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ABSTRACT

FABLE, a finite automata based learning engine, is an attempt to create a 

system that is capable of learning how to solve problems without any prior 

knowledge about them. It accomplishes this by building increasingly more 

accurate FA models of the problem. FABLE uses the FA models to make 

decisions that are more likely to lead to a desired goal state. The results 

of each choice are recorded and used to improve the FA model for future 

use. Current research into the automated building of FA models have been 

focused on creating algorithms that learn to recognize the same strings as a 

target FA with an accuracy that is PAC or probably approximately correct. 
For these algorithms, the building of the FA is the goal itself. FA based 

decision systems have been created for solving problems, but in most cases 

the FA has been designed, not learned automatically. FABLE attempts to 
join these two areas together by using automated building of FA models for 

the purpose of solving specific problems. In particular, FABLE is tested on - 

the problems of minesweeper, tic-tac-toe, and checkers. The results show 

that in all three cases, FABLE learned to play significantly better than the 

results expected from random play within less than 100 games.

iii



ACKNOWLEDGEMENTS

I wish to express my appreciation to all those who have helped me in this project. I 

greatly appreciate the help and encouragement that I have received from Dr. Geor- 

giou. My thanks go to Dr. Voigt and Dr. Gomez for their input and willingness to 

help. I would also like to thank my family for all their support. I especially want to 

thank my wife, Tamara, for her patience and understanding while I worked on this 

project.



DEDICATION

To Tamara and Scott for all of their love and support.



TABLE OF CONTENTS

Abstract ....................................... iii

Acknowledgements ................................. iv

List of Tables.................................................... ix

List of Figures .................................................. x

1. BACKGROUND................................................ 1
1.1 Introduction.............................................. 1

1.2 Purpose of the Thesis...................................... 1

1.3 Nature of the Problem..................................... 2

1.4 Significance of the Thesis................................... 2

1.5 Definition of Terms........................................ 3

1.6 Hypothesis............................................... 5

1.7 Scope and Limitations..................................... 6

1.8 Organization of the Thesis.................................. 6

2. LITERATURE REVIEW ........................... 8

2.1 Introduction.............................................. 8

2.2 Automatic Construction of Finite Automata with a Teacher........ 8

2.3 Automatic Construction of Finite Automata without a Teacher ... 10

vi



2.3.1 Constructing Finite Automata without a Teacher using Passive

Learning........................................... 11

2.3.2 Constructing Finite Automata without a Teacher using Active

Learning........................................... 12

2.4 Literature on the Use of Finite Automata for Intelligent Agents ... 13

2.5 Summary ............................................... 14

3. METHODOLOGY............................................ 16

3.1 Introduction.............................................. 16

3.2 Design Requirements...................................... 16

3.2.1 Game Rules and Parameters........................... 16

3.2.2 Data Structure and Storage Requirements............... 25

3.2.3 Heuristic Design Requirements......................... 26

3.2.4 Agent Design Requirements........................... 27

3.3 System Design............................................ 27

3.3.1 System Design Overview.............................. 27

3.3.2 Data Structure and Storage Design..................... 29
3.3.3 Heuristic Algorithm Design ........................... 37

3.3.4 Agent Algorithm Design.............................  41

3.4 System Implementation..................................... 43

3.5 Evaluation of the System...................................  43

3.6 Summary............................................... 45

4. RESULTS.................................................... 47

4.1 Introduction.............................................. 47

4.2 Minesweeper.............................................. 47

4.2.1 Game Theory......................................  47

4.2.2 Data Results ......................................  56

vii



4.3 Tic-Tac-Toe.............................................. 66

4.3.1 Game Theory...................................... 67

4.3.2 Data Results ...................................... 72

4.4 Checkers................................................. 88

4.4.1 Game Theory......................................  88

4.4.2 Data Results ......................................  93

4.5 Summary...............................................  104

5. CONCLUSION................................................ 106

5.1 Introduction.............................................. 106

5.2 Conclusion...............................................  106

5.3 Future Work.............................................. 109

References....................................................... 112

viii



LIST OF TABLES

4.1 Wins per 100 Games Played Randomly on Minesweeper........... 57

4.2 Wins per 100 Games Played by FABLE on Minesweeper..........  60

4.3 Results of Random versus Random on Tic-Tac-Toe............... 74

4.4 Results of FABLE versus Random on Tic-Tac-Toe................ 76

4.5 Results of Random versus FABLE on Tic-Tac-Toe...............  80

4.6 Results of FABLE versus FABLE on Tic-Tac-Toe................ 84

4.7 Approximate Space Complexity for Various Sizes of Checkers......  92

4.8 Results of Random versus Random on Checkers.................  95

4.9 Results of FABLE versus Random on Checkers.................. 97

4.10 Results of Random versus FABLE on Checkers..................  100

4.11 Results of FABLE versus FABLE on Checkers................... 102

ix



LIST OF FIGURES

3.1 Level 0 Data Flow Diagram Diagram.......................... 28

3.2 Level 1 Data Flow Diagram Diagram.......................... 29

3.3 FABLE Database Entity Relationship Diagram.................. 31
3.4 User Interface Depiction of Minesweeper State “111111211121121”...... 39

3.5 User Interface Depiction of Minesweeper State 1|[ 112|112||2[” and its

3 Rotations............................................... 40

3.6 Basic Agent Algorithm Workflow.............................. 41

4.1 Wins per 100 Games Played Randomly on Minesweeper 3x3....... 58

4.2 Wins per 100 Games Played Randomly on Minesweeper 4x4....... 58

4.3 Wins per 100 Games Played Randomly on Minesweeper 5x5....... 59

4.4 Wins per 100 Games Played by FABLE on Minesweeper 3x3....... 61

4.5 Wins per 100 Games Played by FABLE on Minesweeper 4x4....... 61

4.6 Wins per 100 Games Played by FABLE on Minesweeper 5x5....... 62

4.7 Results of Random versus Random on Tic-Tac-Toe 3x3........... 73

4.8 Results of Random versus Random on Tic-Tac-Toe 4x4........... 75

4.9 Results of Random versus Random on Tic-Tac-Toe 5x5........... 75

4.10 Results of FABLE versus Random on Tic-Tac-Toe 3x3............ 77

4.11 Results of FABLE versus Random on Tic-Tac-Toe 4x4............ 77

4.12 Results of FABLE versus Random on Tic-Tac-Toe 5x5............ 78

4.13 Results of Random versus FABLE on Tic-Tac-Toe 3x3............ 81

4.14 Results of Random versus FABLE on Tic-Tac-Toe 4x4............ 81

x



4.15 Results of Random versus FABLE on Tic-Tac-Toe 5x5........... 82

4.16 Results of FABLE versus FABLE on Tic-Tac-Toe 3x3............ 83

4.17 Results of FABLE versus FABLE on Tic-Tac-Toe 4x4............ 85

4.18 Results of FABLE versus FABLE on Tic-Tac-Toe 5x5............ 85

4.19 Results of Random versus Random on Checkers 4x4.............  94

4.20 Results of Random versus Random on Checkers 6x6.............  96

4.21 Results of FABLE versus Random on Checkers 4x4.............. 98

4.22 Results of FABLE versus Random on Checkers 6x6.............. 98

4.23 Results of Random versus FABLE on Checkers 4x4.............. 99

4.24 Results of Random versus FABLE on Checkers 6x6..............  101

4.25 Results of FABLE versus FABLE on Checkers 4x4............... 103

4.26 Results of FABLE versus FABLE on Checkers 6x6............... 103

xi



1. BACKGROUND

1.1 Introduction

In this chapter the purpose of this thesis will be explained. Once the purpose has 

been established, an analysis of the nature of the problem will be considered. The 

significance of this thesis in relation to the problem will then be presented, followed 

by a definition of terms used in this thesis. Hypotheses regarding the efficacy of the 

proposed solution will be discussed, and then the scope and limitations of the current 

research will be put forward. Finally, a brief overview of the organization of the 

remainder of the thesis will be given.

1.2 Purpose of the Thesis

The purpose of this thesis is to investigate the use of finite automata based modeling as 

a method of pursuing artificial intelligence. In particular, the issue of intractability of 

such methods when applied to all but the simplest of problems will be considered. The 

problem of intractability will be handled through the Finite Automata Based Learning 

Engine (FABLE) which was created specifically for this purpose. The method by 

which FABLE will avoid intractability will be by deploying multiple heuristics to the 

problem, with the hope that at least one of the heuristics will be able to build a good 

approximation within a reasonable amount of time.
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1.3 Nature of the Problem

The nature of the problem lies in determining how to build a finite automaton in a 

reasonable amount of time that allows desired outcomes of a task to be achieved. This 

is difficult to achieve in practice because any problem that is sufficiently complicated 

to be interesting will generally also require a generous number of states to model 

effectively. It is also likely that the size of the alphabet of the finite automaton will 

be non-trivial. Since the possible number of configurations grows exponentially as the 

number of states increases, a brute force approach can quickly become intractable for 

all but the simplest of problems. That is not to say that brute force can not work. 

A non-FA based brute force approach to solving the game of checkers was recently 

accomplished by Schaeffer et al. This was accomplished despite the fact that “[t]he 

game of checkers has roughly 500 billion billion possible positions.” [18] Even with 

this recent victory for brute force techniques, it is still a very inefficient learning 

method that should be avoided when possible.

1.4 Significance of the Thesis

The significance of this thesis will be to demonstrate the feasibility of building a 

system that is capable of automatically learning how to increase performance at a 

task that is presented to it by means of modeling the problem with a finite automaton. 

Current work in the field of automatic learning of FA’s is mostly focused on the 

building of the FA itself. This thesis will instead focus on the automated building 

of FA models to allow better decisions to be made in the future. In particular, it 

will focus on demonstrating the feasibility of using such methods for improving the 
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decisions of an agent presented with the problem of playing a board game without 

any prior knowledge about the game.

1.5 Defini tion of Terms

The following is a list of terms and their definitions as they pertain to this thesis.

FA - Short for finite automata or finite automaton. A finite automaton is a 

computing machine which consists of a collection of states, a defined alphabet of 

valid inputs, and a set of transition functions mapping one state to another based on 

the input received.

DFA - Short for deterministic finite automata. A deterministic finite’automaton is 
i

a special case of FA in which the set of transitions has been limited to only permit one 

transition per symbol in the alphabet per state. That is, there is never any ambiguity 

as to which state to transition to on any input.

NFA - Short for non-deterministic finite automata. A non-deterministic finite 

automaton is an FA where there is no restriction on the number of transitions that 

can exist for any state given the same input.

PFA - Short for probabilistic finite automata. A probabilistic finite automaton is 

a NFA where there are specific probabilities as to which transition will be taken for a 

given state with more than one defined transition for the given input. For example, 

if a state called si has two transitions for the input a and the first transition has a 

probability of | and the second a probability of then the first transition will be 

taken twice as often as the second transition.
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MAT - Short for minimally adequate teacher. The minimally adequate teacher is 

a teacher that helps a learner to construct a target FA by answering questions from 

the learner. To be minimally adequate, it is required that the teacher already know 

the target FA. In addition, the teacher must always truthfully answer membership 

and equivalence queries. The teacher must also provide counterexamples as necessary.

PAC - Short for probably approximate correct. When a learner is attempting to 

construct a target FA and there is no access to some sort of equivalence query to 

verify that its current model matches the target FA, the learner may have to settle 

for a FA that is PAC. This simply means that the constructed FA generates accurate 

results from all known inputs and appears to make accurate predictions when tested 

with inputs not seen before. It is still possible that there is a counterexample input 

to the constructed FA, but we can say that the constructed FA is PAC.

Game Tree Size - For any problem where there is a clear start state and the 

eventuality of reaching a clear end state is guaranteed, the game tree size is measured 

by looking at all branches from the initial state and traversing them until all possible 

leaf nodes have been counted. That is, the game tree size of a problem is not just a 

measure.of all the possible end states of a task, but of all the possible ways in which 

each end state can be reached.

State Space Complexity - For any problem where there are clear states and 

transitions between them, the State Space Complexity of the problem is the sum of 

all possible states. This differs from the game tree size in that it counts the total 

number of possible states, without concern for how the state was reached.
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Heuristic - For the purposes of this thesis, a heuristic will be any form of pattern 

recognition algorithm that can be added to the basic bottom-up learning process to 

promote increased efficiency of learning. An example of a heuristic is the nearest 

neighbor algorithm. The nearest neighbor heuristic makes the assumption that when 

a new state or input is encountered, that the new state or input' will act most similarly 

to the known states or inputs that are closest to it. Such a heuristic will likely yield 

good results for character recognition, but could be disastrous if applied to chess.

FABLE - Short for finite automata based learning engine. FABLE is the acronym 

for the system that was developed for the purpose of testing the hypothesis of this 

thesis. A basic description of FABLE is that it is a bottom-up learning engine that 

automatically constructs a finite automaton to match its observed reality by recording 

its current state, the input received, and the state that resulted from that input. Since 

a finite automaton is easy to traverse and understand, it is also possible to hardcode 

states and transitions into the automaton in order to facilitate the encoding of top- 

down knowledge. In addition, it is possible to incorporate heuristics into FABLE that 

attempt to make predictions or fill in the gaps for those states and inputs which have 

not yet been directly observed or encoded.

1.6 Hypothesis

The basic hypothesis of this thesis is that a system can be built which learns by 

observation and stores the acquired knowledge in the form of a FA which is used 

to guide future decisions. In particular, it is hypothesized that this approach will 

be effective at learning to play various board games without the need to create any 
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code that is specific to any of those games. An additional constraint is that both the 

learning and decision making processes must not exceed polynomial time complexity.

1.7 Scope and Limitations

I
In order to test the hypothesis, the Finite Automata Based Learning Engine, hereafter 

referred to as FABLE, will be created. It will be used to test the hypothesis by 

implementing a system of the type referred to in the hypothesis on 3 board games. 

These games are minesweeper, tic-tac-toe, and checkers.

In each case, the capability to play the game on boards of various size will be 

implemented. As the size of the board is increased, so will the number of possible 

states and the corresponding number of possible transitions that will need to be 

learned in order to be an effective player of these games.

The FABLE engine will be designed to be able to make use of several heuristics. 

The design will also be such that new heuristics can be added as necessary. For the 

current implementation of FABLE the following heuristics will be implemented: the 

observed state heuristic, the nearest neighbor heuristic, the locality heuristic, and the 

rotationally invariant heuristic.

1.8 Organization of the Thesis

This thesis is divided into 5 chapters. The first chapter covers an introduction followed 

by a brief description of the purpose of the thesis and an overview of the nature of the 

problem. The significance of the thesis is then discussed, followed by a list of terms 

used within this thesis. A hypothesis is then given and the scope and limitations of 
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the work in this thesis related to that hypothesis are then explained. Chapter 1 is then 

concluded with an overview of the organization of the thesis as a whole. Chapter 2 

is a review of previous literature as it pertains to this thesis. Chapter 3 covers the 

methodology used to test the hypothesis of this thesis. This includes a description 

of the FABLE system and how it works. Once FABLE has been described the basic 

methods whereby the system will be evaluated are given. Chapter 4 covers the actual 

results that were generated by the FABLE system and an analysis of those results is 

then done to verify if the actual results match with the expected results. Chapter 5 

will discuss how the results validate the thesis and suggest areas for further research 

that would validate it further. Following Chapter 5 there will be a list of the relevant 

references.
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2. LITERATURE REVIEW

2.1 Introduction

Chapter 2 is a review of the relevant literature to put the work of this thesis into its 

proper context. In particular, literature regarding methods for building a FA will be 

reviewed. This field of inquiry is usually sub-divided into the branches of learning 

with and without a teacher. Literature regarding both approaches will be reviewed. 

After this, literature dealing with the use of FA for the purpose of making intelligent 

choices will be reviewed.

As a side note, within the broader area of artificial intelligence, it is more custom­

ary to refer to these two learning methods as supervised and unsupervised learning. 

However, in the specific field of automatic FA construction, sometimes known as 

grammar inference, it is usually referred to as learning with and without a teacher. 

Since FABLE is based on the building of FA automatically, the nomenclature within 

this thesis will use the terminology of learning with or without a teacher.

2.2 Automatic Construction of Finite Automata with a Teacher

Several methods have been developed for constructing a FA with varying degrees of 

efficiency. One of the earliest results into investigating this problem was found by 

E. Mark Gold who showed that the time complexity of learning consistent FAs from 
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given data is computationally intractable [12], Since this finding, the majority of 

efforts to construct FAs have done so from the perspective of having more than just 

the given data to work with.

The most commonly referred to algorithm that resolves the intractability issue for 

the problem of constructing a FA is that developed by Angluin in “Learning Regular 

Sets from Queries and Counterexamples” [3], In this paper Angluin introduced the 

concept of the minimally adequate teacher or MAT. The basic process described here 

consists of two main operations in which the learner submits queries to the teacher. 

The first type of query is a membership query where the learner generates a string 

and asks the teacher if the string is contained in the target FA. The teacher will 

respond with either a yes or no. The second type of query is the equivalence query. 

In this, the learner submits what it believes to be the target FA and the teacher 

then answers yes or no. If the answer is no, the teacher will then provide a string 

that is a counterexample to the submitted FA. In this technique, the intractability 

problem is solved by the use of a teacher which provides more information than just 

the given data. Using this approach the problem of constructing a FA can be solved 

in polynomial time.

Since Angluin introduced this approach, several others have modified the algo­

rithm in order speed up the process or to make the process easier to understand. 

Parallelizing the algorithm was one of the techniques tried to reduce the time it takes 

to learn. Balcazar et al [4] found that a DFA can be constructed in O(n/log n) pro­

vided that there are polynomially many processors available to distribute the problem 

over. Yokomori looked at modifying Angluin’s basic algorithm which was designed 
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for DFA’s and adapted it to learning NFA’s [22].

While Angluin’s algorithm and its variants are interesting to look at due to their 

efficiency, they do have a significant drawback in regards to their use for solving 

the problem of constructing a FA in general. The problem is that in order for the 

algorithm to work, the target FA must already be known by the teacher and the 

teacher must always answer membership and equivalence queries made to it by the 

learner. This algorithm therefore does not help in the event that the target FA is 

unknown.

2.3 Automatic Construction of Finite Automata without a Teacher

Now that the problem of learning a FA where a MAT is available has been demon­

strated to be tractable, let us consider the case where a MAT is not available. For a 

case such as this we can consider a few different possibilities.

To begin, let us consider that the absence of a teacher does not imply that no 

questions can be asked. Let us suppose that the target FA has been implemented 

and is concealed within a black box that accepts inputs and gives outputs. By sending 

inputs into the black box and observing the corresponding outputs, it may be possible 

to determine what the FA inside the black box is doing. In this case, although no 

equivalence queries are possible, the equivalent of membership queries can still be 

asked. This is a harder problem to solve, and it would be impossible to ever know 

for sure that the constructed FA is an exact match to the target FA, but it would 

potentially be possible to construct a FA that gives accurate predictions over a wide 

range of inputs. A FA that is an effective model for an unknown FA is often referred 
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to as being PAC. In most cases, when learning a FA without a teacher, the goal is 

merely to construct a FA that is PAC.

2.3.1 Constructing Finite Automata without a Teacher using Passive Learning

Attempts to determine the unknown FA where the learning agent has no access to 

control the input to the unknown FA are referred to as passive learning. In “Efficient 

Learning of Typical Finite Automata from Random Walks”, Freund, et al [11] found 

that passive learning is capable of learning a PAC model of the unknown FA with only 

an expected polynomial number of mistakes given the constraint that the target FA 

was generated randomly or at least semi-randomly. Note that this does not state that 

it will learn with only a polynomial number of mistakes, the worst case scenario is 

still an intractable exponential number of mistakes. Freund, et al merely established 

that the average case will be polynomial and therefore tractable on average.

An excellent survey paper covering the problem of passively learning DFA was 

put together by Cicchello and Kremer in “Inducing Grammars from Sparse Data 

Sets: A Survey of Algorithms and Results” [8]. In this paper, a summary of several 

algorithms relating to this problem were summarized. These algorithms included 

SAGE [13], Ed-beam [15], TBW-EDSM [8], MMM [17], and Exbar [15]. Each of 

these algorithms makes different trade-offs between accuracy of the generated FA, 

the amount of computation required to generate the FA, and the robustness of what 

type of FA the algorithm can learn. For example,- the MMM algorithm attempts to 

construct a perfect replica of the target FA and is computationally expensive. TBW- 

EDSM on the other hand does not aim for a perfect match, but one which will give 
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results that are accurate with about 99% probability. The final result of TBW-EDSM 

may not be quite as accurate as the result of MMM, but the result can be found faster.

2.3.2 Constructing Finite Automata, without a Teacher using Active Learning

Attempts to determine the unknown FA where the learning agent can control or 

at least influence the input to the unknown FA are referred to as active learning. 

Algorithms for active learning are often very similar to passive learning algorithms 

with the exception that in addition to the algorithm that constructs the FA based 

on input and output, it also needs an algorithm for deciding what input to attempt 

next.

The basic motivation for allowing the learning agent to directly control the input 

is to allow it the opportunity to try to generate output that will fill in the gaps in 

its current model or to test its current model specifically in those areas which are 

under the most suspicion of being incorrect. Naturally, the expectation is that since 

the learner can now actively test its model, the accuracy of the resulting model will 

be higher or found in less time than when only random data is made available to 

it. Indeed this is the case, as demonstrated by Bongard and Lipson [6] who utilize 

an evolutionary learning algorithm that can actively select inputs. They find that 

having this ability allows their algorithm to outperform the EDSM algorithm for 

passive learning not only in speed, but also in the types of FA that the algorithm can 

learn without the problem becoming intractable. In particular, Bongard and Lipson 

show that their algorithm works well even for FAs that are not as closely balanced as 

the passive learning algorithms require. That is, it can perform adequately even when 
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the target FA does not have a roughly equal number of accepting and non-accepting 

states with branches that are mostly the same in depth. Effectively, active learning 

permits polynomial time learning even for FA that stray somewhat from the expected 

structure of a randomly generated FA. Despite this gain in general learning capability 

compared with purely passive forms, the problem of learning a target FA still remains 

intractable in the truly general sense.

2.4 Literature on the Use of Finite Automata for Intelligent Agents

The use of FA for intelligent agents has been done in several different ways. These 

range from FA that were specifically engineered to perform a certain task, to appli­

cations where the FA was built using input from human experts to generate an FA 

using some of the algorithms mentioned in the previous sections.

Several real world problems have made use of FA based solutions where the FA 

was designed from a top-down level. Fregene, et al, showed that FA based decision 

making could be used to create the controls systems for a multi-agent system that 

would work together to control unmanned ground vehicles for the purpose of creating 

maps [1]. Feiliang used FA as part of a language translation system to automatically 

translate text between Chinese and Japanese [9]. FA have even been used to control 

animated characters in an animation engine by Martins [16].

Real world problems have also been solved by FA where the FA is built using 

inference methods. In “An Automata-based Approach to Robotic Map Learning”, 

Basye detailed a method in which a robot built a map of its surroundings with the 

map being learned as a FA [5], The robot could then use the FA to navigate from

13



point to point.

2.5 Summary

The purpose of this thesis is to use a constructed FA for the purpose of making 

intelligent decisions. Due to this, it is implied that the agent will have at least some 

capability to influence the input going in. One key difference between the goal of 

learning FA for this thesis as opposed to the current body of work regarding learning 

FA is that most research into this field has been focused on attempting to learn the 

entirety, or at least a very close approximation, of the target FA. In this thesis the goal 

is merely to achieve a good enough model to allow an agent to achieve putting the 

target machine into a desired state. This may not actually require a total knowledge 

of the entire FA. In fact, it may only require a small fraction of the target FA.

An example of this type of problem can found in the game of checkers. Checkers 

can clearly be modeled as a DFA, but with its 500 billion billion possible states [1] 

the complete DFA is still unknown. In addition, the learning algorithms found to 

date require at least the equivalent of O(n2) computations to create the model using 

a MAT. Without a MAT, the computational requirements would be at least O(n3) 

if the DFA happens be well-balanced, otherwise it will be exponential. Since the 

complete DFA for checkers is unknown, a MAT can not be used. Despite this, it is 

easy enough to test if a given sequence of moves was valid in a game of checkers. It 

is also easy to determine what the end state of a valid game was. Due to this, active 

learning is possible to use with the problem of checkers. However, substituting 500 

billion billion for n in an algorithm that runs with a time complexity of at least O(n3) 
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results in such a large amount of computation that it is effectively intractable with 

current hardware and algorithms.

Despite this apparent intractability for large problems, this thesis contends that 

most board games have patterns to them that allow FA models that are good enough 

to enable decisions that are better than making choices at random to be constructed in 

polynomial time. For this to work, the pattern would need to be one that can be found 

by one of the heuristics in the system. Furthermore, FABLE does not necessarily seek 

to learn a FA that is a complete model of the problem in its entirety. For practical 

purposes, it only needs to learn enough of the FA that models the problem to allow 

whichever heuristic(s) apply to the current problem to do a good job of filling in the 

gaps. This will then allow the agent to decide on supplying inputs that are more 

likely to result in states that the agent desires than states which the agent does not 

desire. In more precise terms, intelligence of some sort will be said to have been 

achieved when the FABLE agent is capable of consistently outperforming an agent 

where all choices are made on a purely random basis. No claim of completeness of 

the model or of the optimality of the choices made is implied. The objective is to 

demonstrate better decisions than picking at random within a tractable amount of 

time and training.
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3. METHODOLOGY

3.1 Introduction

This chapter will explain the creation of the FABLE system for dealing with the 

problem. It will discuss the design requirements for the FABLE system, give an 

overview of the design, discuss the implementation of the system, and then summarize.

3.2 Design Requirements

3.2.1 Game Rules and Parameters

The FABLE system will be tested using the games of minesweeper, tic-tac-toe and 

checkers. In order to perform this testing, a game engine will be built that implements 

these games so that FABLE may interact with them. As the design and implementa­

tion of these games is not the focus of this thesis or an item of interest from a research 

perspective, the discussion of the design of the game engine in this section will be 

primarily to establish the particulars of the rules and parameters for these games as 

they will be implemented for testing FABLE.

These games have been selected because each has a start state, a clear mechanism 

for determining the next state based on the decision a player makes, and a clear 

condition for the end state. The state of the game resulting after a decision is made 

16



can be used to build a transition that maps from the previous state to the next state 

based on the selected input that resulted in the transition occurring. For any fixed size 

grid or board, the number of possible transitions in each of these games is finite. The 

result is that for any fixed size grid, given sufficient examples, a DFA that perfectly 

encapsulates the entire game can be constructed. For practical purposes, building 

a complete DFA will become intractable as the size of the grid or board increases. 

To deal with this problem, several heuristics will be built that attempt to fill in the 

gaps of what is known. Using heuristics it should then be possible to make intelligent 

decisions even in situations which have not been encountered before. These heuristics 

will be discussed later in this chapter in section 3.3.3.

Minesweeper

Minesweeper is a single player game with clear conditions for a win versus a loss. 

Essentially, minesweeper is comprised of a grid in which a known number of mines 

have been placed at random. Initially, the player has no information whatsoever 

about the position of those mines. To play, the player selects a square in the grid to 

be clicked. If the square in question is the location of a mine, then the game ends with 

a loss. Otherwise, the square will change from being blank to displaying a number 

corresponding to the number of mines that are directly adjacent to that square in 

the grid. If the number is 0, it will cause all adjacent neighboring cells to be clicked 

automatically. To win, a player must click all of the cells in the grid which are not 

the location of a mine.

For those that are familiar with the popular implementation of minesweeper found 
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on almost every copy of the Windows operating system, it is important to note the 

game engine for this thesis will follow the rules as stated above. Unlike the Windows 

version, the version in the game engine will arrange the mines at the beginning of the 

game. This means that it is possible to lose on the very first click.

From personal experience during the testing phase of the game engine, I found 

that the mine density was a very important consideration of the game. In general, 

a higher density of mines on the grid made the game harder while a smaller number 

made it easier. I decided to have the game engine use a mine density of 20%. This 

value was chosen as I found it to a be a density that is high enough to make winning 

a non-trivial process, but also not so high that it makes winning virtually impossible 

no matter what strategy is used.

Tic-Tac-Toe

Tic-Tac-Toe is a very old game which almost everyone knows how to play. In its 

usual form it consists of a 3x3 sized grid or board which is initially blank. It is a 

two player game with the first player normally being designated as X and the second 

player designated as 0. Play starts with player X choosing any of the squares on the 

board and placing an X inside the square. Player 0 then takes a turn by placing 

an 0 in any of the remaining squares. Play continues in this manner with player X 

and player 0 alternating turns to place their respective letter in one of the available 

squares. To win, a player must place their letter in 3 cells which comprise a row along 

a vertical, horizontal, or diagonal line. The game terminates when all of the squares 

have been filled or one of the players wins, whichever comes first.
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I J
The rules within the game engine for this thesis have been modified slightly from 

the standard rules. Instead of completing 3 in a row being the victory condition, it 

will award 1 point for each such row. Due to this change, play will continue until 

all squares on the board have been filled. Once the board is completely filled, the 

player with the most points wins. If the points are the same, the game is a tie. These 

changes were made so that when larger board sizes are considered, the game will 

remain interesting. Without these changes it is trivial for player X to win every time 

for any board where the height and width are larger than 3. This is due to the fact 

that player X will always be able to create two in a row on the second turn such that 

3 in a row can be completed on the third turn from either side of the 2. Since player 

0 can only block one of the sides, player X simply has to place an X on the third 

turn that completes 3 in a row on the side that player 0 did not block.

Checkers

Of the games that FABLE will be tested on, checkers is the most complicated. Rather 

than write the rules to the game in my own words, I have decided to include the official 

rules as given by the American Checkers Federation. The rules as found below are 

taken directly from the American Checkers Federation without any modification. The 

are 16 rules in total:

Rule 1 - The official checkerboard to be used in national tournaments and 

official matches shall be green and buff with two-inch squares. The board 

shall be placed for playing so that the green double corners are on the 

right-hand side of the players.
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Rule 2 - The official checkers to be used in national tournaments and official 

matches shall be turned and round, red and white, and of a diameter not 

less than one and one-quarter inches nor more than one and one-half inches. 

The pieces shall be placed on the green squares.

Rule 3 - At the beginning of the contest, the players shall toss for colors. 

The first move is made by the player having the red checkers. Thereafter, 

the players shall alternate in leading off with red in each succeeding opening 

balloted.

Rule 4 - Each player must make thirty moves per hour. Upon completion of 

each set of thirty moves, the player completing the thirty moves adds one 

hour to his/her clock. If a player’s time expires before he/she makes the 

allotted thirty moves, that player forfeits the game, and his/her opponent 

is declared the winner by default.

Rule 5 - The men can move only diagonally forward, one space at a time, 

to an unoccupied adjacent dark square in the row ahead. If there is an 

opponent’s checker or king on an adjacent square in the row ahead with 

an unoccupied square on the same diagonal line in the following row, that 

piece (checker or king) must be jumped. Checkers and kings cannot jump 

over their own pieces.

Rule 6 - When there are two or more ways to jump, five minutes shall be 

allowed for the move. When there is only one way to jump, time shall be 

called at the end of one minute, and if the move is not completed at the end 

of another minute, the game shall be adjudged as lost through improper
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delay.

Rule 7 - If a player has more than one way to jump, he may select whichever 

one he wants, regardless of the number and type of pieces that can be 

captured.

Rule 8 - At the beginning of a game, each player shall be entitled to arrange 

his own or his opponent’s pieces properly on the squares. After the game 

has opened (a move has been made), if either player touches or arranges any 

piece without giving intimation, he shall be cautioned for the first offense 

and shall forfeit the game for any subsequent offense of this kind. If a person 

whose turn it is to play touches one of his playable pieces, he must either 

play it or forfeit the game.

Rule 9 - If any part of a playable piece is played over an angle of the square 

on which it is stationed, the play must be completed in that direction. 

Inadverdently [sic] removing, touching, or disturbing from its position a 

piece that is not playable, while in the act of jumping or making an intended 

move, does not constitute a move, and the piece or pieces shall be placed 

back in position and the game continued.

Rule 10 - When a checker reaches the crownhead of the board by reason of 

a move or as the completion of a jump, it becomes a king. That completes 

the move or jump. The checker must then be crowned by the opponent by 

placing a piece on top of it. If the opponent neglects to do so and makes a 

play, then any such play shall be put back until the piece that should have 

been crowned is crowned. Time does not start on the player whose piece
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should have been crowned until the piece is crowned.

Rule 11 - A king once crowned can move in any direction as the limits of 

the board permit. A king can jump one or more pieces in any diagonal 

direction as the limits of the board permit. When a piece is not available 

for crowning, one must be furnished by the referee.

Rule 12 - A draw is declared when neither player can force a win. When 

one side appears stronger than the other, and the player with what appears 

to be the weaker side requests the referee for a count on moves, then, if the 

referee so decides, the stronger party is required to complete the win, or 

to show to the satisfaction of the referee at least an “increased" advantage 

over his opponent within 40 of his own moves, these to be counted from 

the point at which notice was given by the referee. If he fails to do this, he 

must relinquish the game as a draw.

Rule 13 - After an opening is balloted, neither player shall leave the board 

without permission of the referee. If permission is granted to a player, his 

opponent may accompany him, or the referee may designate a person to 

accompany him. Time shall be deducted accordingly from the player whose 

turn it is to move.

Rule 14 - Anything that may tend to annoy or distract the attention of an 

opponent is strictly forbidden, such as making signs or sounds, pointing or 

hovering over the board either with the hands or the head, or unnecessarily 

delaying to move a touched piece. Any principal so acting, after having 

been warned of the consequences and requested to desist, shall forfeit the
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game.

Rule 15 - Players shall be allowed to smoke during the conduct of a game, 

but care must be exercised not to blow smoke across the board, lest it annoy 

an opponent. If a player is thus annoyed, he may object to his opponent 

smoking, in which case neither player shall be allowed to smoke.

Rule 16 - Any spectator giving warning either by signs or sound or remark 

on any of the games, whether playing or pending, shall be ordered from the 

room during the contest. Play shall be discontinued until such offending 

party retires. Spectators shall not be allowed to smoke or talk near the 

playing boards [21].

Barring the rules that are obviously not applicable for a computer program, such 

as the rules regarding whether a player is allowed to smoke, the rules for checkers were 

implemented in the game engine according to the official rules. Although checkers is 

usually played on an 8x8 board, the lack of an official rule specifying the size means 

that the game engine was designed to accommodate various board sizes without the 

need to make any changes to the official rules.

It is interesting to note that just as the official rules do not state a board size, 

they do not state the starting position of the pieces. In fact, the official rules do 

not even specify how many starting pieces there are for either player. Despite this, 

the expectations of the American Checkers Federation can be found by examining 

the game histories that they maintain records of. The federation has the complete 

game history of several U.S. and World championships [20]. Looking at these game 

histories I was unable to find a single example of any game that was not played on 
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an 8x8 board with a starting position with 12 red and 12 white pieces. In addition, I 

was unable to find any instance in which the 12 pieces for red started in any position 

other than filling the 4 legal positions for a piece in the bottom 3 rows of the board 

with the 12 pieces for white occupying the top 3 rows.

Although the number of pieces and starting positions are not specified by the 

official rules, the implementation in the game engine for FABLE does try to maintain 

the spirit of the implied rules. The only exception being that it does not enforce an 

8x8 board. To do this, the game engine is designed such that for any size board, 

the number of starting pieces for; red and white will be the same. In addition, the 

starting positions will place the red pieces on the bottom of the board, filling every 

legal position until a row is filled. Every row will be filled up to but not including 

the middle row. The same will be done for white with the exception that the rows 

will be filled starting from the top going down. From testing, it was determined that 

when this is done on boards with an odd number of rows, it is too easy for the game 

to end quickly due to insufficient space for any of the pieces to move. To alleviate 

that problem, a restriction on sizes was placed in the game engine to only allow board 

sizes where the number of rows and the number of columns are even.

For the purposes of testing FABLE, one rule was added in addition to the official 

rules. This rule is that in the event that no material change has occurred for the 

last 50 moves, the game engine will declare the game to be a tie. A material change 

is defined to be the advancement of a regular checker or the capturing of a piece. 

The basic idea of this rule is not mine. I found that several variations of this rule are 

popular among the various free implementations of checkers on the web. In each case.
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the addition of a rule similar to the one I used was for the purpose of ensuring that 

every game does come to an end eventually. My choice of the number 50 is arbitrary, 

but it seemed like it should be long enough to not severely distort the game results.

3.2.2 Data Structure and Storage Requirements

As the FABLE system is to be a FA based learning engine, the most basic data 

structure requirement for the system is how the FA will be structured within memory 

and stored. As this is to be a generic system, no decision can be made for the best 

structure or storage based on the expected size of the resulting FA. Due to this, the 

structure and the storage mechanism need to be highly scalable so that they will be 

both effective as well as efficient as the size of the problem is changed. As there will 

be multiple heuristics attempting to build a FA that models the problem, the ability 

to store multiple FA’s is also necessary. Good design techniques always promote re­

usability, and for this reason the storage of each FA should be done in as similar a 

manner to the other FA’s as possible while still maintaining robustness and scalability.

In addition to the structure and storage of the FA’s, the system should also incor­

porate a method of storing the history of actual inputs and outputs that have been 

observed. Having this history will allow any FA that has been constructed to be 

tested against the actual history to determine its accuracy and robustness on at least 

all known data. Since the history of interaction will do nothing but grow over time, 

there is no upper limit on how large it may become other than the limit of available 

memory unless an artificial limit is imposed. If such a limit is to be imposed, then 

an algorithm for determining what history should be deleted would need to be imple- 
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merited. For the purposes of the current implementation it is assumed that sufficient 

memory will be available at all times, thereby removing the need to implement any 

artificial limit. Due to this, the size of the history will certainly grow larger with 

every interaction. This dictates that the history must be stored and structured in a 

manner that will allow for efficient data operations despite a very large data set.

3.2.3 Heuristic Design Requirements

The heart of the FABLE system to avoid intractability is the use of heuristics to look 

for underlying patterns that allow useful models of the problem to be built with less 

data and processing than brute force methods would require. In order to take better 

advantage of current hardware capabilities, the ability to make use of multiple cores 

on the same processor, as well as cores on processors on computers that are connected 

through a network would also be helpful. To achieve these goals, the implementation 

of the heuristics needs to be written in a manner that, allows them to be distributed. 

It also requires that the means whereby the. heuristic algorithms will access history 

information, as well as store constructed FA’s needs to be done in a manner that 

will work across a network. The exact manner in which a heuristic will build a FA 

is dependent on the nature of the type of pattern that the particular heuristic is 

searching for. Since the goal is to solve problems in a tractable time with a tractable 

amount of training data, the pattern to be searched for should be one that can be 

recognized in at most a polynomial time frame.
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3.2.4 Agent Design Requirements

As the FABLE system is an approach to Al, it has a need of a system for choosing 

between different choices. Within FABLE this system well be termed as the agent. 

The job of the agent will be to look at the current state, analyze the possible decisions 

it can make, and then make the decision that it believes is most likely to result in 

the desired outcome. Since the agent will be interacting with the problem directly, it 

is assumed that the agent can see the current output state of the problem that it is 

dealing with. For a game such as checkers this would correspond to the current board 

position. It is also assumed that the agent will know all of the possible actions (inputs 

to the problem) that it may take. In addition, the agent will need to be assigned a 

goal state that it seeks to reach. The agent will require an algorithm for assessing the 

desirability of any possible action. An algorithm for selecting which action to take 

also needs to be selected. Whatever algorithm is implemented, the decision needs to 

be made in a reasonable amount of time.

3.3 System Design

3.3.1 System Design Overview

The basic overview of the FABLE system can be visualized with the level 0 data flow 

diagram in Figure 3.1. As a top level overview of FABLE, it shows that the basic 

idea is for the game engine, which will be representing the problems to be learned 

and modeled, will communicate with FABLE by providing selected moves, board 

positions, and legal moves as appropriate. In turn, FABLE provides selected moves 

to the game engine when it has the opportunity to do so.
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Level 0 DFD 
Diagram of FABLE

Fig. 3.1: Level 0 Data Flow Diagram Diagram.

Figure 3.2 is a level 1 data flow diagram and reveals a greater level of detail of the 

workings of FABLE. Now it is seen that for FABLE to work, there will be three main 

processes at play. The first is the history recorder. The job of the history recorder 

is to store a complete history of every game that is played on the game engine. The 

second process is the heuristic FA constructor. In actuality, there are many heuristic 

FA constructors, one for each heuristic that is implemented. The constructors use 

the data stored in the game history to construct a FA model based on the particular 

type of pattern the heuristic is designed to search for. The last process is the agent. 

The agent’s purpose is to select an input, or move, to supply to the game engine. 

The game engine will then compute the next board position according to the rules of 

the game being played. The agent may use any method to determine which possible 

legal move it wants to select. There will be three types of agents used in FABLE. The 

first is an agent that simply picks any legal move at random. The second is an agent
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Level l DFD 
Diagram of FABLE

Fig. 3.2: Level 1 Data Flow Diagram Diagram.

that uses the information in the FA models constructed by the heuristics to make 

an informed decision. The last type of agent is human in the event that a human 

wants to play. For multi-player games, the agent type for each player can be chosen 

independently from the agent type for the other players.

3.3.2 Data Structure and Storage Design

In order to meet the design requirements for data storage, the use of an SQL database 

was selected. This method of data storage and retrieval actually meets the require­

ments very well. The storage of a FA in a database is accomplished very easily through 

the use of a table. In addition, the same table can easily be used to store multiple 
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FA’s by simply adding an additional column to the table that identifies which FA 

the row entry pertains to. With the appropriate indexes, the ability to store FA’s in 

the database should scale very well and provide adequate performance. A database 

can store the entire history of all interactions as well. Once again, this table should 

scale well provided that the appropriate indexes are used. The database structure for 

FABLE is found in Figure 3.3.

The basic structure described in the diagram can be broken down as pertaining to 

three main processes. The first is the top-level agent process which interacts directly 

with the game engine. This process writes requests to the AgenuRequest table and 

then monitors the Agent-Response table for responses generated by the heuristic spe­

cific agent processes. Each heuristic reverses this by monitoring the Agent-Request 

table for requests and then writing its response to the Agent-Response table. Heuris­

tics also make use of the transition table for evaluating what the response should 

be to each request, and are also responsible for updating the transition table based 

on the history of previously observed outcomes contained in the Game_History and 

Game-Type-History tables. If applicable, the heuristic can check the Game-Processed 

table to ensure that only games which it has not already processed to be included in 

the Transition table are used to update the Transition table. The game engine itself 

only interacts with the database for the purpose of recording the complete history 

of every game played using the Game-History and Game_Type_History tables. To 

better understand this structure, a more detailed explanation of each table and its 

columns will follow.

Agent-Request - This table is used by the FABLE agent to send a request for
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FABLE Database ER Diagram
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an analysis of the potential moves. Since FABLE is designed to work in a distributed 

fashion, processes that build FA’s based on particular heuristics will also be responsi­

ble for servicing those requests by responding with the probability of any given option 

leading to the goal state. It determines this based on the model of the heuristic in 

question. The same process will also respond with the degree of confidence that the 

model currently predicts each of those probabilities to have.

The first field in the Agent -Request table is uniq. The majority of the tables in 

FABLE have a uniq field. In each case, the field serves as the unique row identifier 

and is of the uniqueidentfier type which is a native database type in MS SQL Server. 

It is also directly supported within the .net framework in that unique keys can be 

automatically generated. It is also designated as the primary key.

The second field is the Game-Type field. This field has been added for the purpose 

of identifying to which game type the current row entry belongs. The coding is very 

straightforward. For checkers, the game type is simply checkers followed by the 

dimensionality of the board that was used. For example, if a game of checkers on a 

board that has 4 rows and 6 columns was played, then the entry for this field would 

be “Checkers 4 * 6.” It is done similarly for minesweeper and tic-tac-toe.

The third field is Cur_State. This field represents the currently observed state. For 

any task that FABLE is asked to learn, the observed state is equivalent to the same 

information that a human player would have access to if they were playing the game. 

For the current implementation of FABLE the agent will not be given any additional 

information that would normally be hidden from a human player.

The fourth field is Cur-Options. This field is used solely to increase the efficiency 
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of FABLE. The agent will receive a list of all current legal moves for its current 

position. The game engine for the three games will not permit illegal moves to be 

taken by any player, whether that player is human or not. In the event that an illegal 

move is attempted, the game engine will simply not respond until the player decides 

on a legal move. Since it is not possible to take illegal actions, this field was added to 

ensure that no processing time is spent by the respective heuristic models evaluating 

possible moves that will simply turn out to be unpermitted. All possible moves will 

be included as a single string separated by a “—” between each value.

The fifth field is Goal-State. The agent will also include its current goal state to 

reach in the request. This will allow the heuristic model processes to evaluate the 

possible moves and evaluate the desirability of each with respect to the goal state.

The last field is Respond_By. This field allows the agent to set a firm deadline for 

all processes to respond by. How far the agent sets the deadline in the future can be 

varied from one run to the next to find differing balances between how fast the agent 

makes a decision and how well thought out the decision taken is. Any process that 

has failed to respond within the designated time frame will not have the opportunity 

to influence the agent’s decision for the current input opportunity.

Agent -Response - The purpose of this table is to respond to the requests which 

have been sent out by the agent. Each heuristic process will be monitoring for requests 

and will post its response in this table, which the agent will check at the designated 

deadline.

This table has a Request-Uniq field, which is a foreign key to the Agent-Request 

table. It also has a field called Goal_Prob which contains the probability that a 
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particular option will result in the goal state. It is encoded as numeric percentages 

with two decimal precision with each value separated by a “—” with the percentages in 

the same sequence the options were in the request. The last field is Confidence-Factor. 

The purpose of this field is to inform the agent of the degree of confidence it should 

place in the predicted probability of reaching the goal.

Transition - The purpose of this table is to hold the complete model of all the 

transitions that a particular heuristic has constructed. The algorithm by which the 

heuristic populates this table is dependent on the particulars of the pattern type(s) 

that the heuristic is designed to search for. It consists of nine fields. The first field 

is the uniq field and its purpose has already been explained. The second field is the 

Game_Type field. Its purpose is to identify to which game type the current row entry 

belongs.

The third field is the Heuristic-Type field. This field is used for the purpose of 

keeping any model built for the specified game type separated by the heuristic that 

built the model. The values in this case are simply the name of the heuristic, such 

as “Observed State.” Not all heuristics will actually build a model that is stored in 

the database. Some heuristics are simply designed to help fill in gaps in the models 

already built by other heuristics.

The fourth field is the Cur.State field. This field stores the current state that the 

heuristic building the model believes the state to be. In the case of the observed state 

heuristic, this would simply be the currently observed output of the problem. For the 

purposes of these games, that is the equivalent of the current position of the board. 

For other heuristics, while the observed output is certainly important, the current 
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state may consist of something beyond the directly observable information.

The fifth field is Input. This field stores the input that was given at the current 

state for this row entry. The sixth field is Next-State. This is the state that the 

current FA model is thought to have transitioned to after receiving the input. The 

analysis of how that is determined is once again dependent on how the heuristic 

building this FA determines what the state is.

The seventh field is Stat-Count. This field holds the count for how many times 

this particular transition has occurred. This is especially important in the case where 

the only accurate model that can be built for the problem is that of a PFA. Since a 

PFA can not be perfectly predicted as to what the result will be on a given input, 

counting the number of times a particular transition has been chosen in relation to 

another can then be used to evaluate which transition is the most likely outcome.

The eighth field is End-States. This field is used to aid in creating a tractable 

approach to deciding what action to take. It effectively maintains a list of the ultimate 

end state(s) that have been reached when the game ended based on the transition 

that the current row represents.

The ninth and last field of the Transition table is End_State_Count. This field 

maintains the statistics of how many times the end state(s) that a particular transition 

has led to occurred. This enables a very fast comparison based on the statistics to 

determine what action to take. Once again, the purpose of this field is to help maintain 

at least one decision criteria that the agent can use that will always be tractable.

Game_Type_History - This table is used to maintain a master list of every game 

that is played using the game engine. It has four fields. The first is Id, and is the 
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unique identifier for the game. The next is Type, which simply stores the type of 

game in the manner that has been established earlier. The third field is Started, and 

is used to record when the game began. The last is Ended, and it records when the 

game ended.

Game_History - The purpose of this table is to maintain a history of every move 

made in every game that is played in the game engine. The history will be recorded 

whether the players are human, FABLE agents, or random.
I

The uniq field has the same purpose as was already described. GameJd is a foreign 

key that links back to the Game_Type_History table on the Id field. The field Step 

is to maintain the order in which each of the observed states in the game’s history 

occurred. Cur_State maintains a history of the observed state at the time of this step. 

Last is Input, and it is used to maintain a history of what input was received from 

the current state.

Game-Processed - The purpose of this table is to keep a record of which games 

have been processed for each heuristic. This enables heuristics to efficiently build 

transition tables without needing to repeat work already done from the processing 

of games which have already been incorporated into the transition table for that 

heuristic. This table has 3 fields.

The first is the uniq field which is already understood. The second is the Pro- 

cessed_Games field which stores the ID from the Game-Type_History table corre­

sponding to the game that has already been processed. The last field is the Heuris- 

tic_Type field which specifies for which heuristic the given ID has already been pro­

cessed. A heuristic makes the appropriate entry in this table after processing the 
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information for a game from the Game_History table.

Now that the entire the database schema has been given and explained, we can 

see that all the information necessary to re-create any existing game will be stored. 

This will in turn allow any heuristic to peruse the complete history of every game for 

the purposes of building and testing FA models of the problem. A table structure 

is also present for the agent to make a request that allows its decision making to be 

distributed among separate processes that will each evaluate the position based on 

a particular heuristic and then send a response. With this we can now look at the 

design of the heuristic algorithms.

3.3.3 Heuristic Algorithm Design

The design for each heuristic that will be implemented for the current version of 

FABLE are the observed state heuristic, the nearest neighbor heuristic, the locality 

heuristic, and the rotationally invariant heuristic. Each heuristic will be implemented 

as a stand-alone executable which can connect to the FABLE database. This structure 

allows the processing to be distributed among multiple cores, or even among multiple 

computers on the same network. The UI for each of the heuristics will consist of a 

simple interface to turn the processing for the individual heuristic on or off.

The observed state heuristic works under the assumption that the state information 

that can currently be observed is in fact the total state. The basic algorithm for 

constructing a FA using this heuristic will be to query to the database to see if there 

are any completed games that have not yet been processed. Once a game that needs 

to be processed is found, the entire history of the game will be added to the Transition 

37



table in the database. If the transition has been seen before, then the statistics for 

that transition will be updated, otherwise a new transition will be created showing 

the observed state before the transition, what the input was, and the observed state 

that followed that input.

The nearest neighbor heuristic will analyze any existing FA model generated by 

any of the other heuristics. The method of analysis is to look at how closely related 

the start and end states for transitions are for those states that are neighbors of each 

other. As an example, let us suppose we have the situation in a game of minesweeper 

as depicted in Figure 3.4. As stored in the database, the current observed state would 

be represented as 1111|2||2|2||2|The distance between neighbors is measured by 

evaluating how many squares in the grid differ. Thus 111112|112||2|” would be a 

neighbor that is only a distance of 1 away from the current observed state, while 

“|1112|||2|11” would be a distance of 3 away from the current observed state. FABLE 

will not actually build and store a complete nearest neighbor FA for each FA that 

has been generated by other heuristics. Instead, a small nearest neighbor FA will 

be constructed in memory on demand that attempts to fill in the gaps in a current 

model using neighbors that are no more than a distance of 1 away from the current 

state.

The locality heuristic, similar to the observed state heuristic, will construct a FA 

by analyzing the game history. The difference is that whereas the observed state 

heuristic builds a FA using the entire state for its transitions, the locality heuristic 

will only look at a sub-set of the state at any given time. The degree of specificity 

of the locality is determined by how large of a chunk of the total state is being
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Fig. 3.4: User Interface Depiction of Minesweeper State “|l||lj2j||2||2|”.

evaluated. For FABLE, the specificity will be to build a locality based FA for states 

that look at only 1 spot on the grid, a 2 * 2 square of the grid, and 3*3 square 

of the grid and a 4 * 4 square of the grid. It is possible to create localities that 

are not square, including localities that are not even comprised of contiguous parts 

of the observed state, but FABLE will only look at square localities up to a size 

of 4 for the current implementation. The method of construction is the same as 

that for the observed state except that the observed state information in the game 

history will have the information that is not part of the current locality removed. 

This heuristic will essentially be looking for patterns that are predictable based on a 

subset of the data. The usefulness of this approach is that by “throwing away” the 

additional information, the potential complexity of the FA is greatly reduced. This 

should greatly increase the speed of learning for those problems where locality is a 

principle that applies to the problem.

The last heuristic is the rotationally invariant heuristic. The purpose of this heuris­

tic is to look for patterns where all that matters is the relative position of the board
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Fig. 3.5: User Interface Depiction of Minesweeper State “|1||1|2|||2||2|” and its 3 Rotations, 

rather than the absolute position of the board. The rotationally invariant heuristic is 

similar to the nearest neighbor in that this heuristic will not build a FA that is stored 

in the database on its own. Instead, it will build a model in memory on demand for 

the current state as reported to it by the part of the agent residing in the main game 

engine. The method the rotationally invariant heuristic uses to construct its model 

is by taking a current state for a model and rotating the values in the grid about 

its axis. The current design for the rotationally invariant heuristic will build a FA 

in memory based on the original orientation, a 90 degree orientation, a 180 degree 

orientation and a 270 degree orientation. An example of these orientations is found in 

Figure 3.5 showing a visual representation of the minesweeper state“|l||l|2||2|2||2[” 

in its original, 90, 180, and 270 degree orientations respectively. Once again, this 

is used primarily to reduce the number of states that needs to be explored and will 

only be helpful for those problems where the orientation will not result in different 

outcomes.
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Distributed Agent Decision Model

Fig. 3.6: Basic Agent Algorithm Workflow.

3.3.4 Agent Algorithm Design

The agent has been designed to be distributed to 5 different processes for FABLE. 

The agent will consist of one part residing inside the game engine. This part of 

the agent is responsible for ascertaining the current observed state as reported by 

the game engine, the current legal moves as reported by the game engine, and for 

supplying the game engine with a selected move or input. The agent will select a 

move by evaluating the relative “goodness” of each move as reported to it by each of 

its distributed heuristic based processes. Each heuristic executable will also contain 

a portion of the distributed agent and is responsible for evaluating how “good” each 

option is based on the FA model for that heuristic. The basic workflow can be found 

in figure 3.6.
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We can see from the figure that the individual heuristic agent processes all run 

concurrently. Due to the requirement to maintain tractability, the evaluation in each 

of the heuristic processes does not actually attempt to traverse the tree of possible 

next states. Instead, a statistical count is kept for each state as to what end state 

ultimately resulted from the transition and is used for making a quick evaluation as 

to the probability that the selected transition will lead to the desired goal state or at 

least avoid undesired end states.

The basic method for evaluating any potential move by the agent processes will 

be to look at the total number of times the move (transition) has led to the desired 

state and compare that with the total number of times the move has led to undesired 

states. A probability for reaching the desired goal state is then computed. In addition, 

a confidence factor will be computed at the level of each move. The method employed 

by FABLE will be to multiply the probability by the confidence factor for the overall 

“goodness” of choosing a move. Once all possible moves have been evaluated, the 

agent process will compare all computed values for a move and select the one with 

the greatest absolute value for its response.

The portion of the agent running inside the game engine follows the same basic 

algorithm as found in the agent processes. Once it receives the response from the 

heuristic agent processes, it evaluates the responses for each move and selects the 

response with the greatest absolute value to be the value it will use for evaluating 

that move. Once the combined list of absolute values has been created, the agent 

will sort the list such that the best moves are at the top and the worst moves are at 

the bottom. For the final determination of what to do, the agent will loop through 
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the entire list. For each iteration, a random number will be generated and compared 

to the current item in the list. If the random number is less than the value of the 

current item, then the agent selects the move and sends its response to the game 

engine. Otherwise, it continues to the next item in the list. In the event that the 

agent loops through the entire loop and an item has still not been selected, it will 

loop through the entire repeatedly until a selection is made. In the highly unlikely 

event that the loop has been repeated 10 times, the agent will give up and report to 

the game engine to simply select a move at random.

3.4 System Implementation

System implementation followed the designs. The database structure was created on 

MS SQL Server. The heuristic processes were implemented according to the designs 

given above and the distributed portions of the agent were implemented within them 

as well. For those heuristics that actually create multiple models or predictions, such 

as the locality heuristic, the coding made use of multiple threads so that each model 

or prediction could be run concurrently. The agent process in the main game engine 

was implemented according to the above designs and functions as expected. The game 

engine was implemented such that the rules for each game as they were explained at 

the beginning of this chapter are followed.

3.5 Evaluation of the System

Now that the complete design of FABLE is established, the next step to consider is 

the methods by which it will be tested. Since there are 3 games to be tested, each 
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with different rules and complexities, the expected results and means of testing will 

differ slightly from one to the next. The specifics in each case will actually be covered 

in depth in Chapter 4, but there are some aspects of how the testing will be done 

that can be generalized.

In order to establish whether or not FABLE is learning, the first benchmark in all 

cases will be to establish what the expected results of an agent making choices in a 

purely random fashion are. The expected results of making choices may be found by 

ab initio methods using probability theory or empirically by simply creating a random 

agent collecting data on what results the random agent actually generates. In some 

cases, the expected results of random choices, or random play, will be determined 

using both methods. In this case the theoretical results from probability theory 

should match the actual observed results.

Once the results of random play have been established, the next benchmark that 

will be established is the expected results for an agent that makes only perfect deci­

sions. Perfect play is defined as making the decisions that maximize the likelihood 

of achieving a goal state while minimizing the likelihood of undesirable states. An 

example is that a game that can end in a win, a loss, or a neutral state such as a 

draw. A perfect agent will be able to force a win whenever forcing a win is possible 

from the current position. In the event that a win can not be forced, a perfect agent 

will make choices that do not allow a loss if possible. If a win can not be forced, and 

a loss can not be avoided, a perfect agent will at least make choices that delay the 

loss from occurring for as long as possible.

In theory, an agent that always makes perfect choices for any task that is simple 
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enough to model with an FA exists. In practice, it can be extremely difficult to 

determine what perfect play actually is for a specific task. For each game, perfect 

play will be evaluated to the extent that can be reasonably done. In the event that 

perfect play can not be determined, it will not invalidate the results of testing for the 

task. It should still be possible to measure improvement compared to making choices 

at random. Rather, the concept of perfect play is only introduced in an attempt to 

find the upper limit of what can be accomplished by even the most intelligent agent 

possible. Having this second benchmark when possible allows FABLE to be evaluated 

not just in the since of whether it does better than random, but in terms of how close 

it gets to learning the task perfectly.

The data for each of the 3 games will be gathered by using different combinations 

of random and FABLE agents. For each combination a data run will be conducted 

that will use the same combination of random and FABLE agents for a specified 

number of games in a row. The outcomes of those games will then be analyzed using 

various methods including the use of averages, standard deviations, regression, and 

making observations based on the data after it has been graphed. The specifics of 

which techniques are used in what manner will be given for each game in more detail 

in Chapter 4. This is done so that the specifics of each game can be evaluated, and 

the results can be given directly following that evaluation.

3.6 Summary

In this chapter, a list of requirements, the design, and the implementation of the 

FABLE system were given. The basic structure of FABLE is seen to consist of an 
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agent that observes and interacts with the problem. In this case that is the game 

engine. The agent then distributes the work of deciding what to do among various 

heuristic based processes and makes a decision based on the results each process 

reports back. Each heuristic process enables the portion of the agent residing in it to 

make that evaluation by creating a FA model of the problem that is either stored in 

the database or generated in memory on demand. Each heuristic is designed to look 

for specific types of patterns in order attempt to model the problem in a tractable 

time.
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4. RESULTS

4.1 Introduction

The purpose of this chapter is to show how FABLE was tested to determine if it does 

indeed show the learning abilities that it is hypothesized to have. The results will 

be taken for each of the three games in the game engine starting with minesweeper, 

moving on to tic-tac-toe, and ending with checkers. For each game, the complexity 

of the game will be considered. A discussion of how to derive some properties of the 

game ab initio will follow. Once the game theory is established, the actual results for 

the specific game will be given, and those results will be compared against the type of 

performance that was expected. A general summary of the results will then be given.

4.2 Minesweep er

4.2.1 Game Theory

Game Tree Size

The first property of minesweeper that I will derive is how to measure the size of the 

game tree. In “Learning minesweeper with multirelation al learning” Lourdes Castillo 

calculates the size of the game tree for a specific instance of minesweeper on a 8x8 

board with 10 mines [7]. However, his calculation was not written in a generalized 
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form. In addition, his calculation is only for the game tree size for an individual game 

where the mines have already been arranged. His calculation further requires that 

the configuration of mines be such that there are no cells in the grid that are not 

adjacent to a mine. My derivation will establish an upper and lower bound for the 

game tree size and will be generalized to grids of various sizes. My formula will also 

take into consideration the various possible configurations that may be present at the 

start of the game. An important note is that my formula does rely on a fixed 20% 

mine density.

To accomplish this derivation, let us first understand that minesweeper is effec­

tively a game of process of elimination. At the start, all of the cells in the grid are 

available to be clicked. As a cell is clicked with each subsequent turn, the number of 

possible cells left to be clicked will be reduced by at least one. The only two possible 

end states for minesweeper are to win or lose. This implies that the game tree size 

can be found by adding all of the possible ways to win to all of the ways to lose.

Let us define a as the number of cells in the grid and b as the number of mines 

to be placed. For any game, the first thing that must be determined is where the 

mines are located within the grid. The total number of ways to do this is simply (“). 

Determining the exact size of the game tree for a given set of values for a and b is 

intractable for all but the smallest of grids. However, the size of the game tree can 

be given a lower and upper bound to at least get an approximation of the size of the 

game tree.

For the sake of simplicity, the lower bound will be found by simply stating that for 

every possible mine configuration, there is at least one way to lose and at least one 
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way to win. In reality, almost all mine configurations on almost all grids will have a 

much larger number of possibilities, but none will have less. This means that since 

we already know the number of mine configurations for a grid to be (J), that since 

there are at least 2 possible outcomes for each these, a valid lower bound the size of 

the game tree is 2 (£). This result is sufficient to show that the game tree size will 

grow at a factorial rate on the lower bound.

To find the upper bound, we can simply ignore the possibility of any cell causing 

its neighboring cells to be clicked automatically. To win under this condition requires 

that the first click consist of one of the non-mine cells, of which there are (a — b) 

possibilities. Each subsequent click must click one of the remaining non-mine cells 

until only mine cells remain. Since automatic clicking is being ignored, the result 

will be the same for all mine configurations, resulting in equation (4.1). Finding the 

upper bound of the ways to lose is done by counting b possible ways to lose for every 

way of surviving to the current turn. Surviving to the current turn is the same as 

following the winning sequence up to the last turn. For example, if q is 9 and b is 2, 

then on the first turn there are 2 ways to lose. To lose on the second turn, an agent 

must click one of the 7 non-mine cells on the first click, and then click one of the 2 

mines on the second click. This becomes 2*7 ways to lose on the second click. For 

the third click it becomes 2*7*6. The process continues until the second to the last 

non-mine cell is clicked. The upper bound of the ways to lose is. then the summation 

of the ways to lose on each click. Generalizing this method in terms of a and b, the 

upper bound on the ways to lose is found in (4.2).
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Upper bound of ways to win =

a! (4.1)

Upper bound of ways to lose =

6!
b(a - b)\

a! (4-2)

Since the density of the mines will be held constant at 20%, b is actually just |_a/5j.

Considering that lim^oola/Sj = oo. This can be used to put an upper-bound on the 

summation found in equation (4.2).

Replacing the summation in equation (4.2) with the result from equation (4.3)

yields the final result for the upper bound of the ways to lose:

Upper bound of ways to lose =
a!(e — 1) (4-4)

The upper bound for the game tree size of minesweeper can be found by adding 

the upper limit of ways to win from equation (4.1) to the upper limit of ways to lose 

in equation (4.4). Remembering our lower bound to be 2 (£), we can now show the 

final result for the game tree size in equation (4.5).
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Probability of Winning by Chance

Now that the game tree size of minesweeper has been bounded, the next property 

of the game to determine is the likelihood of winning by chance. Castillo calculated 

a value for this on a 8x8 board with 10 mines present and no cells without a mine 

adjacent, but did not generalize the formula. In order to find a more accurate measure 

of the actual probability of winning at random, I will describe an algorithm which can 

find the actual probability of winning given the different possible mine configurations 

as well as the possibility of cells without mines adjacent to them.

To calculate the odds of winning a game of minesweeper by chance, the basic 

method is to start by determining all of the configurations that the mines can be 

arranged in at the start of the game. While evaluating the game tree size, this was 

already determined to be (£). Let us define c as this value:

Next, we can define a function MC(x) which receives an integer value and returns 

the mine configuration corresponding to that value. Let MCProb(x) be a function 

where x is a mine configuration and the return value is the probability of winning a 

game played on that configuration assuming random selection. In this case, the total 

probability of winning becomes the expression found below:
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MCProb(MC(i)) 
i=i c

Unfortunately, expression (4.7) is useless unless we know how to compute the value 

of MCProb(x). Evaluating this function is not simple due to the possibility of cells 

in the grid which are not adjacent to any mines. Clicking one of these cells triggers 

the automatic clicking of their neighbor cells. If not for this automation, the function 

could be evaluated quite easily This would be done by letting d be the number of 

un-clicked cells remaining in the grid. In this case, the probability of winning by 

clicking at random would be found in expression (4.8).

M (U>

Due to the automation, for any mine configuration in which automation will be 

part of the winning sequence, additional work must be done before expression (4.8) 

can be applied. Since a rigorous method of evaluating MCProb(x) appears to be 

complex, let us first look at how to generate a good approximation. The first step 

is to separate all non-mine cells into three groups. The first is comprised of the cells 

which must be clicked under all possible paths that lead to a win. The second is 

comprised of the cells which can be automatically clicked if a neighboring cell triggers 

automation, but are not able to trigger automation themselves. The last is comprised 

of the cells that trigger automation.

With these groups, the function MCProbtP) can be defined recursively as a func­

tion that finds the probability of winning if a cell in the first group is clicked by calling 
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itself with the number of cells in the first group reduced by one. It then proceeds to 

evaluate the probability if the click was in the second group. Last, it evaluates the 

probability in the event that a cell in the third group is clicked. When no cells in the 

second or third groups are present, it evaluates to the value given by (4.8). In each 

case, when the recursive call returns, the returned value is multiplied by the number 

of cells in the group and divided by the total number of cells that can be clicked from 

the current position.

A exact method of finding the probability of winning actually requires separating 

the cells into the same groups as the approximation method, but then requires that 

the second and third groups be further broken up into sub-groups. The method of 

generating the sub-groups requires that the cells in the third group be broken up 

into separate cascades. That is, the automation that occurs when a cell that is not 

adjacent to any mines is clicked can result in the clicking of a neighbor that also is not 

adjacent to any mines. This automatically clicked neighbor then clicks its neighbors. 

This process will continue until the supply of adjacent cells that are not adjacent to 

any mines is exhausted. All cells in the third group that trigger the clicking of each 

other are put into the same cascade sub-group. The defining property of a cascade 

is that it does not matter which of the cells in the cascade is clicked, the end result 

following the click will be the same as clicking any other member of the same cascade. 

The cells in the second group are then separated by which cascade they are clicked 

by. A special case to consider is when a cell in the second group is actually a member 

of two separate cascade sub-groups.

The method of evaluating MCProb(x) is now modified such that each sub-group 
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is treated separately in the evaluation. In the event that a cell in the second group 

is a member of more than one cascade sub-group, it must be treated as a click which 

reduces the number of cells available in all of the cascade sub-groups which it is a 

part of. This algorithm results in a perfectly accurate result, but it is also intractable 

except for small grids.

This method of determining the probability was encapsulated within a small pro­

gram and was run on a 3x3 grid with 2 mines. The result was that the chance of 

winning by playing at random for this grid was determined to be 15%. Finding the 

value for a 4x4 was attempted, but was taking too long to justify continuing execution 

when available resources were needed to run FABLE. Due to this, the probability of 

winning at random for grids larger than a 3x3 have been left to be determined em­

pirically.

Probability of Winning by Perfect Play

The problem of determining perfect play for a given minesweeper position is shown 

to be equivalent to the “Minesweeper Consistency Problem” by Richard Kaye in 

“Minesweeper is NP-complete!” [14] Kaye’s proof effectively shows that the “Minesweeper 

Consistency Problem” is the equivalent of the well known SAT problem. This proof 

does not give an algorithm for finding the probability of winning given perfect play.

A method for determining the probability of winning by perfect play would be to 

determine which cell to click corresponds to perfect play. Since determining this is 

of the equivalent complexity as the “Minesweeper Consistency Problem,” finding the 

probability is of at least the same complexity as solving a NP-Complete problem.
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This means that finding the probability of winning by perfect play is intractable for 

all but the smallest of grids. Despite this, I will describe an algorithm that I designed 

which can be used to find the probability for small grids.

Determining the probability of winning by perfect play is actually a simpler prob­

lem than determining the probability of winning by chance. This is due to the fact 

that any choices that are obviously less than optimal can be ignored. The simplest 

example of this is that if the currently known information is enough to prove that 

a particular cell contains a mine, then the possibility of clicking that cell no longer 

needs to be considered. There are also situations where the available information can 

prove that a particular cell is not a mine. In this case there is no risk in clicking the 

cell, and the proper action is therefore to click it.

The difficulty in determining the probability of winning by perfect play comes from 

when there is not an obvious choice. This occurs when there is insufficient data to 

prove that any of the cells to be clicked is not a mine. Depending on the information 

that is available, it may be possible to assign higher and lower probabilities of a 

cell containing a mine, in which case the general strategy would be to click cells 

with lower probabilities of being a mine first, but depending on the specifics of the 

situation, there are exceptions to the general strategy.

The basic method of determining perfect play is recursive in nature. It involves 

looking at the current information and finding all of the possible mine configurations 

that are still possible. For any individual cell, the probability that it is a mine can 

be found by finding the total number of possible mine configurations where it is a 

mine and dividing it by the total of all possible mine configurations. In addition to 

55



the probability that a cell is a mine, the probability of how many mines the cell is 

adjacent to can be found in a similar manner.

Clicking a cell can be evaluated by making a recursive call to the function where 

the cell has been clicked for each of the possible outcomes remaining for the cell. That 

is, if a cell might have 1 adjacent mine or 2 adjacent mines, then a recursive call is 

made where clicking the cell resulted in a 1 and another call is made where clicking it 

resulted in a 2. The return value of each outcome is multiplied by the probability of 

that outcome resulting from the click. These probabilities are then summed together. 

Finding the perfect cell to click is done by evaluating each available cell to click. The 

cell with the highest probability of winning is the perfect choice. The probability of 

winning by clicking this cell is the return value of the recursive function.

The efficiency of this algorithm can be improved slightly. This is done by ignoring 

the possibility of any click which obviously can not have a higher probability of 

winning than the current leader. Despite this, the algorithm is still intractable for all 

but the smallest of grids.

Using this algorithm the probability of winning on a 3x3 grid with 2 mines where 

each click was the perfect choice was calculated to be 66.67%. No attempt was made 

to find the value for a larger grid size.

4.2.2 Data Results

The data for minesweeper was generated on 3x3, 4x4, and 5x5 size grids. The 20% 

mine density used corresponds to 2 mines for the 3x3, 3 mines for the 4x4, and 5 

mines for the 5x5. In order to establish a baseline for performance, a run of 10000
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Thb. 4.1: Wins per 100 Games Played Randomly on Minesweeper.

Grid Size 3x3 4x4 5x5

Average 12.5 2.5 0.8

Maximum 21 7 3

Minimum 4 0 0

Standard Deviation 3.32 1.58 .88

games was played at random for each grid size. To establish that FABLE is capable 

of learning to play minesweeper, the method of measuring what it has learned will 

be by determining that FABLE starts out with a win/lose ratio on par with making 

selections at random. Over time, FABLE is expected to improve the win/lose ratio. 

FABLE was used to play 10000 games of each grid size as well, with the expectation 

that its performance will improve over the course of those 10000 games.

To empirically determine the probability of winning by chance, 10000 games were 

played and then broken down into groups of 100 games each. This yields 100 groups 

of 100 games. For each set of 100, a tally was made of how many games were 

won versus how many games were lost. The averages, minimums, maximums, and 

standard deviations of these data runs are found in table 4.1. An individual chart 

comprising all the data points has also been created for each of the grid sizes. These 

charts can be found in figures 4.1, 4.2, and 4.3.

These empirical results seem to match up very well to theory. For the 3x3 grid, the 

predicted probability of winning by chance was 15%. The empirical probability was 

12.5% with a standard deviation of 3.32%. This means that the predicted value is
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Fig. 4.1: Wins per 100 Games Played Randomly on Minesweeper 3x3.

Minesweeper Random 4x4

Group

Fig. 4.2: Wins per 100 Games Played Randomly on Minesweeper 4x4.

58



Minesweeper Random 5x5

Fig. 4.3: Wins per 100 Games Played Randomly on Minesweeper 5x5.

only 0.75 standard deviations away from the observed win rate. This establishes that 

theory and observed values are in agreement with each other. Given the reliability of 

the result for the 3x3 grid, it is probably safe to accept the empirical values for the 

4x4 and 5x5 grids as being accurate for what the theoretical values would be if they 

were calculated.

Now that the baseline performance for playing at random has been established, 

we can turn our attention to how to measure improvement. The expected learning 

behavior for FABLE is to learn in discrete steps. This is due to the fact that the 

information from a game is not processed until the game has terminated. These steps 

may be of various sizes depending on how much information a newly processed game 

adds to the transition table that was not there before. A game where the first cell 

clicked was a mine will add little to the transition table. A game that lasted for 12 

clicks adds much more to the table, and it will likely improve future performance to
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Tab. 4.2: Wins per 100 Games Played by FABLE on Minesweeper.

Grid Size 3x3 4x4 5x5

a 51.96 70.1 35.48

b 1.2 1 1.04

c 0.12 0.04 0.01

Horizontal Asymptote 62.35 72.9 36.9

Standard Deviation 5.88 4.73 2.92

Correlation Coefficient 0.97 0.97 .78

a larger degree.

Despite the step-wise nature in which FABLE learns, as well as the inherent vari­

ability in outcomes due to the random nature of minesweeper, it should still be 

possible to find a continuous function that at least is a good approximation of the 

learning curve. As was done with the random data, the 10000 games will be grouped 

into sets of 100. Looking at the results 100 games at a time will help to smooth, the 

inherently step-wise learning curve. Several different function forms were analyzed 

for the data to find a good fit when regression is applied. The selected function form 

is y = a(b — e~cx). This is due to the fact that when applied to the data for the 3x3, 

4x4, and 5x5 grid sizes, it shows high correlation coefficients coupled with relatively 

small standard deviations. The results of this analysis are found in table 4.2. In 

addition, charts with the data points plotted on them can be found in figures 4.4, 4.5, 

and 4.6.

The fact that y = a(b — e~cx) is a good approximation of the actual learning curve
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Minesweeper FABLE 3x3

Fig. 4.4: Wins per 100 Gaines Played by FABLE on Minesweeper 3x3.

Minesweeper FABLE 4x4

Fig. 4.5: Wins per 100 Games Played by FABLE on Minesweeper 4x4.

61



Minesweeper FABLE 5x5

Group

Fig. 4.6; Wins per 100 Gaines Played by FABLE on Minesweeper 5x5.

allows us to describe the characteristics of FABLE’s performance as it pertains to 

minesweeper. The first characteristic is that there is a horizontal asymptote which 

represents a level of performance that FABLE will not be able to improve upon. 

This is found by simply multiplying a by b, since lim^oo e-cx = 0. That is how the 

horizontal asymptotes in table 4.2 were found.

It is interesting to note that the horizontal asymptote for the 3x3 grid is 62.35% 

with a standard deviation of 5.88%. The predicted value for playing perfectly on the 

3x3 grid is 66.67%, which is only 0.73 standard deviations away from the horizontal 

asymptote. A glance at figure 4.4 shows that the actual performance was already 

very close to this value as well. This is not sufficient to prove that FABLE learned 

to play minesweeper on a 3x3 size grid perfectly, but it does demonstrate that it at 

least learns to play at a level that is very close to perfect play.

The only way to prove that it learned to play perfectly would be to show that based 
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on the information in the transition table, FABLE will always choose the move that 

perfect play would choose. To do this would be tedious, so instead it will be argued 

that the level of performance is statistically indistinguishable from perfect play. This 

means that while perfect play has not been proven to be achieved by FABLE on the 

3x3 grid, the statistics do not prove that FABLE’s performance is anything less than 

perfect either.

As to the question of whether or not FABLE learns to play minesweeper at level 

that is indistinguishable from perfect play for the 4x4 and 5x5 grids, I can only 

offer reasoned arguments. This is due to the intractability of computing the actual 

probabilities of winning by perfect play on larger grids.

For the 4x4, the horizontal asymptote seems to be a reasonable value for what is 

achievable by perfect play. Considering that the odds of losing are on the first click, 

it is impossible for perfect play to result in a probability of winning that is greater 

than 81%. Even if perfect play is a full standard deviation less than the projected 

horizontal asymptote of 70.1%, such a high probability of winning implies that for 

the majority of possible mine configurations, the game can be won with almost 100 

probability after the first click. I can attest that this is often the case from personal 

experience. The reason this is achievable is due to the still relatively small size of the 

grid. For instance, if the first click reveals that a. cell has 3 mines directly adjacent 

to it, then all of the mines in the entire grid are adjacent to that cell. Therefore, all 

cells that are not directly adjacent to that cell throughout the rest of the grid are safe 

to click. After clicking those cells, there is usually enough information about the grid 

to win without taking any chances. There are several other examples of this type of 
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reasoning that allow a high win probability.

For the 5x5, lines of reasoning that appeal to limiting the possible mine configura­

tions based on the total number of mines left in the grid become much harder to use. 

Using the same example from the 4x4, if the first cell clicked reveals a 3, there are 

still two mines that are unaccounted for. This means that it is not safe to assume all 

cells that are not directly adjacent to the first cell clicked are safe to click. In fact, 

even with perfect play, the odds of winning should decrease as the size of the grid 

increases simply due to the fact that the larger the grid, the greater the chance that 

there will be at least one part of the grid where the mines will be arranged in such 

a fashion that there is no way to ascertain where they are without taking a chance 

at least once. On average, as the grid gets larger, so should the average number of 

times such configurations arise within the grid in at least one spot. The horizontal 

asymptote of 35% for the 5x5 grid is therefore at least a plausible value for the odds 

of winning by perfect play.

Another characteristic that the analysis shows is that as the size of the grid in­

creases, the number of games that FABLE must play before performance saturates 

increases as well. This is reflected in the decrease of the value of c as the size of the 

grid increases. As the value of c decreases, the performance growth curve becomes 

shallower since e-CT approaches 0 at a slower rate. It is possible that c is decreas­

ing because with the much larger number of possible games, it simply requires a 

larger sample of games to acquire sufficient information before performance can be 

improved.

Another explanation for why c is decreasing as the size of the grid increases can 
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be found by examining the transition table for the three grid sizes for which data was 

collected. In particular, the FA models built by the various localization heuristic sizes 

is of interest. For the 3x3 size grid, with only 2 mines available, the 2x2 localization 

heuristic had less to learn than on the 4x4 size grid with 3 mines available. When 

there are only 2 mines in the entire grid, it is impossible for any cell to be adjacent 

to more than 2 mines. The values of every cell in the grid are limited to being un­

clicked, or adjacent to anywhere from 0 to 2 mines. This gives a maximum of 4 

different possible states per cell. With 3 mines in the entire grid, the possibilities 

for each cell increase to include the possibility of a cell being adjacent to 3 mines. 

Although this includes impossible states, the maximum number of possible states for 

the 2x2 localization can be no greater than 44 with 2 mines and 54 with 3. For the 

3x3 localization the difference is even worse since the comparison is now the difference 

between 49 and 59.

Despite this problem of increasing complexity at the local level, the number of 

possibilities per cell does not increase indefinitely. Each cell can only be directly 

adjacent to a maximum of 8 cells. Even with an infinite supply of mines, the number 

of possible values per cell can be no larger than the possibility of being un-clicked or 

clicked with a displayed value of anywhere from 0 to 8, giving us a maximum of 10 

possibilities per cell. The result is that in a worst case scenario, no matter how large 

the grid is, the 2x2 localization heuristic would never contain more than 104 distinct 

states since there are 10 possible values per cell and 4 cells in a 2x2 localization. For 

the 3x3 localization heuristic, the maximum number of states would be 109.

Due to the highly localized nature of minesweeper, it is very likely that once a 
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sufficiently detailed FA model is built for a local area of sufficient size, the overall 

performance for FABLE will approach the performance level of perfect play. This is 

due to the fact that in minesweeper, very good local decisions tend to also be very 

good global decisions. To prove this would require running FABLE on much larger 

grid sizes with much longer data runs to see if the decrease in the rate of improvement 

appears to level off after a certain complexity is reached. The performance level that 

FABLE achieves on these larger grids would then need to be compared to what the 

performance levels of perfect play for these grids actually are. Since determining what 

choice constitutes perfect play is NP-Complete [14], proving that FABLE has achieved 

a level of performance that is near perfect would become intractable as the size of 

the grid grows. Future research could still be done to at least verify if FABLE always 

achieves a level that is near perfect for those grid sizes that are tractable though.

4.3 Tic-Tac-Toe

Tic-Tac-Toe is a very old game that is widely known. The game in its standard form 

has been studied to the point that it is strongly solved, meaning that perfect play 

is known for both players from every possible position. For more information about 

tic-tac-toe, as well as many other games, an excellent resource is Victor Allis’ Ph.D. 

thesis, “Searching for Solutions in Games and Artificial Intelligence.” [2],
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4.3.1 Game Theory

Game Tree Size

Despite the fact that standard tic-tac-toe is a solved problem, the known solution is 

not valid for the variation of tic-tac-toe that was implemented in the game engine for 

this thesis. Due to this, I will show how to determine the size of the game tree for 

the modified version of tic-tac-toe.

Finding the game tree size for the modified tic-tac-toe is straightforward. As with 

minesweeper, let us define a as the number of squares on the board. On the first turn, 

player X may choose any of the a possible squares. On the next turn, player 0 may 

choose any of the (a — 1) squares remaining. With each turn, the number of cells is 

reduced by one. This means that the game tree size is exactly a!.

Probability of Winning

The probability of winning tic-tac-toe by chance is an interesting question for an 

arbitrarily sized board. Unlike minesweeper, tic-tac-toe is a two-player game. As is 

most often the case with multi-player games, the final outcome of the game is heavily 

influenced by the skill of the players. The remainder of this section will be discussing 

the probabilities of winning under different conditions for the variant of tic-tac-toe 

used by FABLE. Due to this, the following calculations and arguments are my own.

For the purpose of evaluating the probability of winning from a theoretical sense, 

we will only consider two skill levels. The first is the skill level of an agent which 

makes every decision randomly. The second is the skill level of an agent that always 

makes a perfect choice. Using these two agent types, there are 4 possible types of 
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matches to consider. They are random X versus random 0, perfect X versus random 

0, random X versus perfect 0, and perfect X versus perfect O.

For random X versus random 0, we can ignore any need to evaluate what would 

occur during play. This is because no matter what happens during play, neither agent 

will use any of the information contained in the current situation to influence its next 

decision. The result is that all possible final outcomes are equally likely to occur. 

Finding the probability that X wins, O wins, or that there is a tie is done by counting 

the number of final board positions that correspond to that outcome and dividing it 

by the number of possible outcomes. The total number of possible outcomes is:

Determining if a final board position is a win for X, 0, or a tie can easily be done in 

polynomial time. The problem is that the number of board positions grows factorially 

as the size of the board increases. This means that determining the expected outcome 

by explicitly counting the possibilities is intractable. Despite this, a few properties 

can still be determined for arbitrarily large boards.

The first case to consider is when the size of the board results in a value for a that 

is even. In this case, for every final board position that results in a win for X, there 

is a final board position that reverses the position of the X’s and O’s precisely. Thus, 

there must be equal number of ways for X to win as for 0. When a is even, a random 

agent playing against another random agent has exactly the same odds of winning as 

its opponent. The only unknown in this case is how often the game will end in a tie.

The second case to consider is when a is odd. This tilts the balance in favor of 
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player X. The reason is that with an odd number of squares, player X will get to 

place one more X on the board than the number of O’s that player 0 will be allowed 

to place. The presence of an additional X on the board increases the number of ways 

that player X can complete 3 in a row compared to player 0. For two random agents 

playing the game, this will result in player X having a higher probability of winning 

than player O.

Now we can consider the case where a perfect agent is playing against a random 

agent. To calculate the exact probability for each of the 3 possible outcomes of the 

game would require an algorithm to find the perfect move. The perfect move depends 

on what the anticipated counter move will be by the other player. Normally, perfect 

play for a multi-player game is considered to be finding the move that is most likely 

to lead to a win, or at least avoid defeat, even if the opponent is expected to make 

a perfect counter move. A straightforward way of determining this is to look at 

all possible moves and evaluate the perfect counter move for each one. Of course, 

the way to determine the perfect counter move will require evaluating all of the 

perfect counter counter moves. The method for determining perfect play is therefore 

a recursive algorithm that is intractable for all but the smallest of boards.

Since finding the perfect move is intractable, it is also intractable to determine the 

exact probability of any outcome. This does not mean that certain characteristics of 

the results of perfect play can not be determined. As a substitute for perfect play, 

we can consider specific strategies that are tractable and which allow at least some 

properties of perfect play to be proven. For instance, if a strategy exists that allows 

player X to force a tie under all circumstances, then perfect play should be able to 
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at least match that strategy in its effectiveness. Perfect play may be able to actually 

allow player X to win instead of tie, but perfect play will certainly not allow X to lose 

when there is a known strategy to prevent a loss.

A strategy that is tractable and allows some conclusions to be drawn for arbitrarily 

large boards is a mirror move, or symmetry strategy. Mirroring an opponent’s moves 

is a strategy frequently used in two player games. The basic idea is that mirroring 

your opponent’s move will generally give you about the same advantages and disad­

vantages as your opponent. With the variation of tic-tac-toe that we are considering, 

this strategy is sufficiently powerful to allow several properties of perfect play to be 

deduced.

Let us consider the case where a is even. Further suppose that for every move 

that player X makes, player 0 chooses the square that is the mirror image of the one 

X chose. At the end of the game, the arrangement of X’s and O’s will be perfectly 

symmetrical. This symmetry ensures that whatever final score X has, 0 has the same 

score, resulting in a tie. If at some point during the game, player O decides to make 

a move that is not a mirror image, then player X can make the mirror image choice 

of player O. When X mirrors 0, the last possible choice for player 0 before the board 

is filled will be the choice that restores perfect symmetry. This demonstrates that 

player X never has to lose when a is even. The only reason for perfect play for player 

X to deviate from using symmetry is if there is a way to force a win.

Now we can consider the case where a is odd. Any board where a is odd will 

have a single square in the center. When the center square is clicked on this type of 

board, the other player can not click on the mirror image since the mirror image of 
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the center square is the center square itself. If player X chooses to click on the center 

square first, player 0 will be forced to pick a square which is not the mirror image 

of what X chose. Thereafter, player X can always mirror any choice player 0 makes 

until the game is over. At this point, the perfect symmetry of the board except for 

the center square will ensure that for every point 0 gained during the game, X will 

have a corresponding point. In addition, player X might have additional points in 

the event that any 3 X’s in a row were completed that utilize the center square. This 

proves that for odd size boards, perfect play for player X can force a tie at worst. It 

might be possible for player X to deviate from the mirroring strategy to force a win 

no matter what player 0 does, but a proof for how to do so is lacking.

Determining the outcome for perfect play by player 0 is simple now that perfect 

play for player X has been established. For boards where a is even, player 0 can 

at least force a tie. If player X makes a mistake, then perfect play for player 0 will 

result in a win for player 0. For boards where a is odd, player O may or may not be 

able to force a tie. For a 3x3 board, it can be proven that player 0 can force a tie by 

exhaustion. It is unclear if that result generalizes to larger boards.

The last case to consider is what happens when both players play perfectly. Where 

a is even, neither player X or O can force a win. This means that perfect play will 

always result in a tie. When a is odd the result is unclear. For the 3x3 board it is 

known that player 0 can force a tie no matter what strategy player X employs. For 

larger boards it is unclear whether or not this will remain true. If player X can force 

a win no matter what player 0 does, then the result will be that player X will win 

every time and player 0 will lose. If player 0 can force a tie no matter what player 
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X does, then the result will be that the game will always end in a tie. Since player X 

can force a tie, player 0 can not win.

4.3.2 Data Results

The data for tic-tac-toe was generated for 3x3, 4x4, and 5x5 size boards. For each 

board size, 4 separate data runs were made. The first was a random agent as X versus 

a random agent as 0. The second run was a FABLE agent as X versus a random agent 

as 0. The third run was a random agent as X and a FABLE agent as O. The last 

run was a FABLE agent as X versus a FABLE agent as 0. In each case, 1000 games 

were played. The data was then grouped into 10 sets of 100 games each.

The expected results for the random X versus random O are that the data should 

agree with the theory given above. That is, for the 3x3 and 5x5 boards, the data 

should show at least some degree of bias in favor of X winning. For the 4x4, the 

expected result is that X and O should both win about the same amount.

To evaluate the expected results for the FABLE agents, we need to consider that 

at first the agent knows nothing about the game and will pick at random. As the 

FABLE agent plays, it should learn more about the game and begin to make choices in 

a less random fashion. At best, the FABLE agent will learn enough to play perfectly. 

In practice that is unlikely. The expected result is that as the FABLE agent learns, 

its performance will improve versus making choices at random. The theory regarding 

perfect agents that was given earlier serves to establish a ceiling on the performance 

that is possible for FABLE to achieve.

The results for the random versus random on the 3x3, 4x4, and 5x5 boards are
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Tic-Tac-Toe Random vs. Random 3x3

—♦—Xs Win
O's Win 

—Tie

Fig. 4.7; Results of Random versus Random on Tic-Tac-Toe 3x3.

found in table 4.3. Charts with the data points plotted have also been prepared and 

are found in figures 4.7, 4;8, and 4.9.

The results for the random data follow the expectations that were established 

during the theoretical analysis of the game. This can be seen by looking at each board 

size, determining the theoretical predictions for that board, and then comparing the 

actual result to those predictions. The 3x3 and 5x5 boards are cases where a is odd. 

Theory predicts that these boards should favor of X over O. The results show that 

for the 3x3 board, X wins 50.8% of the time while O wins 37.8%. For the 5x5 board 

it is 62.4% and 26.9% respectively. Both results support the theory that random play 

favors X in these cases. For the 4x4 board, the value of a is even. In this case theory 

predicts that X and O should have the same probability of winning. The results show 

that X wins with an average of 39.6% and O wins 38.2%. The standard deviations 

for both X and O put the difference between the averages to be much less than one
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Tab. 4.3: Results of Random versus Random on Tic-Tkc-Toe.

Results of Random Versus Random on Tic-Tac-Toe

Group 3x3 4x4 5x5

X 0 Tie X O Tie X O Tie

1 58 11 31 39 39 22 62 28 10

2 50 13 37 38 43 19 59 31 10

3 51 13 36 37 43 20 67 23 10

4 48 7 45 43 34 23 62 31 7

5 50 15 35 34 45 21 62 30 8

6 39 13 48 49 33 18 70 20 10

7 58 9 33 38 34 28 62 27 11

8 51 8 41 38 36 26 55 30 15

9 51 11 38 39 40 21 66 23 11

10 52 14 34 41 35 24 59 26 15

Average 50.8 11.4 37.8 39.6 38.2 22.2 62.4 26.9 10.7

Min 39 7 31 34 33 18 55 20 7

Max 58 15 48 49 45 28 70 31 15

a 5.31 2.67 5.39 4.06 4.39 3.12 4.35 3.84 2.58
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Tic-Tac-Toe Random vs. Random 4x4

Group

—♦—Xs Win

O's Win

—*■—Tie

Fig. 4.8: Results of Random versus Random on Tic-Tac-Toe 4x4.
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Tab. 4.4: Results of FABLE versus Random on Tic-Tac-Toe.

Results of FABLE Versus Random on Tic-Tac-Toe

Group 3x3 4x4 5x5

X 0 Tie X 0 Tie X O Tie

1 59 8 33 61 21 18 80 16 4

2 61 1 38 68 12 20 82 8 10

3 57 1 42 70 14 16 92 5 3

4 54 1 45 76 13 11 93 3 4

5 58 1 41 79 6 15 93 3 4

6 54 0 46 76 12 12 95 3 2

7 54 0 46 79 3 18 93 3 4

8 49 0 51 73 8 19 91 3 6

9 56 1 43 67 11 22 89 3 8

10 54 0 46 74 11 15 90 5 5

standard deviation, which supports the proposition that the odds of either winning 

are the same.

With the baseline performance for random agents established, we can now look 

at the data for when a FABLE agent plays as X against a random agent for 0. The 

results can be found in table 4.4. The charts are also available in figures 4.10, 4.11, 

and 4.12.

The results for FABLE as player X versus a random agent for player 0 are. very 

impressive on the 3x3 board. The data show that for this case, by the second set
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Tic-Tac-Toe FABLE vs. Random 3x3

Group

Fig. 4.10: Results of FABLE versus Random on Tic-Tac-Toe 3x3,

Tic-Tac-Toe FABLE vs. Random 4x4

Group

—•—Xs Win

O's Win
^*-719

Fig. 4.11: Results of FABLE versus Random on Tic-Tac-Toe 4x4.
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Tic-Tac-Toe FABLE vs. Random 5x5

Fig. 4.12: Results of FABLE versus Random on Tic-Tac-Toe 5x5.

of 100, player 0 never wins more than 1 game per 100 ever again. The drop in the 

average of player O winning is clearly the result of the FABLE agent learning how to 

block player O from winning. In fact, FABLE learned to play so well that player 0 

only won 1 of the last 500 games. As for the probability of player X winning, the data 

do not show any clear improvement. The predicted result for perfect play for X is to 

win only if player O makes a mistake. Perfect play will only result in a tie otherwise. 

The results for the last 500 games look very similar to this prediction, although not 

quite perfect. Due to this, it would appear that on the 3x3 board, FABLE learned to 

play at a level that is very close to perfect.

For the 4x4 board a significant shift in the distribution of game outcomes is appar­

ent within the first 100 games. The rate at which player X won during the first 100 

games was actually 5 standard deviations greater than the expected outcome for a 

random agent. Throughout the rest of the series, the rate at which X won continued 
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to show a slight upward trend. In addition, the ratio of wins for 0 to the number 

of ties showed a clear downward trend. This means that on the 4x4 board, the FA­

BLE agent learned how to increase the odds of X winning while also learning how to 

decrease the odds of 0 winning when X does not win.

For the 5x5 board the FABLE agent was able to improve the number of wins for 

X in the first set of 100 games to a level that is 4 standard deviations above the 

expected results for two random agents playing against each other. In addition to 

the large improvement over random play during the first 100 games, there is another 

surge in performance during the third set of 100 games. During the third set, the 

number of wins for X jumps to being greater than 6 standard deviations above the 

expected results for random play and then sustains that level of performance for the 

remainder of the data run.

Once the results for FABLE as player X against a random agent as player O were 

completed. Data was generated for the case where player X was random and player 

O was a FABLE agent. The results of this data run are found in table 4.5. As done 

in the previous cases, charts of the result for each of the board sizes have also been 

prepared and can be found in figures 4.13, 4.14, and 4.15.

The data for the 3x3 board of Random X versus FABLE O show the most con­

tinuous and consistent trends of any of the data runs for tic-tac-toe. In this case, an 

extremely clear upward trend for the rate at which O wins is seen for the entire data 

set with the exception of the last data point. The rate at which X wins shows a very 

clear downward trend that is mostly smooth. The rate at which a tie resulted showed 

no clear trend. Perfect play for O would result in every game either being a win for
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Tab. 4.5: Results of Random versus FABLE on Tic-Tac-Toe.

Results of Random Versus FABLE on Tic-Tac-Toe

Group 3x3 4x4 5x5

X 0 Tie X 0 Tie X O Tie

1 52 16 32 32 43 25 57 34 9

2 47 19 34 27 55 18 41 57 2

3 49 23 28 14 62 24 35 56 9

4 42 27 31 14 68 18 36 54 10

5 35 33 32 14 58 28 28 58 14

6 40 39 21 15 67 18 35 56 9

7 31 40 29 14 66 20 30 59 11

8 37 44 19 14 66 20 29 59 12

9 34 52 14 12 65 23 30 55 15

10 32 43 25 16 69 15 26 60 14
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Tic-Tac-Toe Random vs. FABLE 3x3

Group

—♦—Xs Win
—•—O’s Win
—Tie

Fig. 4.13: Results of Random versus FABLE on Tic-Tac-Toe 3x3.

Tic-Tac-Toe Random vs. FABLE 4x4

—Xs Win 

—•— O’s Win 

—Tie

Group

Fig. 4.14: Results of Random versus FABLE on Tic-Tac-Toe 4x4.
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0 or a tie. Since the rate at which X won showed a clear downward trend, it is safe 

to say that FABLE showed an increasing skill level as it played.

The 4x4 board for random X versus FABLE 0 shows an improving rate of O 

winning for the first 400 games. After that, there is no clear upward or downward 

trend for the rate at which O wins. There is a similar downward trend for the rate at 

which X wins which also appears to level off after the first 400 games. The win rates 

for X and O are very stable until the last set of 100 games. For the last data point, O 

wins the highest number of games seen during the entire data run. It is possible that 

this data point represents the beginning of another shift in the probabilities of the 

outcomes, but without more data it is impossible to draw any definitive conclusions.

For the 5x5 board with random X versus FABLE O, a pattern that is somewhat 

similar to the 4x4 board is seen. In this case, the performance gain at the beginning 

happens faster, but it also levels off sooner. Once again, the data show a leveling

82



Tic-Tac-Toe FABLE vs. FABLE 3x3

Fig. 4.16: Results of FABLE versus FABLE on Tic-Tac-Toc 3x3.

off for the win rates of X and 0 that are better than random but less than perfect. 

Interestingly, the last data point for the 5x5 is also one which shows a variation 

from the average values that might be indicative of FABLE having learned enough 

to cause another shift in the probabilities of the outcomes similar to the gain seen at 

the beginning. Despite that, the data point is not so far away from the established 

performance levels as to make it clear whether the increase is due to increased skill 

or luck.

With the data where a random agent plays as X against a FABLE agent as 0 

complete, we can now turn our attention to the last combination of agent types to be 

tested. For FABLE X versus FABLE O, the results for all 3 board sizes are found in 

table 4.6. The charts are found in figures 4.16, 4.17, and 4.18.

For the scenario where FABLE plays against FABLE it is hard to say what the 

expected results are. In this case, both FABLE agents will have access to the same
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Thb. 4.6: Results of FABLE versus FABLE on Tic-Tac-Toe.

Results of FABLE Versus FABLE on Tic-Tac-Toe

Group 3x3 4x4 5x5

X 0 Tie X O Tie X O Tie

1 48 13 39 62 14 24 87 9 4

2 48 2 50 70 11 19 91 7 2

3 50 0 50 74 12 14 93 4 3

4 66 0 34 68 14 18 86 8 6

5 63 0 37 63 22 15 85 8 7

6 63 0 37 73 13 14 87 3 10

7 60 0 40 67 19 14 81 14 5

8 64 0 36 61 30 9 90 5 5

9 62 0 38 68 20 12 87 6 7

10 58 0 42 62 16 22 92 6 2
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Tic-Tac-Toe FABLE vs. FABLE 4x4

—♦—Xs Win

-c-.O's Win

"He

Group

Fig. 4.17: Results of FABLE versus FABLE on Tic-Tac-Toe 4x4,

Tic-Tac-Toe FABLE vs. FABLE 5x5

Group

Fig. 4.18: Results of FABLE versus FABLE on Tic-Tac-Toe 5x5,.
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data and will both use the exact same algorithm for deciding what to do. This does 

not imply that both agents will have the same skill level, but they should both have 

at least the same capacity to increase in skill level.

The data for the 3x3 with FABLE versus FABLE show that the results for the 

first set of 100 are indistinguishable from a data point in the random versus random 

data. Following that first data point, the rate at which O wins quickly drops to 0. In 

fact, 0 wins none of the last 800 games. For the remainder of the test run, the rate 

at which X wins takes a jump initially, but appears to slowly wane thereafter. The 

trend at the end of the data run is that O never wins, while X wins at a decreasing 

rate. This corresponds to an increasing rate for the game resulting in a tie. By the 

end of the data run, the results look much more like the predictions of perfect play 

versus perfect play than the predictions of random versus random play.

The 4x4 board is very interesting. For this size board, the theory is that X and O 

should win with the same frequency when played randomly. For perfect agents, the 

expected result is for every game to end with a tie. In both extremes of skill level, 

the expected result is that X and O are evenly matched. That is why it is interesting 

that the results show that X wins about 70% of the time for the entire data run. 

Granted, there appears to be a slight downward trend in the rate at which X wins. 

If that downward trend were to continue long enough, the results would eventually 

resemble perfect versus perfect play, but it is hard to say if that would indeed occur. 

It is also unclear why X appears to gain such a strong advantage in the first place.

For the 5x5 board, the results show a very clear bias in favor of X. The only way 

to see that both agents are learning in this case is to compare the results to those of 
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FABLE X versus random 0. For FABLE X versus random O, 0 won about 3% of 

the time. For FABLE X versus FABLE O, 0 maintains a win rate that is closer to 

7%. This is indicative that FABLE 0 is doing better than random 0. From theory, 

whether or not perfect play for X can force a win for X is still an open question. 

Since the result of perfect play is unknown, it is difficult to say if the final results of 

FABLE X versus FABLE O are showing any tendency towards perfection, but either 

way, both agents do show the ability to perform better than random.

In summary, the data for the various combinations of random and FABLE agents 

on tic-tac-toe support the proposition that FABLE does learn over time. Clear im­

provements in capability are seen within the first *100 games in all cases except one. 

Even for this exception, it is still likely that improvements in skill were occurring 

since it was a FABLE X versus FABLE 0 game. It is highly likely that the increase 

in skill for FABLE X was simply getting offset by the increase in skill for FABLE 

0., and the absolute skill levels were still low enough that the results still appeared 

similar to random.

As far as the pattern of learning is concerned, some of the data runs showed im­

provements in performance that were more or less continuous. Other data runs had 

a tendency to show occasional spurts in performance that are indicative of step-wise 

learning. The occasionally non-continuous changes in performance are not inconsis­

tent with the way FABLE learns. It is possible that the spurts occur after a game 

wherein a critical transition is learned enables a permanent improvement in skill there­

after. The inability to determine any general equation form that the performance 

should follow made it difficult to apply regression techniques to more rigorously an­
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alyze the results. Despite this lack, the change in performance when a FABLE agent 

was used compared with the result for a random agent still makes it very clear that 

FABLE does learn, and that it can do so within a tractable amount of time for the 

game of tic-tac-toe.

4.4 Checkers

4.4.1 Game Theory

While the measure of complexity used for minesweeper and tic-tac-toe was to use 

the size of the game tree, this measure is not useful in the case of checkers. The 

reason is that checkers is a game in which a potentially limitless number of moves 

may occur due to the possibility of board positions repeating during the same game. 

The result is to make the size of the game tree infinite. This issue can technically be 

mitigated by the introduction of new rules that force the game to end, but such rules 

are not official rules. The official rules do have some methods for forcing a draw to 

be declared so that the game ends, but those rules involve the judgement of a human 

referee. The end result is that checkers, at least when played by official rules, has an 

game tree size that is infinite. As a substitute, the space complexity of checkers is 

analyzed instead.

Space Complexity

Calculating the exact space complexity of checkers is a difficult problem to solve, but 

there are methods to estimate the complexity. In “Solving the Game of Checkers” 

Jonathan Schaeffer and Robert Lake derive a formula to estimate the space complexity.
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of an 8x8 sized board [19], They note that although the formula does not give an 

answer that is perfectly accurate, it is a good approximation.

Since FABLE will be tested on boards of various sizes, I found it necessary to 

take their formula and generalize it. Their formula contains 6 variables, 5 of which 

are described as follows: “Let b be the number of black checkers, w the number of 

white checkers, B the number of black kings, W the number of white kings and f the 

number of black checkers on the first rank.” [19] They describe the formula as being 

the way to find “[t]he number of positions having n or fewer pieces on the board.” So 

the purpose of n is actually contained in the description of what the formula does. 

Their formula is found in equation (4.10).

min(n,12) min(n,12)~b min(n— b— B,12) min(n—&—B,12) min(b,4)

52 IL 52 52 52 Num(b,B,w,W,/)-l,
fe=0 B=G w=0 w=o /=o

where
( 24 A <28 - (b - /)\ /32 - b - w\ (32 - b - w - B\

(410)

As we can see, their formula has several constants in it. Their explanation for these 

constants is that “12 is the maximum number of pieces per side, 32 is the number of 

squares on the board that can be occupied, 28 is the number of squares that it is legal 

to place a checker on (checkers become kings on the last rank) and 4 is the number 

of squares on the black’s first rank (these squares cannot hold any white checkers).” 

[19]

Generalization of this formula is done by taking the constants which were calcu­
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lated based on an 8x8 board, and re-writing them as variables based on the dimensions 

of the board. For a NxM board, let N be the number of rows (or ranks) and M be 

the number of columns (or files). The first constant to convert is 12, “the maximum 

number of pieces per side.” [19] The maximum number of pieces per side is the same 

as the number of pieces per side at the start of the game. Due to how the FABLE 

game engine starts the game, this is the same as the number of squares that can be 

occupied per row, times the number of rows starting from the bottom, until the row 

preceding the middle row is reached. Let us call this p. The next constant to consider 

is 32. It is “the number of squares on the board that can be occupied.” [19] Let us 

call this q. Next we have 28, which “is the number of squares that it is legal to place 

a checker on.” [19] This is the same as the squares that can be occupied for the entire 

board minus the squares that can be occupied for a single row. Let us call this r. 

Last we have the constant 4, which “is the number of squares on the black’s first 

rank.” [19] Let us call this s. I have given equations that express each of these new 

variables in terms of N and M in equations (4.11), (4.12), (4.13), and (4.14).

In addition to the constants that were, explained, there is one additional constant 

in the equation which needs to be replaced in terms of N and M. This is 24. No 

direct explanation for the origin of this constant was offered by Schaeffer and Lake. 

However, looking at the derivation of the equation, it can be determined what the 

24 represents. It is the number of squares that the black checkers which are not on 

the first rank can occupy. For the 8x8 board this is 24. To see this, consider that 

there are 32 squares available in total. Of those, the 4 squares on the first rank are 

excluded by definition, and the 4 squares on the last rank are excluded. The reason 
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for excluding the latter is because once a regular checker reaches the last rank, it 

becomes a king. Let us call this t, the equation for which can be found in equation

(4.15) .

Substituting these values into equation (4.10), I define a formula that finds the 

space complexity checkers on a NxM sized board. This equation is found in equation

(4.16) . I have used this formula to find the approximate space complexities for various 

board sizes. These values can be found in table 4.7. It is important to note that the 

table only includes even values for N and M. This is because the generalized equation 

is derived based on the way the FABLE game engine starts a game. Since the game 

engine only accepts even numbers, the equation is only valid for even numbers.

N *M
2

N*M
2

(4-11) 

q =

N *M M

M

Mt =

(4-12)

(4-13)

(4.14)

(4-15)
min(n,p) min(n,p)—b min(n—b—Btp) min(n—b—B,p) min(b,s)

E E' E EE Num(6,B,w,IV,/) - 1.
6=0 B=0 w=0 W=0 f=0

where

Num(b,B,w,W,f) =

(4-16)
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Tab. 4.7: Approximate Space Complexity for Various Sizes of Checkers.

Approximate Space Complexity for Checkers on a NxM Board

4 6 8

4 6087 854727 130449919

6 10354431 63838220543 421609358479359

8 11616684159 2353833522293759 500995484682338672639

Probability of Winning

The game of checkers is so complex that I have been unable to find any tractable 

method of calculating the expected probabilities of outcomes for random agents from 

an ab initio perspective. I am also unaware of any literature dealing with determining 

these values in a theoretical sense. For this reason, the establishing of what the 

performance of two random agents playing against other looks like will be determined 

purely empirically in the data results section.

The problem of determining perfect play for checkers was an open problem for 

a very long time. In “The Complexity of Checkers on an N*N Board”, Fraenkel et 

al. establish that the problem of determining perfect play is PSPACE-complete and 

EXPTIME-complete. Despite these results, in 2007 Schaeffer et al weakly solved the 

problem of checkers on an 8x8 board with the publication of “Checkers is Solved” [18], 

To solve it, they wrote a program called Chinook that ran for 18 years on an average 

of 50 desktop computers at any time. The result found that perfect play on both 

sides results in a tie. It is important to note that checkers was only weakly solved. 

Which means that perfect play is only known for the scenario where it is followed 
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from the very beginning of the game. Perfect play from an arbitrary position is still 

an open question for an 8x8 board.

A search for scientific work showing the results of perfect play for smaller checker 

board sizes has found nothing. Since the 8x8 board has been solved, the smaller 

boards should technically be tractable, but still required too much computing power 

to be tractable for the resources available to me. This is especially the case since most 

computing resources available to me during the writing of this thesis were dedicated 

to running FABLE, not to proving properties of game theory.

4.4.2 Data Results

Data for checkers was generated using FABLE to create 4 separate data runs of 

random red versus random white, FABLE red versus random white, random red 

versus FABLE white, and FABLE red versus FABLE white. In each case 1000 games 

were played, and the results were grouped into sets of 100 games each according to 

the order in which they were played. The data was generated for only two board 

sizes, the 4x4 and 6x6.

The inherently open-ended nature of checkers resulted in games that lasted for a 

very large number of turns. This was especially the case for the 6x6. Even though' 

the amount of time spent on each individual turn was certainly a reasonable amount 

of time. In fact, there is a parameter within FABLE that determines how much time 

the top level agent gives the heuristic agent processes to respond. This parameter 

was set to 1 minute, which is the same time constraint that is given to human players 

in official tournament play [21]. The responses always came back within less than the
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Fig. 4.19; Results of Random versus Random on Checkers 4x4.

allotted time. Despite the relatively good performance for individual turns, the sheer 

length of each game made generating data for an 8x8 board a task which will be left 

for future research.

Since there are no theoretical predictions for what the results of random play should 

look like, the only measure available for random play is the empirical data that was 

generated during the data runs. This data will be the only benchmark available to 

judge what improvement FABLE was able to make over random play. These results 

are found in table 4.8. The charts for the individual board sizes are found in figures 

4.19 and 4.20.

The random data suggest that on a 4x4 board, the red player has an advantage. 

Both the rate at which red wins and the rate at which white wins show a standard 

deviation of about 4%. With respective win rates of 60.8% to 38.9%, the distance 

between the averages is clearly about 5 standard deviation. A difference this large
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Results of Random Versus Random on Checkers
Tab, 4.8: Results of Random versus Random on Checkers.

Group 4x4 6x6

Red Wins White Wins Tie Red Wins White Wins Tie

1 55 45 0 50 40 10

2 68 32 0 43 49 8

3 62 38 0 43 51 6

4 65 35 0 56 36 8

5 56 42 2 51 42 7

6 62 38 0 46 47 7

7 56 43 1 37 59 4

8 65 35 0 48 44 8

9 58 42 0 37 59 4

10 - 61 39 0 54 42 4

Average 60.8 38.9 0.3 46.5 46.9 6.6

Min 55 32. 0 37 36 4

Max 68 45 2 56 59 10

a 4.44 4.12 0.67 6.55 7.72 2.07
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Fig. 4.20: Results of Random versus Random on Checkers 6x6.

makes it unlikely that the apparent advantage to red was merely due to luck.

For the 6x6 board the win rates for red and white are 46.5% and 46.9% with a 

standard deviation for both that is greater than 6%. This strongly suggests that on 

a 6x6 board, neither player has an advantage over the other, or that if there is an 

advantage, it is not as strong as was the case on 4x4.

Next we will examine the data for FABLE red versus random white. These results 

are found in table 4.9. The charts for the individual board sizes are found in figures 

4.21 and 4.22.

For FABLE red versus random white, the 4x4 board data clearly establish a per­

formance level that is significantly better than random versus random. By the first 

data point, which corresponds to the first 100 games, the FABLE agent has already 

increased the win rate to 90%. No sustained improvement or reduction in capability 

is observed throughout the remainder of the data although the degree of variation
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Tab. 4.9: Results of FABLE versus Random on Checkers.

Results of FABLE Versus Random on Checkers

Group 4x4 6x6

Red Wins White Wins Tie Red Wins White Wins Tie

1 90 8 2 53 39 8

2 90 10 0 56 34 10

3 92 8 0 61 32 7

4 90 9 1 65 30 5

5 94 6 0 58 36 6

6 90 9 1 68 28 4

7 87 13 0 55 33 12

8 94 5 1 60 36 4

9 88 11 1 53 40 7

10 94 5 1 53 40 7
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Checkers FABLE vs. Random 4x4

Red Wins 
-•-White Wins 
-*-Tie

Fig. 4.21: Results of FABLE versus Random on Checkers 4x4.

Checkers FABLE vs. Random 6x6

—Red Wins
-•- White Wins
—a—Tie

Fig. 4.22: Results of FABLE versus Random on Checkers 6x6.

98



appears to be increasing towards the end.

On the 6x6 board, FABLE red versus random, white appears to follow a sort of bell 

curve. Throughout the entire data run the FABLE agent maintains a win rate that is 

higher than the random data, which indicates some learning occurred. What is hard 

to understand is why performance climbs and then drops. It would be interesting to 

see what happens if a longer data run is permitted.

Now we will examine the data for random red versus FABLE white. These results 

are found in table 4.10. The charts for the individual board sizes are found in figures 

4.23 and 4.24.

Starting with the 4x4 board, the results of random red versus FABLE white look 

very much like the inverse of the results for FABLE red versus random white. The 

primary difference is that with FABLE as white, the win rate hovers around 95% 

compare to a little over 90% with FABLE as-red. The more interesting observation
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Tab. 4.10: Results of Random versus FABLE on Checkers.

Results of Random Versus FABLE on Checkers

Group 4x4 6x6

Red Wins White Wins Tie Red Wins White Wins Tie

1 9 91 0 27 69 4

2 2 95 3 33 59 8

3 5 94 1 30 63 7

4 . 3 96 1 41 55 4

5 5 94 1 36 63 1

6 4 95 1 35 63 2

7 8 92 0 32 59 9

8 3 96 1 39 55 6

9 1 99 0 27 67 6

10 3 97 0 32 65 3
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Fig. 4.24: Results of Random versus FABLE on Checkers 6x6.

is that during the random testing, it was seen that the 4x4 appears to strongly favor 

red. Despite that finding, FABLE white was able to achieve a performance that was 

even better than FABLE red. This suggests while a 4x4 board may favor red when 

played randomly, when played intelligently it may be that it does not.

The 6x6 board for random red versus FABLE white shows a clear increase in the 

win rate for white over purely random play which does establish that some learning 

did occur. The data here though are just as hard to understand as the data for the 

case where FABLE was red and random was white. In one, the performance climbs 

and then drops, in the other it drops and then climbs back up. In both cases the 

win rate for FABLE remains clearly higher than purely random play, but I have no 

explanation for why the performance changes direction during the middle of the data 

run. Even stranger is that the peak and trough both occur during the fifth and sixth 

data points.
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Tab. 4.11: Results of FABLE versus FABLE on Checkers.

Results of FABLE Versus FABLE on Checkers

Group 4x4 6x6

Red Wins White Wins Tie Red Wins White Wins Tie

1 5 95 0 43 44 13

2 8 92 0 48 44 8

3 4 96 0 39 51 10

4 4 95 1 42 41 17

5 6 94 0 45 43 12

6 5 95 0 38 53 9

7 5 95 0 44 43 13

8 7 93 0 43 49 8

9 5 95 0 39 50 11

10 10 90 0 47 37 16

Moving on to the results for FABLE red versus FABLE white, we can find the 

table in 4.11. The charts are in figure 4.25 and 4.26.

Looking at the results of the data for the 4x4, we can see that FABLE red versus 

FABLE white is almost impossible to distinguish from the results of random red 

versus FABLE white. This makes it appear that on a 4x4 board random play favors 

red, but when played more intelligently it favors white.

The results for FABLE red versus FABLE white for the 6x6 are similar to the 

results for random versus random. In both cases the data points oscillate back and
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Checkers FABLE vs. FABLE 4x4

Group

Red Wins 
White Wins

Fig. 4.25: Results of FABLE versus FABLE on Checkers 4x4.

Checkers FABLE vs. FABLE 6x6

Group
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White Wins

—a—Tie

Fig. 4.26: Results of FABLE versus FABLE on Checkers 6x6.
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forth between which wins more often, red or white. The difference between the result 

for FABLE and random though is that the results have a higher consistency. In 

addition, the rate at which the game ends in a tie is much higher for FABLE than 

for random. The rate of a tie occurring also shows signs that it may be starting to 

increase towards the end of the data run. If so, it may be that on a 6x6 board, the 

result of perfect play is a tie, just as it is on an 8x8 board.

In all cases, the data do show that FABLE is capable of learning enough about 

checkers within the first 100 games to make a significant change to the distribution 

of wins for red and white. As far as the probability of a game ending in a tie, the 

only case where a significant change occurred was in the case of FABLE red versus 

FABLE white on the 6x6 board, which showed a clearly higher rate of ties compared 

to any of the other test cases.

4.5 Summary

In this chapter, the actual results of running FABLE with the purpose of learning
I

how to play 3 different games was conducted. In each case FABLE began with no 

prior knowledge of the problem. For each game, FABLE showed an ability to learn 

how to play at a level that is clearly better than random, although for each task 

the rate Of learning took a different form. On minesweeper, the learning followed a 

clear saturation growth pattern. For tic-tac-toe the data appeared to follow a growth 

pattern in places, but it also appeared to show occasional spurts in performance 

followed by periods of little change. The data for checkers on the 4x4 indicate that a 

very rapid1 growth rate in performance compared to random within the first 100 games 
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with no clear improvement or degradation in performance afterwards. For checkers 

on the 6x6, the data are hard to interpret other than to say that it is at least clear 

that FABLE consistently outperforms random selection.
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5. CONCLUSION

5.1 Introduction

This chapter will discuss the conclusions of the thesis. Ideas regarding future work 

will be presented, and a summary of the work will finish this thesis.

5.2 Conclusion

FABLE was created with the goal of making a learning engine where acquired knowl­

edge is stored in the form of a FA. The FA model built by FABLE is then used to 

evaluate decisions with the goal of influencing outcomes towards a desired goal state. 

A constraint was added that this must be done in at most polynomial time. To 

achieve this goal, 4 heuristics were created with the purpose of building and evaluat­

ing FA m,odels of a problem. These are the observed state heuristic, nearest neighbor 

heuristic, locality heuristic, and the rotationally invariant heuristic. It was hypoth­

esized that a properly designed learning engine of this type should be able to learn 

to play a number of board games without any prior knowledge of the games. This is 

due to the fact that many board games consist of clear start states, have clear rules 

governing the transition from one game state to the next, and clear end states. To 

evaluate if FABLE is indeed capable of attaining these goals, it was tested on the 

board games of minesweeper, tic-tac-toe, and checkers. The tests were done by first 

106



determining the results of random play on each game and then doing the same for 

FABLE. Improvement in performance was measured by comparing the actual game 

outcomes for FABLE with the results for random play to see if FABLE was able to 

influence the outcomes towards its goal state(s).

In the case of minesweeper, test cases were conducted on 3x3, 4x4, and 5x5 size 

grids. In each case, statistically significant improvements compared with playing 

at random were observed. For the 3x3 grid, it was further demonstrated that per­

formance continued to improve until it reached the point where it was statistically 

indistinguishable from playing minesweeper perfectly. To determine if the same can 

be said for the 4x4 would require that the expected result of playing minesweeper 

perfectly on a 4x4 grid be calculated. For the 5x5, the performance improved on an 

exponential growth saturation curve which is similar to the curve for the 3x3 and the 

4x4.

In the case of tic-tac-toe, FABLE was tested on 3x3, 4x4, and 5x5 boards. The 

rules were modified from those of standard tic-tac-toe such that instead of the game 

ending whenever a player completes 3 in a row, the completion of 3 in a row would 

instead award 1 point. The winner was determined by seeing which player had the 

most points at the end. For this variant of tic-tac-toe, FABLE showed performance 

improvements that were sufficient to distinguish from the results of random selection 

within the first 100 games for every test that was conducted. The improvements in 

performance over time for this game were harder to characterize than in minesweeper, 

but in general the improvements appeared to follow two basic patterns. The first was 

consistent upward growth similar to the saturation curve seen in minesweeper. The 
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second was step-wise growth where the performance level would appear to show no 

significant change, then make a noticeable improvement, then level off again before 

making another improvement. It is possible that these occasional steps in performance 

occurred after the FA model gains a critical transition that makes a difference in future 

decision making.

Checkers was tested on a 4x4 and a 6x6 board. The only clear conclusion for 

checkers is that FABLE shows a clear improvement over making decisions at random 

after less than 100 games. After those first 100 games there was no clear pattern other 

than that FABLE continued to exhibit better performance than making decisions at 

random.

In addition to the empirical data that was collected, some formulas regarding the 

complexity of the games being studied were derived. In particular, either the game 

tree size or the space complexity was analyzed for each game. For minesweeper, 

formulas were derived for finding the upper and lower bounds of the game tree size. 

For checkers, the formula developed by Jonathan Schaeffer and Robert Lake to find 

the space complexity of checkers on an 8x8 board [19] was generalized to NxM boards. 

The generalization was done with the constraint that both the value of N and the 

value of M must be even numbers.

The significance of the results of this thesis are that it has been established that a 

FABLE agent was able to learn to play each game at a level better than random play 

with no prior knowledge of the game. Furthermore, this learning occurred without the 

need to write any specialized code for the learning algorithms for any of the particular 

games. Since none of the code related to learning was specific to these games, it is 
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expected that FABLE would be able to learn to play other games without adding 

any new learning algorithms. The level of performance that FABLE would achieve 

for any specific game is likely to vary from one game to the next, just as it varied 

between minesweeper, tic-tac-toe, and checkers.

Overall, this was an interesting endeavor since most research conducted with the 

goal of automatically building FA’s is focused on the ability to learn a target FA, 

or in other words, the goal of the research is to develop the FA itself. For FABLE, 

the creation of the FA was used as a means of facilitating the making of intelligent 

decisions while playing board games. That is, for FABLE, the learning of FA is a 

means to'achieving an end, not the end itself. It is likely that the automatic, building 

of FA models of problems could be used to improve outcomes compared to random 

decisions, for other problems besides board games.

5.3 Future Work

One idea that would be beneficial for future work would be to conduct longer data 

runs for tic-tac-toe and checkers. The length of the data runs contained in this 

thesis were sufficient to establish that FABLE did learn at least some aspects of these 

games, but the data runs were of insufficient length to establish what the ultimate 

performance of FABLE would be.

What I actually plan to do for future work is to continue to find additional problems 

for FABLE to learn. Whenever a problem that is possible to model by an FA and 

has a known pattern to it is presented to FABLE and FABLE proves incapable of 

discovering the pattern, the question will be to ask what type of reasoning would allow 
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that pattern to be detected. From there, a heuristic can be devised that is designed 

to look for that type of pattern. As a rule, the new heuristic should be designed to 

look for the pattern in the most general sense possible while strictly adhering to rule 

that it must be tractable. In this way, new types of inference for different types of 

problems will be added to FABLE’s capabilities.

If adding new heuristics proves to be a successful strategy for increasing the general 

problem solving abilities of FABLE, another problem will arise. A growing number 

of heuristics will require an increasing amount of processing power to run them all 

simultaneously. To mitigate this, a future version of FABLE could include improving 

the top level agent so that it can measure the quality of the results from individual 

heuristics. It is likely that the heuristics that are most beneficial will be different 

from one problem to the next. Once the heuristics are evaluated, the top level agent 

could be given the ability to turn individual heuristics on and off. There are many 

possible strategies that could be used for making decisions as to which heuristics to 

turn off and on. If done right, this improvement to FABLE would not add any new 

learning capabilities, but would allow actual performance to be affected minimally 

while potentially reducing total computing resources consumed significantly.

It is my conjecture that at some point, the library of available heuristics would 

include enough different reasoning skills that more problems that can be handled 

by an FA would not require creating additional heuristics to solve efficiently. Of 

course, there is always the possibility that there will be a classes of problems that 

have not been considered that require different reasoning processes to solve than those 

encapsulated within any of the existing heuristics, but when this occurs, it should be 
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possible to create a heuristic that encapsulates that reasoning process, decreasing the 

likelihood of encountering another gap in the future.
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