
California State University, San Bernardino California State University, San Bernardino

CSUSB ScholarWorks CSUSB ScholarWorks

Theses Digitization Project John M. Pfau Library

2010

Reordered subsets reconstruction of proton computed Reordered subsets reconstruction of proton computed

tomography tomography

Wenzhe Xue

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project

 Part of the Medical Biomathematics and Biometrics Commons, and the Software Engineering

Commons

Recommended Citation Recommended Citation
Xue, Wenzhe, "Reordered subsets reconstruction of proton computed tomography" (2010). Theses
Digitization Project. 3841.
https://scholarworks.lib.csusb.edu/etd-project/3841

This Project is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has
been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks.
For more information, please contact scholarworks@csusb.edu.

https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd-project
https://scholarworks.lib.csusb.edu/library
https://scholarworks.lib.csusb.edu/etd-project?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F3841&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/667?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F3841&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F3841&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F3841&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd-project/3841?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F3841&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

REORDERED SUBSETS RECONSTRUCTION OF PROTON COMPUTED

TOMOGRAPHY

A Project

Presented to the

Faculty of

California State University,

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

Computer Science

by

Wenzhe Xue

September 2010

REORDERED SUBSETS RECONSTRUCTION OF PROTON COMPUTED

TOMOGRAPHY

A Project

Presented to the

Faculty of

California State University,

San Bernardino

by

Wenzhe Xue

September 2010

© 2010 Wenzhe Xue

ABSTRACT

Image reconstruction of proton Computed Tomography (pCT) is a process

of solving x within a linear equation Ax = b, where A is path matrix

and b is electron density matrix. Iterative Reconstruction Techniques are

widely used to generate relative electron density maps for proton therapy.

The reordering subsets methods, which group projections data in a certain

sequence, have been proposed. This project investigates the improvement

of iterative reconstruction using reordered subsets.

The simulation result shows that reordering subsets image reconstruction

algorithms achieve more accuracy image in the same or less number of re

construction cycles. Further research on deploying this algorithm on multi

processors would be suggested.

iii

ACKNOWLEDGEMENTS

I would like to thank my advisor Dr. Haiyan Qiao for all her time, knowledge and

patience. I would also like to thank my committee members, Dr. Keith Schubert and

Dr. Ernesto Gomez, and my graduate coordinator Dr. Josephine Mendoza. I would

also like to thank Dr. Richard Botting for his help. I would also like to thank my

parents for their support and patience. I would also like to thank my Uncle Xinnong

Zhou, his family, and my friend Xuelian.

iv

DEDICATION

To My Parents

TABLE OF CONTENTS

Abstract... iii

Acknowledgements... iv

List of Tables viii

List of Figures ... ix

1. Introduction 1

1.1 Background..’..................... 1

1.2 Purpose............................ 2

1.3 Significance.. 2

1.4 Flow of Document ... 3

2. Reconstruction Algorithms.. 4

2.1 Algebraic Reconstruction Technique (ART)... 4

2.2 Simultaneous Algebraic Reconstruction Technique (SART)................. 5

2.3 Ordered Subset Simultaneous Algebraic Reconstruction Technique (OS-

SART)... 5

3. Reordering Subset Methods... 6

3.1 Reordering Path Matrix.. 6

3.1.1 Full Search Reordering (FSR)... 7

3.1.2 Sum Search Reordering (SSR)... 9

vi

3.2 Simulation.. 11

3.3 Analysis... 12

4. Summary... 21

4.1 Future Works.. 21

4.2 Conclusion................ 21

Appendix A: Sparse Matrix Compression 22

A.l Compressed Row Storage (CRS).. 23

A. 2 Jagged Diagonal (JD) ... 23

Appendix B: Block Matching Algorithms..................................... 25

B. 3 Three Step Search ... 26

Appendix C: Source Code 28

References.. 56

vii

LIST OF TABLES

3.1 Relative error of iteration number for OS-SART using unordered A,

Full Search Reordered A, and Sum Search Reordered A 12

3.2 Time of 1 iteration reordering methods and 1 iteration OS-SART . . 14

viii

LIST OF FIGURES

3.1 Error of iteration number for OS-SART using unordered A, Full Search

Reordered A, and Sum Search Reordered A 13

3.2 Time of reordering methods and 5 iteration OS-SART...................... 14

3.3 Reconstructed bar images with unordered A, Full Search Reordered A,

and Sum Search Reordered A.. 17

3.4 Reconstructed bar images with unordered A, Full Search Reordered A,

and Sum Search Reordered A.. 18

3.5 Reconstructed circle images with unordered A, Full Search Reordered

A, and Sum Search Reordered A... 19

3.6 Reconstructed circle images with unordered A, Full Search Reordered

A, and Sum Search Reordered A... 20

B.l Three step searching... 27

ix

1. INTRODUCTION

Generating accurate electron density maps in the shortest possible time is the goal

of pCT. Due to the huge amount of data involved, direct methods on solving the

large and sparse linear equation, Ax = b, is not feasible. Iterative reconstruction

algorithms are used for pCT image reconstruction. Based on Simultaneous algebraic

reconstruction techniques (SART), block-iterative SART is employed. This project

explores the possibility of accelerating pCT image reconstruction by reordering the

sparse matrix A.

1.1 Background

Proton therapy has a significant difference from conventional radiation treatment that

the energy distribution of protons can be directly placed in tissue volumes of any de

sired depth [1]. This increases the control of tumor while highly reducing unnecessary

damage to surrounding healthy tissues. Currently, proton treatment doses are calcu

lated using data from X-ray computed tomography (xCT), which cannot predict an

accurate high dosage peak, which is the Bragg peak, for treatment. By measuring the

energy loss of protons, proton computed tomography (pCT) provides more accurate

proton doses calculations with lower radiation doses and verifies treatment position

in patient relative to the correct proton beam. Meanwhile, pCT offers the possibility

1

for on-line treatment planning for proton therapy [7], However, a fully operational

pCT system does not exist currently [8] due to the large size of proton histories (100

million by 30 million for a human head and neck [8]) that are collected for object

image reconstruction.

Proton CT has been explored in the last decade [7r 9, 11].

1.2 Purpose

Block iterative projection and Ordered Subset reconstruction algorithms are de

veloped to improve the performance of image reconstruction. In the previous re

search [13, 9], updates of voxels are calculated every subset of proton histories. How

ever, how to order the proton histories to group them into subsets has not been

explained. In this case, it brought me the idea to investigate the possibility of im

provement of pCT reconstruction by reordering the path matrix before iterative re

construction process. What type of proton data should be grouped together to form

subsets? In order to update as many voxels as possible in each subset, it is needed to

group the proton data blocks which have the least overlap1.

1 Overlap occurs when proton pass through a same voxel.

1.3 Significance

As introduced in previous section, pCT aims at efficient computation and provision of

accurate electron density maps [9]. Reordering the path data offers the opportunity

to achieve better electron density resolution in less iterations than the reconstruction

achieved from unordered path data. It means that it will reduce the waiting time for

2

the CT image which need to be done in a shorter time for treatment planning and

pre-treatment patient position verification images.

1.4 Flow of Document

In this document, the following will be shown:

• Iterative reconstruction algorithms in Chapter 2.

• Reordering subset methods and simulation with reordered subsets in Chapter 3.

• Analysis on simulation results in Chapter 3.

• Future works and conclusion in Chapter 4.

3

2. RECONSTRUCTION ALGORITHMS

Proton CT image reconstruction is modeled by the equation Ax = b, where A is a

known sparse matrix representing the traverse of proton projections, b is the integral

relative electron density which converted from energy loss, x is the unknown image

need to be reconstructed. Direct methods on solving Ax — b are not feasible due to

the huge amount of path data (the size of A is about 30 billion for reconstructing a

2 dimension image with a 1000 by 1000 resolution).

Different Algebraic algorithms are proposed on solving this equation. In most of

the algebraic implementations, path matrix A has been simplified by containing l’s

and 0’s based on whether the proton traverse through that voxel or not.

2.1 Algebraic Reconstruction Technique (ART)

The first iterative algorithm is algebraic reconstruction technique (ART), which is a

full sequencial method that updates image x with every proton history but due to

inconsistencies [6], ART usually suffers from salt and pepper noise.

(2.1)
llaT

Where A& is a user-determined relaxation parameter sequence, which can be changed

during the process of iterations.

4

2.2 Simultaneous Algebraic Reconstruction Technique (SART)

Developed on the base of ART, Simultaneous Algebraic Reconstruction Technique

(SART) offers good quality reconstruction image and less numerical variation in one

iteration [6]. This technique updates image x after going through all the proton histo

ries. It improves the reconstruction accuracy while maintaining a rapid convergence.

(2.2)

Where A* is a user-determined relaxation parameter sequence, m is equal to the

number of proton histories.

2.3 Ordered Subset Simultaneous Algebraic Reconstruction Technique (OS-SART)

Ordered Subset Simultaneous Algebraic Reconstruction Technique groups proton his

tories from different projections and updates image x after going through all the pro

ton histories in one subset. This technique reduces the noise in the reconstruction

image. I use OS-SART as the reconstruction algorithm to test the result of reordering

subsets, which will be shown in the following chapters.

s"=i<4 3

Where A& is a user-determined relaxation parameter sequence.

(2.3)

5

3. REORDERING SUBSET METHODS

In order to improve the quality of image or reduce the reconstruction time, updating as

many voxels as possible through every subset in OS-SART is needed. Therefore, I try

to reorder path matrix by grouping proton histories which have the least overlap into

a new subset, where an overlap occurs when two proton traverse through the same

voxel in the object. I proposed two methods on finding the least overlap between

different blocks of path data.

3.1 Reordering Path Matrix

In the path matrix A, .al(i 6 1,2,..., m) represents the traverse route of ith proton.

The inner product of two rows in path matrix is equal to the overlap of these two

proton histories.

Overlap = (a11, a12'} (3-1)

Since all protons are randomly projected in a same angle of projection, there is not

a certain pattern of ordering for a1 in path matrix A. The solution of overlap of two

projections should be:

Overlap = 5? (aJ)T^
X/- F.

(3.2)
ieh(k)

where I/k) is the index of rows in one projection.

6

By comparing all the projections, the two projections which have the minimum

overlap are grouped into a new subset to update x. After one reordering one subset

finished, grouping other subsets from the left projections in path matrix is continued.

The number of projections gathered into a new subset can be determined by users.

However, this method will be such a time consuming process that will significantly

increase the total time of image reconstruction. In order to reduce the reordering

time to a reasonable period, the following two methods are proposed.

3.1.1 Full Search Reordering (FSR)

The first method is inspired by block matching algorithm generally deployed in video

compression [12]. Summation of the inner product of each two corresponding rows(for

instance, same index in different projections) is computed only.

Full Search Overlap = E aref>acur) (3-3)
iGl

Where referencefyef) and current(cur) projections are the projections which are

calculating the overlap. In advance, a simplified FSR that only search half of the left

projections randomly can be tested in the future work which may offer a good enough

reconstruction as well as reducing the reordering time into half of the time used for

FSR.

Pseudocode of Full Search Reordering

The pseudocode of FSR is listed as below:

{A is a M*N sparse path matrix

a[i][j] is the element in A

7

J. is number of rays in 1 projection

s-r-m is number of rays in 1 micro block(set)

numsubset is how many ordered subset you want to create

um-p-re is how many projections you want to take to do the reordering

total-projections}

fullsearchPathMat(A, numsebset, num-p-re, s_r_l, s-r_m)

M 4- number of rows of A

N <— number of columns of A

{i-ref is row index in the reference projection}

for i_ref 0 to s_r_l do

minimum ■<— M * N

i-min 0

subset <— subset + micro-block[i_ref]

{i-cur is row index in the current projection}

for P 0 to num-p-re do

i_cur <— i-ref + num_p_re * s_r_l

while i_cur < (numjp-re + 1) * s_r_l — s-r.m do

sum (a[z_re/], a[i_cwrj)

if sum < minimum then

minimum sum

i-min <— i-cur

end if

8

end while{go thru all the micro blocks in current projection} {should have

one maximum and corresponding Lmin]

subsetL- subset + microJ)lock[i-min]

i <— i + S-T-m

end for

end for

Return subset

3.1.2 Sum Search Reordering (SSR)

The second method is sum search reordering (SSR). Instead of compute inner prod

uct of all the element in the different projections, this algorithm use the vector of

summation of each column in a project to represent this group of protons traverse

area in the object. By comparing the difference of two sum vectors of two projections

in path matrix, it can be told that the bigger difference these two vectors get, the

less overlap these two projection have.

Sum Search Overlap = JE E E <4
j=0 \iGf(ref) ie/fcur) /

(3-4)

Where reference(ref) and current (cur) projections are the two projection which

computing the overlap.

Pseudocode of Sum Search Reordering

The pseudocode of SSR is listed as below:

{A is a M*N sparse path matrix

a[z] [j] is the element in A

9

s_r_l is number of rays in 1 projection

sjr_m is number of rays in 1 micro block(set)

numsubset is how many ordered subset you want to create

um-p.re is how many projections you want to take to do the reordering

total-projections

Discription: comparing the difference of sum of each columns between two micro

blocks. Find the largest different means they have the least overlap between these

two micro blocks. }

sumsear chPathM at (A, numsebset, num-p-re, s_r _1, s_r_m)

M <— number of rows of A

N <— number of columns of A

{i-ref is row index in the reference projection}

for i-ref <- 0 to s_r_l do

maximum <— 0

i-max <— 0

subset 4— subset + micro.block[i-ref]

Sum-ref[N] <— eachcolumns sumo f ref block

{i.cur is row index in the current projection}

for P <— 0 to num-p-re do

i-cur i-ref + num-p-re * s_r_l

while i-cur < {num-p-re 4-1) * s_r_l — s-r.m do

var 0

Sum-Cur[N] <— eachcolumns sumo f curblock

10

var 4— IlSvrmjref [;V] — Sum_cur[N] ||

if var > maximum then

maximum 4— var

i-max <— i.cur

end if

end while{go thru all the micro blocks in current projection} {should have

one maximum and corresponding i_max}

subset subset + microJblock[i-max]

i <— z + sjT-rn

end for

end for

Return subset

3.2 Simulation

Currently in pCT system, path matrix A is generated by Most Likely Path (MLP) [8]

algorithm. MLP converts path data, which contains the pre- and post-object coor

dinates into a sparse matrix A. Every row in A is the vectorized traverse route of

each proton, b is the integral relative electron density which converted from energy

loss measured during the proton projection. In this project, path matrix A is simu

lated by using a random sparse matrix which contains only 0’s and l’s, since protons

are randomly projected in each projection from a same angle. In this experiment,

all recorded time data are the average time of running the process 5 times. The

simulation process is listed as following:

11

1. Generate a random sparse matrix A.

2. Use a known picture as actualx, then get b = A* actual x.

3. Reorder A and b by using reordering algorithms, get new A and new b as output.

4. Reconstruct the first image x with OS-SART by using new A and new b. Re

construct the second image x with OS-SART using A and b.

5. Analyse the result of simulation.

3.3 Analysis

Tab. 3.1: Absolute error per pixel of iteration number for OS-SART using unordered A, Full Search Re

ordered A, and Sum Search Reordered A

Iter Unordered A(std) FSR(std) SSR(std) FSR Improv SSR Improv

2 1.252(.0522) 1.097(.0458) 1.159(.O483) 7.42% 12.33%

3 .9284(.0387) .7960(.0332) .7922(.033) 14.27% 14.68%

4 .7508(.0313) .6215(.0259) ,6083(.0254) 17.22% 18.98%

5 .6193(.0258) .5061(.02U) .4819(.0201) 18.29% 22.19%

6 ,5235(.0218) .4227(.0176) .3931 (.0164) 19.25% 24.9%

7 .4461(.O186) .3594(.0150) .3285(.0137) 19.43% 26.36%

8 .3843(.0160) .3091(.0129) .2772(.O116) 19.56% 27.87%

9 .3328(.0139) .2681(.O112) .2380(.0099) 19.42% 28.48%

10 .2897(.O121) .2339(.0098) .2052(.0086) 19.27% 29.15%

12

(b)

Fig. 3.1: Error of iteration number for OS-SART using unordered A, Full Search Reordered A, and Sum

Search Reordered A

13

Tab. 3.2: Time of 1 iteration reordering methods and 1 iteration OS-SART

Size(106) SSR time(sec) OS-SART time(sec)

2.43 0.2028 0.3964

4.5 0.4304 0.7472

7.68 0.7925 1.2768

12.3 1.229 1.9948

18.75 2.099 2.982

—■— Iter 5 recon with unordered A
Iter 5 recon with ordered A
FSR

—I—SSR
50

40

8
« 30
a>
E

I—
20

10

i----------------------1--------------------- 1-----------------

2 4 6 8 10 12
Size

14 16 18
x10s

Fig. 3.2: Time of reordering methods and 5 iteration OS-SART

14

By comparing the absolute error of reconstructions in Figure 3.1, reordering OS-

SART achieves better image with less error in less iterations. Based on Figure 3.1(a),it

can be seen that, in iteration 5, OS-SART with reordered path matrix A offers better

absolute error than the absolute error reconstructed with unordered A in iteration

6. It may save more than 5 minutes in real clinical situation which has much larger

proton data than the data in this simulation. Ftom Figure 3.1(b), it can be seen that

the error of SSR offers even less error than FSR does in the same iteration number.

These results are also summarized in Table 3.1 which includes iteration numbers, the

absolute error, and improvement percentage of both FSR and SSR. SSR OS-SART

yields a 29.15% error improvement percentage when reconstruting 10 iterations while

FSR OS-SART yields 19.27%. And these improvements will keep increasing with

even more iterations.

In Figure 3.2, it can be seen that, in different size of path matrix A, FSR reordering

time increases significantly while SSR reordering time keeps much less than the time

of OS-SART. The data is listed in Table 3.2 also. Based on Table 3.2, SSR time stays

less than 1 iteration time of OS-SART. With on the previous data, it is able to infer

that with the same total reconstruction time, SSR OS-SART will achieve a better

quality image, or it can be said that SSR OS-SART will need less time to achieve the

same image quality than the time of OS-SART reconstructing from unordered path

matrix A,

Figure 3.3 and Figure 3.4 display the reconstruction image of unordered, FSR, and

SSR OS-SART with different iteration number.

Figure 3.5 and Figure 3.6 display the reconstruction image of unordered, FSR, and

15

SSR OS-SART with different iteration number. This circle shape object also test the

performance of reordering OS-SART on reconstructing the edge of objects.

16

(c) FSR 0S-SART(5 iterations) (d) SSR 0S-SART(5 iterations)

Fig. 3.3: Reconstructed bar images with unordered A, Full Search Reordered A, and Sum Search Reordered

A.

17

(c) FSR 0S-SART(9 iterations) (d) SSR 0S-SART(8 iterations)

Fig. 3.4: Reconstructed bar images with unordered A, Full Search Reordered A, and Sum Search Reordered

A.

18

(a) Actual image (b) Unordered OS-SART(5 iteration)

(c) FSR OS-SART(5 iterations) (d) SSR OS-SART(5 iterations)

Fig. 3.5: Reconstructed circle images with unordered A, Full Search Reordered A, and Sum Search Reordered

A.

19

(a) Actual image (b) Unordered OS-SART(10 iteration)

(c) FSR OS-SART(10 iterations) (d) SSR OS-SART(10 iterations)

Fig. 3.6: Reconstructed circle images with unordered A, Full Search Reordered A, and Sum Search Reordered

A.

20

4. SUMMARY

4.1 Future Works

The following items show works

• Improve FSR and SSR algorithms to reduce the time of reordering path matrix

A.

• Deploy SSR reordering algorithms to other block-iterative reconstruction tech

niques.

• Use multi-processors to accelerate the whole process of reordering subset image

reconstruction.

4.2 Conclusion

In this project, experiments are simulated using different size, densities, and shapes

of objects. Reordering subset image reconstruction algorithm achieved more accuracy

image in the same or less reconstruction cycles. The reordered subsets can be assigned

to multi-processor More efficient reordering methods may be developed by improving

the two existing reordering algorithms in future.

21

APPENDIX A

SPARSE MATRIX COMPRESSION

22

Usually, sparse matrix is stored in a space saving format which reduce the storage

space of sparse matrix significantly. All these formats only contain the non-zero

elements of sparse matrix. The following are two mostly used formats.

A.l Compressed Row Storage (CRS)

Sparse matrix is represented with three vectors. The first vector A contains the

value of non-zero element. The second vector A J contains the column position of

corresponding non-zero elements in vector A. Each element in vector AT points to

the first non-zero element of each row in vector A and AJ. For instance, a sparse

matrix
2

0

0 0

0

0 2

0

3

0

0

7 0

4 1

0

is represented by three vectors shown bellow.

A = [1 2137415 2]

A J = [0 1 4 1 2 2 3. 0 3]

Al = [0 3 5 7].

A.2 Jagged Diagonal (JD)

Jagged Diagonal format reorders the non-zero elements in sparse matrix by column.

A sparse matrix will be represented in the following. Vector A contains the non-zero

elements of sparse matrix as well as vector AJ contains the corresponding column

index of A. Since the rows are reordered, vector I contains the reordered index of

23

rows.
^12000^

0 3 7 0 1

0 0 4 0 0

^ 5 0 0 2 0 ^

is stored as

24

APPENDIX B

BLOCK MATCHING ALGORITHMS

25

Block matching is the most popular method for motion estimation [12]. This

method searches the most matching block of the same size in two different frames by

calculating the mean absolute difference (MAD) of corresponding pixels. By consid

ering one block in reference frame, a full search will search all the same size blocks

in another frame. In order to optimize the search algorithm, several algorithms are

proposed, such as three step search and cross search.

B.3 Three Step Search

The procedure of three step search is listed as following.

1. MAD is evaluated at 9 blocks, which are marked as 1 in Figure B.l, around

center block. A minimum MAD block will be found in this step.

2. 8 blocks, which are marked as 2, are evaluated which are around the minimum

block found in the first step. A minimum MAD block will be found in this step.

3. In this step, the minimum MAD block will be found by evaluating the next 8

blocks, which are marked as 3, just next to the previous minimum MAD block.

The Figure B.l also predicts the procedure of three step searching.

26

27

APPENDIX C

SOURCE CODE

28

This contains the source code used to pre-order the path matrix as well as recon

struct image by SART and OS-SART.

The following is the code for generating random sparse matrix.

N = 24 *24;

M = N * 3;

fprintf (1, 'Going to generate a %4d * %4d Matrix.\n‘, M, N) ;

i = [J;

j = [];

v = [] ;

m = M;

n = N;

a = sparse (i, j, v, m, n);

fprintf i(1, ' \n1) ;

fprintf i(1, F I J New A(I,J)\n

fprintf i(1, '\n');

nonzeros h m * n * 0.02;

fprintf(1, 'number of nonzero: %4d %4d', nonzeros, floor(nonzeros)};

for test = 1 : round(nonzeros)

i = round (m * rand () + 0.5) ;

j = round (n * rand () + 0.5);

a(i,j) » 1;

% fprintf (1, ' %4d %4d %f\n', i, j, a(i,j:1);

end

fprintf (1, '\n') ;

fprintf (1, Number of nonzero entries is %d\n', nnz (a));

29

A = full (a) ;

save (1 test-A-02 , mat1 , ' A1)

spy (A) ;

v = sum(A);

min (v)

%v

% type test-A.mat

The following is the code for reordering path matrix with Full Search Reordering

(FSR).

%% reordering matrix A and b by block matching among projections

% Discription: A full search for block matching

% Input: test_A_0 * .mat -> A, test_b_0*.mat -> b

% Output: new_A -> test_new_A_O* .mat, new_b -> test_new_b_O* .mat

% Author: Wenzhe Xue

%

function BM.full-search ()

%load test matrix

load ('test01/test_A_01. mat1) % A

load(1 test01/test/b_01. mat1) % b

nz = nnz(A);

[rows cols] - size(A);

fprintf(1 rows = %d, columns = %d \n', rows, cols);

fprintf(1 nonzeros of A = %d\n', nz) ;

%s_r_l - size of rays in 1 projection

S.r.l = 72;

%spy(b), titlef'test path matrix A')

%xlabel(sprintf('nonzeros « %d' , nz));

30

%setup a flag vector for searching projections

num-pro j = 24;

for temp_i = l:num_proj

v_proj (1: temp_i) = 1;

end%end for

%v_proj

fprintf('l) Initial all the unsearched projection to l.\n');

fprintf(1 later if a projection is selected and copied to the newJk\n');

fprintf(1 that proj will set to O.\n');

%new_A_p is the pointer for inserting projs into new_A

new_A-p o 2;

%go thru half of the projection for ref projection

tStart = tic;

minustime “ 0;

for ref_p = l:num_proj

fprintf(1new_A_p = %d \n', new_A_p)

if v_proj (ref_p)== 1

H***

%get the reference projection

ref = A((ref-p-1) *s_r_l + l : ref_p*s_r_l , :) ;

%flag 0 to ref proj

v_proj (ref-p) = 0;

%

minimum = s_r_l * cols;

fprintf('===Initial minimum = %d for ref_p[%d]»»«\n1, minimum, ref-p);

for p = ref-p+1 : num.proj %p go thru cur proj

if v.proj (p) == 1

%%************★*******★*****

cur - A(((p-1) * S-.r-1+l) : (p * S_r_l),:);

31

% finding the overlap between ref projection and

% current projectoin

for i « 1:s_r_l

for j = ltcols

s(i,j) =ref(i,j) &&cur(i,j);

endfcend for

endfcend for

% nnz in the S matrix is the number of overlap

% after && operation

sum = nnz(s) ;

if(sum < minimum)

minimum = sum;

min_block = p;

min_block_i « p*s_r_l+l;

endfcend if

%%•***■**■*★***#★**'***•******■*★*

else

fprintf('Nothing: Reached a projection already selected,\t');

end%end if

end%end for

% print out the cur-i and number of overlap after a full search

fprintf(1\nOne full search finished.\ncur_i = %d, minimum = %d\n',

min-block.i, minimum);

%flag 0 to projection p

v.proj (min-block) = 0;

fprintf(1 Flag projection %d to 0\n', min-block);

% after find the min.proj, put these part of matrix A into the new

% matrix

if nnz(v_proj)==2

32

fprintf('Only 2 projs left.\n');

end%end if

tStorage « tic;

^reorder two projections to new A

new_A((new~A_p-l) *g_r_l+l : new_A_p*s_r_l, :) = ref;

new_A(new_A_p*s_r_l+l: (new_A_p+l)*s_r_l, :) =

A(((min_block-l) * s_r_l+l) : (min_block * s_r_l),:);

fprintf (1 Pushed %d and %d projs into new_A\n’ ,ref_p, min_block) ;

%change the b_i of this proton history to the corresponding place

new-b ((new-A-p-l) * s_r_l+l : new.A.p«s.r,l , :) =.

b((ref_p-l) *s_r_l + l : ref.p*s_r_l, :);

newJo (new^A.p* s_r_l+1; (new_A_p+l) *s_r_l , :) =

b (((min-block-1) * s_r_l+l) ; (min_block * s.r_l),:);

^everytime u push projections, new_A_p++

new-A_p ■= new_A_p + 2;

%fprintf (1 new_A_p = %d after increase.\n’, new_A_p) ;

%v_proj

tS = toe(tStorage);

minustime= minustime+tS;

%spy(new„A) ;

%%**■*

end%end if

endfcend for

totaltime = toc(tStart);

fprintf(1 finish all the search in %4d, v.proj should set to 0\n’, totaltime);

%v_proj

nz.new h nnz (new_A) ;

if nz # nzjiew

fprintf('nonzeros of A e %d\n', nz);

fprintf('nonzeros of new A - %d\n', nz_new);

fprintf ('DANG, seems not correct--! \n') ;

33

else

disp(1 Finish all. Oh Yeah->') ;

save (1 test_new_A_01. mat1 , 1 new_A1) ;

save (1 test_new_b_01. mat', ' new_b1) ;

end%end if

end

The following is the code for reordering path matrix with Sum Search Reordering

(SSR).

%% reordering matrix A and b by block matching among projections

% Discription: find the difference of sum of each columns between

% two blocks, the largest difference means they have

% the least overlap

% Input: test-A-0* .mat -> A, test_b_0* .mat -> b

% Output: new_A -> test_new_A_O* .mat, new_b -> test_new_b_O* .mat

% Author: Wenzhe Xue

%

function sum-search()

% for 1=1: 100

%load test matrix

load (' test-A-01. mat') % A

load (' test_b-01. mat') % b

nz = nnz(A);

[rows cols] = size(A);

fprintf(1 rows = %d, columns = %d \n', rows, cols);

fprintf('nonzeros of A = %d\n', nz);

%s_r_l = size of rays in 1 projection

s_r_l = 72;

%spy(b), title('test path matrix A'j

34

%xlabel(sprintf(1 nonzeros = %d' , nz)) ;

%setup a flag vector for searching projections

num.pro j = 24;

for temp_i n 1: num.pro j

v.proj (1: temp.i) = 1;

end%end for

% v.proj

fprintf('l) Initial all the unsearched projection to l.\n');

fprintf(1 later if a projection is selected and copied to the new_A\n');

fprintf(' that proj will set to 0.\n‘);

%new_A_p is the pointer for inserting projs into new-A

new_A_p = 1;

%watch the time on storage the new A++++++++++++++++

minustime= 0;

%go thru half of the projection for ref projection

tStart = tic;

for ref_p ■= 1: num.proj

fprintf (1 new_A.p = %d \n', new_A_p) ;

if v.proj(ref.p) == 1

^**************************t***********t*******ir*************iHrW*»

%get the reference projection

ref » A ((ref _p-1) * s_r.1+ 1 : ref_p*s_r_l, :);

%sum ref projection

sum-ref » sum(ref);

%flag 0 to ref proj

v.proj(ref.p) = 0;

%

maximum = 0;

35

fprintf(1===Initial maximum = %d for ref.p[%d]===\n', maximum, ref.p);

for p = ref-p+1 : num.proj %p go thru cur proj

if v.proj (p) == 1

%%★****★**★*★★**■★*******■****

cur = A (((p-1) * s.r.l+1) ; (p * s_r_l),:);

sum-cur = sum(cur) ;

% finding the overlap between ref projection and

% current projectoin

norml =norm(sum_ref - sum-cur) ;

if(norml > maximum)

maximum = norml;

min_block = p;

min.block_i = p*s_r.l+l;

end%end if

%%**********■******"***■*■***★**

else

fprintf('Nothing: Reached a projection already selected.\t1};

end%end if

end%end for

% print out the cur_i and number of overlap after a full search

fprintf('\nOne full search finished.\ncur_i = %d, maximum = %d\n',

min_block.i, maximum);

%flag 0 to projection p

v.proj (min_block) = 0;

fprintf('Flag projection %d to 0\n', min_block);

% after find the min.proj , put these part of matrix A into the new

% matrix

if nnz (v.proj) ==2

fprintf('Only 2 projs left.\n');

end%end if

36

tstorage = tic;

^reorder two projections to new A

new_A ((new_A_p-l) * s_r_l+1 : new_A_p*s_r_l , :) = ref;

new_A (new_A_p* s_r_l+l: (newJk_p+l) ts.r.l, :) =

A(((min_block-l) * s_r_l+l) : (min_block * s_r_l),:);

fprintf(1 Pushed %d and %d projs into new_A\n', ref.p, min_block);

%change the b_i of this proton history to the corresponding place

new-b ((new_A_p-l} * s_r_l+1 : new.A.p*s.r_l, :) =

b((ref_p-l) *s_r_l +1 : ref.p*s_r_l,

new_b (new_A_p* s_r_l+l: (new_A_p + l) *s_r_l , :) =

b(((min-block-1) * s_r_l+l) : (min_block * s.r.l),:);

%everytime u push projections, new_A:p++

new-A_p = new-A.p + 2;

%fprintf ('new-A_p = ”sd after increase.\n’, new_A_p) ;

%v_proj

tS => toe (tstorage) ;

minustime= minustime+tS ,■

%spy(new_A);

I***

end%end if

end%end for

totaltime = toc(tStart);

totaltime = totaltime - minustime;

fprintf(1 time for storage = %f seconds.\n', minustime);

fprintf(1 finish all the search in %f seconds.\n'(totaltime);

%v-proj

nz.new = nnz(new_A);

if nz nzjiew

fprintf('nonzeros of A = %d\n', nz);

fprintf('nonzeros of new A = %d\n', nz.new);

fprintf ('DANG, seems not correct-,!\n') ;

else

37

disp ('Finish all. Oh Yeah-i');

% save (' sum_new_A_01 .mat 1 , ' new-A');

% save (' surrunew-b-Ol. mat', 1 new_b 1) ;

endfcend if

end

% plot(totaltime);

%

% end %end forloop

The following is the code of OS-SART.

% SART

% author: Wenzhe Xue

function OSSARTQ

% load A and b

load (' test_A_01. mat1) ; % newJi

%load (' test-b-011. mat') ; % new_b

%load x, for testing only

%load (' test_x_smooth. mat') ;

load (' cirale_x .mat')

b = A*x;

%x_true = reshape(x_reshape, 6, 6);

%x_true (6, :)

%b - A * x_reshape;

W

[rows cols] = size(A);

% x is the vector for contain the update for each iteration

% initial x_0 = 0

38

x.iter = zerostcols, 1) ;

% varl is the vector contains b_i - <A_i , x-k> /11 A_i [[_2 "2

% 2-norm of A_i = sqrt(nnz(A_i)), so |] A_i | |_2"2 = nnz(A_i)

varl = zeros(rows, 1);

var2 = zeros(1, cols};

iter = 10; error = zeros(l, iter);

weight = 1.5;

fprintf(’Iteration begin, will run total %d iterations. Weight = %d. \n',iter, weight);

tic;

t = 144;

for k = 1 : iter

for os = 1: ceil(rows/t)

for i = (os-1)*t+l:os*t

if i < rows

varl(i)=(b(i) - A (i, :}*x_iter) / nnz(A(i, :));

for j = 1: cols

if A(i,j) # 0

var2(1,j)= var2(1,j)+varl(i)*A(i,j);

end

end

end

end

if i > rows

var.div = sum(A((os-1)*t+l:rows,:));

else

var.div = sum(A((os-1)*t+l:os*t,:));

end

for j = 1: cols

if var_div(j) # 0

var2(l,j) = var2(1,j}/var_div(1,j);

end

end

39

% after the above for loop, var2 = sum((b_i - <A.i , x_k >/11 A_i | | _2 "2} *A_i)

x_iter = x-iter + weight/os * var2';

fprintf(1%d%%.,.\n',floor(k/iter*100));

%for check the error

% diff = x-iter' - x.reshape,-

% error(k) = norm(diff);

end

%finish 1 iteration

error - x.iter - x;

err(k) = norm(error)/cols;

endfcend iteration

% plot(error);

time = toe,-

%save('error.mat1, 1 error');

%fprintf('Time = %d.\n', t);

% size(x-reshape)

% size (x.iter1)

x.iter = x-iter' ;

%axis([0 cols -20 20])

%plot(x_iter, 1 *');

%load('test-x.mat1);

% load('test_x.smooth.mat') ;

plot(x_iter, 'DisplayName1, ’x.iter', 'YDataSource1, 'x.iter');

hold all;

plot(x', 'DisplayName', 'x.reshape', 'YDataSource1, ’ x.reshape');

%plot(sumA, '-o');

xlabel (sprintf ('OS-SART Iter = %d, Time = %.6f sec \n Unordered', iter, t)) ,-

hold off;

%

%

% figure

imshow(reshape(uintS(x.iter),24,24));

%imshow(reshape(uintS(x),24,24));

40

disp(1 finish1) ;

%plot(x.reshape, 1 o') ;

end

The following is the code of SART.

t SART

% author: Wenzhe Xue

function SART()

% load A and b

load(1 test-A_01 .mat1) ; % A

load(1 testJb.Ol .mat1) ; % b

[rows cols] = size(A);

% x is the vector for contain the update for each iteration

% initial x_0 = 0

x.iter = zeros(cols, 1);

% varl is the vector contains b_i - <A_i, x.k >/] | A_i | | _2 *2

% 2-norm of A_i = sqrt(nnz(A_i)), so | | A_i] |_2"2 = nnz(A_i)

varl = zeros(rows, 1);

var2 = zeros(l, cols);

iter = 50;

weight = 1,5;

fprintf('Iteration begin, will run total %d iterations. Weight = %d. \n',iter, weight);

tic;

for k = 1 : iter

for i = l:rows

41

varl(i)a(b (i) - A (i,:)*x_iter) / nnz(A(i, :));

for j = 1: cols

var2(1, j) = var2(1,j)+varl(i) *A(i, j) ;

end

end

% after the above for loop, var2 = sum((b_i - <A_i , x_k>/11 A_i 11 _2 "2) *A_i)

x.iter = x_iter + weight/rows * var21;

%x_iter 1

%finish 1 iteration

end%end iteration

t » tOC,"

%fprintf('Time « %d.\n', t);

% size (x_reshape)

% size (x-iter ’)

x_iter = x_iter';

%axis([0 cols -20 20])

%plot(x.iter, 1 * 1) ;

% load('testjc .mat');

% plot(x.iter, 'DisplayName', 'x_iter‘, 'YDataSource', 'x.iter');

% hold all;

% plot(x, 'DisplayName', 'x-reshape', 'YDataSource', 'x_reshape 1) ;

% %plot(sumA, '-o');

% xlabel(sprintf('Iter = %d, Time = %.6f sec',iter, t));

% hold off;

%

%

% figure(gef)

disp('finish\n')

%plot(x_reshape, 'o');

42

% xx = reshape(x, 24, 24);

%

% load(1test_x.mat1);

%

% XXX = XX-X;

end

The following is the code for testing the performance of SSR and FSR on different

size.

tfunction [output_args] = TimeSize (input.args)

tTIMESIZE Summary of this function goes here

% Detailed explanation goes here

tsize = 11;

tl » zeros(tsize,1);

t2 = zeros(tsize,1);

t3 = zeros(tsize,1);

index = 1;

for test-size = [10 : 5 : 60]

fprintf(1 round %d.\n', index);

teach size loop 5 times then compute the time / 5 to get average time.

for ave =1:5

test(index) = test-size;

%%

%.......................................

% generate random sparse matrix A

N = test_size * test-size

M = N * 3;

43

tfprintf ('Going to generate a %4d * %4d Matrix.\n', M, N);

i = [J ;

j = [J;

v = [] ;

m = M;

n = N;

a = sparse (i, j, v, m, n);

nonzeros = m * test-size;

%fprintf(l, 'number of nonzero: %4d %4d', nonzeros, floor(nonzeros));

for test ■= 1 : round (nonzeros)

i = round (m * rand () + 0,5) ;

j = round (n ★ rand () + 0.5) ;

a(i,j) = 1;

% fprintf (1, ’ %4d %4d %f\n', i, j, a(i,j));

end

% fprintf (1, '\n') ;

% fprintf (1, ' Number of nonzero entries is %d\n', nnz (a));

A = full (a);

clear a;

new_A = zeros(m,n);

%spy(a);

%..

% generate random matrix x

x a (5*rand(n, l)+5* rand(n,1))/2;

b = A * X;

%%

%++++++++++++++++++++++++++

% reordering matrix A & b

44

% rows = m; cols = n;

[rows cols] = size(A);

%s_r.l size of rays in 1 projection

s.r.l = test.size * 3;

%setup a flag vector for searching projections

num.proj = rows/s.r.l;

for temp.i = 1: num-pro j

v.proj (1: temp.i) = 1;

end%end for

%new_A_p is the pointer for inserting projs into new_A

new_A_p = 1;

%go thru half of the projection for ref projection

tStart = tic;

minustime = 0;

for ref.p = l;num_proj

if v.proj (ref.p) == 1

%get the reference projection

ref = A ((ref _p-1) * s.r.l+1 : ref.pws.r_l, :);

%flag 0 to ref proj

v.proj(ref.p) » 0;

%fprintf(1%d ref.p);

%

minimum = s.r.l * cols;

%min_block =;

for p = ref_p+l : num.proj %p go thru cur proj

if v.proj(p) == 1

cur = A(((p-1) * s.r.1+1) : (p * S.r.l),:);

% finding the overlap between ref projection and

% current projectoin

for i =■ 1: s.r.l

for j = l:cols

s(i,j) »ref(i,j) &&cur(i,j);

45

end%end for

endfcend for

% nnz in the S matrix is the number of overlap

% after && operation

sumnz = nnz(s);

if(sumnz < minimum)

minimum = sumnz;

min.block = p;

min-block-i = p*s_r_l+l;

end %end if

% else

% fprintf('Nothing: Reached a projection already selected.\t1);

end % end if

end %end for

% One full search finished

%flag 0 to projection p

v_proj (min_block) = 0;

%fprintf('%d ', min_block);

i
tStorage = tic;

^reorder two projections to new A

new_A((new_A-p-l) »s,r.l+l : new_A.p»s_r.l, :) = ref;

new_A (new-A_p* s-r-1+1: (new_A_p+l) * s_r_l , :) »

A(((min_block-l) * s_r_l+l) : (minJolock * s_r_l),:);

^change the b_i of this proton history to the corresponding place

new_b ((new_A_p-l) *s_r_l+l : new_A_p*s_r_l , :) =

b ((ref _p-l) *s_r_l+l : ref _p*s_r_l , :) ;

new_b (new_A_p*s_r_l+l: (new_A_p+l) *s.r.l, :) =

b (((min_block-l) * s_r_l+l) : (min_block * s_r_l),:);

new_A_p = new_A_p + 2 ;

ts «• toe (tStorage);

minustimea minustime+tS;

end% end if

46

endt end for

tReorder(index) = toc(tStart) - minustime;

tl(index) = tl(index)+ tReorder(index);

tfprintf('reordering time = %f seconds.\n', tReorder(index));

% if(nnz(A) # nnz(new-A))

% fprintf('nah,,.\n');

% end

tt

% reconstruct x with A & new_A

% x is the vector for contain the update for each iteration

% initial x_0 = q

x-iter = zeros(cols, 1) ;

% varl is the vector contains b_i - <A_i, x_k>/||A_i 11 _2"2

% 2-norm of A_i => sqrt (nnz (A_i)) , so | | A_i | | _2 "2 = nnz(A_i)

varl = zeros(rows, 1);

var2 - zeros(l, cols);

var.div = zeros(1, cols);

titer is how many iterations we are going to take

iter => 10;

error = zeros(1, iter);

terror.w with ordering

error.w = zeros(1, iter);

weight = 1.5;

t=S-r_l * 2;

ttreconw time on OS-SART w/ reordering

treconw = tic;

%OS-SART w/ ordering

for kai; iter

for os = 1: ceil(rows/t)

for i = (os-1)*t+l:os*t

47

if i < rows

varl (i) h (new_b (i) - new-A (i, :) *x_iter) / nnz(new.A(i, :)) ;

for j=l: cols

if new_A(i,j) ? 0

var2(1,j)w var2(1,j)+varl(i}*new_A (i, j);

end

end

end

end

var.div = sum (new_A((os-1)*t+l:os*t,:));

% if i > rows

% var.div = sum(new_A((os-1)*t+l:rows, :)) ;

% else

% var.div = sum(new_A((os-1)*t+l:OS*t, :)) ;

% end

for j = 1: cols

if var-div(j) # 0

var2(l,j) = var2(1,j)/var.div (1, j);

end

end

% after the above for loop, var2 - sum((b_i - <A_i , x-k>/||A_i | | _2~2) *A_i

X-iter = x_iter + weight/os * var2';

%fprintf('%d%%...\n',floor(k/iter*100));

%fprintf('/');

end

end

tOSw(index) = toc(treconw);

t2 (index) o t2(index) + tOSw(index);

%totaltime(index) ■ tReorder(index) + tOSw(index);

%error_w = x-iter - x;

clear new_A;

% recon using unordered A

48

k = 1;

trecon = tic;

%OS-SART w/ ordering

for koi: iter

for os = 1: ceil(rows/t)

for i = (os-1)*t+l:os*t

if i < rows

varl (i) = (b(i) - A(i, ;) *x_iter) / nnz(A(i, :));

for j = 1: cols

if A(i,j) # 0

var2(1,j)a var2(1, j)+varl(i)*A(i,j);

end

end

end

end

if i > rows

var_div = sum(A((os-1)*t+l:rows,:));

else

var-div = sum(A((os-1)*t+l:os*t,:));

end

for j » Is cols

if var_div(j) / o

var2(l,j) = var2(1,j)/var_div(l,j);

end

end

% after the above for loop, var2 a sum((b_i - <A_i , x_k>/||A_i 11 -2 "2) *A_i

x_iter a x_iter + weight/os * var21;

%fprintf(1%d%%floor(k/iter*100));

%fprintf(•-');

end

end

clear A;

tOS(index) = toe(trecon);

49

t3(index) = t3(index) + tOS(index);

terror = x.iter - x;

= 3ECSEO = Ha = C:BC css

disp(1 finish');

end %end for ave

tl(index) = tl (index)/5;

t2 (index) = t2(index)/5;

totaltime(index) = tl(index) + t2(index);

t3(index) = t3(index)/5;

index =■ index+1;

end %end test-size

save(1t_ordering_.mat1 , 1tl1);

save(1tosw_.mat1, 112 1) ;

save(1tos_.mat1 , 1t31);

save(’total. mat-1, 1 totaltime 1);

% test for full search and sum search- time,

tsize = 9;

t-full = zeros(tsize,1) ;

t_sum = zeros(tsize,1) ;

index = 1;

fprintf(’total round = %d.\n', tsize);

for test-size - [10 : 5 -. 50]

fprintf(1 round %d.\n‘, index);

test(index) = test-size;

50

%----------------------- ------------------------ --------------

% generate random sparse matrix A

N = test-size * test-size;

M = N * 3;

%f$rintf ('Going to generate a %4d * %4d Matrix.\n', M, N);

i = [] ;

j = [] ;

V = [] ;

m = M;

n = N;

a = sparse (i, j, v, m, n);

nonzeros = m * test_size;

%fprintf(l, 'number of nonzero: %4d %4d', nonzeros, floor(nonzeros));

for test = 1 : round(nonzeros)

i - round (m * rand () + 0.5) ;

j a round (n * rand () +0.5);

a(i,j) = 1;

% fprintf (1, ' %4d %4d %f\n', i, j, a(i,j));

end

% fprintf (1, '\n') ;

% fprintf (1, ' Number of nonzero entries is %d\n', nnz (a));

A « full (a);

clear a;

new_A » zeros(m,n);

%spy (a) ,•

------------- ---

% generate random matrix x

x a (5*rand(n, l)+5* rand(n,1))/2;

51

b = A * X;

%++++++++++++++++++++++++++

%each size loop 5 times then compute the time / 5 to get average time.

for ave =1:5

%++++++++++++++++++++++++++

% full search

[rows cols] ■= size (A);

%s.r_l o size of rays in 1 projection

s_r_l - test-size * 3;

%setup a flag vector for searching projections

num_proj = rows/s_r_l;

for temp.i « l-.num.proj

v.proj (1: temp.i) = 1;

endfcend for

%new_A_p is the pointer for inserting projs into new_A

new-A.p = 1;

%go thru half of the projection for ref projection

tStart = tic;

minustime = 0;

for ref.p = l:num_proj

if v.proj (ref.p) == 1

%get the reference projection

ref = A((ref.p-1)*s.r.l+1 : ref_p*s.r_l, :);

%flag 0 to ref proj

v-proj(ref.p) = 0;

tfprintf(1%d ref.p);

%

minimum « s.r.l * cols;

%min_block =;

for p = ref.p+1 : num.proj %p go thru cur proj

52

if v.proj (p) == 1

cur=A((|p-l) * s_r_l+l) : (p* S-JT-l),:);

% finding the overlap between ref projection and

% current projectoin

for i = l:s_r_l

for j = 1:cols

s(i,j) =ref(i,j) && cur(i,j);

endtend for

endtend for

% nnz in the S matrix is the number of overlap

% after && operation

sumnz = nnz(s);

i f(sumnz < minimum)

minimum = sumnz;

min-block = p;

min-block_i = p*s_r_l+l;

end tend if

t else

% fprintf('Nothing: Reached a projection already selected.\t');

end t end if

end tend for

t One full search finished

tflag 0 to projection p

v-proj (min-block) = 0;

endt end if

endt end for

t tReorder(index) = toc(tStart) - minustime;

t-full(index) = t-full(index)+ toc(tStart);

tfprintf('reordering time = tf seconds.\n', tReorder(index));

t sum search

for temp-i = 1: num-proj

53

v.proj (1: temp.i) « 1;

end%end for

%new_A_p is the pointer for inserting projs into new_A

new_A_p - 1;

%watch the time on storage the new A++++++++++++++

minus time .sum a 0;

%go thru half of the projection for ref projection

tStartsum = tic;

sum_A = zeros(num_proj, cols);

for ref.p = l;num_proj

ref = A((ref _p-1)*s_r_l+1 : ref.p*s_r.l, :);

sum_A (ref _p, :) = sum(ref);

end

for ref.p a i:num_proj

%fprintf (’ new_A_p = %d \n' , new.A.p) ;

if v.proj (ref.p) = = 1

%**t**tfrOO*i*0*t*tt*tOOO*5Htt**tttWtO*it**Ot**ttOO******ti>

%get the reference projection

%flag 0 to ref proj

v.proj (ref.p) = 0;

%

maximum = 0;

for p = ref.p+1 : num.proj %p go thru cur proj

if v.proj(p) =a 1

%%■*****■*********************

norml *»norm(sum_A (ref.p) - sum_A(p));

if(norml > maximum)

maximum a norml;

min_block = p;

54

min.block.i « p*s_r_l+l;

end%end if

% else

% fprintf('Nothing: Reached a projection already selected.\t');

end%end if

endtend for

fcflag 0 to projection p

v.proj (min_block) « 0;

%*********1(***#********+****»)Hlf****#i**t*#t****>b,Jri+*+****t*k*'k-r*f

end%end if

end%end for

t.sum (index) =■ t-sum(index)+ toe (tStartsum);

end

index = index+1;

end

save (' t-sum. mat' , 1 t_sum1) ;

save(1t-full.mat', 't.full ') ;

plot (t_sum) hold all; plot (t_full) ;

55

REFERENCES

[1] How proton treatment works. http://www.proton-therapy.org/

howit .htm.

[2] Mathworks: Mathematics, sparse matrix, http://www.mathworks.com/

access/helpdesk/help/techdoc/ref/f16-5872 .html.

[3] K. R. Castleman. Digital Image Processing. Prentice Hall Press, Upper Saddle

River, NJ, 1996.

[4] Y. Censor. Parallel application of block-iterative methods in medical imaging

and radiation therapy. Math. Program., 42(2):307-323, 1988.

[5] I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices.

Clarendon Press, New York, NY, 1987.

[6] A. C. Kak and M. Slaney. Principles of Computerized Tomographic Imaging.

IEEE, New York, NY, 1988.

[7] T. Li, Z. Liang, J. V. Singanallur, T. J. Satogata, D. C. Williams, and R. W.

Schulte. Reconstruction for proton computed tomography by tracing proton

trajectories: A monte carlo study. Medical Physics, 33(3):699-706, March 2006.

[8] S. McAllister. Efficient proton computed tomography image reconstruction using

56

http://www.proton-therapy.org/
http://www.mathworks.com/

general purpose graphics processing units. Master’s thesis, California State Univ.,

San Bernardino, CSE department, CA, Febraury 2009.

[9] S. N. Penfold, R. W. Schulte, Y. Censor, V. Bashkirov, S. McAllister, K. E.

Schubert, and A. B. Rozenfeld. Block-iterative and string-averaging projection

algorithms in proton computed tomography image reconstruction. The Huang-

guoshu International Interdisciplinary Conference on Biomedical Mathematics:

Promising Directions in Imaging, Therapy Planning and Inverse Problems, 2009.

[10] K. E. Schubert. Keith on numerical analysis, http://www.r21abs.org/

references/KeithOnNumerical.pdf.

[11] R. W. Schulte, V. Bashkirov, T. Li, Z. Liang, K. Mueller, J. Heimann, L. John

son, B. Keeney, H. F-w. Sadrozinski, A. Seiden, D. C. Williams, L. Zhang, Z. Li,

S. Peggs, T. Satogata, and C. Woody. Design of a proton computed tomogra

phy system for applications in proton radiation therapy. IEEE Transaction on

Nuclear Science, 51(3), June 2004.

[12] A. M. Tekalp. Digital Video Processing. Prentice-Hall, Inc., Upper Saddle River,

NJ, USA, 1995.

[13] G. Wang and M. Jiang. Ordered-subset simultaneous algebraic reconstruction

techniques. Journal of X-Ray Science and Technology, 12(3):169-177, October

2004.

57

http://www.r21abs.org/

	Reordered subsets reconstruction of proton computed tomography
	Recommended Citation

