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Abstract

This project is an expository survey of the Riesz representation theorem for 
linear functionals, which states that on locally compact Hausdorff spaces, certain linear 
functionals can be represented by a unique regular Borel measure. This representation is 
realized in the sense that applying the linear functional to any function in a specific class 
of functions is identical to integrating the function with respect to the Borel measure. 
Preliminary material and applications in the areas of measure theory, integration theory, 
topology, and functional analysis are discussed and thoroughly investigated prior to the 
statenient and proof of the theorem, which is presented in its entirety.
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Chapter 1

Introduction

1.1 Summary

The following work investigates the Riesz representation theorem for linear func­
tionals in relation to locally compact Hausdorff spaces. Two other theorems that are com­
monly called the “Riesz representation theorem” are the theorem for finite-dimensional 
inner product spaces and the theorem for Hilbert spaces [BNOO], and studying these in­
teresting topics helps us to not only gain a better understanding of how linear functionals 
interact with the vector spaces over which they are defined, but also to start to see faint 
threads that hint at a deep connection between the various fields of modern mathematics. 
The representation theorem that we will study establishes an important and remarkable 
relationship between linear functionals and integration. Informally, the theorem states 
that given a positive linear functional over the vector space of real-valued contin­
uous functions with compact support defined on a locally compact Hausdorff space X, 
there exists a unique regular Borel measure so that applying the linear functional to any 
function in (X) is identical to integrating that function over the space X with respect 
to the measure.

Before we get to the theorem, we first introduce and study some preliminary 
concepts, starting with cr-algebras and measures, and prove some necessary results that 
will be used throughout this work. Once we have these tools at our disposal, we will 
then construct the Lebesgue integral in a three-step process. After some fundamental 
properties of the integral are presented, we move on to some extremely powerful limit 
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theorems that describe situations in which integration can commute with the limit process 
as applied to convergent sequences of functions. We will then briefly investigate some 
topological notions, including local compactness and Hausdorff spaces, both of which are 
essential parts of the main theorem of this project. Once this introductory material is 
completed, we will be in a position to state and prove the Riesz representation theorem, 
which is our goal.

1.2 Motivation

One motivating factor for the study of measure .theory begins with the desire to 
generalize the notion of “length” to sets for which the standard definition of Euclidean 
length does not apply. One example of this would be the rationals, Q. Since Q contains 
no intervals, it is not obvious how one would go about discussing length in regards to this 
set. If we wanted to generalize the notion of length to arbitrary subsets of R, we would 
want a few things. First, we would want the “size” of a set to be greater than or equal to 
that of any of its subsets, and this size should be non-negative. Another property that 
seems logical is that if we have a collection of disjoint sets, the size of the union of the 
sets should be equal to the sum of the sizes of each individual set. It would also be very 
nice if this new idea of “size” agreed with the Euclidean definition of length on sets to 
which it applies.

Unfortunately, there does not exist a function that assigns to each subset of 
R a size that meets all of the above requirements [Gor94]. If we want it to match the 
Euclidean distance and add up properly, there is no way to extend this idea to every 
subset. Alternatively, if we want it to add up properly and apply to every set, then there 
is no way to make it agree with Euclidean length. However, if we restrict our attention 
to a specific collection of subsets of R, the Borel cr-algebra, then there is such a function, 
called the Lesbesgue measure. We can also generalize these concepts to arbitrary sets 
rather than just R. Once we do this, the ideas of integration and convergence follow 
naturally as we re-examine the well-established ideas of basic analysis through the lens 
of measure theory.
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Chapter 2

Measures

In this chapter we will define some of the fundamental concepts we will be 
using for this project, such as cr-algebras and measure spaces. We will also present some 
important theorems that are used frequently as tools when dealing with measure spaces, 
and construct a particularly useful measure known as the Lebesgue measure. We will 
conclude this chapter by examining some interesting properties and applications of the 
Lebesgue measure.

2.1 cr-algebras

Definition 2.1.1. Let X be an arbitrary set. A collection of subsets of X is called a 
a-algebra on X if the following conditions hold:

1. X erf,

2. for every A G rf, we have that Ac G rfwhere Ac = X \ A,

3. for every countable collection of subsets of j/, we have that |J£i A G rf

4. for every countable collection of subsets of rf, we have that A G A.

It can easily be shown that conditions 2 and 3 together imply condition 4, and 
that conditions 2 and 4 together imply condition 3, so that we really only need three 
conditions in our definition. Replacing countable collections with finite collections in 
conditions 3 and 4 changes the definition to that of an algebra of sets. Note that it is a 
direct result of the definition of a cr-algebra that if A and B are elements of a a- algebra 
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<e/, then A\B Erf as well, since A \ B = A n Bc. The following theorem leads to a 
useful way to find a cr-algebra containing a desired collection of subsets. The simple proof 
follows directly from the definition of a cr-algebra.

Theorem 2.1.2. Let X be a set, and let be an arbitrary non-empty collection of 

a-algebras on X. If &/ = Pice# then jrf is a a-algebra on X.

A direct corollary of this theorem is that given any collection of subsets of 
X, there is a smallest cr-algebra on X that includes 'zf. which is the intersection of every 
cr-algebra that contains Y?. Note that at the very least, the power set on X is a cr-algebra 
that includes so the intersection is non-empty. This intersection is called the a-algebra 

generated by Y?. A particularly useful and important cr-algebra is our next definition.

Definition 2.1.3. The Borel a-algebra on R is the cr-algebra on R generated by the 
collection of all open subsets of R. We denote the Borel cr-algebra by «^(R).

This particular cr-algebra is useful because it contains every open subset of R, 
every closed subset of R, every compact subset of R, and indeed “virtually every subset 
of R that is of interest in analysis” [Coh97]. The Borel cr-algebra is also generated by 
the collection of all closed subsets of R, which is easily verified using the properties of 
cr-algebras and the fact that the complement of every open subset of R is closed in R. 
The elements of ^(R) are called Borel subsets or Borel-measurable. In general, elements 
of a cr-algebra are referred to as measurable sets, for reasons which will be clear in the 
next section.

2.2 Measures

Definition 2.2.1. Let X be an arbitrary set, and let srf be a cr-algebra on X. A measure 

is a function p which satisfies the following conditions:

1. p : frf —[0, oo],

2. p($) = 0, and

3. p is countably additive, so that if is a countable collection of disjoint sets
in then

(
oo \ oo 

U Ai)= 52
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Now we present some terminology. If X is a set, if srf is a cr-algebra on X, and 
if /i is a measure on sf, then we call the pair (X, sf) a measura&ie space, and we call the 
triple (X, F. p) a measure space. A measure p is called finite if p(X) < oo, and is called 
a-finite if X is the union of a countable collection of sets {Az-}, where p(A^) < oo for 
each i > 1. In these cases we also call the measure space (X, si, p) finite or u-finite. The 
following useful property can be helpful when trying to prove things about measures.

Theorem 2.2.2. Let (X, .s/, p) be a measure space. If {A&} is an arbitrary sequence of 

sets that belong to stf, then

(
oo \ oo
UA*)

fc=l / fc=l

Proof. We will use the sequence of sets {A^} to construct a related sequence of disjoint 
sets as follows. Define 2?i = Ai. Now let Bk = Ak\ ^Ui^i A’) for k > 1. Since si is 

closed under countable unions and set subtraction, G sf for all k > 1. The sets B% 
are clearly disjoint. Also, since Bk G A& for every k > 1, we have that p(Bfc) < p(Afc).

Now, if x G (Jfc2=i then x G BkQ for some ko > 1. So x G A^o since each Bk is 
contained in the corresponding A&. Thus x G IJ£i Ak- If £ € U£i Afc, then there exists 
a ko > 1 so that x G Afc0 and x Aj for all j < kQ. Thus, x G Ako \ (U&i1 A) = Bko, 

so x G Ui&i-Bfc*  Therefore, = UfcLi-^fc by double containment. It now follows
that

/ oo \ / oo \ oo oo

=Hub*=e *•<**) ^e*^- q
\fc=l / U=1 / k=l k=l

As mentioned earlier, there is a measure that can be defined on ^(R) that 
assigns to each subinterval of R its length. Before we can discuss this, we need a few 
more preliminary definitions.

Definition 2.2.3. Let X be a set, and let <^(X) be the power set on X (the collection 
of all subsets of X). An outer measure on X is a function p*  : <^(X) —> [0, oo] which 
satisfies the following conditions:

1. M*(0)  = 0,

2. p*  is monotonic, so that if A C B C X, then p*(A)  < p*(B),  and
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3. p*  is countably subadditive, so that if {An}^ is a countable collection of subsets 
of X, then

(
oo \ oo

U An

71=1 / 71=1

As is evident from the definitions, a measure is an outer measure if and only if 
the domain of the measure is the power set of X. On the other hand, an outer measure 
is not necessarily a measure, since countable subadditivity does not necessarily imply 
countable additivity. The following outer measure on R is perhaps the most useful one.

Definition 2.2.4. For each subset A of R, let 9?a be the set of all infinite sequences 
{(a;, of bounded open subintervals of R such that A C U£i Now define
A*  : ^(R) -> [0,oo] by

A*  (A) = inf - ai) ■ {(aL^)} £ •

A*  is called the Lesbesgue outer measure on R.

The useful thing about Lesbesgue outer measure is that it assigns to each subin­
terval of R its length. It is not a measure, however, as it is not countably additive. To 
solve this problem, we turn to the following definition.

Definition 2.2.5. Let X be a set, and let p*  be an outer measure on X. A subset B C X 
is called /z* -measurable if

M*  (A) = /z*  (A n B) + p*  (A n Bc)

holds for every A C X. A Lesbesgue measurable subset of R is one that is A*-measurable.

So a /.z*-measurable  set is one that “breaks up” every subset of X in such a 
way that the measures of each piece add up properly. The fact that these sets are called 
measurable is not a coincidence, since an outer measure naturally induces a specific 
cr-algebra over which the outer measure becomes a measure. The following theorem 
describes this process.

Theorem 2.2.6. Let X be a set, let /z*  be an outer measure on X, and let be the 

collection of all p*-measurable  subsets of X. Then
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1. is a a-algebra, and

2. the restriction of p*  to is a measure on .

We now can define the Lesbesgue measure A on R to be the restriction of A*  to 
Xx*-  This a-algebra is very large in the sense that it contains most subsets of R that are 
mathematically useful. We will prove just how large is next, which will require the 
following lemma.

Lemma 2.2.7. The Borel a-algebra ^(R) on R (which we defined to be generated by the 
collection of all open subsets of "St) is also generated by the collection of all subintervals 
of R of the form (—oo, 6].

Proof. Let be the a-algebra generated by the collection of all subintervals of R of the 
form (—oo, 6]. First, any interval of the form (—oo, b] can be written as (6, oo)c G ^(R), 
so C ^(R).

Now let (a, b) be an open interval in R. If [cj is a sequence of real numbers 
less than b so that lim^oo = b, then we can express (a, b) as

(-oo,a]cQ ^|J(-oo,Cj]^ G^i.

So every open subinterval of R is an element of and since every open subset of R is 
the union of a sequence of open subintervals, every open subset of R is an element of 
so ^(R) C

Thus, Z^(R) = ^i. □

Theorem 2.2.8. Every Borel subset of R is Lebesgue measurable.

Proof. We will first, prove that any interval of the form (—oo,6] is Lebesgue measurable. 
Let B be an interval of the form (—oo, &] and let A C R. Since A*  is countably subadditive 
and AC (AnB) U (An Bc), it is automatically true that

A*(A)  < A*(AAB)  + A*(An Bc).

So we only need to prove that

A*(A)  > A*(A  AB) + A*(An£ c) 
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which is necessarily true if A*  (A) = oo.
So, assume that A*(A)  < oo. Let e > 0, and let {(aj, &*)}  be a sequence of open 

subintervals of R that covers A and is such that
oo

-«,)< A'(A) + e.
i=l

For each i > 1, the sets (di, bi) A B and (di, bi) Pl Bc must be disjoint intervals, which 
may be empty. Thus, we can cover these sets with open intervals by choosing, for each i, 
intervals (c^di) and (ei,fi) so that

((di, bi) a B) C (a, di),

((ai,bi) DBc) C and

(di - Cj) + (fi - a) <bi- di-\-

Now, the sequence {(ci,di)} covers the set A A B, and the sequence {(e^, A)} 
covers the set A A Bc. Therefore, the definition of A*  leads to the following inequalities:

oo

A*(AOB)  <£>-«),
i=l

oo

2=1

But by above,
oo oo oo

^2(di - Ci) + J2(/i - Ci) = -Ci + fi-ei)
3=1 3=1 1=1

OO

i=l
oo

= 52^ “ ai) + e'
2=1

Therefore, we have that
oo

, A*(A  n B) + A’(A Cl B°) < J2(6i - <n) + e < A‘(A) + 2e,
1=1

by our choice of the sequence {(a;, bi)}. Since e was arbitrary, we must have that

A*  (A) > A*  (A A B) + A*  (A A Bc), 
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so B is Lebesgue measurable.
Therefore, the collection of Lebesgue measurable sets is a <7-algebra on R 

containing every subinterval of R of the form (—00,6]. But by Lemma 2.2.7, ^(R) is 
the smallest a-algebra containing all subintervals of this form, so we must have that 
^(R) C . Thus, every Borel subset of R is Lebesgue measurable. □

2.3 Properties of Lebesgue Measure

Earlier, we discussed the desire to generalize the notion of “size” or “length” to 
more arbitrary subsets of R. Lebesgue measure A is one way to try to solve this problem. 
In fact, Lebesgue measure is the only measure on (R, ^(R)) that assigns to every interval 
its length [Coh97]. Furthermore, in a certain sense, Lebesgue measure is the “natural” 
measure on ^(R), since every positive translation-invariant Borel measure on R that is 
finite on compact sets is a constant multiple of A [Rud87]. We will now present a few 
interesting facts about Lebesgue measure.

Theorem 2.3.1. Let A be a Lebesgue measurable subset of R. Then

1. A(4) = mf{A(C7) : U is open and A C U]} and

2. A(A) = sup{A(7<) : K is compact and K C A}.

This theorem is useful in that it tells us that Lebesgue measurable sets can 
be “approximated from the outside” by open sets and can be “approximated from the 
inside” by compact sets. This idea is closely related to that of a regular measure, which 
we will discuss in more detail later. We now look at another useful property of Lebesgue 
measure concerning its translation invariance. First, if A C R and x G A, we define the 
set A + x as

A + a;={yGR:y = a + a;for some a e 71}.

We call the set A + x the translate of A by a;.

Theorem 2.3.2. Let A be a subset of R.

1. IfxePL, thenX^(A) = X^(A + x).

2. A is Lebesgue measurable if and only if A + x is Lebesgue measurable.
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One particular set that is a great source of useful examples and counterexamples 
is the Cantor set. Recall that the Cantor set is defined by constructing a sequence of sets 
as follows. First define Kq = [0,1]. Now construct K\ by removing the middle third open 
interval (|, |) from Kq, leaving K\ — [0, |] U [|, 1]. We construct K% by removing the 
middle third open interval from each piece of leaving

U1 '2 r
0,77 U’ 9 .9’3.

'2 71
_3’9j

We continue this process indefinitely, contructing Kn by removing the middle third open 
interval from each piece of Kn_i, so that Kn is the union of 2n disjoint closed intervals, 
each with length (|)n. We define the Cantor set K to be the set of points that remains 
after this process, so that K = r}^=0Kn. It is a fact from basic real analysis that the 
Cantor set is compact and has the same cardinality as that of the real numbers [Rud76]. 
Given these two facts, our next result can be unexpected!

Theorem 2.3.3. The Cantor set, which is compact and has the cardinality of the con­

tinuum, has Lebesgue measure 0.

Proof Since each set Kn is the finite union of closed intervals, each Kn must be a Borel 
set, and hence Lebesgue measurable. Thus, the Cantor set K must also be Lebesgue 
measurable as the countable intersection of Lebesgue measurable sets, by properties of 
cr-algebras. We have already noted that Lebesgue measure assigns to each interval its 
length. First note that K C Kn for all n > 0, and that A(IYn) = 2n (|)n = (j)n, since it 
consists of 2n disjoint intervals, each of length (|)n.

Since A is monotone (as a measure), we must have that X(K) < X(Kn) = (|)n 
for all n > 0. But A is also non-negative and lim^oo (|)n = 0, so X(K) = 0. □

We may at this point be asking ourselves, since we proved that every Borel set 
is Lebesgue measurable, is it also true that every subset of R is Lebesgue measurable? 
This question is answered with our next theorem.

Theorem 2.3.4. There exists a subset of R that is not Lebesgue measurable.

Proof. We first define a relation on R by letting x ~ y if and only if x — y is a rational 
number. For any x € R, x — x = 0 G Q, so x ~ x, and so ~ is reflexive. If x, y G Q with 
x ~ y, then x — y — q € Q and y — x = —q, which is also in Q. Thus y ~ x and ~ is 
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symmetric. Let x,y,z G Q with x ~ y and y ~ z. Sox-y-rE^ and y — z = s G Q. 
This implies that x — z = (x — y) + (y — z) — r + s, which is in Q since both r and s are. 
Thus x z and so ~ is transitive. Therefore, ~ is an equivalence relation.

Note that each equivalence class under ~ has the form Q 4- x for some x G R, 
so that each equivalence class under ~ is dense in R. Since these equivalence classes are 
disjoint by definition, and since each one must intersect the interval (0,1), we can now 
use the axiom of choice to construct a set E that consists of exactly one point from each 
equivalence class under ~ such that E C (0,1). It is this set E -that we will prove is not 
Lebesgue measurable.

Let be an enumeration of the rational numbers in the interval (—1,1).
For each n > 1, define En = E + rn. We first note that if e G Em A En, then there exist 
e' and e" in E so that e = e' + rm = etf 4- rn. We can rearrange this equation to obtain 
e' — e" = rn — rm e Q, so e' ~ e". But since E has only one element from each equivalence 
class, and ez ~ e", we must have that ef = e,f, so n = m. Thus, if m f n, Em F\En = ft, so 
the sets En are disjoint. Also, since E C (0,1) and C (—1,1), each set En must
be included in the interval (—1,2), so we must have that IJ^Xi Ai C (—1,2). Therefore,

Now, let a; be an arbitrary element of (0,1), and let e be the (unique) element
of E so that x ~ e. So a; — e € Q and x — e must also be in (—1,1), since both x and e 
are in (0,1). But is an enumeration of the rationals in (—1,1), so x — e must be
equal to rno for some no > 1. Thus, x — e = rno, meaning x = e 4- rno, so by definition, 
x G Eno. Therefore, (0,1) C (JXi so

Now assume that the set E is Lebesgue measurable. Thus, by Theorem 2.3.2, 
the set En is measurable for all n > 1. Since we proved that the sets En are disjoint, this 
means that 

by the countable additivity of A. Furthermore, we have that X(E) = X(En) for all n > 1, 
since En = E 4- rn and A is translation invariant, again by Theorem 2.3.2. We now have 
two cases:
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First, if X(E) = 0, then

(
oo \ oo

|Jb„ =
n=l / n=l

oo

= EA(£)
n=l
oo

= E°
7Z=1

= 0,

a contradiction, since we showed that A (UJXi &n) > 1.
Second, if X(E) = a 0, then

oo

=

n=l
oo

= Ea
n=l 

= OO,

a contradiction, since we showed that A (U^=i Bn) < 3.
So, the assumption that E is Lebesgue measurable leads to a contradiction in 

all possible cases. Therefore, the set E is not Lebesgue measurable. □

Since, historically, the axiom of choice has sometimes been a subject of dis­
agreement in the field, it was a question among mathematicians whether or not its use 
was necessary in proving the existence of a subset of R that was not Lebesgue measur­
able. Interestingly, this remained an open question until 1970, when Robert M. Solovay 
published a proof that the existence of such a set cannot be proven from the axioms of 
Zermelo-Frankel set theory without using the axiom of choice, if a certain consistency 
assumption holds [Coh97].

We will conclude our discussion of measures with a couple of definitions.

Definition 2.3.5. Let (X^gfp) be a measure space. The measure p (and also the 
measure space) is called complete if any subset of a measurable set of measure 0 is itself 
measurable, that is, if whenever we have that A G srf and p(Aj = 0, then B C A implies
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It is a fact that (R, ^(R), A) is not a complete measure space, but that the 
measure space (R, ^/a* , A) is complete [Coh97]. Our next definition was briefly mentioned 
earlier in our discussion of the properties of Lebesgue measure.

Definition 2.3.6. Let be a tr-algebra on R that includes the Borel cr-algebra ^(R). 
A measure p> on (R, sf) is regular if

1. for every compact subset K of R, p(K) < oo,

2. for every set A € #7,

ji(A) = inf{/z(J7) : A C U and U is open}, and

3. for every open set U C R,

jj,(U) = sup{/z(J0 : K C U and K is compact}.

Condition 2 is sometimes called outer regularity, and condition 3 is sometimes 
called inner regularity.

We will now return to something that was mentioned earlier, which is the simi­
larity of the definition of a regular measure to Theorem 2.3.1. In fact, Lebesgue measure 
is actually a regular measure both on (R, ^(R)) and on (R, ^4*).  We will prove this fact 
in our next theorem.

Theorem 2.3.7. Lebesgue measure A is regular on both (R,^(R)) and (R, *̂).

Proof. If K C R is a compact set, then K must be closed and bounded by the Heine-Borel 
Theorem [Rud76]. Since K is closed, it must be measurable with respect to both ^(R) 
and Since it is bounded, there exists an interval (a, b) C R, with a, b e R, so that 
K C (a, b). Thus, X(K) < A((a, &)) = b — a < oo. Thus, condition 1 of the definition of a 
regular measure is satisfied.

The fact that A satisfies conditions 2 and 3 of the definition follow directly from 
Theorem 2.3.1. Therefore, Lebesgue measure A is regular with respect to both (R,^(R)) 
and (R, j^a*).  □
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Chapter 3

Integration

We have now completed our discussion of measures and their properties. Perhaps 
the most important application of measures is their use in defining the integral in a 
generalized way. Before we can get to that point, we first need a few more preliminary 
concepts. We start this chapter by studying measurable functions, and use these concepts 
to construct the generalized Lebesgue integral with respect to a measure p. After we 
present some of the basic properties of integration, we will prove a few extremely useful 
theorems regarding integration and limits that are part of the foundation for the power 
of the integral.

3.1 Measurable Functions

Definition 3.1.1. Let (X,&f) be a measurable space, and let A C X with A G $. 
A function / : A —> [—00,00] is called measurable with respect to if, for every real 
number t, the set {a: G A : f(x) < t} is an element of the cr-algebra srf'.

Note that another way of stating this definition is that / is measurable if, for 
every real number t, the set 00, ij) G $7. Consider a set of the form {a? 6 A :

f(x) < t}. We can express this set in terms of sets of the form in Definition 3.1.1 as

°O f 1
{a? G A : <t} = (J < t G A : f(x) < t-----

n=i t n

If f is a measurable function with respect to a measurable space (X. ^/), this expression 
implies that,, for any real number t, any set of the form {a? G A : f(x) < t} is also in
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as a countable union of elements in si.

Now consider a set of the form {a; G A : f(x) > t}. Similarly, we can express 
this set in terms of sets of the form {z G A : f(x) <t} as

{as G A : f(x) > t} = A \ {x G A : f(x) < t}.

Thus, if f is a measurable function with respect to a measurable space (X, si), then for 
any real number t, any set of the form {a; G A : f(x) > t] is in ji as the set difference of 
two elements of A.

Using these and other very similar expressions, we get the following useful the­
orem.

Theorem 3.1.2. Let (X, si) be a measurable space, and let A G si. Let f : A —> [—00,00] 
be a function defined on A. Then the following conditions are equivalent:

1. f is measurable with respect to si

2. for every real number

3. for every real number

4. for every real number

5. for every real number

t, the set {a; G A : f(x) 

t, the set {a; G A : f(x) 

t, the set {x e A : f(x) 

t. the set {a: G A: f(x)

< t} is an element of si;

< i} is an element of si;

> t] is an element of si;

> t} is an element of si.

When the measurable space in question is (R, ^(R)), then a measurable function 
is called Borel measurable or a Borel function. When a function is measurable with re­
spect to (R,si\»), then the function is called a Lebesgue measurable function. Measurable 
functions play a key role in integration, as we shall see, since the definitions we will use 
for the integral only apply to measurable functions. Therefore it is of great importance 
that, before we discuss the integral, we establish some important and useful properties 
of measurable functions, which will be used later on when we prove things about inte­
gration. Many of these properties rely on properties of the underlying cr-algebra, since 
a function being measurable really has to do with what types of sets are guaranteed to 
be measurable (elements of the cr-algebra). There are two special types of functions that 
will be fundamental in our construction of the integral, which we will investigate next.
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Definition 3.1.3. Let (X,srf) be a measurable space, and let B C X. Then the charac­

teristic function of B is the function xb : X —> R defined by

Xb(x) = < 1,
0,

x e B 

x^B

It is a simple consequence of Definition 3.1.1 that xb is ^-measurable if and 
only if B €

Definition 3.1.4. A function f is called simple if it takes only finitely many values.

, Another consequence of Definition 3.1.1 is that if (X, sf) is a measurable space, 
and / : X —> [—00,00] is a simple function with values ai, 02,. • -, an, then f is srf- 

measurable if and only 6 X : f(x) — a;} 6 s/ for every i = 1,2,..., n. The next 
theorem lists some useful facts concerning the relationship between two measurable func­
tions with the same domain. The proof of each fact follows from expressions similar to 
those discussed after the statement of Definition 3.1.1.

Theorem 3.1.5. Let (X. be a measurable space, let A G , and let f and g be 

[—00, oo]-valued measurable functions defined on A. Then the following statements are 

all true:

1. the set {x G A : f(x) < p(se)} 6

2. the set {x € A : f(x) < g(x)} G srf;

3. the set {2 G A : f(x) = g(x)} G

4. the maximum of f and g, defined by (fVg)(x) = max(f(x),g(x))} is a measurable

function from A to [—00,00];

5. the minimum off and g, defined by (f Ag)(x) = min (f(x),g(xf), is a measurable 

function from A to [—00,00].

This theorem is very useful when dealing with two measurable functions, but we 
will often be working with sequences of measurable functions. We will now prove some 
facts regarding these types of sequences that will frequently be useful as we continue our 
investigation of integration.
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Theorem 3.1.6. Let (X,srf) be a measurable space, let A G srf, and let be a

sequence of [—oo, oo]-valued measurable functions defined on A. Then

1. the functions supn fn and infn fn are measurable functions,

2. the functions limsupn/n and liminfn fn are measurable functions, and

3. the function limn fn is a measurable function, where the domain of limn fn is the 

set Ao = {z € A : lim supn fn (x) = lim inf n fn(x)} (the set of points at which the 
limit exists).

Proof To prove that supn/n is measurable, we need to prove that, for any real number 
t, {x 6 A : supn fn(x) < t} € Note that

{z € A : sup fn(x) <t} = P|{z G A : fn(x) < t},
n n

which is measurable since each function fn is, and the countable intersection of measurable 
sets is measurable. Thus, supn/„ is measurable, by definition.

Similarly, the expression

€ A : inf fn(x) < t} = |J{z G A : fn(x) < t}
n

implies that the function infn fn is a measurable function. Therefore we have proven part 
1 of the theorem.

Now we define functions gk and hk, for every positive integer k, by gk(x) = 

supn>fc /n(®) and hk(x) — infn>fc fn(x). Since we have already proven part 1 of the theo­
rem, we can apply it to the functions gk and hk and get that each function is measurable, 
since each is the supremum or the infimum of a sequence of measurable functions.

Now, note that

lim sup fn = inf sup/n = inf^, 
n yn>A; / k

and that
lim inf fn = sup ( inf fn ) = sup hk.

n k \n>k ) k

Thus, we can again apply part 1 of the theorem to prove that lim supn fn and lim infn fn 

are measurable, since they are each the respective infimum and supremum of a sequence 
of measurable functions. Therefore, part 2 of the theorem is proven.
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Next, consider that Ao = {ac G A : limsupn fn(x) — liminfn Since we
just proved that each of these two functions are measurable, we can apply part 3 of 
Theorem 3.1.5 to get that Ao G To prove that limn/n is measurable, we need to 
prove that {□; 6 A : limn fn{%) < t} € Consider the identity

{x 6 ylo : lim fn(x) < t} = A n {tr € A : limsup/n(a;) < t}.
n n

Since Ao G stf and we already proved that limsupn/n is measurable, we have that the 
set Ao D {a? G A : limsupn/n(z) < t}, and hence {x G Ao : limn/n(z) < £}, is in jz/. 
Therefore, limn fn is measurable, and the theorem is proven. □

We will now present some results that deal with arithmetic operations on mea­
surable functions.

Theorem 3.1.7. Let (X. be a measurable space, let A 6 -N, let f and g be real-valued 

measurable functions on A, and let a be a real number. Then the functions af, f + g, 
f — g, and fg are measurable. Also, the function I, with domain {ir G A : g(x) 0}, is 

measurable.

If h and k are [0, oo] -valued measurable functions, and ft is a non-negative real 
number, then fth and h + fc are measurable.

We will make frequent use of the following functions in our study of integration. 
If A is a set and f is a [—oo,.oo]-valued function on A, then we define the positive part 

f+ of f to be the function defined by

f+(x) = max(/(z),0),

and the negative part f~ of / to be the function defined by

= -min(/(a:),0).

It follows from the previous theorems that a [—oo, oo]-valued function f on a measurable 
space (X, jz/) is measurable if and only if f+ and f~ are measurable. Since the function 
\f \ is equal to f+ + it is a direct consequence of Theorem 3.1.7 that the absolute 
value of a measurable function is also measurable.

We now will present another very important result that is fundamental to our 
forthcoming definition of the integral. It lets us represent certain functions in terms of 
simple functions, which is very desirable since they are so easy to work with.
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Theorem 3.1.8. Let be a measurable space, let A G s/, and let f be a [0,oo]-
valued measurable function defined on A. Then there exists a sequence °f [03 oo)~
valued simple measurable functions defined on A such that, for every x G A,

1. the sequence {fn} is non-decreasing, so that fi(x) < /aCO < • ’ • > and

2. f(x) = Lmnfn(x).

One last theorem regarding measurable functions presents an alternate way of 
interpreting measurable functions in terms of open, closed, and Borel sets.

Theorem 3.1.9. Let (X,^) be a measurable space, and let A G ■ If f : A —> R is a 

function defined on A, then the following statements are equivalent:

1. f is measurable with respect to srf;

2. for every open set U C R, 6 sf:

3. for every closed set C C R, G stf;

for every Borel subset BCR, G

We close this section by introducing one final piece of terminology that will be 
used extensively throughout the rest of this chapter.

Definition 3.1.10. Let (XY,p) be a measure space. We say a property P holds at 

almost every x in X if there exists a set A E sY such that {x E X : P fails at .t} C A 

and p(A) = 0.

Other ways to say that P holds at almost every x in X is to say that P holds 
p-almost everywhere, or just almost everywhere if the measure p is clear. Of course, if 
(X, , p) is >a complete measure space, then by definition, P holds almost everywhere if
and only if p ({.t G X : P fails at as}) = 0.

3.2 Integration

In this section, we will construct the integral and investigate some of its prop­
erties. Our construction will proceed in three steps, each one building, off of the last. 
We first will define the integral for a very small class of functions, and after studying 
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some properties of this integral we will be able to define integration for a larger class 
of functions. Our goal is to define integration for arbitrary [—oo, oo]-valued measurable 
functions, which will be the last step of our construction.

First, we must start with the following. If (X, £/) is a measurable space, then we 
denote the collection of all real-valued simple ^/-measurable functions on X by X, and 
the collection of all non-negative functions in X by XX We will start our construction 
by defining integration over X+-

Definition 3.2.1. Let p be a measure on (X,X). Let f belong to X_ and be given by 
f = aiXAi , where ai,a2, ... - ,am are non-negative real numbers and Ai, A2, . ■., Am 
are disjoint elements of $7 such that / takes the value ai on the set A; for every i. Then 
the integral of f with respect to p is defined to be the sum aip(Ai). That is,

m
fdp = '^Taip(Ai).

2=1

Note that this sum is either a real number or 00. We need to verify that the 
integral is well-defined, since the representation of the function f is not unique. This is 
the purpose of our next theorem.

Theorem 3.2.2. If p is a measure on the measurable space and f 6 X+; then

the integral f f dp is independent of the representation of f.

Proof. Let f be given by both f - OiXAi and f = ^=1 bjXBv where ai,..., am 
and ,bn are non-negative real numbers, Ai,..., Am are disjoint elements of £/, and 
Bi,... ,Bn are disjoint elements of Without loss of generality, we can assume that 
UuiA = U?=1Bi by disregarding the sets Ai for which ai = 0 and the sets Bj for which 
bj = 0 if necessary, since they contribute nothing to the value of f at any point x 6 X.

Now, if AjfjBj / 0, then there exists x G AzfjBj so that f(x) = a{ and 
f(x) = bj, by the conditions on the sets Ai and Bj. Thus, ai = bj, since f is well-defined. 
If Ai p Bj = 0, then p (A^ QBy) = 0. Also, if io is fixed, then Aw = U?=i (^0 G Bj), so 
the countable additivity of the measure p gives us that

n n
diop (Aio) — aioP (Aj0 n Bj) = ] bjp (Ai0 n Bj).

J=1 j=l

Using these equalities, we can now apply the definition of the integral of f to 
get that



m
5 O’ip (Aj)

i=l
m n

i=i j=i
m n

1=1 j=l

n m
££>(4^)

J=11=1

j=i

n

Thus, f f dp is the same regardless of which representation is used, so the inte­
gral is well-defined and the theorem is proven. □

Our next theorem verifies that some basic properties of the Riemann integral 
are still valid with our new definition of integration. Particularly, we see that the integral 
defined above is linear and monotonic. The proof of the first two facts follows from 
arguments similar to those in the proof of Theorem 3.2.2, and the third follows from the 
fact that if f and g in ^4. are such that f(x) < g(x) for all x G X, then the function 
g — f is also in and

Theorem 3.2.3. Let (X, be a measure space, let f and g be elements of,?/, and let 
a be a non-negative real number. Then the following statements are true:

1. f otf dp = a / f dp;

2- f(f + g)dp = ffdp + fgdp;

3. if f(x) < g(x) for all x G X, then f f dp < f gdp.
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Recall that Theorem 3.1.8 stated that for every [0, oo]-valued measurable func­
tion f defined on a measurable subset A of a measurable space (X,rf), there exists a 
non-decreasing sequence {fn} of non-negative real-valued simple measurable functions 
(i.e. elements of «^+) on A so that f(x) = limn /n(o?) for all a? 6 X. We can apply this 
theorem to elements of since any function in is also [0. oo]-valued and measurable, 
which leads us to the following theorem. A much more general version of this theorem 
will be proven later on.

Theorem 3.2.4. Let (X,rf,p) be a measure space, let f G and let {/n}Sii &e a 
non-decreasing sequence of junctions in such that f(x) = limnfn(x) for all x G X 
(note that the existence of such a sequence is guaranteed by Theorem 3.1.8). Then

This theorem is very useful in that it gives us conditions for when limits of 
everywhere-convergent sequences of certain functions and our new integration commute, 
but it is quite limited (for now) in its scope. So far, we have defined a generalized integral 
that is based on the ideas of measures and measurable functions. However, since at this 
point we can only integrate non-negative real-valued simple measurable functions, which 
is a very limited collection, we are not satisfied and would like to proceed to define the 
integral for a broader class of functions. Theorem 3.1.8 and Definition 3.2.1 give us 
some direction, and we can now define integration for arbitrary [0, oo]-valued measurable 
functions as follows.

Definition 3.2.5. Let (X. rf, p.) be a measure space, and let f be a [0, oo]-valued rf- 
measurable function defined on X. Then the integral of f with respect to p is defined to 
be

g dp : g G and g < f

If, in the above definition, our function f happens to be an element of 5*+  to 
begin with, then sup {f gdp: g G ^4. and g < /} is just equal to f f dp (with respect 
to Definition 3.2.1), so our new definition of integration agrees with Definition 3.2.1. We 
will now briefly look at a few properties of this new integral, however, the properties 
themselves are merely extensions of the properties we have already discussed in relation 
to integration of elements of 5A-. We first present a stronger version of Theorem 3.2.4, 
which will be strengthened even further in the next section.
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Theorem 3.2.6. Let (X, srf, p) be a measure space, let f be a [0, oc\-valued srf-measurable 

function on X, and let {/n}£?=i be a non-decreasing sequence of functions in such 
that f(x) = limn fn(%) for all x G X. Then

Theorem 3.2.6 can be used to prove the next theorem regarding some expected 
properties of our new integral.

Theorem 3.2.7. Let (X,srf,p) be a measure space, let f and g be [0, oo]-valued srf- 
measurable functions on X, and let a be a non-negative real number. Then the following 

statements are true:

1. f afdp = af f dp;

2- J(f + g)dp = f fdp + f gdp;

3. if f(x) < g(x) for all x G X, then f f dp < f g dp.

While we now can integrate a much larger class of functions, namely the class 
of [0, ooj-valued measurable functions, we are now ready to complete the last step of our 
construction and define integration for arbitrary [—oo, oo]-valued measurable functions. 
To do so we must recall the notions of the positive part and the negative part f~ of 
an extended real-valued function f. If we have an arbitrary [—oo, oo]-valued measurable 
function /, then both f+ and f~ are [0, ooj-valued measurable functions, and so we can 
apply Definition 3.2.5 to integrate each part. This leads us to the following definition:

Definition 3.2.8. Let (X,srf,p) be a measure space, and let f be a [—oo, ooj-valued 
^/-measurable function defined on X. If at least one of f f+ dp and f f~ dp are finite, 
then we say that the integral of f exists, and we define the integral of f with respect to p 

to be
fdp = f+dp- j f~ dp.

Note that this integral may be either oo or —oo. However, if both f f+ dp 
and f f~ dp are finite, then we call the function f integrable, and its integral will be 
a real number. If f f+ dp and f f~ dp are both infinite, then we say that the integral 
does not exist. We denote the collection of all real-valued integrable functions on X by 
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ff1(X, , p,.R), which we sometimes abbreviate to just .R71 if the a-algebra and measure 
are clear. This definition of integration is commonly called Lebesgue integration, whether 
the measure in question is the Lebesgue measure A or not, and will be a fundamental 
part of the rest of this work.

We will now examine some properties of the Lebesgue integral, and we begin by 
presenting an extension of Theorem 3.2.3. The simple proof of this theorem is found by 
decomposing the functions f and g into their parts /+, f~, g+, and g~, and by using the 
inequalities (/ + g)+ < f+ + g+ and (f + g)~ < f~ + g~.

Theorem 3.2.9. Let (X. &fp) be a measure space, let f and g be real-valued integrable 
functions on X, and let a be a real number. Then:

1. af and f + g are integrable;

2. f afdp = a f f dp;

3- f(f + g)dv = ffdP- + fgd&

4- if f(x) < g(x) for all x G X, then f f dp < f gdp.

The following theorem will be useful when we prove the Dominated Convergence
Theorem in the next section; it describes how integration deals with absolute values.

Theorem 3.2.10. Let (X,&fp) be a measure space, and let f be a [—oo,oo]-valued

-measurable function on X. Then f is integrable if and only if |/| is integrable. Fur­

thermore, if f and |/| are integrable, then

Proof By definition, |/| is integrable if and only if J |/|+ dp and f |/|~ dp are both finite. 
Since \ f\ — f + 4- f~, and each of these are non-negative functions, then \f\+ = f+ + f~ 
and |/|“ = 0. Since the 0 function is simple and can be expressed as Oxo, we can use our 
first definition of integration to get that J 0 dp = 0^(0) = 0 < oo, so \f\~ = 0 is always 
finite with respect to any measure. Therefore, \ f\ is integrable if and only if Jdp 

is finite.
If f is integrable, then f f+ dp and J f dp are both finite. Thus, by Theorem

3.2.7, J(f+ + f ) dp = J f+ dp + f f dp is also finite, so |/| is integrable. If we assume 
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that |/| is integrable, then f(f+ + /“) dp = f f+ dp 4- J f~ dp is finite, and so, since 
each is a positive number, we must have that each of J dp and jf~ dp are finite, so 
f is integrable. Therefore, f is integrable if and only if |/| is integrable.

Now, if f and |/| are integrable, then we can use the triangle inequality and 
Theorem 3.2.7 to get that

fdp —
y f+ dp- j f- dp

< j f+dp\ + y f~dp

y f+dp+y /- dp

= j (/+ + / ) dp

[ |/| dp.

Thus, \ffdli\<J\f\d/i. □

The following theorem illustrates how our new integration essentially “ignores” 
p-negligible sets (sets that are contained in sets of measure 0). It will be useful in the 
proofs of the limit theorems in the next section, and lets us work with functions that 
meet a certain requirement almost everywhere instead of everywhere, allowing us a larger 
degree of generalization.

Theorem 3.2.11. Let (X,s/,p) be a measure space, and let f and g be [—oo, oo]-valued 

si-measurable functions on X that agree almost everywhere. If either J f dp or f gdp 
exists, then both must exist, and f f dp — f gdp.

Proof. We start by first considering the case where f and g are both [0, oo]-valued. Let 
A — {x G X : f(x) 7^ p(ir)} be the set of points at which f and g do not agree. Then 
A is measurable by part 3 of Theorem 3.1.5, since A = {a; G X : f(x) — p(a:)}c. Since 
f = g almost everywhere, we must have that p(A) = 0.

Now construct a sequence {hn}Xi °f functions by defining, for all n > 1, 
hn(x) = nXA' Then {hn} is a non-decreasing sequence of non-negative simple real-valued 
measurable functions, and for each n, J hndp = np(A) = 0. Furthermore, if x G A, then 
limn_>oo hn(^) = oo, and if x A, then limn_j.oo hn(x) = 0. So, if we define a function



then limn hn = h. Therefore, we can apply Theorem 3.2.6 to get that

So, since f < g + h, Theorem 3.2.7 tells us that

Similarly, since g < f + h, we also have that J g dp < f f dp. Thus, J f dp ~ f g dp.

Now let f and g be [—00, oo]-valued functions. Recall that f — f+ — f~ and 
g — g+ — g~. Since f = g almost everywhere, we must have that /+ = g+ and f~=g~ 
almost everywhere as well. Since each of these functions are [0, oo]-valued, we can apply 
the above result to see that J f+ dp = f g+ dp and f f~ dp = f g~ dp. Therefore,

□
Our last theorem for this section summarizes some interesting facts regarding 

integration and properties that hold almost everywhere.

Theorem 3.2.12. Let be a measure space and let f be a [—00,00]-valued

measurable function defined on X. Then the following statements are true:

1. if J 171^ = 0, then f = 0 almost everywhere.

2. If f is integrable, then \ f\ < 00 almost everywhere.

3. f is integrable if and only if there exists a function f in ^(X, si, g,R) such that 

f = f almost everywhere.

3.3 Integral Limit Theorems

In this section, we will present some powerful theorems regarding limits and the 
Lebesgue integral. These results do not apply to Riemann integration, which is one of the 
reasons Lebesgue integration is so useful. The following theorems give conditions under 
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which limits and integration can commute when working with convergent sequences of 
measurable functions. Once we have proven them, we will have some powerful tools at 
our disposal that “may well be regarded as the core of the Lebesgue theory” [Rud76]. The 
first of these is the generalization of Theorem 3.2.4 and Theorem 3.2.6 to the Lebesgue 
integral.

Theorem 3.3.1 (The Monotone Convergence Theorem). Let (X,rf,p) be a measure 
space. Let f and be [0, oo]-valued rf-measurable functions on X such that

/i(z) <

and

f(x) = lim fn(x)
n->oo

both hold at almost every x G X. Then

Proof. We will first consider the case where the relations in the statement of the theorem 
hold for every x G X rather than almost everywhere. Since the sequence {/n}£Li is 
non-decreasing, then it must be that fn < f for every n > 1. Therefore, by Theorem
3.2.7,

f2dp <

Thus, the sequence of integrals {f fn dp}^2 is monotonically increasing with upper 
bound f f dp. Therefore, the sequence {J fn dp} must converge to a number in [0, oo]
(which may or may not be oo), and the limit of this sequence is such that

lim 
n—>oo

y fn dp < y* f dp.

Now, for every n > 1, we use Theorem 3.1.8 to choose a non-decreasing sequence 
of non-negative real-valued measurable simple functions defined on X such 

that fn = lim^ooC^fc. Also for every n > 1, define a function : X —> [0, oo) by 
hn(x) = m&x(g1)n(x), g2,n(x),... ,gn,n(x)).

Note that is clearly a non-decreasing sequence, and each hn is simple,
measurable, and takes values in [0,oo). Also, by definition of the functions hn, for every 
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n > 1 we have that hn < fn and f = linin-^oo hn. Therefore, we can apply Theorem 3.2.6 
and Theorem 3.2.7 to find that

Since we have already proved the reverse inequality, we have that J f dp = limn f fn dp.

Now assume that the relations in the statement of the theorem only hold at 
almost every x G X. Let A be a set such that

({a; G X : fn(x) > /n+i(z) for some n > 1} U {rr G X : Jim,/n(a;) / /(x)}) C A

and so that p(A) = 0.
Consider the function fxAc and the sequence of functions {/nXAc}^i- Since 

fiXAc(x) < /2XAc W < • • • for all x E Ac and fnXAc(j) = 0 for all n > 1 and x G A, 
we must have that fiXAc(x) < f2XAc(%) < • •• at every x G X. Similarly, fxAc(%) = 
lim„ fnXAc(%) at every x G X. Therefore we can apply the results of the first part of this 
proof to get that

fXA*dp  = lim / fnXAc dp.
n—>oo J

Now, since p(A) = 0, we must have that, for every n > 1, fnXAa = fn almost 
everywhere and fxAc = f almost everywhere. Thus, we can use Theorem 3.2.11 to get 
that f fnXAc dp — f fn dp and that f fxAc dp = f f dp. Combining these equalities with 
the above equation gives us that

□
Our next result will be used in our proof of the Dominated Convergence The­

orem, but even though the name by which it is commonly known contains the word 
“lemma,” it is presented here as a theorem due to its wide applicability beyond just that 
particular proof.

Theorem 3.3.2 (Fatou’s Lemma). Let (X, be a measure space, and let 
be a sequence of [0, oo\-valued srf-measurable functions on X. Then

/liminf fn dp < liminf / fn dp. 
n—>oo n—>oo J
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Proof. Construct a sequence {<7n}£Lx of functions by defining, for every n > 1, gn = 

infk>nfk- Therefore, by Theorem 3.1.6, each function gn is measurable. Since

/n-j-2) • • •} {/n> /n+lj • • •},

then by definition of the functions gn, we must have that gi(x) < (72(2) < • • ■ at every 
x G X. This means that, at every x G X,

lim gn(x) = sup (pn(®)) = sup ( inf fk(x) ) = liminf fn(x). 
n-»oo n>l n>l V>n / n->oo

Now, since we have that gn < fn for all n > 1, we can apply the Monotone
Convergence Theorem (Theorem 3.3.1) to get that

lim gn dp = lim / gndp< lim inf □
The last theorem we will present in this section is very useful, as it can be used

to show that a particular function is integrable or to even provide an upper bound for the 
value of the integral of a particular integrable function. This result is perhaps the most 
powerful limit theorem we will consider.

Theorem 3.3.3 (Lebesgue’s Dominated Convergence Theorem). Let (X, jz/, p) be a mea­

sure space, let g be a [0, oo]-valued integrable function on X, and let f and /i, f%,... be 
[—oo, oo]-valued srf-measurable functions on X such that

f(x) = lim fn(x)

and

\fn(x)| < g(x) for all n > 1,

both holding at almost every x € X. Then f and fi,f2^-- are integrable, and

Proof. First, let A be a set such that

x G X : lim fn(x) / f(x)} U {ir G X : |/n(z)| > 9(%) for some n > 1}) C

and so that p(A) = 0. Now construct a sequence of functions {hn}^=1 by defining 
hn(x) = fnXAc(p) for all n > 1, and define a function h by setting h(x) = fxAc(j).
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Therefore, = 0 < g(x) for all x E A, and |hn(z)| = |/n(z)| < g(x) for all x E Ac,
so |hn| < g everywhere, for all n > 1. Also, by our definition of h, h — lim^^/in 
everywhere, so that |/z| < g everywhere as well.

Thus, since |/zn| and |7i[ are non-negative, we can apply Theorem 3.2.7 to get 
that J |A| dp < f g dp and that f |7in| dp < f g dp for all n > 1. But f — h almost 
everywhere, and for all n > 1, fn = hn almost everywhere, so by Theorem 3.2.11, for all

So, by Theorem 3.2.7, we have that f\fn\dp = f fn+ dp + f fn~ dp < oo, so 
each integral must be finite, which means each fn is integrable, by definition. Similarly, 
j"\f\dp = f f+ dp + J f~ dp < oo, so each integral is finite, and thus / is integrable, by 
definition.

n > 1,
j\fn\dp = j^h^dp^ J^gdp<oa

and
j \f\dp = j\h\dp < ygdp<oo.

We have proved the integrability of f and of the functions /n, and we now turn 
to the desired equality. We start with the case where the conditions of the theorem hold 
at every x E X, rather than almost everywhere, and where g(x) < oo at every x E X. 

Since each function | fn | is dominated everywhere by g, then {5 + /n}S=i is a sequence of 
non-negative ^/-measurable functions. Furthermore, for every x E X,

Therefore, since the limit exists at every x E X, we have that limn(p + fn) — 
liminfn(^+/n) = g+f, and so we can apply Theorem 3.2.9 and Fatou’s Lemma (Theorem 
3.3.2) to get that

<

y (p+/)

/ liming + fn) dp
J n->oo

liminf (g + fn) dp
n—>00 J

liininf gdp + j fndp^

/gdp + lim inf / /n dp.
n-^cx> J
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By subtracting the finite number f gdp from both sides of the above inequality, we obtain 
that

/d/i< liminf / fndp.
71->OO J

Similarly, {g—fn}%Li is a sequence of non-negative ^-measurable functions such 
that lunn(g - fn)(x) = (g-jj(x) at every re G X, and so \imn(g-fn) = liminfn(p-/n) = 
g — f. Applying Theorem 3.2.9 and Fatou’s Lemma (Theorem 3.3.2) as before gives us 
that

J^gdp-jfdp = j\g-f)dp

= / lim inf (p — fn)dp

< liminf (g-fn)dp
n—>oo J

— Inn inf gdp - fn dp^

= J'gdp + liminf j fn dp^

= / gdp- limsup / fndp.
J n—>oo J

Rearranging the above inequality shows that

lim sup fndp< / f dp.
n—>oo J J

Therefore, we have that

limsup / fndp< / fdp < liminf / fndp,
n—>oo J J n“>°° J

but liminfn f fn dp is always less than or equal to limsupn f fn dp, so it must be that

//d^ = liminf / dp, = lim sup / fndp= lim / fndp.
J n—>oc J n-tevj

Now we consider the case where the conditions of the theorem hold only almost 
everywhere, and where g(x) < oo is not necessarily true at every xeX. Note, however, 
since g is integrable by hypothesis, that |i/| = g < oo almost everywhere, by Theorem 
3.2.12. Similar to the beginning of this proof, we will now let A be a set containing all 
points x G X at which at least one of the following statements is true:

1. f(x) f limn/„(»);
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2. |/„ (a;) | > g(x) for some n > 1;

3. g(x) = oo,

and so that p(A) = 0.
Thus, if we define the sequence of functions {hn}^=i by hn(x) = fnXAc(%)> the 

function h by h(x) — fXAc(xfi and the function g*  by g!(x) — gxAc(%), then we have 
the following, which all follow from the properties of the functions fn, f, and g. and the 
definition of the set A:

1. g' is a [0, oo]-valued integrable function;

2. h and each hn are [—oo, oo]-valued measurable functions;

3. h(x) = limn hn(x) at every x G X;

4. |hn(rr)| < gf(x) at every x G X, for every n > 1;

5. g'(x) < oo at every x G X.

Therefore, we can apply the results of the first part of this proof to get that 
J h dp = limn f hn dp. But, also by the definition of the set A, we see that h — f almost 
everywhere and, for every n > 1, hn = fn almost everywhere. Thus, by Theorem 3.2.11, 
J h dp = f f dp and, for every n > 1, f hndp. = J fndp. Combining these equations 
gives us that
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Chapter 4

The Riesz Representation 
Theorem for Linear Functionals

In this chapter, we will state and prove the main theorem of this project. In 
the first section, we will focus on the prerequisite material needed for the statement 
of the theorem and the preliminary lemmas that we will be using in the proof. The 
next section will introduce some questions that motivated the work that led to the Riesz 
representation theorem, and the theorem itself will be presented. The third and final 
section of this chapter will be devoted entirely to the lengthy proof, which will be broken 
up into a few pieces in order to help with organization and clarity of presentation.

4.1 Preliminary Material

We begin our preliminary work by recalling some fundamental definitions from 
topology. Let X be a topological space. First, we say a subset K of X is compact if 
every open cover {UajaGAi where A is some indexing set, has a finite subcover {UQi}"=1. 
The space X is called locally compact if every point x in X has an open neighborhood Ux 

such that the closure Ux of Ux is a compact set. Lastly, we call the space X Hausdorff 
if, for every pair of distinct points x and y in X, there exist disjoint open sets U and V 
such that x G U and y G V. Measures on locally compact Hausdorff spaces have been the 
subject of much research and discovery, an example of which is the main theorem of this 
project. Perhaps the reason for this is that, while the conditions imposed upon them are 
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lenient enough to allow results to be widely applicable, locally compact Hausdorff spaces 
are one of the “most well-behaved classes of spaces to deal with in mathematics” [Mun06]. 
The following useful results regarding compactness can be used to establish some basic 
facts concerning measures defined on locally compact Hausdorff spaces. The first one we 
will examine tells us that, in a Hausdorff space, the “Hausdorff-ness” property extends 
to compact sets as well, in the sense that disjoint compact sets can be separated by open 
sets.

Theorem 4.1.1. LetX be a Hausdorff space, and let K andL be disjoint compact subsets 

of X. Then there exist disjoint open subsets U and V of X so that K QU and LQV.

Proof. Firstly, consider the case where one (or both) of our compact sets is the empty 
set. Without loss of generality, assume that K — 0. Then we can choose U = 0 and 
V — X, and we see that £7 A V = 0, X = 0 C 0, and L C X, so the theorem holds.

Now consider the case where K contains exactly one point x G X, so that 
K — {#}. Since X is Hausdorff, then for every point y G L we can choose, a pair of 
disjoint open sets Uy and Vy so that x €.Uy and y E.Vy. This implies that the collection 
{I'yJ-jfGL is an open cover of the compact set L, so there must exist a finite subcover. 
Thus, there exist points yi,3/2> • • • -.Vn € L so that L C U2=i Yyi. Now, let U = 02=1 uyi 
and V = i Vyi. So each of U and V must be open as the finite union or intersection 
of open sets, and U nV = 0 by our choice of U and V. Also, LQV, and since x is in 
each Uy, we must have that {rr} = K QU. Therefore, we have proven the theorem in the 
case where K consists of exactly one point.

Now let K have more than one element. By above, for every x G K there 
exist disjoint open subsets Ux and Vx of X such that x G Ux and L Q Vx. There­
fore, the collection is an open cover of the compact set K, so there must exist

• • • >xm G K such that K Q UJLi So, similar to the previous arguments, let 
U = UJ=i Uxj and V = DjLi Kj ■ Thus, U and V are open sets, K QU and, since L is 
contained in each Vx, we have that LQV. Also, U A V is empty by our choice of U and 
V, so the theorem is proven for this final case. □

We can use the previous result to prove the following theorem about open neigh­
borhoods of points in locally compact Hausdorff spaces and its important corollary. These 
facts are used to obtain a crucial theorem in the development of the study of measures 
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on locally compact Hausdorff spaces, which will be an essential part of our proof of the 
Riesz representation theorem later on.

Theorem 4.1.2. Let X be a locally compact Hausdorff space, let x G X, and let U be'an 

open neighborhood of x, that is, U is open and x G U. Then there there exists an open 
neighborhood V of x whose closure V is compact and such that V QU.

Proof. By definition of X being locally compact, there exists an open neighborhood W 
of x whose closure W is compact. Since x G. W and x G U, W Pl U is also an open 
neighborhood of x, and since W A U is a closed subset of the compact set W, W All 
must also be compact. Thus, without loss of generality, we can assume that W C U. 
However, our theorem is not yet proven, since there is no guarantee that W QU. To get 
around this problem, consider the set W \ W = W A Wc. Since W is open, Wc must be 
closed, so that W \ W is closed as the intersection of two closed sets, and is compact as a 
closed subset of the compact set W. Also, x £ W\ W since x G W, and {m} is a compact 
subset of X since it is finite.

Thus, {rr} and W \ W are disjoint compact subsets of X, and so we can use 
Theorem 4.1.1 to choose disjoint open sets Vi and V2 so that {rr} C Vi and W \ W Q V2. 

Now consider the set Vi A W. Since Vi and W are both open and both contain the point 
x, Vi A W is an open neighborhood of x. Since Vi A W is a closed subset of the compact 
set W, Vi A W is compact. Also note that, by our choice of Vi and V2, it must be true 
that Vi C W. Therefore, we see that

Vi AW CViAWCViCWGU,

so the set Vi A W is the required set, and our theorem is proven. □

Corollary 4.1.3. Let X be a locally compact Hausdorff space, let K be a compact subset 

of X, and let U be an open subset of X so that K QU. Then there exists an open subset 

V of X whose closure V is compact and so that K Q V Q V QU.

Proof. For each point x in K, we can use Theorem 4.1.2 to choose an open neighborhood 
Wx of x so that Wx is closed and Wx Q U. Thus, the collection-{Wr}zeK is an open cover 
of the compact set K, and so there must exist a finite subcover. Let xi,X2,... ,xn G K 

be such that {W^JiLi is a finite open cover of K, and define the set V = UF=1 W®.- So 
K C V by definition, and since any set is always contained in its own closure, we have
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that V G V. Note that V = (U?=i since the closure of the union of
finitely many sets is equal to the union of the closures of the individual sets. Thus, since 
each set Wx was chosen so that' Wx is contained in U, we have that each set WXi G U 
and so V C U. □

We will now turn to some fundamental concepts involving functions on topo­
logical spaces that are essential parts of the Riesz representation theorem. Let X be a 
topological space, and let f : X —> R be a continuous real-valued function defined on 
X. We define the support of f to be the closure of the set {a? G X : f(x) / 0}, denoted 
by supp(/). If, additionally, X is locally compact and Hausdorff, we denote the set of 
all continuous real-valued functions f : X —> R for which supp(/) is compact by Jf(X). 

The following fact about J?T(X) will be necessary in our proof of the Riesz representation 
theorem. The full proof, which is ommitted here, relies on Corollary 4.1.3 and a powerful 
theorem from topology known as Urysohn’s lemma [Coh97]. The Urysohn lemma has 
been called by some the first non-trivial result of point-set topology in that its proof 
is extremely non-obvious, and indeed that “it would take considerably more originality 
than most of us possess to prove this lemma unless we were given copious hints” [Mun06]. 
Two variations of the proof of Urysohn’s lemma, both depending on the same crucial and 
brilliant idea, can be found in their entirety in [Mun06] and [Rud87]. For now, we present 
one of its consequences that will be of use to us later on.

Theorem 4.1.4. Let X be a locally compact Hausdorff space, let K be a compact subset 
of X, and let U be an open subset of X such that K CU. Then there exists a function 
f G JU/X) such that xk < f < Xu and supp(/) C U.

The following consequence of Theorem 4.1.4 will also be necessary in our proof 
of the main theorem of this project. The proof can be obtained by using Theorem 4.1.1, 
Theorem 4.1.4, and induction on the number n of open sets.

Theorem 4.1.5. Let X be a locally compact Hausdorff space, let f G Df(X), and let 

Ui,U2, • ■ • ,Un be finitely many open subsets of X such that

n 
supp(/) C |J Ui.

i=l

Then there exist functions fi, /2, • • ■, fn in (X) such that f = /i + f2 4- • ■ ■ 4- fn and 
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such that, for every i G {1,2,..., n}, supp(/j) C . Furthermore, if the function f is 
non-negative, then each function fa can be chosen to be non-negative as well.

Now, recall that the Borel cr-algebra on R was defined to be the cr-algebra on 
R generated by the collection of open subsets of R. In a general topological space, the 
notion of open sets is generalized, and any subset that is an element of the topology is 
called open. This leads us to the following definition, which generalizes ^(R) to the Borel 
cr-algebra over a topological space, rather than just the real numbers.

Definition 4.1.6. Let X be a Hausdorff topological space. Then we define the Borel 
cr-algebra on X to be the cr-algebra generated by the open subsets of X, denoted by 
^(X).

We call the elements of ^(X) Borel sets, and we call any measure defined on 
^(X) a Borel measure. Note that it is an elementary consequence of the properties of 
<7-algebras that «^(X) is also generated by the closed subsets of X, since the complement 
of. any open set is closed. In our study of the Riesz representation theorem, we will 
be working with Borel measures that satisfy a certain property that is an extension of 
Definition 2.3.6. This property is our next definition.

Definition 4.1.7. Let X be a Hausdorff topological space, and let p be a Borel measure 
defined on &(X). We say that p is regular if

1. for every compact subset K of X, p(K) < oo,

2. for every set A G ^(X),

p(A) = inf (p(U) : AC U and U is open}, and

3. for every open set U C X,

pfU) = sup{/i(X) : KCU and K is compact}.

As with Definition 2.3.6, we sometimes refer to condition 2 as outer regularity 

and condition 3 as inner regularity. Regular Borel measures can be very useful, and are 
the subject of the Riesz representation theorem. Recall that a linear functional is a linear 
map defined on a vector space whose values lie in the field over which the vector space is 
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defined. The power of the Riesz representation theorem is in that it describes how certain 
linear functionals can be represented by regular Borel measures. We are now ready to 
investigate the main theorem of this project.

4.2 The Riesz Representation Theorem

In this section, we will investigate the ideas and the natural questions stemming 
from these ideas that motivated the discovery of the Riesz representation theorem, and we 
will close the section by stating the theorem itself. A major part of this process was the 
surprising notion that certain linear functionals seem to correspond with regular Borel 
measures. To start with, let us present the following fact about the set

If X is a locally compact Hausdorff space, recall that Jf(X) is defined to be 
the set of all continuous real-valued functions on X with compact support. Consider the 
following: If / and g are in (X), and A; is a real number, then f+g and kf are also real- 
valued, continuous, and have compact support, so are also in The zero function is
continuous and real-valued, and {re G X : 0(a;) f 0} = 0, which is closed and compact, so 
the zero function is in JT(X). If f is in (X), then — f is also continuous and real valued. 
Also, {a? 6 X : f(x) f 0} = {.t G X : —f(x) f 0}, so f has compact support if and 
only if — f does. Thus, f G <X5(X) if and only if — f G Of (X). Finally, the associativity 
and commutativity of function addition, the associativity of scalar multiplication with 
field multiplication, the distributivity of scalar multiplication with respect to vector and 
field addition, and the existence of the scalar multiplicative identity all follow from the 
fact that the functions in Jf(X) are real-valued. These facts show that the set Jf(X) is 
actually a vector space. The next theorem presents an important fact about the members 
of Jd(X) that will be essential to how we use the vector space.

Theorem 4.2.1. Let X be a locally compact Hausdorff space, let p be a regular Borel 

measure defined on S8(X), and let the function f : X —> R be a member of JF(X), Then 
f is integrable with respect to p.

Proof We first must verify that f is Borel measurable. Since f : X —> R is in 
f must be continuous, so if U is an open subset of R, then is open in X. Thus,

G ^(X), and so f is measurable by Theorem 3.1.9.
Now consider that the continuous function f is only non-zero on a compact 
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subset of X, and recall that continuous functions defined on compact sets are bounded. 
Thus, it follows that the function f must be bounded. Let A = {x G X : f(x) f 0} (note 
that A is compact since f G Jf(X)), and let M be a real number such that |/(fc)| < M' 
for all x G X. Then |/| < Mxa, so by Theorem 3.2.9,

J |/| dp< J Mxa dp = Mp(A) < oo,

since p is regular and so p(A) is finite. Therefore, |/| is integrable with respect to p, and
□

So, if X is a locally compact Hausdorff space and p is a regular Borel measure 
on &(X), let us now consider the map defined on Jf(X) by f i-> f f dp. Since each 
f G Jf(X) is integrable with respect to p by the Theorem 4.2.1, we have that this map 
sends elements of the vector space JK (X) to elements of the field R over which (X) 
is defined, and the map is linear since integration is linear by Theorem 3.2.9. Thus, 
we see that integration with respect to the regular Borel measure p is actually a linear 
functional acting on the vector space Jf(X)l In fact, not only is integration a linear 
functional, it turns out that integration in general provides us with some of the “most 
important examples of a linear functional in mathematics,” such as the Fourier coefficients 
of a periodic integrable function [FIS03].

This idea of integration being a linear functional is what motivates our study 
of the Riesz representation theorem. Since Jf(X) is, at its core, a vector space, and 
since vector spaces are generally well-understood, we know that there are many linear 
functionals that we can define on Jf(X) that may seem to have nothing to do with 
integration at all. This idea gives rise to many natural questions. Which linear functionals 
on JK(X) can be represented in this way? All of them? Only some of them? It is clear 
that any regular Borel measure corresponds to one particular linear functional. But can 
one particular linear functional be represented by more than one regular Borel measure? 
It is these questions, and others like it, that led to the discovery of the Riesz representation 
theorem, which answers them all.

We will need the following concepts to state the Riesz representation theorem.
Let X be a locally compact Hausdorff space. Firstly, we call a linear functional I on 
Jrf(X) positive if, for every non-negative function f G JT(X), we have that 1(f) > 0. 
Note that if I is a positive linear functional on Jf(X) and if f and g are functions in
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XI (X) so f I 9, then g—f is non-negative, and so I(g — f) = 1(g)—1(f) > 0, so that
1(f) < 1(g)’ Thus, a positive linear functional is monotonic. Furthermore, if f E Jf(X) 
is non-negative, then its integral is also non-negative by Theorem 3.2.9, so the mapping 
defined on XI (X) by f J f dp is actually a positive linear functional. Lastly, if U is 
an open subset of X, then we will write f -< U to denote that both 0 < f < xu and 
supp(/) C U.

We will now present one last fact which will be used in our proof of the main 
theorem.

Theorem 4.2.2. LetX be a locally compact Hausdorff space, and let p be a regular Borel 

measure defined on &(X). If U is an open subset of X, then

Proof. If f E XI(X) and 0 < f < xu> then, by Theorem 3.2.9, f f dp < f xu dp = p(U)i 

so we must have that

p(t7) > sup (y f dp : / £ and 0 < / < xv j ■

Also, if f E XI(X) and / -<U, then necessarily 0 < f < xu> so

p(U) > sup ( [ f dp : f E XI (X) and 0 < f < xu

> sup

(f fdn-.fe Jf(X) and 0 < / < xt/J 

if /dp:/eX(X) and/-:[/).

Thus, if we prove that p(U) < sup {J f dp: f E XI (X) and f -<U), then all three quan­
tities must be equal and our theorem will be proved.

So, let a be an arbitrary real number so that a < p(U). Since p is regular, we 
can use the inner regularity of p to choose a compact subset K of U so that a < mW- 
Thus, by Theorem 4.1.4, we can choose a function f E XI(X) so that xk < f I XU and 
supp(/) C U, and since xk > 0, this means that f -< U. Applying Theorem 3.2.9 to the 
inequality xk < f gives us that

> at.
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So, since f G Jf(X), f -<U, and a < f f dp, we must have that

a < sup f dp: f G Jf(X) and f -<U

But a was an arbitrary real number less than p(U), and so letting a approach p(U) from 
below gives us that

p(U) < sup fdp:fetf(X) and /-C (7

Therefore, our theorem has been proven. □
We now have all the machinery, language, and notation that we need to state 

and prove the main theorem of this project. This theorem answers all of the questions 
posed above regarding what kinds of linear functionals on JF(X) can be represented by 
what kinds of regular Borel measures, stating that every single positive linear functional 
on Xd(X) is equivalent to integration with respect to a regular Borel measure, and that 
this measure is uniquely determined by the linear functional. This result is very useful, 
and is powerful enough that it is even possible to derive the Lebesgue measure A on 
^(R) as a corollary [Rud87]. The proof of the theorem is long and complex, and will be 
presented in the next section.

Theorem 4.2.3 (The Riesz Representation Theorem for Linear Functionals). Let X be 
a locally compact Hausdorff space, and let I be a positive linear functional on Xf(X). 
Then there is a unique regular Borel measure p on X such that

1(f) = f f dp
holds for every f in Xf(X).

4.3 Proof of the Riesz Representation Theorem

In this section, X will always represent a locally compact Hausdorff space and I 

will represent a positive linear functional on Xf(X). We will split the proof into multiple 
parts in order to help with organization, and it will proceed as follows. First, we will 
show that, if there exists a regular Borel measure that satisfies the conditions in Theorem 
4.2.3, then it must be unique. We will then construct a specific outer measure on X 
and prove that that its restriction to ^(X) is a regular Borel measure on X. The last 
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step will be to verify that our constructed measure does indeed satisfy the conclusion of
Theorem 4.2.3. We have a big task ahead of us, so let us begin!

The regular Borel measure p, is unique

Let p and w be regular Borel measures on X such that 1(f) = f f dp = f f du 
for every f G Df(X). If U is an open subset of X, Theorem 4.2.2 tells us that 

p(U) = sup {/ f dp : f 6 X(X) and / -<

= fdw. f and f ^u\

= <'(U).
Now, since p and v are regular, we can use their outer regularity and the fact that p and 
v agree on every open subset of X to get that, for all A C <^(X),

p(A) = inf {p(U) : A QU and U is open}

= inf {v(U) : AQU and U is open}

= ’'(A)-

Thus, p(A) = v(A) for every Borel subset A of X, meaning that they assign the 
same measure to every measurable subset of X. Therefore, p = v, so the regular Borel 
measure p in the statement of Theorem 4.2.3 must be unique.

Constructing an outer measure on X
We will now define a function p*  on the open subsets of X by letting, for all 

open sets U C X,

p*(U)  = sup {/(/) : f G X(X) and f U} . (4.1)

While at this point p*  is neither a measure nor an outer measure, the notion 
of outer regularity suggests the next step, which will be to extend this function to every 
subset of X by defining, for any AC X,

p*(A)  = inf {p*(U)  : U is open and A C U} . (4.2)
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Before we proceed, we need to verify that (4.1) and (4.2) are consistent with each 
other in that they assign the same value to open sets. If we let V be an open subset of X, 
then (4.2) gives us that p*(V)  — inf {/i*((7j  : U is open and V C £/}. Now if V C U, then 
any function f in Jf(X) such that f V must also satisfy f -< U, so that p*(V)  < p*(U),  
according to (4.1). Thus, since V is open and V C V, the set V is itself included in the 
sets U in (4.2), so we see that inf {p*(U)  : U is open and VQU] = /z*(V),  using (4.1). 
Therefore, (4.1) and (4.2) assign the same value to every open subset of X, and so our 
two definitions of p*  are consistent with each other. Given this fact, for the rest of this 
proof we will choose whichever definition of p*  will be more convenient, if we have the 
option to use either one. We will now prove that our function p*  is actually an outer 
measure on X.

The function is an outer measure

To prove that p*  is an outer measure on X, Definition 2.2.3 tells us that we 
need to show that p*($)  = 0, that p*  is monotonic, and that p*  is countably subadditive.

Since 0 is open in any topological space, we can apply (4.1) to see that

/z*(0)  = sup{7(/) : f e X(X) and f -< 0} .

But if f 6 Jf(X) and f s 0, then by definition, 0 < f < and supp(/) C 0, both of 
which force f to be the zero map 0, since X'0 = 0 and {a? G X : f(x) / 0} C 0 implies that 
f(x) = 0 for every x 6 X. Thus, we have that p*($)  = 7(0). But I is linear, so for any 
f e X(X),

7(0) = 7(/-/) = 7(/)- i(f) = o.

Therefore, p*(ty  = 0.
Now let A C B C X. By (4.2), we have that

p*(A)  = inf {p*(U)  : U is open and A C U}

and that
p*(B)  = inf {p*(U)  : U is open and B QU}.

But since AQ B, any open set containing B must also contain A, so that

(p*(U)  : U is open and B QU} C {p*(U)  : U is open and A Q C7}.
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Therefore, since the infimum of any set is less than or equal to the infimum of any of its 
subsets, we have that p*(A)  < p*(B),  and so p*  is monotonic.

To prove that p*  is countably subadditive, we need to show that, for any arbi­
trary sequence {An}^! of subsets of X, that

(
oo \ oo

LX <Z>w-
n=l / n=l

However, we will first show that p*  is countably subadditive with respect to sequences of 
open subsets of X, and then use this fact to prove the case where we have an arbitrary 
sequence of subsets.

Let {UnlJT! be a sequence of open subsets of X, and let f be a function in 
Jf(X) such that f UJXi By definition, this means that 0 < f < and
that {UnjJS-i is an open cover of the set supp(/). Since f G <X"(X), supp(/) is compact 
and so there must exist a finite subcover. So, let IV be a positive integer such that 
supp(f) Q U^=i We can now use Theorem 4.1.5 to choose functions /i, f%,. . ., fw 

in Jf(X) so that f = £^=i and so ^at supp(/n) C Un for all n G {1,2,..., TV}. 
Since 0 < f < we know that we can also choose each function fn such that
0 < fn < XUn> so we have that fn -< Un for all n G {1,2,..., AT}. Since I is linear, this 
implies that

/ at \ N
E/n =J2/(/n).

\n=l / n=l

Now, for all n G {1,2,..., TV}, fnEJf (X) and fn Un imply that

I(fn) < sup {/(s) : g G M(X) and g^Un} = p*(U n),

by (4.1). Thus, we see that, since p*(U n) is non-negative for all positive integers n,

NN oo

!(/) = EJ(W < EG (Un) < EG(U„).
n=l n=l n=l

But since f was an arbitrary function in Jf(X) with f -< US=i the above inequality 
must hold for every such /, so that

sup

X oo

/(/)
oo

I
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(
oo \ oo

U U- U
n=l / n=l

Now let {An}^! be an arbitrary sequence of subsets of X. We need to show 
that < JX^/^An). However, if = oo, then the required
inequality is necessarily true. Thus, we will assume that ZI^=iA*(^n)  < oo.

Let e > 0. Recall that for each integer n > 1, (4.2) gives that
p*(A n) — inf [p*(U)  : U is open and An QU}.

So, for each integer n > 1, we can choose an open set Un such that An Q Un (implying 
that p*(A n) < p*(U n) since p*  is monotonic) and such that

Since p*  is countably subadditive with respect to sequences of open sets, and 
by our choice of the sets Un, we get that

OO< £>W
n—1
oo

< +

n=l
oo

“ 52 A*(A ra) +
n=l

Thus, since c was arbitrary, we have that

so p*  is countably subadditive. Since we also have that /z*(0)  = 0 and p*  is monotonic, 
p*  is an outer measure by Definition 2.2.3. Our next step will be to prove that every set 
A G &(X) is p* -measurable.
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Every Borel subset of X is ^/‘-measurable

First, let U be an open subset of X. By Definition 2.2.5, U is //‘-measurable if 
and only if

p*(A)  = m*(A  H U) + p*(A  n Uc)

holds for every subset A of X. However, since A C ((A fl U) U (A 0 Uc)) and p*  is 
countably subadditive, then g*(A)  < p*(AnU)  + p*(ARU c) must automatically be true. 
Thus, we need to prove that

M*(A)  > p*(A  Cl V) + p*(A  n Uc),

which is necessarily true if p*(A)  = oo. So, let A be a subset of X such that /z*(A)  < oo, 
and let e > 0. By (4.2), p*(A)  = inf {p*(U}  : U is open and A C 17}. Therefore, we can 
choose an open subset V of X such that AC V (implying that /i*(A)  < p*(V)  since p*  
is monotonic) and such that p*(V)  < p*(A)  + e.

Now, since V Fl U is open, we can use (4.1) to choose a function fa G Xi(X) 

such that fa -< V 0 U and I(fa) > p*(V  RU) — e. Let K = supp(/i). Since K is the 
closure of the set of points not sent to 0 by fa, K is a closed set. So Kc is open, and so 
the set V Fl Kc is open as well. Since /i -< V Fl U, we have that K QV RU, so K QU as 
well. Thus, Uc C Kc, so that VRUC QVRKC. Again by (4.1), we can choose a function 
f2 G JF(X) so that /2 -< V Fl Kc and I(f2) > P*(V  FlXc) — e, and since p*  is monotonic, 
we must have that I(f2) > p*(V  QUC) — e.

Recall that A C V. Now, by our choice of fa and f2> we have that fa + /2 -< V, 
and so, since fa -J- /2 C J^(X), we can use (4.1), the linearity of I, and the monotonicity 
of p*  to see that

M‘(V) >

>

>

I(J1 + h)

/(/l)+/(/2)

iffy n u) - e+n t/c) - e

H*(v fl U) + n*(V  n Uc) - 2c 

pi*(A  n U) + /j.’(A n Ue) - 2e.

But we chose V so that g*(V)  < [i*(A]  + so we see that

H*(A)  > p.*(A  n U) + n Uc) - 3e.
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Thus, since c was arbitrary, p*(A)  > p*(Ar\U)  + /i*(A  A Uc). Therefore, every 
open subset (7 of X is ^-measurable. So, by Theorem 2.2.6, the collection of 
/immeasurable sets is a a-algebra that contains every open subset of X. However, by 
definition, &(X) is the smallest a-algebra containing all of the open subsets of X, so 
&(X) Q gfa. Therefore, every Borel subset A of X is p* -measurable.

Next, we will prove that restricting p*  to the Borel a-algebra on X yields a 
regular Borel measure, but before we can do this, we will need one more lemma.

Lemma 4.3.1. Let X be a locally compact Hausdorff space, let I be a positive linear 
junctional on J^(X), and let p*  be the outer measure defined by (4-1) and (4-2). Let A 
be a subset of X and let f be a function in (X).

1- If XA < f, then p*(A)  < 1(f).

2. If 0 < f <xa and A is compact, then 1(f) < p*(A).

Proof. To prove part 1, let xa < f, and let e be a real number such that 0 < e < 1. Now 
define the set U£ by setting U£ = {x G X • f(x) > 1 — e}. Since f G <Xf(X), f must be 
continuous, so Uc is open as the preimage of the open set (1 — e, oo) in R. Let g be a 
function in JffX) so that g < xae- By our choice of e, we have that 0 < 1 — e < 1.

If x G Uc, then g(x) < 1 and f(x) > 1 - e, so > 1. Thus,

p(®) <

If x Ue, then g(x) < 0, and since 0 < xa < f and 1 — e > 0, we again have that

XaW -

Therefore, g < f.

So, for each g in that satisfies g -k U£, we have that g < f, so that,
by (4.1) and the monotonicity and linearity of I,

P*(U £) =

<

sup{/(^) : g G Jf(X) and g -< U£}
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If x e A, then f(x) > xa(x) = 1 > 1 — e, so x G U€. Thus, A C C7e, so that 
/z*(A)  < p*(U c) by the monotonicity of p*.  Combining this fact with the above inequality 
gives us that

Therefore, since e was arbitrary in the interval (0,1), we see that is arbitrarily close 
to 1 from below, so that p*(A)  < 1(f), and part 1 of our lemma is proven.

Now let A be compact, 0 < f <xa, and let U be an open set such that A QU. 
Since f G X(X), we have that supp(/) is closed and compact, and thus a subset of A. 
Therefore, supp(/) QU, so f ^.U. So by (4.1),

1(f) < sup {1(g) : g G X(X) and g^U} = p*(U).

But U was an arbitrary open set containing A, so 1(f) < p*(U)  for all such open sets. 
Thus, we must have that

1(f) < inf {/z*(V)  : V is open and A Q V} ,

so by (4.2), 1(f) < p*(A),  and part 2 of our lemma is proven. □

Now that we have this tool at our disposal, we can continue our proof. Recall 
that our next step is to prove that restricting p*  to S3(X) will result in a regular Borel 
measure on X.

The function is a regular measure on X
Let p be the restriction of p*  to the Borel cr-algebra &(X), and let p2 be the 

restriction of p*  to the collection of /immeasurable sets. Then, by Theorem 2.2.6, pt 
is automatically a measure on rf^. We have already proven that every Borel subset of 
X is p* -measurable, that is, that S3(X) C so p and p2 must agree on &(X). Now, 
since takes values in [0,oo], so does p. Since pi($) = 0 and 0 G &(X), we see that 
/z(0) = 0. If is a disjoint sequence of subsets of &(X), then it is also a disjoint
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sequence of subsets of , and since pi is a measure,
oo \ / oo

P I En j — Mi I U Bn
,7i=l / \n=l

oo 
= E»&)

oo

= EmW).
71=1

Therefore, by Definition 2.2.1, p is a measure on &(X), that is, p is a Borel measure on 
X.

Now we turn to the regularity of p. Firstly, since p is simply a restriction of p*
note that every result that we have already proven about p*  applies to p, and that (4.1) 
and (4.2) can be used as the (consistent) definitions of p. Now, recall that, by Definition 
4.1.7, p is regular if and only if

1. for every compact subset K of X, p(K) < oo,

2. for every set A E X(X),

p(A) = inf{/z(C7) : A C U and U is open}, and

3. for every open set U C X,

p(U) = sup{^(A') : K QU and K is compact}.

Let K be an arbitrary compact subset of X. By Theorem 4.1.4, there exists a function 
f E XI(X) so that xk < /• Thus, by Part 1 of Lemma 4.3.1, p(K) < 1(f)- But I is 
real-valued, so p(K) is finite. Thus, p is finite on every compact subset of X. (4.2) tells 
us exactly that p(A) = inf{p(U) : A C U and U is open} for every set A E $(X), that 
is, that p is outer regular.

Let U be an open subset of X and let f be a function in XI(X) such that f -<U. 

If x E supp(y) C U, then, since 0 < f < xui we have that 0 < f(x) < 1 = XsuppCf/®)- 
If x supp(/) = {z £ X : f(x) / 0}, then f(x) = 0 = Xsupp(y) (®)« Thus, we have that 
0 < f < Xsupp(y)*  Therefore, since f E XI(X) implies that supp(/) is compact, Part 2 
of Theorem 4.3.1 tells us that 1(f) < ^(supp(/)) for every f E XI(X) such that f -<U.
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So, we can use this fact along with (4.1) to get that

p(U) = sup {/(/) : f G J^(X) and f -< U}

< sup {/z(supp(/)) : f G and f-<U}

< sup {p(K) : X is compact and K C U} ,

where the last inequality comes from the fact that if / G 3K(X) with f -< (J, then supp(f) 
is a compact subset of U, and so /z(supp(/)) must be less than or equal to the supremum 
of p applied to all compact subsets of U. To prove the reverse inequality, we notice that, 
for every compact set X with X QU, the monotonicity of p gives that p(U) > p(X), so 
that

m(^) > suP • X QU and X is compact} .

Therefore, p(U) = sup {p(X) : X QU and X is compact}, so p is inner regular.
Thus, since we have shown that p is finite on compact sets and that p is both 

outer regular and inner regular, p is a regular Borel measure on X, by definition. The last 
step of our proof will be to verify that this measure is indeed the measure that satisfies 
the conditions of the Riesz representation theorem (Theorem 4.2.3).

1(f) = J f dp for every function f G JK(X)
We start by letting f be a non-negative function in J^(X), and letting e > 0. 

We now define a sequence {/n}^=i of functions on X by letting, for each positive integer 
n and for each x G X,

{0 if f(x) < (n - l)e,
f(x) — (n — l)e if (n -- l)e < f(x) < ne,

e if ne < f(x).

Let x G X. Then f(x) is a non-negative real number, since f is real-valued and 
non-negative by hypothesis. If f(x) = 0, then f(x) < (n — l)e for every positive integer 

n, so that fn(x) = ^Xi0 = °> so /W = EXi/^W- If /W > then there 
exists a unique positive integer no such that (no - l)e < f(x) < noe. Thus, for every 
positive integer n with n < no, we have that ne < f(x), and for every positive integer n 
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with no < n, we have that f(x)<(n — l)e. Thus, we see that
oo no—1 no oo

= Ee + E (A®) ~ (n - x)e) + E 0
n—1 n=l n=no n=no+l

= (no - l)e 4- f(x) - (no - l)c 4- 0

= /(®)-

Therefore, in all cases, f = fn-

For each positive integer n, the function fn is clearly real-valued. Note that 
each of the functions that make up the piecewise defined function fn are continuous, and, 
since f(x) — (n — l)e equals 0 if f(x) = (n — l)e and equals e if f(x) = ne (that is, the 
pieces of each function fn coincide at their endpoints), each function fn is continuous.

Now let n be a positive integer. By the definition of fn and the non-negativity 
of /, we have that

su-PP(/n) ~ F £ X : fn(x) / 0}

= {x G X : (n - l)e < f(x) < ne or ne < f(x)}

— {x e X : f(x) > (n - 1)g}

C {a: G X : f(x) > 0}

= {x G X : f(x) / 0}

= supp(/).

But f G J^(X) means that supp(/) is compact. Thus, supp(/n) is a closed subset of the 
compact set supp(/), and so supp(/n) is also compact. Therefore, since each function 
fn is real-valued, continuous, and has compact support, we have that, for every positive 
integer n, the function fn is in J^(X).

As was stated in the proof of Theorem 4.2.1, since f G Jf(X'), we have that f 

is a continuous function that is only non-zero on a compact subset of X, and recall that 
continuous functions defined on compact sets are bounded. Therefore, f is bounded, so 
let M be a real number so that |/(x) | = f(x) < M for all x G X and let N be a positive 
integer so that M < (N — l)e. So if n > N, we have that /(x) < (n — l)e for all x G X 
and so fn = 0. Thus, / = En=i fn-

Now, let Kq — supp(y), and for every positive integer n, let Kn = {x G X : 
/(x) > ne}. Let n be a positive integer, and let x G X. If x G Kn, then f(x) > ne, so 
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fn(x) = g. Since eXKn(x) = e> we have that tXKn(x) = fn(x)- If 0 Xn, then f(x) < nc,

fn(x) = <

so
0 if/(a;) < (n*-l')6,

So regardless of the value of f(x), we see that fn(x) < e. Also, exKn~i (x) = e> 30 we have 
that fn(x) < 6XKn_i(®)« If x £ Kn_i, then f(x) < (n — l)e, so that fn(x) = 0. Also, 
tXKn-fx) = 0, so that fn(x) = qxJ4 Thus, fn <

Therefore, fn < qxi<n-i for all positive integers n. Combining this with the 
above result that cXKn < fn gives us that, for every positive integer n,

eXKn <fn<

Now, by applying Part 1 of Theorem 4.3.1 to the inequality exKn < fn, we 
see that ep(Kn) < I(fn) for every positive integer n. Note that Kq is compact since 
f 6 X"(X) and, for every positive integer n, Kn C supp(/) and Kn is closed, as the 
continuous preimage of the closed set [nc, oo) in R. Thus, each set Kn is a closed subset 
of the compact set Kq, so each set Kn is compact. Therefore, by applying Part 2 of 
Theorem 4.3.1 to the inequality fn < exKn-u we see that I(fn) < ep(Kn-i) for every 
positive integer n. Thus, we have that, for every positive integer n,

ep(Kn) < I(fn) < ep(Kn-2).

f(x) - (n-l)e if (n-l)e < f(x).

So regardless of the value of f(x), we see that fn(x) > 0. Since exKn(x) = 0, we have 
that exKn(x) < fn(x). Thus, in any case, exKn < fn-

We will now consider the functions fn and 6XKn-i*  First, consider the case 
where n = 1. If x G Kn_i = Kq, then cxk0(x) = c, and

0 if f(x) = 0,
fn(x) = fl(x) = f(x) if 0 < f(x) < €,

6 if e < f(x).

So regardless of the value of f(x), we see that fj(x) < e, and so that fi(x) < exi<Q(x). 

If x 0 Kq = supp(/), then f(x) = 0, and so h(x) = 0. Also, cy/<0(x) — 0> so AC®) = 
tXK0(x). Therefore, f2 < exK0‘

Now let n > 2 . If x G Kn~i, then f(x) > (n — l)e, and so

fn(x) = <
f(x)-(n-l)e

e

if f(x) < ne, 
if f(x) > ne.
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So, by letting n range from 1 through N, the linearity of I and the fact that f — ^2n=i fn 
give us that

N

n=l

< Emo
n=l

IN= 4e/"
\n=l

= Uf)
N

< y^Kn-i)
n=l

V-l

= ^^Kn).
n=0

Now, using Theorem 3.2.9 to integrate each portion of the inequality < 
fn < €XKn-‘i (since integration is monotone) gives us that, for all positive integers n,

dp.

By applying Theorem 3.2.9 again (since integration is linear), and by the definition of 
the integral of a characteristic function, we see that, for all positive integers n,

< J fn dp < ep(Kn—i).

Again by letting n range from 1 through N and remembering that f = fn, and by 
using the linearity of the integral as provided by Theorem 3.2.9, we see that

N 
y^(Kn) 
n=l

N

n=l

JV-1

n=0
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and that

So, to summarize what we have so far, we have proven that

N N-l

n=l n=0

N „ AT-1

^ep(Kn) < f dp < ^2 eM(Xn). 

n=l n=0

Thus, each of the real numbers 1(f) and f f dp lie in the real interval

' W JY-1

.n=l n=0

which has length

jV-l N
^ep(Kn)-^e^Kn)
n—0 n=l

AT-1 N

n=0 n=l

(
JV-1 N \
E/W-EG^n) 

n=0 n=l /

c(p(KQ)-p(KN))

< €p(K0)

= ^(supp(/)),

since p(Kn) is positive. But, since f e Xf(X), we have that supp(/) is compact, and 
since p is regular, that /z(supp(/)) must be finite. Thus, 1(f) and f f dp lie in an interval 
with length less than or equal to eM, for some fixed real number M, and since e was 
an arbitrary positive number, the length of this interval must be arbitrarily close to 0. 
Therefore,

■f(/) = f fdp.

So, given that X is a locally compact Hausdorff space and that I is a positive 
linear functional on Jf(X), we have constructed a regular Borel measure on X so that 
1(f) = f f dp holds for every function f in Jf(X), and proved it is unique. Therefore, 
the proof of the Riesz representation theorem is complete. □
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Chapter 5

Conclusion

The purpose of this thesis was to prove the Riesz representation theorem. To 
complete this goal, we had to build up the preliminary material and concepts that were 
required, not only to be able to present the lengthy and complex proof of the theorem, 
but also to understand the beautiful relationship between linear functionals and measures 
that the theorem highlights. After introducing some ideas and questions that were, 
historically, motivating factors for the investigation of measure theory, we began to work 
our way through the subject.

In Chapter 2, we began our study of measure theory by defining the fundamen­
tal concepts of a cr-algebra and a measure and familiarizing ourselves with their basic 
properties. By generalizing the idea of a measure to that of an outer measure, we were 
able to construct a particularly useful measure called Lebesgue measure, and investigated 
many of its interesting properties and applications, for instance, the surprising fact that, 
in a very meaningful sense, the size of the Cantor set, which is uncountable and closed, 
is zero. We also introduced the Borel tr-algebra, which was a concept that we returned 
to throughout this project.

In Chapter 3, we used the useful tool of measures to define integration in a very 
generalized way. After introducing the concept of measurable functions and working out 
some important results, our construction of the integral proceeded in three steps. Firstly, 
we defined simple functions and how to integrate them with respect to a measure. We 
then were able to extend this definition to any non-negative (and possibly infinite-valued) 
measurable function using facts concerning measurable functions. The last step of our 
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construction was to extend the integral even further to arbitrary [—00, oo]-valued measur­
able functions to establish the concept of Lebesgue integration. After investigating some 
useful and important properties of the Lebesgue integral, we turned to three particular 
theorems that provided conditions under which the integral can commute with pointwise­
limits of sequences of measurable functions. After proving these powerful theorems, we 
were ready to move on to the Riesz representation theorem.

Chapter 4 was where we began our preparations for the theorem by first studying 
some concepts from topology, such as local compactness and the Hausdorff property, and 
then moving on to define the terminology and notation necessary for the statement of 
the theorem. After presenting a series of necessary theorems and lemmas, we were able 
to state the Riesz representation theorem, which says that, if X is a locally compact 
Hausdorff space, then for any positive linear functional I on the set of functions 
there exists a unique regular Borel measure p on X so that the linear functional is 
essentially equivalent to the measure, in the sense that applying I to any function in 
Jf(X) yields the exact same result as integrating the function with respect to p. We 
proved this remarkable and elegant theorem in a sequence of smaller steps. First, we 
showed that if such a measure does exist, then it must be unique. We then constructed a 
particular function p*  on X, and proved that it was an outer measure. After proving that 
our outer measure gives a Borel measure when restricted to the Borel cr-algebra on X, 
we then proved that this measure is regular. The last step of the proof, and perhaps the 
most challenging, was to prove that our regular Borel measure satisfied the requirements 
of the Riesz representation theorem.

In conclusion, this project was a pleasure to complete, and it was exciting both 
to finally answer some long-standing questions of mine pertaining to analysis and to add 
some ingenious proof techniques to my own personal mathematical toolbox. Of course, 
the most valuable reward that I have gained from completing this thesis project is a deep 
understanding of and appreciation for the basics (and a few not-so-basics!) of measure 
theory and functional analysis. I have enjoyed every second of my studies so far, and I 
look forward to learning as much as I possibly can about measure theory and all other 
areas of mathematics as I continue my mathematical education and the life-long learning 
process that is part of being a mathematician.
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