of some amount of money x that represents the 

satisfaction of taking possession of x. Utility functions are used both in EU and Prospect 

Theory. In general, we do not have access to a direct measurement of U, so the utility 

function is only considered to be known up to some parameters which must be estimated. 
As a modeler, we postulate that the true utility experienced by people belongs to some 

family of functions, parameterized lets say by h] U(xji). EU and Prospect Theory are 

frameworks for mapping a family of utility functions U(xji') to the choices that people 

make when making decisions under uncertainty. These frameworks provide a probability 

that a person will make a given set of choices for a given h. When data has been acquired
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For subjects with at least 25% chance of being EUT-consistent (N=126)

Figure 4.5: Constant Relative Risk Aversion parameter of the Expected Utility Theory 

Model

on the actual decisions of an actual person, we can then find the value ho of h that 
maximizes the probability that the person made the decisions it actually made. The 

function x-^U(x,h) for this value of ho is then deemed to be the best description of the 

actual satisfaction U of the person among the family we started off with. The process 
of using data to find ho, the h that best explains the data, is called inferring ho, or 

(statistical) inference.
One desirable property of a utility function is that it be independent of the 

denomination of x, whether it be dollars or cents or yens, etc. This makes sense because 

the denomination shouldn’t affect the modeling in any way other than through a re­

adjustment of parameters. If a utility function U(x, h) is not scale independent, changing 

the formulation from dollars to cents would change the family of functions we are consid­

ering, and would in general lead to a different value for the function x -^-U(x, ho) once ho 

has been inferred. If the utility function is scale independent, changing the formulation 

from dollars to cents would change the value of ho, but the resulting U(x, ho) would be 

the same, because the change in inferred ho would exactly compensate for the change in
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For subjects with at least 25% chance of being PT-consistent (N=114)

Figure 4.6: Parameters of the Prospect Theory Model

denomination.
In formal terms, a utility function U(x,h) parameterized by h is scale indepen­

dent if for all h and all re-scalings of the denomination d > 0, there exists hi such that 

U(x,h) = U(d x x, hi). This is the formalization of exactly what was explained in the 

previous paragraph.
The utility function developed by Glenn W. Harrison, E. Elisabet Rutstrom in 

the wedding and funeral paper is not scale independent. They use U(x,h) = xr, where 

the parameter h = r. For a given d different from 1, there exists no way to change r so 

as to compensate for changing x into dx x. This is bad. A better utility function would 

include an additional scale variable g: U(x, {r, g}), so that h = {r, g} of the following 

form: U(x, {r,g}) = (x x g)r. Now all one needs to do to compensate for a change in 

denomination d is to take g = 1/d. Note that this procedure of adding a parameter for 

scale is general, and can be done for any utility function to make it scale independent.
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t*1 is the log odds of ths probabilities of each model, where n,EUT =1/(14- expfjr))

Parameter Variable Estimate Standard
Error

p-value Lower 95%
Confidence
Interval

Upper 95% 
Confidence 
Interval

r Constant -0.246 0352 0.485 -0.940 0.449
Female -0.273 0.099 0.007 -0.469 -0.076
Black -0.043 0.195 0.824 -0.428 0341
Hispanic -0.586 0.174 0.001 -0.929 -0.242
Age 0.065 0.018 0.001 0.028 0.101
Business -0.104 0.099 0.291 -0.299 0.090
GPAlow 0.042 0.083 0.616 -0.122 0.205

a Constant 0.549 0.256 0.034 0.043 1.055
Female -0.201 0.215 0.350 -0.625 0.223
Black - 0.101 0.216 0.640 -0329 0.326
Hispanic -0.128 0.355 0.718 -0.829 0.572
Business 0.053 0.292 0.857 -0324 0.629
GPAlow 0.059 0.196 0.765 -0.328 0.446

P Constant -0.202 1.199 0.866 -2371 2.166
Female 0.453 0.749 0346 -1.026 1.933
Black 0.300 0.291 0.303 -0.274 0.875
Hispanic 0.172 0.504 0.733 -0.822 1.167

. Age 0.010 0.013 0.442 -0.016 0.036
Business 0.130 0.451 0.774 -0.760 1.020
GPAlow 0.095 0.175 0.587 -0.250 0.440

i. Constant 1.592 7.164 0.824 -12358 15.742
Female -4.007 10.037 0.690 -23.832 15.818
Black -4.494 2.029 0.028 —8303 -0.486
Hispanic -5.083 2.053 0.014 -9.137 -1.028
Age 0.523 0366 0357 -0395 1.641
Business -2.981 2.226 0.183 -7.378 1.417
GPAlow -0.297 1.893 0.875 -4.036 3.441

Y Constant 0.664 0.257 0.011 0.157 1.171
Female 0.474 0.106 0.000 0.266 0.683
Black 0.009 0.123 0.945 -0.234 0.252
Hispanic 0.971 0.585 0.099 -0,185 2,127
Age -0.020 0.010 0.058 -0.041 0.001
Business 0.333 0.180 0.065 -0.022 0.688
GPAlow -0.140 0.199 0.482 -0.533 0.253
Constant 0.558 1.268 0.660 -1.946 3.062
Female 1.638 0307 0.002 0.637 2.640
Black 2.387 1.715 0.166 -1.001 5.775
Hispanic 1.543 3.714 0.678 -5.793 8.880
Age -0.120 0.059 0.045 -0.237 -0,003
Business 0.774 0392 0.193 -0.395 1.943
GPAlow 0.477 0.612 0.437 -0.732 1.686

Table 4.2: Table of Estimates of all Parameters for Mixture Models with Individual 
Covariates
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Chapter 5

Example Applications of Mixture
Models

Mixture models have been used for decades in all sorts of contexts. This last 

section details some real world applications of finite mixture models in contexts other 

than the one considered by Glenn W. Harrison and Elisabet Rutstrom , [GH08]. After a 
general introduction, we review briefly an application used for the diagnosis of blood cells. 

We then review another application in astronomy. These overviews intend to reveal the 

general use of the finite mixture models in the real world. They also intend to introduce 

some basic practical concepts and difficulties only on the surface. We will then continue 
with two additional applications. These examples will further show how important con­

cepts are used. The third application example will further review the determination of 

parameters in the making of diagnosis tools. The last application example will show how 
the important technique of Expectation Maximization (EM) algorithms can be used to 

obtain optimal values for a model under construction in field of marketing.

5.1 General Introduction and Preview Examples

Finite mixture models have been receiving increasing attention from both a 

practical and theoretical point of view (see [Sti86] ChlO). Modeling via finite mixture 

distributions involves identifiability problems, the actual fitting of finite mixtures through 

use of the Expectation Maximization (EM) algorithm, the properties of maximum likeli­
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hood estimators, the assessment of the number of components to be used in the mixture, 

and the applicability of asymptotic theory in providing a basis for the solutions. Scaling of 

the EM algorithm allows mixture models to be used in data mining applications involving 

massively large data bases. Also, recent use of t components in the mixture model pro­

vides a robust approach to mixture modeling. A t number of components would mean the 
number of subpopulations, and therefore the number of likelihood functions that are sup­
posed to model each subpopulation is not known in advance. Some latest developments in 

finite mixture distributions involve hidden Markov models. Successful application fields 

of mixture models include astronomy, biology, genetics, medicine, psychiatry, economics, 

engineering, and marketing [Eve96]. Moreover, finite mixture models, provide cluster and 

latent class analyses, discriminant analysis, image analysis, and survival analysis. Thus, 

mixture models can also reveal the existence of previously unrecognized or undefined 

subpopulations, or substructures, as we will see below in Kriessler and Peers astronomy 

discoveries (see [GM01], Chapter 6). In fact, in some applications of some mixture mod­
els, there is sufficient a priori information for the number of components g in the mixture 

model to be specified with no uncertainty. However, on many occasions, the number of 

components has to be inferred from the data, along with the parameters in the compo­

nent densities. For instance, the red blood cell volume distribution of healthy individuals 

can be modeled adequately by a single log normal component. However, for patients not 

completely recovered from anemia, their red blood cells distribution, although unimodal 

in appearance toward the end of the iron therapy treatment, may still need to be mod­
eled by a two-component log normal mixture due to the presence of a sufficient number 
of microcytic cells in relation to the normocytic cells. Thus the result of a statistical test 
on the number of components in the log normal mixture model for a specific patient can 

be used as an early guide to aid clinicians in making a decision when to suspend iron 

therapy treatment for a patient. A non-significant test result is consistent with the red 

blood cell distribution of the patient having returned to a healthy state. For an applica­

tion of insufficient a priori information for the number of components, let’s consider the 

recent discoveries in astronomy. As explained by Kriessler and Beers (1997), it was once 

assumed that most clusters of galaxies (subpopulations) were relaxed systems that could 
be adequately modeled by a simple set of parameters, such as a single-core radius and 

the velocity dispersion of neighboring galaxies. However, numerous recent studies have 
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concluded that many, perhaps even most, clusterings are far from being in dynamical 

equilibrium. Evidence cited includes the existence of: (a) clumpy distributions of galax­

ies seen in the projection on the sky, (b) apparent structure in the distribution of radial 

velocities for cluster membership, and (c) multiple centers of X-ray-derived temperature 
profiles, suggestive of ongoing collisions. The desire to identify substructure in clusters of 
galaxies has led to the bootstrap form of the Likelihood Ratio Test (LRT) for the number 

of components in a mixture model being applied in studies in astronomy. Bootstrap is 

a powerful technique that permits the variability in a random quantity to be assessed 

using just the data in hand. Recent papers in the astronomical literature in which this 

method has been used for investigating substructure in galaxy clusters include those by 

Ashman and Bird (1993, 1994), Bird (1994a, 1994b, 1995), Beers and Sommer-Larsen 
(1995), Bird, Davis, and Beers (1995), Davis et al. (1995), Zepf, Ashman, and Geisler 
(1995), and Bridges et al. (1997).

For example, Kriessler and Beers (1997) concluded from their use of this statis­

tical test'that 57% of the Dressier (1980) morphological-sample clusters have statistically 

significant substructure. Figure 5.1, which is taken from Kriessler and Beers (1997), gives 

the contour plots of bivariate normal mixtures fitted to the positions of some of the galaxy 

clusters (see [GM01] page 197). Figure 5.1 exposes the adaptive-kernel density contour 
maps of galaxy positions in Dresslers morphological sample. The filled circles in the fig­

ure indicate the positions of galaxies identified by Dressier (1980). The crosses mark the 
average positions identified as significant in the normal mixture fit.

5.2 Medical Diagnosis

Let us continue with an example of using a mixture model to make good use 

of medical data, in view of predicting the chances that given individuals have certain 

diseases. Screening for various diseases based on a patient’s medical history and data can 

be hard even for the trained physician because of the number of factors that need to be 

taken into account [StiS6].

Suppose we have a data set from a large number N of patients who were each 

found to have one of 5 conditions, one of which is the “healthy” condition, and four of 
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which are pathological; we also assume that patients cannot have multiple conditions, so 

patient i is associated with a single known condition J(i). For each patient, we have a set 
of 16 standard medical measurements: blood pressure, age, weight, etc. Each patient i is 

characterized by a vector Xi of 16 numbers, and by their known condition J(i). We would 
like to use this data to form a model which will allow us to assess the risk of disease for 

future patients based on their 16 standard measurements.

Formulated as such, this is a relatively easy problem which maps nicely into 

the mixture model setting. We can assume that each of the 5 groups of people in the 5 
conditions has a distinct distribution of the 16 medical measurements. We will suppose 

that patients have probability pj of having condition j, for j G {1,2,3,4,5}, and that 
each condition j gives rise to a Gaussian distribution of medical measurements with mean 

vector pj € S16. and covariance matrix Cj € K16*16, so that the probability density of 

a patient with condition j having medical measurements x are given by the Gaussian 

density:

P^UM = j) = -E=e-^x‘-^TcE^
\/l27rCll

It is now possible to infer the parameters {(pj,Pj, Cj)}jG[i,2,3,4,5} °f this mixture 
model, because we know in advance which patients belong to which of the 5 mixture 
components. The parameters pj are simply obtained from the number of patients Nj 
in condition j, as the empirical average number of patients having that condition. The 

parameters pj and Cj for patients with condition j are obtained the way parameters of a 
gaussian are usually estimated: equivalently by maximum likelihood or with the empirical 

estimators of the mean and covariance of the x/s:

Pj = Nj/N

~ pp 52

Cj = N- 1

With these three simple equations, we have estimated all the parameters of the 

model. Now given a new patient with medical measurements x, we can calculate their
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probability of having condition j by calculating pfyja?) = p(x, j)/p(x) where p(x,j) = 

pM)pW = P&\j)pj and p(x) = '£j<p(x,j/)-.

?W|z) = pW)Pj
Y'j'PWfyj'’

= - w)]
£/ exp [-1^ - ^)TG^{Xi - W)]

This would ultimately mean that, given the medical characteristics of an indi­

vidual represented by the vector x, we can calculate the probabilities for the individual 
to be affected by each one of the five health conditions j. Thus the highest probability 
associated with one of the five health conditions j would be the one the doctor might 

decide to worry about.

5.3 Consumer Spending

Different consumers choose to spend their money differently. It is reasonable to 

consider that consumers might fall into groups with similar tastes and spending habits. 
Having a model of the distribution of consumers, how they cluster into groups, and what 
the spending habits of each group is could be useful in several business contexts. For 

example, we could be a business scouting out potential consumer markets, in view of de­

signing a new product targeted for a particular group of consumers. Or we could already 

have a product which we would like to market to a suitable group of consumers.

Suppose we have data on the spending habits of thousands of people. We know 
the amount that was spent by each person in each of 12 categories of spending: groceries, 

clothing, restaurants, automobile, air fares, other transportation, insurance, rent, educa­

tion, etc. Each person is represented by the 12-dimensional vector of amounts they spent 

in each category.

If there were only 2 spending categories, we could just make a 2-dimensional 

scatter plot, with the 2 axes being the amount spent in each of the 2 categories, and one 

point for each person surveyed. We would then look at this cloud of points and hopefully 

see that these points cluster into groups, which we could identify as distinct consumer



46

groups. However we have 12 categories instead of 2, so visualizing clusters in this way is 

impossible.

In this context, mixture models are a good way of inferring clusters of consumers 

as well as the distribution of their spending habits, even if we cannot do so “by eye”. 

Let’s see how this can be formalized, and what the difficulties are in applying mixture 

model methods.

This new example application of Gaussian mixture models presents a little more 

difficulty than the previous medical one, because we don’t know which cluster each con­

sumer belongs to in advance; we don’t even know how many clusters there are. As it 

turns out, it is still possible to make progress in this situation.

In the medical example, we saw that if we know which cluster each patient be­

longed to, we could calculate all the model parameters in a straightforward manner. Then 

given the model parameters, we saw how to calculate the probabilities of each patient 
belonging to each condition. What we can do in the case where we don’t know in advance 
which cluster each person belongs to is as follows: we can guess how many clusters there 

should be, and we can start with a random initial guess of the model parameters. Then 

for these parameters, we can calculate the probabilities of each person belonging to each 

cluster [GM01J. Using these probabilities, we can estimate the model parameters. Given 

these new model parameters, we can estimate the probabilities of each person belonging 

to each cluster once again, and using these new assignments, we can re-estimate the pa­
rameters once again. In this way, we can alternate between re-estimating parameters and 
re-estimating the probabilities of each person belonging to each cluster, and hope that at 

each iteration, the parameter estimate will get better and better.

As it turns out, this procedure, called Expectation Maximization or the EM 

algorithm, is guaranteed to improve the model parameter estimates after each iteration, 

and converge to an estimate of these parameters which locally maximizes the likelihood of 

the data. Since we are estimating parameters in the maximum likelihood setting, we can 

see parameter estimation as an optimization problem: we are looking for the parameters 
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which maximize the likelihood. We can view the likelihood function as a landscape with 

hills and valleys, in the high-dimensional space where parameters live: finding the best 

parameters consists in finding the highest peak in this landscape. The EM algorithm is 
guaranteed to find a peak in this landscape. However, it is not guaranteed that the peak 

it finds is the highest peak in the landscape; this is why we say that EM converges to 

a local maximum, as opposed to a global maximum. Starting EM with different initial 
guesses for the parameters will result in converging on different peaks in general.

This is particularly a problem for Gaussian mixture models, because the Gaus­

sian components of the mixture can become unboundedly sharp around a single data 

point, and this would make the likelihood of the data become infinite: this happens when 
one of the mixture components j has a mean equal to one of the data points, and the 
covariance matrix Cj of that component goes to zero. For a Gaussian mixture model, 
there are in general many peaks, a lot of which are actually infinite, and which we would 
like to avoid, because they are spurious: they are overfitting single points in the data. 

There are various ways of dealing with this problem, which we will not get into.

However in practice, given a decent initial guess for the model parameters, ap­

plying, the EM algorithm will most often converge onto a model which is reasonable and 

useful [GM01].
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Figure 5.1: Adaptive-Kernel Density Contour Maps of Galaxy Positions in Dressier’s 
Morphological Sample
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Chapter 6

Conclusion

In this paper we have introduced the decision making contexts in order to better 

understand the two major decision making making theories, the Expected Utility The­

ory, the Prospect Theory, and their applications. We then, investigated the finite mixture 

models using these two theories within a larger likelihood function. The application ex­

ample of the finite mixed model containing these two theories as their major ingredients 

paved the way for approaching more application examples in Chapter 5. These exam­

ples included discussions such as identifiability problems, fitting of finite mixture models 
through the EM algorithm, and construction of maximum likelihood functions. The finite 

mixture models are increasingly used in all areas of science. This project gave me the 
opportunity to discover some of the major ways mathematics contribute to improve our 

lives. The understanding, the curiosity, and the knowledge that I have built through this 

project add‘to the excitement that I enjoy as a life time learner. Also, I am so grateful 

to have had the opportunity to share this enrichment as a graduate student of CSUSB.
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