
California State University, San Bernardino California State University, San Bernardino

CSUSB ScholarWorks CSUSB ScholarWorks

Theses Digitization Project John M. Pfau Library

2010

Basic online scheduling system optimizer: A study in genetic Basic online scheduling system optimizer: A study in genetic

alogrithms [sic] alogrithms [sic]

Norman Lee Langhorne

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project

 Part of the Theory and Algorithms Commons

Recommended Citation Recommended Citation
Langhorne, Norman Lee, "Basic online scheduling system optimizer: A study in genetic alogrithms [sic]"
(2010). Theses Digitization Project. 3850.
https://scholarworks.lib.csusb.edu/etd-project/3850

This Project is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has
been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks.
For more information, please contact scholarworks@csusb.edu.

https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd-project
https://scholarworks.lib.csusb.edu/library
https://scholarworks.lib.csusb.edu/etd-project?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F3850&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F3850&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd-project/3850?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F3850&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

'I
‘b,; ti.jp

’I

f'
i

BASIC ONLINE SCHEDULING SYSTEM OPTIMIZER

A STUDY IN GENETIC ALOGRITHMS

A Project

Presented to the

Faculty of

California State University,

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

Computer Science

by

Norman Lee Langhorne, II

June 2010

i r i f:n. t '
i

BASIC ONLINE SCHEDULING SYSTEM OPTIMIZER

A STUDY IN GENETIC ALOGRITHMS

A Project

Presented to the

Faculty of

California State University,

San Bernardino

by

Norman Lee Langhorne, II

June 2010

Chair,
; and EngineeringSchool of Compu

. Anthony 'Mete
Biology^

Approved by:

00
Date

Dr. Ernesto Go/nez,

School of Computer Science and Engineering

ABSTRACT

The scheduling of academic courses represents one of

several difficult administrative tasks undertaken by

departments in colleges and universities each academic

session. This is primarily due to the many constraints

imposed by the courses being offered, along with the

restrictions imposed by faculty members, students and

facility resources, each of which contributing to the

overall complexity of the scheduling task. This paper

addresses this NP-Hard problem domain by examining the use

of Genetic Algorithms (GA's) in an attempt to create viable

academic schedules. By employing, the heuristic methods of

GA's, we demonstrated how optimal solutions sets may be

rendered through evolution. In addition, through

experimentation we illustrated how the amount of effort

required for solving such problems, increases as the number

of constraints increase thus, increasing the overall

problem complexity. Finally, we addressed the issue of

locating the optimal solution set and how this task is

beyond the scope of this examination and reserved for

future research and exploration.

iii

ACKNOWLEDGEMENTS

As I approach the end of my trek in seeking the

Masters of Computer Science, I first want to sincerely

thank the faculty and staff of the School of Computer

Science and Engineering. Reaching this milestone would

have been impossible without the help, guidance and

commitment that they have shown me during the endeavor.

I especially want to thank and offer my sincerest

gratitude to my committee chair, Dr. Arturo Concepcion, who

has been the guiding light throughout this journey. I am

most grateful for the encouragement he bestowed on me and

his dedication to seeing me through this project. He has

both challenged and enlightened me along the way and I am

honored to have been one of his students.

I want to truly thank Dr. Anthony Metcalf from the

Department of Biology for his guidance and advisement

regarding my research. His involvement helped steer this

project and validate my study and is most appreciated.

For all my years of study, I sincerely want thank Dr.

Richard Booting. Dr. Botting was the first contact I had

with the School of Computer Science and Engineering, and

has been an inspiration to me throughout these many years.

iv

I am so, very honored to have had his participation

during this milestone quest.

I would also like to thank Dr. Ernesto Gomez for

serving as committee member. I especially want to thank

him for the patience and understanding extended by him

during a very difficult and trying time. His

thoughtfulness helped calm the waters, and will always be

remembered.

In addition, I want to thank Monica Latimer for her

time, effort and assistance towards keeping me on track. I

am most appreciative for all that she has done on my behalf

in helping me reach.this goal.

Finally, but in no way last, I humbly thank Dr.

Josephine Mendoza for all her all efforts as my academic

advisor and in seeing me through this Master's program. I

wish to thank her for all her patience and untiring support

in helping me through this challenging process. Truly, it

is due to her boundless commitment that I arrive at this

point. I will always be in her debt.

v

TABLE OF CONTENTS

ABSTRACT.. iii

ACKNOWLEDGEMENTS .. iv

LIST OF FIGURES.. xi

CHAPTER ONE: INTRODUCTION

Background .. 1

Genetic Algorithms 3

Expected Results 5

CHAPTER TWO: SOFTWARE REQUIREMENTS SPECIFICATION

Purpose 7

Scope... 8

Overview.. 12

Product Perspective........ 12

System Interfaces............................ 13

User Interfaces.............................. 16

Hardware Interfaces 17

Software Interfaces 17

Communication Interfaces 18

Memory Constraints 18

Operations................................... 18

Site Adaption Requirements 18

Product Functions 19

Overview................................ 19

vi

Constraints............................. 19

User Characteristics......................... 21

Assumptions and Dependencies 22

Apportioning of Requirements 22

Specific Requirements 22

External Interface.................... , . . 22

Functions............................... 22

Performance Requirements 22

Logical Database Requirements 22

Design Constraints 23

Standards Compliance 23

Software System Attributes 23

Reliability............................. 23

Availability 23

Security................................ 23

Maintainability............ 23

Portability............................. 23

Organizing the Specific Requirements 23

System Mode............................. 23

User Class 24

Feature................................. 24

Stimulus................. '.............. 24

CHAPTER THREE: GENETIC ALGORITHM

vii

Overview 25

Basic Genetic Algorithm 26

Basic Online Scheduling System
Optimizer Algorithm 28

Initialization 28

First Generation Schedules 31

Scoring and Repair........................... 31

Next Generation Schedules 32

Multi-Point Crossover 33

Uniform Crossover 35

Point Mutation.......................... 36

Solution Determinants 38

Summary... 38

CHAPTER FOUR: SOFTWARE DESIGN

System Implementation 40

Development Tools 40

Layered Architecture 40

Patterns..................................... 41

High-Level System Software Packages 42

Bossopt...................................... 42

BusinessModel 42

BMItem.................................. 42

BMPersistentSet 43

viii

BMPersistentltem 44

BMDatabaseHelper.................... 45

ResourceFactory 46

ResourceManager 46

CourseResourceMgr 47

FacultyResourceMgr 47

RoomResourceMgr 48

PreferenceMap 48

BMResourceltem.......................... 50

ScheduleFactory 51

Chromosomeitem.......................... 51

Geneitem................................ 52

AcademicGene 52

AvailabilityMap 52

DatabaseModel 52

DBRecordSet..................... 53

DBConnectionMgr 54

SystemModel.................................. 54

Data Item Subsystem.......................... 54

Database Access Subsystem 56

Resource Factory Subsystem 57

Schedule Factory Subsystem 58

CHAPTER FIVE: TESTING AND RESULTS

ix

Introduction 60

Test Data Overview.......... 60

Schedule Tests and Findings 64

Manual Case Test 1........................... 64

Manual Case Test 2........................... 65

Basic Online Scheduling System Case Test 67

Basic Online Scheduling System
Optimizer Test....................... 69

Findings.. 72

CHAPTER SIX: SYSTEM MAINTENANCE

Introduction.................... ’................. 74

Contents............................... . . . 76

Server Setup................................... 76

Installation Instructions 78

Setup Basic Online Scheduling System Software 79

Getting Started 79

Basic Online Scheduling System Optimizer
Installation 81

Basic Online Scheduling System Optimizer
Project Build 82

CHAPTER SEVEN: CONCLUSION AND FUTURE DIRECTIONS

Conclusion.. 83

Future Directions 84

REFERENCES... 8 6

x

LIST OF FIGURES

Figure 2.1. List of Acronyms............................ 11

Figure 2.2. Deployment Diagram 15

Figure 2.3. User Interface - Part 1..................... 16

Figure 2.4. User Interface - Part 2..................... 17

Figure 2.5. Use Case for Optimizer...................... 19

Figure 3.1. Basic Genetic Algorithm 28

Figure 3.2. Single-Point Crossover 34

Figure 3.3. Multi-Point Crossover 35

Figure 3.4. Uniform Crossover 36

Figure 3.5. Point Mutation 37

Figure 4.1. Package Hierarchy 41

Figure 4.2. Data Item Subsystem..........................55

Figure 4.3. Database Subsystem 56

Figure 4.4. Resource Factory 58

Figure 4.5. Schedule Factory 59

Figure 5.1. Course Offerings 61

Figure 5.2. Courses Requiring Labs 62

Figure 5.3. Course Preferences 62

Figure 5.4. Non-Preferred Courses 63

Figure 5.5. Hour Preferences.............................63

Figure 5.6. Test Schedule 1..............................65

Figure 5.7. Test Schedule 2..............................67

xi

Figure 5.8. Basic Online Scheduling System Schedule 69

Figure 5.9. Optimized Schedule 71

xii

CHAPTER ONE

INTRODUCTION

Background

Started initially as an academic exercise in software

development by the School of Computer Science and

Engineering at California State University, San Bernardino,

the Basic Online Scheduling System or (BOSS), has for the

last five years served as a laboratory in the study of

timetabling or schedule generation and in the development

of algorithms and practical implementations used to solve

this class of problems. As part of the study in software

engineering, the BOSS project specifically addressed the

timetabling problem by implementing systems that produced

quarterly schedules for the School of computer Science &

Engineering. Through its many incarnations, BOSS has

approached the timetabling problem from many different

angles with each iteration and implementation aiding in the

advancement and overall maturity of the solution.

As is the case with most timetabling problems, studies

have found these problems to be NP-Hard in time complexity,

thus requiring very complex algorithms be employed to solve

1

them and that the solutions presented are often both varied

and numerous. Such conditions are the result of problem

spaces that contain a multitude of constraints or

prerequisite conditions that must be met in order to

achieve a valid solution set. In the case of quarterly

scheduling, such constraints consist of instructor

preferences which relate to which courses they want to

teach. Also, the lecture rooms and labs required for the

lecture session. In addition, the number of courses that

each instructor is allowed to lecture daily must be

addressed.

However, the most important characteristic of problems

within this class of problem domains is the fact that more

than one solution may be found to exist. This fact further

complicates the overall problem in that it must be

determined which of the candidate solutions is most optimum

to the problem space. It is this nature that the many

implementations of the BOSS project have had to contend

with and overcome.

In an attempt to develop solutions for the timetabling

problem, the most recent BOSS implementations have

consisted of algorithms that render a single solution. In

most cases, these single entity solutions represented a

2

"Good Fit" but, not necessarily the "Best Fit" solution.

In addition, as newer constraints have been added to the

problem space, ever more complex processing routines have

been required to arrive at an acceptable but, not

necessarily "Optimal" solution.

As the operational specifications of the BOSS have

changed, so too have the implementation complexities.

Bearing this in mind, the goal of the next system

incarnation was to find an algorithm that would address the

current constraints of the problem space and able to adapt

to both changing and increasing limitations. This new

algorithm would have to be scalable to the problem domain

and allow for multiple tests criteria to be logically

defined and processed. Also, the proposed algorithm should

allow for multiple solution candidates to be generated and

evaluated for correctness and overall solution worthiness

with the most optimal candidate(s) presented to the

solution space.

Genetic Algorithms

After researching various publicized optimizing

algorithms related to timetabling problems, a class of

algorithms was discovered that closely addressed the needs

3

and requirements of the future iteration of the BOSS. This

class of solution providers is known as "Genetic

Algorithms". Inherent within this class of algorithm are

some noteworthy characteristics. First, Genetic Algorithms

tend to thrive in environments in which several possible

solutions are expected to exist. Secondly, their logical

implementation is relatively simple and adaptable to most

problem spaces. Finally, this class of algorithms relies

on the use of candidate solution evaluation and

generational filtering to eliminate inadequate solutions

from the solution domain thereby propagating more worthy

solutions to an optimal or "Best Fit" solution set.

Inspired both by nature and naturalist British Charles

Darwin, Genetic Algorithms (GAs) make use of abstract

genetic structures called chromosomes and genes to

logically represent problem space. In addition, with the

use of genetic functions such as selection, crossover and

mutation, populations of solution candidates are created

and evaluated for fitness and overall worthiness. Through

multiple iterations of this mechanism, candidate solutions

possessing the desired traits are created and allowed to

pass from one generation into the next while, inadequate or

less-desirable solutions ultimately are removed from future

4

populations. It is these behavioral traits that make GAs

the appropriate tool for the BOSS optimization.

As such, the purpose of this study is to employ GA's

in the next BOSS iteration. During the implementation

process, metrics will be obtained and compiled for

comparison with previous BOSS versions. It is hoped that

by utilizing GA's that the overall scheduling efficiency

and system flexibility will be enhanced and thereby further

promoting the value and effectiveness of BOSS. [B2] [B3]

Expected Results

As discussed in the aforementioned sections of this

document, the main characteristic of the Genetic Algorithm

(GA) is that it, is an algorithm that renders solutions

through the principle of evolution. Therefore, the main

expectation will be that this type of processing will

require an increase in both processing time and processing

power to achieve desired results.

However, the trade-off for this increased processing

effort should be a solution set that better reflects the

desired user preferences and closely adheres to both the

hard and soft constraints imposed upon the system. In

addition, this new GA-based implementation should offer the

5

needed flexibility which will allow for future enhancements

of the BOSS Optimizer.

Although, the intent of this study to find an

implementation that will yield effective timetabling

solutions, we do not guarantee the optimality of the

presented solutions. The study of optimality as it relates

to this study shall be left to future studies and

endeavors.

6

CHAPTER TWO

SOFTWARE REQUIREMENTS SPECIFICATION

Purpose

This project is to provide the School of Computer

Science at California State University, San Bernardino with

an optimizing schedule module to enhance the latest version

of the Basic Online Scheduling System. This product will

be referred to as BOSS-Opt. The goal of this optimizer is

to produce course schedules based upon historical course

offerings, instructor preferences and lecture room

availability.

Since BOSS-Opt is an enhancement to the core

1 scheduling functionality of BOSS, the user of the system

will have the option of either enabling or disabling the

BOSS-Opt module during the generating of academic

schedules. All other functions defined within the BOSS

Software Requirements Specification (SRS), will not be

affected by this modification.

7

Scope

The main goal of schedule optimizer is to provide

several possible schedules for an academic period based

upon proposed course offerings. Also, the optimizer will

examine historical course data to determine the daytime or

nighttime placement of courses within the proposed

schedule. Finally, factors such instructor preferences and

lecture room availability will be used to further drive the

schedule creation process. During this process, it will be

the role of BOSS-Opt to alleviate schedule conflicts, if

possible, and report all unresolved scheduling conflicts to

the user.

At the end of the schedule run, BOSS-Opt will

internally produce a schedule offering in the SIS+ program

format, which can be used by California State University

staff to input the classes into the CSUSB schedule. Also,

the schedule which is deemed as the final schedule for the

Computer Science department will be used by BOSS-Opt during

the creation of future schedules.

8

Apache Open source web server that services

data and applications within a Web

environment.

BOSS Basic Online Scheduling System

BOSS -OPT Basic Online Scheduling System

Optimizer

CSCI Computer Science

GUI Graphical User Interface

HTML Hypertext Markup Language

IE Internet Explorer

Java Objected oriented language developed by

Sun Microsystems

JavaScript A scripting language developed by

Netscape to enable Web authors to

design interactive sites. Although it

shares many of the features and

structures of the full Java language,

it was developed independently.

JavaScript can interact with HTML

source code, enabling Web authors to

spice up their sites with dynamic

9

content. JavaScript is endorsed by a

number of software companies and is an

open language that anyone can use

without purchasing a license.

Java

Servlet

A java application that runs in a Web

server environment providing server­

sided processing and data access.

JDBC Java Database Connectivity is and API

that provides Java applications with

access to various SQL data stores.

Linux A multi user UNIX operating system.

MySQL Open source relational database

management system designed for speed,

flexibility and ease of use in

contemporary data centric systems.

00 Object Oriented.

PHP PHP Hypertext Protocol

Relational

Database

A database system composed of two or

more tables of data represented in

column form that is inter-related by

key attributes.

SRS Software Requirements Specification.

10

Figure 2.1. List of Acronyms

TCP/IP Abbreviation of Transmission Control

Protocol, and pronounced as separate

letters. TCP is one of the main

protocols in TCP networks. Whereas the

IP protocol deals only with packets,

TCP enables two hosts to establish a

connection and exchange streams of

data. TCP guarantees delivery of data

and also guarantees that packets will

be delivered in the same order in which

they were sent.

IP is the internet protocol that

defines the rules and transmission

methods employed in the transfer of

data across the network infrastructure.

11

Overview

The remainder of this chapter will have two major

sections along with appendixes and will be ended with an

index for the SRS documents [Bl]. The second section will

contain all the product outlines, perspective, function,

interface, and user characteristics. The third section will

include the specific requirements (e.g. hardware

requirements).

Product Perspective

This project will provide a table of classes scheduled

for a specific quarter in a specific year, for the computer

science department.

The director of the School of Computer Science &

Engineering will provide the BOSS scheduler with the

classes for each quarter. In addition, historical schedule

data will be presented to the scheduler system. The

scheduler will generate a suggested schedule of classes for

each quarter depending on:

• Historical daytime/nighttime offerings

• The classes that are offered in that quarter

• The classes that the teachers would like to teach.

12

• The time and location available for the classes.

The director of the school of computer science will be

able to edit / change class locations day or time. The

BOSS/BOSS-Opt scheduler then will notify the chair if there

are any schedule conflicts.

System Interfaces

The BOSS Optimizer is composed of a multi-tiered,

client-server architecture that utilizes a Web browser

running either Microsoft Internet Explorer or Mozilla

Firefox as the client front-end. The server or back-end

component will consists of a Linux server running Apache

Tomcat, PHP and MySQL relational database services. The

objective of the server component is to act as the main

repository of system data and logical functions. See

Figure 2.2.

The client and server components communicate via HTTP

over TCP/IP connections with user/client requests being

relayed to the server for processing. Results in the form

of HTML data will be returned to the client component to be

decoded and ultimately displayed by the client.

A typical session will comprise the following steps:

13

1. A user initiates the BOSS session via the client

front-end.

2. During the creation of an academic schedule, the user

requests that an optimized schedule be created.

3. An HTTP requests message is forwarded via TCP/IP to

the Apache server.

4. The server invokes a Java process via Java Servlet

controls.

5. The Java application in turn communicates via JDBC

with MySQL data stores.

6. Schedules are created and persisted within the MySQL

database.

7. A return is initiated by the server to the client

using HTTP data to populate the user interface with

the necessary graphic controls to aid the user in

accessing the newly created schedules.

14

Figure 2.2. Deployment Diagram

15

User Interfaces

Initialization of the BOSS Optimizer will be

controlled by an Optimize Schedule control contained within

the current schedule view screen.

BOSS
Logout

1. i - r ’ ■,, * JHJ ’*- —**”' If
Add Class. Edit/Delete Class 1 Drag & Drop Feedback Approve

«•

RnnDOb^jQjtCS® » - ■
&V2 fft.'gggs^
if. 1

JrZ3GCCDG3.',JJ^ l&TC?# WO
rVzr x?

MMMM
.L-.- .-l, > .

1

rt£v&i£Ltrtikj fcSi

«?’ -?Ei kJ J IM.J

2007 BOSS ■ Dept of Computer Science, CSUSB uxittwunwo

Figure 2.3. User Interface - Part 1

T

3

i

i

K

16

BOSS
I OtRWt

I iJTSSa J| eoes^HI]
»u-u, - in^» ’"'inp«-„*. -triF—■ . - .wyMnrmi—=-=-«>f’siFi—>npwv ••—--* " *■.- •*-■ - a—-■"■• -i

Create Load View Add Class Edit/Delete'Class Drag & Drop Feedback Approve:

F i
i

,1

I

I
I

wpyn—i1 «'- ii'{.' '>■ ■»>itxiLi|.' *-ur.y» 'i.-i^ i « i 'Rimin''.- ■« A

BOSS Optimizer
Proeese running...

I
I
I

-1

2007 BOSS - Dspt. of Computer Science,, CSUSB

Figure 2.4. User Interface - Part 2

Hardware Interfaces

No hardware interface.

Software Interfaces

The BOSS-Opt will provide a Java interface that will

allow the server component to interact with the optimizer.

The BOSS-Opt will be used to pass database tables and

optimizing options from the BOSS server to the BOSS-Opt.

17

Communication Interfaces

Microsoft Internet Explorer and Mozilla Firefox.

Memory Constraints

128 MB RAM min.

Operations

The scheduler will operate 24/7. Backups can be done

of the database using the mySQL dump of the database once a

month. Maintenance will be done on call, and mostly remote.

Site Adaption Requirements

The schedule will run from the Computer Science

department Website.

18

Product Functions

Overview. The BOSS Optimizer will be implemented using

a Genetic Algorithm (GA). It is hoped that by using this

form of optimization, that a global optimum may be obtained

within a problem scope that offers many solutions. Also,

in using GA, solution evolution will allow for the survival

of the more optimum solutions while inferior solutions will

be rendered extinct from the solution space. See figure

2.5.

Figure 2.5. Use Case for Optimizer

Constraints. The BOSS Optimizer will adhere to two

types of solution constraints. The first constraint, hard

19

constraints are rules that if violated will lead to invalid

solutions. Soft constraints on the other hand are rules

that if violated will lead to less than optimum solutions.

Soft constraint violations will be permitted but will

result in the solution fitness score being penalized.

Hard constraints

• Only one course can be held in a lecture room

during any given time period.

• A professor/instructor can lecture only one course

during any time period.

• Each course must alternate between morning and

evening offerings based upon time last offered.

• Each assigned lecture room must accommodate all

students enrolled in the course for which the room

was assigned.

• Core related courses must be made available during

both morning and evening periods.

20

Soft Constraints

• Professor/instructors must be assigned to courses

of their first choice when possible.

• Professor/instructors must be assigned to

lectures periods first choice when possible.

• No professor/instructor may lecture on more than

two courses per academic calendar period.

• Each professor/instructor must be exempt from

lecturing at least one academic period per

calendar year.

• No professor/instructor shall lecture on two

consecutive courses.

User Characteristics

The projected users of the BOSS-Opt will include CSCI

faculty and staff, including the CSCI chair. These

individuals should be familiar with computer operations in

general and should not need additional basic instructions

to use this product. All instructions and/or guidance can

be obtained using the BOSS-Opt tool's help menu.

21

Assumptions and Dependencies

There were none.
Apportioning of Requirements

There were none.
Specific Requirements

External Interface. Schedule Creation webpage, see

Figure 2.3.

Functions. Upon completion of the optimization process

the user will be presented with a screen containing three

schedule buttons,. These buttons correspond to the

optimized schedules that were created during optimization.

By selecting either of these button, the corresponding

schedule will be displayed in the Manage Schedule screen.

Performance Requirements. Code will be optimized for

both functionality and speed of operation. Response time

for the scheduling process should not exceed 35 wall time

minutes.

Logical Database Requirements. MySQL will be the

relational database manager; port 3306 must be open on the

server to allow access for users.

22

Design Constraints

Standards Compliance. The BOSS-Opt module will comply

with Java coding standards.

Software System Attributes

Reliability. The servers running the BOSS-OPT module

will be completely functional.

Availability. The BOSS-OPT module will require a

computer with 128 megabytes of RAM. This system should have

a continuous operational uptime with system outages not to

exceed more than 4 hours within a 30 day time period.

Security. The BOSS-OPT module will not have any

special security features.

Maintainability. The code will be well documented and

most modules will be reusable.

Portability. The code used in this program will be

completely portable, allowing the code to go from one

server to another as long they who comply with the hardware

and software requirements detailed in this document.

Organizing the Specific Requirements

System Mode. Single mode of operation (normal mode).

23

User Class. There are three users of the CSCI

Scheduler tool: chair, faculty, and staff.

Feature. This software contains no external features.

Stimulus. This software supports no external stimuli.

24

CHAPTER THREE

GENETIC ALGORITHM

Overview

A Genetic Algorithm (GA) is a type of search technique

used in computer science to locate solutions for problems

that are by their nature NP-Hard or nondeterministic

polynomial time ordered. Research has shown that NP-Hard

problems have no known solution other than searching

through each and every possible candidate solution in order

to determine the optimal or best fit solution.

Genetic algorithms are implemented by abstracting

individual solutions called chromosomes which in turn

belong to a population or genome of candidate solutions or

phenotypes. However, the most significant characteristic

of GA's is that their solutions evolve. This evolution is

achieved through the simulation of biological principles of

natural genetics selection and evaluation methods. Such

techniques over time tend to promote the survival of the

"Fittest" by allowing solutions, having the desired traits,

to be propagated from one generation to the next thereby,

creating a solution set of the most optimal candidate

solutions.

25

Basic Genetic Algorithm

For having such a sophisticated effect of finding

optimal solutions belonging to NP-Hard problem spaces, the

Genetic Algorithm is comprised of relatively simple

processing steps. The basic steps include the following:

initialization, evaluation, followed by replication and re-

evaluation until the desired termination state is reached.

During the initialization phase, the GA produces a

random set of chromosomes or solution individuals. Next,

these candidates are evaluated and scored based upon how

well they fit the desired solution.

Within the replication phase, chromosomes created

during the initialization phase will next act as parents in

the algorithm. During this phase, two parents will be

probabilistically selected based upon their fitness score

obtained during the previous phase. These two parents will

then exchange genetic material or genes to create new

individuals for the next solution generation. The newly

created candidate solutions will then be scored for fitness

as in the initialization phase.

Finally, at the end of each generation build phase.,

the system will evaluate the candidate solutions belonging

to the new population for overall fitness. During this

26

step, an optimal solution is determined to exist or

processing has proceeded to pre-defined limit of

generations, the process will be terminated with the

highest evaluated candidate being presented as the

solution. Otherwise, the replication phase will be again

be repeated thus creating the next, new solution population

which will be scored and evaluated for possible solutions.

[B2] [B3] [B4]

27

BEGIN PROCESS

Generate a random population of n viable chromosomes (schedules).

Score and assign a fitness value to each chromosome in the current population.

DO UNTIL (maximum number of generations ’ created or minimum scoring
variance achieved)

Create the next generation based upon genetic material of the current
generation using various genetic functions such as selection, crossover,
mutation and elitism.

Score and assign a fitness value to each chromosome in the current
population.

Remove the parent generation and replace it with the new child
generation.

END DO

Save the highest ranked 3 chromosomes from the final generation into the
schedule database.

Display highest ranked schedule upon user interface screen.

ENDPROCES

Figure 3.1. Basic Genetic Algorithm

Basic Online Scheduling System Optimizer Algorithm

Initialization

In order to start the BOSS Optimizer (BOSS-Opt)

process, a system call is made to the optimizer process

specifying the schedule name, academic period and

department values. These parameter values will be used for

28

queries against the database to obtain all pertinent data

items.

Upon process activation, the optimizer will begin by

first creating the data objects for both the task and

resource elements. In .order the establish proof of

concept, the first spiral implementation will have

hardcoded query parameters passed to data stores to

retrieve related data items. However, later implementations

will be parameter based and set by user definitions.

For this first implementation, task elements will

correspond to the courses that are to be scheduled. Every

course item will be represented by a data object comprised

of a unique id, description, week period, day period and

period length properties. In addition, each task object

will contain a two-dimensional array. This array will have

an x-axis representing the days of the week and a y-axis

representing the hours of the day.

During construction of task element objects, each

array element will be initialized with one of four values.

For those array elements that correspond to periods that

the course item is available to be scheduled, a value of

'1' will be stored in said element. All remaining array

29

elements will be set to '4' to indicate invalid or

forbidden period elements.

Next, the optimizer will create data objects for the

resource elements. These resource elements will be used to

define scheduling priorities and preferences to the system.

During this proof of concept phase, resource element

objects will be represented as instructor and classroom

data objects and as stated earlier, the parameters required

to access data stores that will be used in their creation,

will be temporarily hardcoded. Like the task elements,

resource elements will be comprised of unique id and

description properties. Resource elements will also

contain preference value property fields that will be used

to help determine preference relationships between task and

resource elements. In addition, each object will contain a

two-dimensional array. This array will have an x-axis

representing the days of the week and a y-axis representing

the hours of the day.

As with the task elements, resource element objects

will be initialized with one of four values. For those

array elements that correspond to periods of first

preference in scheduling will be set to a value of '1'.

Elements determined to be optional or secondary in schedule

30

preference will be set to a value of '2'. Elements

determined to be low in schedule preference or "Don't care"

will be set to a value of '3'. All remaining array

elements will be set to '4' to indicate invalid or

forbidden period elements.

First Generation Schedules

During this phase of optimizer processing, the first

generation of schedule objects will be created. The number

of schedules created in this process will be parameter

based but, should vary from 50 to 100 for this first phase

of development. Schedule objects will be created by

randomly pairing task and resource elements to obtain task

solutions. In this process courses, instructors and rooms

will be married by time slot and stored as genes within the

chromosome or schedule object. In order to minimize the

number of invalid schedule assignments, logic will be

employed to aid in the prevention of hard constraint

violations.

Scoring and Repair

After the initial generation of schedule objects has

been created, the system will examine the population to

locate errors such as overlapping room assignments or

instructors assigned to more than one course having

31

conflicting times. During this process, corrections will

be effected, if possible, to correct the invalid

conditions. If error corrections cannot be made to the

schedule, then the schedule will be allowed to go forward

and will eventually be dropped from future generations due

to extremely poor scoring.

After the repair process has been applied, each

schedule will be scored to determine its solution fitness.

It is during this phase that soft constraint violations

will be determined based upon information contained within

the resource element objects. Constraint violations will

be tallied and constraint violation weights will be applied

to determine a score reflective of how well the schedule

fits the required system criterion. As is the purpose of

genetic algorithms, schedules having lower fitness ratings

will have less of chance of propagating their genes into.

the next generation than those schedules having higher

fitness scores.

Next Generation Schedules

In order to create randomness within schedule

populations, genetic operators will be applied during the

generation of successive schedule generations. These

operators will be applied to parent schedules of the most

32

recently generated population to create the child, schedules

of the next generation. This process of manipulation and

replication will be continued for a specified number of

generations as specified by system parameters. It is the

intent of this process to ultimately render the most

optimum schedule result by passing forward the best genetic

results of the previous generation on to the next.

After the new generation of schedule objects has been

created, the old or parent schedules will be removed from

the system. This will result in the new child schedules

becoming the new parent schedules that will be used in the

creation of the next generation of child schedules.

During this phase genetic operators such as elitism,

point mutation and crossover will be randomly applied to

parent schedule objects to created new child schedules.

After each new generation of schedules has been created,

the system will once again apply both the repair and

scoring processes. This entire generation process will

continue forward until a viable set of schedules have been

created.

Multi-Point Crossover. Multi-Point Crossover will

randomly select two chromosomes (schedules), from the

current generation. Next, one or more pivot points will be

33

randomly generated to establish crossover point for the two

chromosomes. Finally, the upper section of genes from one

chromosome will be merged with the lower genes of the other

parent to create a new child chromosome that will become

part of the next schedule generation. See Figures 3.2 and

3.3. [B3][B4]

Figure 3.2. Single-Point Crossover

34

Mother Chromosome

IB HU Illi II Illi Illi III ■-iiiiiiift A A

Falter Chromosome

A

1W1B HTmi imiaiffllMlWIWI.-1a ini«iAAA

Child Chromosome

A

i ■ i a 111 a i a ii i» 111 a 181 a i. --7TTTT1

Figure 3.3. Multi-Point Crossover

Uniform Crossover. Uniform Crossover will randomly

select two chromosomes (schedules) f from the current

generation. Next, random genes from each of the two

parents will be selected to create a new child chromosome

for the next generation. See Figure 3.4. [B3][B4]

35

Point Mutation. The Point Mutation function will first

randomly select a parent chromosome (schedule) , from the

current schedule generation. Next, this function will

randomly select a gene from the selected chromosome and

changes one or more property values. See Figure 3.5.

[B2] [B3] [B4]

36

Child Chromosome (Before Mutation)

I #111 M l & IIII & 111BIII il I Bl I-lllllllid

Child Chromosome (After Mutation)
iidmmmiimm.iimm^i-immm

Figure 3.5. Point Mutation

37

Solution Determinants

At this point, two cut-off methods have been proposed.

The first method will employee the optimizer to run for a

prescribed number of generations and will halt when that

number has been obtained. The other method will utilize an

examination of scores per generation looking at the rate of

change per generation. At the point the system determines

that the change in fitness per generation has achieved a

certain delta, the system will .halt. Upon system halt, the

final best three schedules will be determined and return to

the BOSS as the optimized solution. [B2][B8]

Summary

By utilizing the Genetic Algorithm as the foundation

for the schedule generation process, it is our expectation

that this search method will provide both an effective and

flexible foundation that will allow for future enhancements

and modifications to BOSS-Opt system with minimal impact to

overall system. As the BOSS-Opt matures and additional or

different constraints are presented to the scheduling

process, the GA should only be affected by new scoring and

evaluation routines thus leaving the majority of generation

38

process unaffected by the new functionality. This will in

theory allow for the BOSS-Opt to easily adapt to future

demands.

39

CHAPTER FOUR

SOFTWARE DESIGN

System Implementation

Development Tools

Implementation of the BOSS-Opt was done using Java 5

and Sun's NetBeans Interactive Development Environment

(IDE) version 6.5.1. In addition, a third party software

library, Apache Commons Collections from The Apache

Software Foundation was utilized to provide data access to

MySQL databases.

Layered Architecture

The BOSS-Opt was built utilizing three functional

software layers: Database Services, Business Model Services

and System Model services specified in ranking order from

lowest to highest thus creating a communications hierarchy.

This implementation feature restricts communication between

the service layers. As such, lower level layers are not

allowed access to higher level services (i.e. Database

Model layer cannot directly access the Business Model

layer).

40

Figure 4.1. Package Hierarchy

Patterns

The BOSS-Opt is implemented using the following design

patterns: Abstract Factory, Builder and Singleton

implementation patterns. [B7]

41

High-Level System Software Packages

Bossopt

Bossopt is the top level package that contains the

system applet class. This applet serves as the entry point

for the scheduling system.

BusinessModel

This package contains the classes responsible for

basic scheduling processes. These processes include

resource and schedule factories along with helper utilities

required to assist with data transfer between lower system

layers.

BMItem. This class serves as the base class .for all

business model system data objects. All BMItems objects

have an ID and description value. This allows for BMItems

to be referenced by key from container objects such as map,

lists and database tables.

Known subclasses of BMItem include: BMPersistentltem,

BMResourceltem, ChromosomeItem and Geneitem.

The main function(s) of the class are as follows:

• BMItem() default constructor.

• BMItem(key) accepts unique key value for class

instance.

42

• BMItem(key, description) accepts both a unique key

value and item description for class instance.

• GetID() returns the key value for the item instance.

GetDescf) returns a string description value for the

item instance.

• SetlD(key) accepts a key value which is used to set

the key property for the item instance.

• SetDesc(description) accepts a string description

value that is used to set the item instance

description property.

• clone() inherited method that enables BMItem instances

to copied throughout the system.

BMPersistentSet. This class represents a container

class that hold like BMItems. Persistent set allows for

items to loaded from and save to external storage; In

addition this class allows for contained items to be sorted

by different orders. Also, persistent sets may be

replicated across the system.

The main function(s) of the class are as follows:

• Erase() deletes all items contained within the

persistent set.

43

• Erase(key) accepts a key value which is used to remove

the set item that corresponds to the key value.

• Getltem(key) accepts a key value which is used to

retrieve the set item that corresponds to the key

value. If the specified key is not found, this

function will return a null reference.

• GetRandomNext() returns a reference to an item

instance contained within the set. If the set is

empty, this function will return a null reference.

• Load(item) accepts a BMItem instance and loads item to

persistent set.

• Load(hint, dbhelper) accepts a BMItem type as a hint

and database helper class to load one or more BMItem

instances.

BMPersistentItem. Abstract class that inherits from

BMItem and represents item data that may be retrieved from

or stored on external data stores. Persistent items

communicate with external data stores via database helper

classes which implement the required logic to facilitate

data transfer operations.

44

Known subclasses of BMPersistentltem include:

CourseItem, DBInfoItem, Facultyltem, Roomitem, Scheduleltem

and Useritem.

The main function(s) of the class are as follows:

• GetDBHelper() returns a reference to the persistent

item's database helper class.

BMDatabaseHelper. Abstract helper class used as a

logical bridge between the business model and database

layers which aids in the retrieving and storing of system

items.

Known subclasses of BMDatabaseHelper include:

CourseDBHelper, DBInfoDBHelper, FacultyDBHelper,

RoomDBHelper, ScheduleDBHelper and UserDBHelper.

The main function(s) of the class are as follows:

• ExecuteQuery(string) executes a SQL command string.

• GetDefaultSQL() returns a string value that represents

the default SQL script used to define dataset table

name.

• GetFilterO returns a string value that represents the

SQL resultset filter script.

45

• SetDefaultDb(enum) accepts an enumeration which

defines the default database unique identification

number.

• SetDefaultSQL(string) sets the property used to define

the dataset table name.

• SetFilter(string) sets the property used as resultset

subquery filter.

ResourceFactory. Class used to express user and

resource preferences to the scheduling system. Preferences

are indicated by state values referenced by weekday-daily

time periods.

ResourceManager. Abstract class used as the base class

for all resource item factories. This class contains a

persistent set member which acts as the container class for

created resource items and exposes a function that returns

a reference to the set member.

The main function(s) of the class are as follows:

• ResourceManager() constructor for resource manager

object. Function initializes the protected member

BMPersistentSet which act as the container class for

resource items.

46

• GetResourceSet() returns a reference to the class

member BMPersistentSet of resource items.

CourseResourceMgr. Subclass of ResourceManager used to

create course resource items. Course resource items act as

task elements for which scheduling activities are centered

around.

The main function(s) of the class are as follows:

• CourseResourceMgr(quarter, table) constructor for

course resource manager object. This constructor

accepts a quarterly period identifier which is used to

define the academic period for the derived schedule.

Also, passed is an optional schedule name for a

previous academic schedule that may be referenced

during the course resource creation process.

FacultyResourceMgr. Subclass of ResourceManager used

to create faculty resource items. Faculty resource items

act as resource elements which are used in the process of

course resources.

The main function(s) of the class are as follows:

47

• SetHourRangePreferences(resource, bhour, ahour, day)

private function used to set faculty scheduling

preferences which are referenced during the academic

scheduling process.

RoomResourceMgr. Subclass of ResourceManager used to

create room resource items. Room resource items act as

resource elements defining the available lecture rooms and

labs which are used in the process of course resources.

PreferenceMap. Class used to express user and resource

preferences to the scheduling system. Preferences are

indicated by state values referenced by weekday-daily time

periods.

The main function(s) of the class are as follows:

• GetDayFromTimeSlot(timeSlot) static function which

accepts a timeslot value and returns the day of the

week that the corresponds to the specified timeslot.

• GetHourFromTimeSlot(timeSlot) static function which

accepts a timeslot identifier value and returns the

hour of the day that the corresponds to the specified

timeslot.

48

• GetTimeSlot(day, hour) static function that accepts a

day and hour parameter to obtain preference map

timeslot value.

• GetTimeSlotValue(timeSlot) function that accepts a

timeslot identifier value and returns a preference map

timeslot value.

• SetTimeSlotValue(timeSlot, value) function that

accepts a timeslot identifier and value to set the

preference map slot vaSLue. Function returns true if

assignment completes successfully; false otherwise.

• SetTimeSlotValue(timeSlot, value, minutes) function

that accepts a timeslot identifier, value and minutes

used to set the one or more preference map slot

values. Function returns true if assignment completes

successfully; false otherwise.

• SetTimeSlotValue(day, hour, value) function that

accepts a day, hour and slot value to set the

preference map slot value. Function returns true if

assignment completes -successfully; false otherwise.

• SetTimeSlotValue(day, hour, value, minutes) function

that accepts a day, hour, value and minutes to set one

or more preference map slot values. Function returns

49

true if assignment completes successfully; false

otherwise.

BMResourceltern. Abstract class that inherits from

BMItem and represents item data that may be retrieved from

or stored on external data stores. Persistent items

communicate with external data stores via database helper

classes which implement the required logic to facilitate

data transfer operations.

Known subclasses of BMResourceltem include:

CourseResource, FacultyResource and RoomResource.

The main function(s) of the class are as follows:

• GetPreferenceMap() returns a reference to the resource

item's preference map object.

• GetResourceType() returns a enumeration value which

describes the resource data type, (e.g. course,

faculty, room, etc.).

• SetPreferenceMap(map) accepts a preference map object

which is used to set the map property of the resource

item.

• SetResourceType(enum) accepts an enumeration value to

set the resource type property.

50

ScheduleFactory. Class used to express user and

resource preferences to the scheduling system. Preferences

are indicated by state values referenced by weekday-daily

time periods.

ChromosomeItem. Class used to express user and

resource preferences to the scheduling system. Preferences

are indicated by state values referenced by weekday-daily

time periods. Cost, fitness

The main function(s) of the class are as follows:

• MultiCrossover(parent, pivots) replication function

which accepts a parent chromosome item and an

identifier which stipulates the number of pivot points

to be applied to the replication process. This

function will randomly select genetic elements from

both the instance and parent chromosomes based upon

the pivot points referenced and return a new child

chromosome.

• UniformCrossover(parent) replication function which

accepts a parent chromosome item. This function will

randomly select genetic elements from both the

instance and parent chromosomes and return a new child

chromosome.

51

Geneitem. Abstract subclass of BMItem used to define

base functionality of gene elements. This class exposes

one abstract function PointMutation() which is to be

implemented by subsequent subclasses.

AcademicGene. Subclass of Geneitem used to define the

problem domain properties for the academic scheduling

system. Academic gene items consist of the course

identifier, faculty identifier and room identifier for each

scheduled course item. In addition, each gene contains the

assigned week day and start time for the course item.

The main function(s) of the class are as follows:

• PointMutation() public function used to randomly alter

gene properties.

AvailabilityMap. Class used to express user and

resource preferences to the scheduling system.

Preferences are indicated by state values referenced

by weekday-daily time periods.

DatabaseModel

The databasemodel package includes all classes that

abstract the external datastore elements. Currently, these

52

data items are maintained within a relational database

management system.

DBRecordSet. Abstract helper class used as a logical

bridge between the business model and database layers which

aids in the retrieving and storing of system items.

Known subclasses of DBRecordSet include: DBCourseSet,

DBInfoSet, DBFacultySet, DBRoomSet and DBUserSet.

The main function(s) of the class are as follows:

• ExecuteQuery(string) executes a SQL command string.

• GetDefaultSQL() returns a string value that represents

the default SQL script used to define dataset table

name.

• GetFilterO returns a string value that represents the

SQL resultset filter script.

• SetDefaultDb(enum) accepts an enumeration which

defines the default database unique identification

number.

• SetDefaultSQL(string) sets the property used to .define

the dataset table name.

• SetFilter(string) sets the property used as resultset

subquery filter.

53

DBConnectionMgr. Abstract helper class used as a

logical bridge between the business model and database

layers which aids in the retrieving and storing of system

items.

The main function(s) of the class are as follows:

• GetConnection(enum) static function that accepts a

enumeration as the unique database identifier and

returns a logical connection to an external datastore.

SystemModel

System utility classes are contained within this

package. These utility classes include the system logger,

file dump and global static data definitions.

Data Item Subsystem

This system manages the various types of business

level objects used by the scheduling system. In addition,

this system defines the base class for all data related

objects. These items include: persistent items, resource

items and chromosome items. See Figure 4.2.

54

Figure 4.2. Data Item Subsystem

55

Database Access Subsystem

The database access system is the primary means for

transferring data elements to and from external storage.

Although this implementation effects communication with a

Relational Database Management System(RDBMS), other

external data stores may be accessed by extending this

basic system.

In addition, in keeping with the separation of system

services - Business Model to Database, helper classes are

employed to act as mediator for the two distinct service

layers. See Figure 4.3.

Figure 4.3. Database Subsystem

56

Resource Factory Subsystem

In order to present resource data items to the

scheduling system, the Resource Factory system is tasked

with obtaining data elements from external storage and

reformatting these items into resource objects that may

referenced and/or manipulated by the scheduling process.

Although the resource items are primarily used to

transmit persistent data properties to the scheduling

process, each resource instance also contains a data matrix

that abstracts the user and system preferences which will

be evaluated during the creation of schedule items. See

Figure 4.4.

57

Figure 4.4. Resource Factory

Schedule Factory Subsystem

The Schedule Factory is the subsystem that manages the

schedule creation process. This system retrieves resource

items from the Resource Factory and processes these items

by utilization of Genetic Algorithm (GA) methods. See

Figure 4.5.

58

Figure 4.5. Schedule Factory

59

CHAPTER FIVE

TESTING AND RESULTS

Introduction

In an attempt prove the viability of the BOSS

Optimizer system, four separate scheduling techniques were

employed with the results from each scheduling method

measured and evaluated for correctness.

It should be noted that in none of the four techniques

was the main focus on finding the most optimal solution.

However, each resulting schedule was examined to see how

close it came to representing a solution that met the

system constraints and adhered to system preferences.

Test Data Overview

Each of the four schedule builds relied on the same

schedule data elements. These elements included courses,

faculty, faculty course preferences and faculty

availability preferences.

Course offerings observed during testing are included

in Figure 5.1. This lists the course number, course name

60

along with the lecture length and the number of required

sections.

Figure 5.1. Course Offerings

Course ID. Course Name Length (mins.) Sections
CSCI_201 Computer Science 1 75 2
CSCI_2O2 Computer Science II 75 2
CSC1-292 Object Oriented Programming 75 2
CSCI_31O Digital Logic 110 2
CSCI_313 Machine Organization 110 2
CSCI_320 Programming Languages 75 2
CSCI_330 Data Structures 75 2
CSC1_431 Algorithm Analysis 110 2
CSCI_455 Software Engineering 75 2
CSCI_5OO Formal Languages 110 2
CSCI-512 Artificial Intelligence 110 2
CSCI_535 Numeric Computation 110 2
CSCI_610 Modern Computer Architecture 110 2
CSCI_635 Numeric Simulation 110 2

Courses having one or more laboratory periods are defined

in Figure 5.2. This lists the course number, course name,

lab length, preferred room number and required number of

sections.

61

Figure 5.2. Courses Requiring Labs

Room
Course ID. Course Name Length (mins.) No. Sections
CSCI_2O1 Computer Science 1 75 JB358 2
CSCI.202 Computer Science II 75 JB358 2
CSCL31O Digital Logic 110 JB357 2
CSCI_320 Programming Languages 110 JB359 2 '
CSCL610 Modern Computer Architecture 75 JB358 2

In Figure 5.3., are list the courses that each

professor desires to lecture. The desired courses are

recorded in order of preference with the first entry having

a greater ranking of preference than the next or successor.

Figure 5.3. Course Preferences

Professor Preferred Courses
Georgio CSCL401, CSCI_620
Botting CSCI_320, CSCI_620, CSCI_646
Gomez CSCI_610, CSCI_431, CSCI_401
Karant CSCI_525, CSCI_634, CSCI_689
Mendoza CSCI_572, CSC1.689
Murphy CSCI_500, CSCI_350, CSCI_646
Schubert CSCI_535, CSCI_635, CSCI_31O
Turner CSC1_292, CSCI_488, CSCI_572
Grad. Student CSCI_201, CSC1_2O2

In contrast to the professor list of desired courses,

Figure 5.4., lists courses that each professor chooses not

62

to lecture. As with the desired courses, these courses are

recorded in order of preference with the first entry having

a higher ranking of dislike than the next or successor.

Figure 5.4. Non-Preferred Courses

Professor Non-Preferred Courses
Georgio CSCI_201, CSCI_202

Grad. Student CSCI_689, CSCI_660, CSCl_656, CSCI_646, CSC1_634

Hour preferences are defined by Figure 5.5., which

lists the faculty preference regarding which hours he/she

desires to lecture.

Figure 5.5. Hour Preferences

Professor Preferred Lecture Times Days
Botting before 5PM M-F
Gomez after 3PM M-F
Karant after 2PM M-F

63

Schedule Tests and Findings

Manual Case Test 1

For this test, a schedule was created using 10

randomly selected courses. These courses were randomly

placed in morning and evening periods in an effort to

balance the academic load. During this scheduling process,

neither faculty nor course preferences were recognized. As

such, both professor and room assignments were fairly

random with the exception of lab offerings which were

allocated to resource rooms.

The intent of this test was to establish a baseline

for the creation of a very simple case test and compare

these findings to the generation of more elaborate

schedules. In this test, the total time required to

complete this schedule was 17 minutes. Results of this

test can be seen in Figure 5.6.

64

Figure 5.6. Test Schedule 1

Gtass Description Days Time Faculty Room
CSCU_201 Comp Sci 1 MW 8:00 A.M.-9:15 A.M. Student JB358
CSCI_201 Comp Sci l_Lab W 9:30 A.M.-10:45 A.M. Student JB358
CSCI—201 Comp Sci l_Lab M 12:00 P.M.-1:15 P.M. Student JB358
CSCl_292 00 Programming TR 8:00 A.M.-9:15 A.M. Turner JB324
CSCI_32O Prog. Lang TR 10.00 A.M.-11:15 A.M. Mendoza JB359
CSCI_320 Prog. Lang_Lab T 11:30 A.M.-1:15 P.M. Mendoza JB359
CSCI_32O Prog. Lang_Lab W 2:00 P.M.-3:50 P.M. Mendoza JB359
CSCI33O Data Structures TR 10 W A.M.-110.5 A.M. Georgio JB322
CSCIJUl Algorithms TR 5:00 P.M. - 7:50 P.M. Gomez JB357
CSCL455 Software Eng. MW lOW A.M.-1150 A.M. Concepcion JB359
CSCI_5OO Formal Lang, TR 9:00 A.M.-10:15 A.M. Botting JB113
CSCI_512 A.I. MW 10W A.M.-11:50 A.M. Turner JB319
CSCI_535 Numeric Comp. MW 12W P.M.-1:50 P.M. Kara nt JB356
CSCI_635 Prog. Lang TR 6:00 P.M.-7:50 P.M. Georgio JB357

Manual Case Test 2

In this test, another course schedule was created

strictly by manual effort. This schedule consisted of 14

courses, 3 of which comprised both lecture and supplemental

laboratory periods. As in the previous test, courses were

randomly placed between morning and evening periods in an

effort to evenly distribute the academic offerings.

For each course and laboratory offering, a professor

was assigned. However, unlike the previous test, in the

event that a faculty member registered a desired to lecture

a particular subject, their preference was taken into

65

consideration where possible. In addition, any faculty

preferences stipulating which courses that he/she chose not

to lecture were also observed. In the event that faculty

preferences did not exist for a particular course, a

professor was randomly selected and assigned to the course

offering.

Along with professor course preferences, professor

time period preferences were also honored where possible.

These preferences were used to convey the weekly and hourly

period's professors desired or were available to lecture.

In utilizing this manual method of scheduling, a total

effort of 127 minutes was recorded. Although this method

did render a viable academic schedule, it was not

necessarily the most optimal. Issues such as the number

gaps between lecture periods, room distribution and

professor workloads were not proven to be best possible

solution. However, the manual method did by all accounts

produce a workable course schedule as can be seen in Figure

5.7.

66

Figure 5.7. Test Schedule 2

Gass Description Days Time Faculty Room
CSCI_2O1 Comp Set 1 MW 8:00 A.M.-9:15 A.M. Student JB358
CSCI_2O1 Comp Set l_Lab W 9:30 A.M.-10:45 A.M. Student JB358
CSCI_201 Comp Sei IJLab M 12:00 P.M. -1:15 P.M. Student JB358
CSCI—202 Comp Sei IlLab TR 4:00 P.M.-5:15 P.M. Student JB358
CSCI_2O2 Camp Sei li__Lab T 5:30 P.M.-6:45 P.M. Student JB358
CSCI-202 Comp Sei ID_Lab W 6:00 P.M.-7:15P.M. Student J0358
CSCI_292 00 Programming MW 2:00 P.M.-3:15 P.M.

10:00 A.M. -11:50
Turner JB324

CSCI_310 Digital Logic MW A.M. Karant J0357
CSCI_31O Digital Logic_Lab W 12:00 P.M. -1:45 P.M. Kara nt JB357
CSCI_31O Digital LogicJLab R 2:00P.M.-3:50P.M.

10:00 A.M. -11:15
Karant JB357

CSCI-320 Prog. Lang TR A.M. Bolting JB359
CSC1_32O Prog. Lang-Lab T 11:30 A.M. -1:15 P.M. Botti ng JB359
CSCI_320 Prog.Lang_Lab M 4:00 P.M.-5:50 P.M. Bolting JB359
CSCI_330 Data Structures TR 12:00 P.M. -1:15 P.M. Georgio JB124
CSCI—431 Algorithms TR 4:00P.M.-5:50P.M. Gomez JB357
CSCI_455 Software Eng. MW 8:00 A.M.-9:50 A.M. Concepcion JB359
CSCI—500 Formal Lang. TR 9:00 A.M.-10:15 A.M.

10:00 A.M. -11:50
Murphy JB324

CSCI—512 A.I. TR A.M. Mendoza J Bl 10
CSCI—535 Numeric Comp. TR 2:00 P.M.-3:50 P.M. Schubert JB322
CSCI—510 Modern Comp

Modern
TR 6:00 P.M.-7:50 P.M. Gomez JB356

CSCI—510 Comp_Lab
Modern

R 8:00 P.M.-9:15 P.M. Gomez JB356

CSCI—610 Camp_Lab W 6:00 P.M.-7:15 P.M. Gomez JB356
CSCI—535 Prog. Lang TR 2:00P.M.-3:50P.M. Schubert JB322

Basic Online Scheduling System Case Test

As our first automated test, the aforementioned data

elements were presented to BOSS. Total processing time

67

utilizing this method was less than 5 seconds and produced

the schedule depicted in Figure 5.8.

Although BOSS produced a schedule that was at best

viable, upon closer examination, both incompletion of

course assignments along with course assignment errors

become apparent.

First, with this schedule failed to assign rooms for

all course sections. For those sections that do possess

room assignments, it is apparent that these rooms were

simply scheduled based upon room preference entries. As a

result of this, course assignments have resulted in room

conflicts due two or more course sections being assigned to

the same room with overlapping time frames.

Second, of the twenty-four sections scheduled during

this test, only seven sections were scheduled for weekly

periods Tuesday and/or Thursday. This has resulted in the

scheduled being biased for Monday, Wednesday periods thus

resulting in an uneven distribution.

From this test we can see that BOSS, for the most

part, does a reasonable job at creating schedules that are

potentially viable with the aid of additional editing.

However, we conclude that BOSS in many cases will fail to

produce schedules that are optimal in their assignments.

68

Figure 5.8. Basic Online Scheduling System Schedule

Basic Online Scheduling System Optimizer Test

Our final test was conducted with the enhanced version

of BOSS or BOSS Optimizer (BOSS-Opt). As in the previous

test, the aforementioned data elements were also presented

to BOSS-Opt. However, unlike the previous BOSS test, BOSS-

69

Opt required a processing time of 25 minutes. The results

of this test can be seen in Figure 5.9.

Although, the amount of processing effort for BOSS-Opt

was much greater in comparison to the previous BOSS, upon

inspection, it's apparent that BOSS-Opt has produced a more

viable scheduling solution.i
First, all course sections have complete assignments.

These assignments consist of each section having a

lecturer, room and weekly period time slot assigned.

Second, faculty course preferences and hour preferences

were upheld in most course assignments. Finally, rooming

conflicts have been reduced or eliminated.

70

Tt*~ ---------

. ' • ’-‘--V ;•
<y■' Schedule- AlpfiaTesrOpd "'-

Bjcrjp^a^^avi|Ti'a^[tFacijl^Koo^rii

• - " ■ 'J.'.’ ' -r '. . ; ’ < •

/^Faculty {(roott^
[TH ifcoo AM - 9 45 A.^ "7j $tug5T ljj33&8|
jf r' j jfcM AM IT itL^r^~^B35g|l '!

time jj

|C56i~20lJ|Co^o Sc.TUb fyv' "ifac A M - 6:15.Ajr^^s7ffes^
[cSCI 202i}Comp. Sci II /.' ifa ‘ fetO AM - S45 A M.- fl ^0^]jS^ '-

[CSa_-2Q2| Wo^njp1 yoAM^-15 AM :fj Studeg j

jQSClr3l j Si Logic''" ' " "1 '

W . -]jVy/jfeoQ PM : a;5C R^.lTjchu^^a35^
Goiyier

§2SS^ES315S^3Z®3^S£TnSK3EiSI ■
ProgfahCLaDft jjS^JpB359l

^jWbSsg BctHrq|j'jB35fJ]

„____ ___ :
fay WlO ■
iCS0 >3.i[Ak^hirig^T’? jlKaram _ (jjB~35?j,'
(GSCrlg^^08-^'7 £• ‘
fcSCrsW Formal j&O'PM. /sjpM.'~ fl Muffrhy jjJB1 i>9|

!CHGl.^i3pf' ?~~^~~r~7C7&^-8;5ymH|~ Tutnyr

te^Ot 320|n-

^CScfiM P^^arn'-Lsi^'1

r... ,r,,., . ..r. ,T;. .. .̂

KF

Figure 5.9. Optimized Schedule

71

Findings

After performing several schedule tests with like

data, we have shown how by increasing the size of the

scheduling problem or its complexity by means of added

constraints or preferences, that the overall processing

effort increases. This holds true for both manual and

automated test cases. In the manual tests, we demonstrated

how by adding a few' more course sections and adhering to a

set of predefined preferences increased the processing

effort by a factor of 12. In the case of the automated

tests, by adhering to faculty preferences, we increased the

effort by a factor of 300.

However, it should be noted that with the increase in

processing effort, there was verifiable increase in the

viability of the schedule produced. This study by example

tends to correlate with the characteristics of timetabling

or scheduling problems being NP-Hard and polynomial in

solution time complexity.

In conclusion, though we have demonstrated that by

utilizing Genetic Algorithms (GA's) in our implementation

of BOSS-Opt, we have been able to produce better scheduling

solutions, we have yet prove that our use of GA's has lead

72

to creation of the most optimal solution. That hopefully,

will be for those whom choose to carry forward this study.

73

CHAPTER SIX

SYSTEM MAINTENANCE

Introduction

The Basic Online Scheduling System (BOSS) version 4.2

is a PHP program that assists a department at CSUSB to help

create and manage a schedule for the entire school year.

For reference on how to use the software, please see the

BOSS help pages. What follows is a document that will aid

in the installation of BOSS. The current version of BOSS

has four user types:

• Admin- Users able to add and edit the users for a
S

particular department.

• Faculty- Teachers who can setup their preferences on

what courses they want to teach.

• Staff- Users who can view and print the schedule once

it has been made.

• Chairs- Users who can create courses and schedules

from the courses and faculty preferences.

The code is divided up into four folders, one folder

for each user. Each folder has a header folder that

74

contains the header and footer files for each php file.

The manner in which BOSS is shown is contained within these

files..

The schedule is created through a near optimal

algorithm. The idea is to lay out each class so they are

spread out and classes with the same level are not

overlapping. Then each teacher's preference is attached to

a particular class. If the teacher is unavailable during a

time the class is at then the algorithm will attempt to

move the class. Finally rooms are assigned. The classes

that are in the same room at the same time or do not have

an assigned teacher will be flagged as a problem. The

general flow of the program is as follows:

1. The admin creates the users.

2. The chair creates the courses for a schedule and

sets his/her preferences.

3. The faculty each set their own preferences.

4. The chair creates a schedule.

5. The chair edits the schedule.

6. The chair approves a schedule draft.

7. The faculty responds through feedback forms.

8. The chair edits the schedule again.

9. The chair approves the final schedule.

75

10.The staff views the final schedule for printing.

Contents

This cd contains the following folders:

• Boss - contains all of the source code for BOSS.

• Boss-Opt - contains the schedule optimization java

applet and supporting files.

• Documentation - contains the documentation for BOSS,

IEEE documents and design documents

• Db - sample MySQL databases; the import command:

mysql -u 'username' -p 'dbname' < 'sql database file'

can be used to copy a database file into MySQL as long

as the database 'dbname' already exists

• Presentation - presentation used to promote BOSS on

the final day

• Setup_software- contains some software you may find

helpful in designing BOSS

Server Setup

The following are instructions on how to setup a

development server for BOSS.

76

BOSS system is an online application. It needs a web

server, which has Apache 2, PHP 5, MySQL 5, and Sendmail.

Our recommendations for hardware and software requirements

are:

• CPU: 600 Mhz (Intel PHI) or 1.4 GHz (AMD Athlon)

• RAM: 512 MB RAM

■ HDD: 20 GB IDE or SATA HDD - Ethernet network card.

• OS: CentOS.

http://www.centos.org/

■ Apache(2.0.59): The Apache Software Foundation

provides support for the Apache community of open-

source software projects.

http://www.apache.org

■ PHP(5.1.6): PHP is a widely used general-purpose

scripting language that is especially suited for Web

development and can be embedded into HTML.

http://www.php.net

• MySQL(5.0.48): The MySQL® database has become the

world's most popular open source database because of

its consistent fast performance, high reliability and

ease of use. It's used in more than 6 million

installations ranging from large corporations to

77

http://www.centos.org/
http://www.apache.org
http://www.php.net

specialized embedded applications on every continent

in the world.

http://www.mysql.com

■ Sendmail(8.13.5): sendmail X is a message

transfer system that has been designed with these main

topics in minds: 'security' 'reliability'

'efficiency' 'configurability' 'extendibility'.

http://www.sendmail.org

Installation Instructions

The following command can be used install all modules

needed. If error occurs, please investigate and resolve

using a web search engine, since debugging installation is

beyond the scope of this manual.

yum install php mysql httpd

For additional Installation help, Dr. Turner's website

has a lot of good information that can help you with the

initial setup of the Linux web server, CVS, etc. You can find

his info at:

http://csci.csusb.edu/turner/sysadmin

78

http://www.mysql.com
http://www.sendmail.org
http://csci.csusb.edu/turner/sysadmin

Setup Basic Online Scheduling System Software

Within the setup software folder there are several

executables that will help you develop PHP applications on

your system (mostly for windows.) . A few notable ones are:

• Eclipse and phpEclipse - Eclipse is an IDE normally

used for developing Java and C++ apps, but you will

find a folder called

net.sourceforge.phpeclipse_l.1.8.bin.dist that

contains plugins that allow eclipse to be used with

php as well.

• Wamp - This is a wonderful program for windows that

will install apache, php5, and MySQL all at once and

in the right places so you don't have to do extra

setup.

Getting Started

In order to start using BOSS, after you have copied

the source code to the apache web directory, you need to

setup Boss to connect to MySQL and then create the

appropriate databases in MySQL. The structures of the

databases can be found in the database design document in

the design folder.

79

To make sure Boss properly connects you must change

the MySQL variables at the top of boss/util/setup.php.

These include the hostname of the MySQL server, as well as

the username and password you use to connect. NOTE that

you may have to change several of these variables

throughout the setup.php, login.php, loginpost.php page.

Currently there are two utility pages that will help

setup your databases in the boss/util folder. First use

createMaster.php to create the master database that keeps a

record for each department database. You can then use the

createDept.php page to create new departments. When a

department is created an admin user will automatically be

created with the username "admin" and the password

"password", note all in lowercase. With the admin user,

you can now create any of the users you need. If these

pages fail then either you don't have MySQL setup correctly

or you have not changed the setup.php variables to your

account.

For security purposes there is no page to delete a

department. This can be done however directly through the

MySQL console by dropping the department database and

deleting the department record out of master.info.

80

Basic Online Scheduling System Optimizer
Installation

The BOSS-Opt is a Java applet that is executed from

the standard version of BOSS. The following instructions

detail the BOSS-Opt setup:

1. From the project CD, copy the BOSSOpt\build\classes folder

to the %Apache%\htdocs\boss\chair directory.

2. Next, copy from CD the BOSSOpt\dist folder to the

%Apache%\htdocs\boss\chair directory.

3. Locate nameschedule.php in the %Apache%\htdocs\boss\chair

directory and rename this file to nameSchedule.old.

4. Copy from the project CD, BOSSOpt\forms\nameSchedule.new to

the %Apache%\htdocs\boss\chair directory.

5. Next, rename %Apache%\htdocs\boss\chair\nameSchedule.new to

name S chedule.php.

6. Finally, copy from the project CD,

BOSSOpt\forms\BOSSOptApplet.php to the

%Apache%\htdocs\boss\chair directory.

This completes the setup of the BOSS Optimizer system.

81

Basic Online Scheduling System Optimizer
Project Build

The version of BOSS Optimizer used during this project

study was developed and compiled using Sun's NetBeans IDE.

A copy of this IDE can be found on the project CD under the

NetBeans directory.

To re-compiled the BOSS-Opt project, simply install

the NetBeans IDE on the designated development PC. Then,

using NetBeans, create a new Java project from existing

source code by pointing to the BOSSOpt\src directory.

82

CHAPTER SEVEN

CONCLUSION AND FUTURE DIRECTIONS

Conclusion

After an examination of the end results for this

project study, we have determined that by applying a

Genetic Algorithm to the BOSS-Opt implementation, we have

been able to produce a system that in comparison to the

previous version of BOSS renders more optimum schedule

solutions. One of the most noteworthy characteristics of

this new implementation is that it all but eliminates the

need for manual editing of resultant schedules. In

addition, by applying the GA to this scheduling problem, we

have been able to create a simple software framework that

is easily adaptable to ever-changing system constraints

thereby, satisfying our previously stated system

requirements. However, we must emphasize that our solution

has not been proved to generate the most optimum solution.

At best, all that can be stated is that the solutions

generated by this process are a "Good Fit". The pursuit of

the "Best Fit" is an endeavor that we leave for those

desiring to carry forth this research.

83

Future Directions

As previously stated, the optimizing routine

implemented in this project does not allow for us to

adequately identify all local optima of the solution set.

As such, identification of the local minimum escapes our

detection thus preventing our determination of the "Best

Fit" schedule. Going forward, future research should

center on routines and techniques that would help identify

local optima within the solution space and ultimately

detect the optimum solution.

One suggested avenue of research deals with the

application of simulated annealing techniques within the

Roulette Wheel selection function. Such techniques may

lend to better selection of solution candidates in the

crossover phase of the process thereby propagating

solutions having desired traits and attributes forward with

each generation.

Another area of research to consider is the use of

Bayesian probability along with branch and bound algorithms

in determining the fitness of solution candidates. Use of

the aforementioned techniques may better enable the GA to

eliminate less desirable candidates from each solution set.

84

In addition, several recent studies have been

conducted in the area of population regression and

deterministic population shrinkage routines to better

locate optima.[B5][B6]

It is hoped that by applying one or more of these

determinate routines that the BOSS-Opt will be able

identify optimum solution candidates thereby, greatly

enhancing the efficiency and effectiveness of the BOSS

Optimizer (BOSS-Opt).

85

REFERENCES

[Bl] The Institute of Electrical and Electronics

Engineers, Inc., IEEE Std 830-1998, "IEEE Recommended.

Practice for Software Requirements Specifications"

[B2] Burke, Edmund, Elliman, David, Weare, Rupert,

Department of Computer Science, University of Nottingham,

"A Genetic Algorithm Based University Timetabling

System", July 1995

[B3] Fernandes, Carlos, Caldera, Joao Paulo, Melicio,

Fernando, Rosa, Agostinho, ACM 1-58113-086-4/99/0001,

"High School Weekly Timetabling by Evolutionary

Algorithms", February 1999

[B4] Sigi, Branimir, Golub, Marin, Mornar, Vedran,

Faculty of Electrical Engineering, University of Zagreg,

"Solving Timetable Scheduling Problem Using Genetic

Algorithms", July 2008

[B5] Laredo, Juan Luis J., Merelo, Juan Julian,

Fernandes, Carlos, Gagne, Christian, Department of

Architecture and Computer Technology, University of

Granada. ETSIT. Spain, "Improving Genetic Algorithms

Performance via Deterministic Population Shrinkage",

July 2009

86

[B6] Yu, Tian-Li, Lin, Wei-Kai, Taiwan Evolutionary

Intelligence Laboratory, Department of Electrical

Engineering, National Taiwan University, "Optimal

Sampling of Genetic Algorithms on Polynomial Regression",

July 2008

[B7] Gamma, Erich, Johnson, Ralph, Helm, Richard,

Vlissides, John M., Booch, Grady, "Design Patterns:

Elements of Reusable Object-Oriented. Software", Addison-

Wesley, 1994

[B8] Reeves, Collin R., Rowe, Jonathan E., "Genetic

Algorithms: Principles and Perspectives: a Guide to GA

Theory", Boston Springer Science & Business Media, 2003

87

	Basic online scheduling system optimizer: A study in genetic alogrithms [sic]
	Recommended Citation

