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Abstract

In this thesis I studied the existence, uniqueness, and quenching behavior of the 

solution to the degenerate equation

xqut - uxx - xpf(u), in Q,

subject to the initial condition

u(x, 0) = 0 for 0 < x < a,

and the second boundary conditions as follows:

^(0, t) = 0 = ux(a, £), for 0 < t < T.

Here, 0 < T < oo, a > 0, and Q = (0, a) x (0, T). It is assumed that p and q are any 
non-negative real numbers and f > 0, f' > 0, f" > 0, and lirnu^c- f(u) = oo for 
some positive constant c. This study shows that quenching occurs in the interval 

[0, a] when p = q. Otherwise, quenching occurs only at the boundary {0} x (0,T) 

or {a} x (0,T) depending on p > q or p < q. If p > then quenching occurs at 
* x = a and if p < q then quenching occurs at x = 0. The Mean Value Theorem and

the Maximum Principle are widely used throughout this study. The statements of 

these theorems are given in Appendix B.
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Chapter 1

Introduction

Let p and q be any non-negative real numbers and consider the degenerate 

equation

xgut - uxx = xpf(u) in (0, a) x (0, T), (1-1)

subject to the initial conditions

u(x, 0) = 0, for 0 < x < a,

and second boundary conditions as follows

vc(0,£) = 0 = ux(a,t), for 0 < t < T

Here, it is assumed that a > 0, 0 < T < oo, f > 0, f' > 0, f" > 0, and 

lim^c-J^u) = oo for some constant c. Let D = (0,a), Q = D x (0,T), Ti = 

{0} x (0,T), and T2 = {a} x (0,T). Let Lu = xqut — uxx, then equation (1.1) can 

be written as

Lu ~ xpf(u) in Q. (1-2)

The solution u is said to quench if limi_/r-inaxo<a;<a'u(z, £) = c.

In chapter 2, I gave a proof of the comparison theorem. This theorem, together 

with the Mean Value Theorem and the Maximum Principle, are frequently referred 
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to in this study. I showed the existence of the solution to problem (1.1) and its 

unique properties. In chapter 3, I showed the conditions under which quenching 

occurs at each of the boundaries rx and r2. Finally, I showed, in chapter 4, that 

complete quenching occurs when p = q.

Statements of theorems and definitions of some important terms are given in 

the Appendix.
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Chapter 2

Existence and Uniqueness of the
Solution

2.1 The Comparison Theorem

Since the comparison theorem will be widely used in the thesis, we will start by 

stating this theorem and giving its proof. We will then prove that the solution to 

problem (1.1) is unique and show its properties. We will also show that problem 

(1.1) has, for a given t, an upper solution which is dependent on the function f and 

constants p, q, and a. We will prove the local existence of the solution (Lemma 

2.5) and then show global existence of the solution (Theorem 2.6) until quenching 

occurs.

The following theorem is similar to theorem 1 by C. Y. Chan and H. Liu in 

[ [CL01]]

Theorem 2.1. (The Comparison Theorem) For any r G (0, Tj, and any function 

B(x,t) bounded on D x [0,r], if

(L - xpB)u > 0; in D x (0, r],

u(x,0) > o, on D,

ux(Q,t) < 0 and ux(a,t) > 0 for 0 <t <r.

(2-1)
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Figure 2.1: Sketch of the piecewise function g(x) G C2([0,a])

then u > 0 on D x [0, r).

Proof. Let m = maxpXfOr]|B|, and 5 = 

that
th

0<~P~6 + l<l. Let

9&) = <
TTL > \ 9 / \ i

-y(a-ru) -(a-s) + l,

be a positive number such

0 < x < d,

6 < x < a — 5,

a — 5 < x < a,

where h(x) is a positive (7°° function less than 1 and chosen such that g(x) is in 

C2(D). Therefore, g(x) is defined in [0, a] and its sketch is shown in figure 2.1.

Note: h(x) is a positive C°° function means that h(x) is a positive infinitely 

differentiable function.

Let g be a positive constant, and let

w(x,t) = u(x,t) + r]el3tg(x).
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Note: The preceding expression can also be written without indicating the variables 

as shown below. Throughout this study, equations and expressions are written with 

or without the variables whenever it is convenient.

w = u + ge^g,

= Ux + gePg',

where ft is a positive constant to be determined. Since we have the second boundary 

condition, «a.(0,t) = ux(a,t) — 0. Also, g\W) = —1, and gf(a) = 1.

WjcfO, t) = ux(0,t)+ge^g'(0),

= -gd3*, (2.3)

< 0,

and

wx(a,t) = ux(a,t) + ge$tgf(a),

= ge^, (2.4)

> 0.

Then

(L — xpB)w — Lw — xpBw. (2.5)

But

Lw = xqwt - wxx, (2.6)

and w = u 4- gge^, then

wt = ut + gftgedt, (2.7)

and

= Hxx 4* gd3 g . (2.8)

Using equations (2.6), (2.7), and (2.8), equation (2.5) becomes

(L — xpB)w = xqut 4- gftgxqe^1 — uxx — ge^g” — xpBu — xpBgge^1

= xqUt - uxx — xpBu 4- gftgxqel3t — xpBgge^ — ge9tq".
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Since Lu — xqut — uxx, then

(L - xpB)w, = Lu- xpBu + (r}0xqe^t - xpBrie^)g - pe^g"

= (L — xpB)u + ,ge$t[(0xq — xpB)g — #"].

But it is given in equation (2.1) that (L — xpB)u > 0. We can drop (L — xpB)u 

from equation (2.9) in order to minimize its right hand side. This will result in the 

following:

(L — xpB)w > gel3t[(j3xq — xpB)g — gn}

= xqr]0ge^t — rje&g" — xpBT]ge^t

= 'ge/3t(xq0g — g" — xpBg)

— r)e^t[(xq0 — xpB)g — p"].

d d2Observe that q-igge^ = v/lge131 and -ry'Qge^1 = qe^g1'- This implies that 
dt dx2

x^fige^ — rje^g" — xpBr;gef3t = L^ge^) — xpB(7]ge^) 

= (L — xpB)r]gel3t.

Therefore,

(L — xpB)w > (L — xpB)rjgel3t.

Let us chose 0 > max

Below, we show that

apm + maxs<x<a_sh"
8qmin5<x<a_5h

m(ap — 1)

(L — xpB)w > 0. (2.10)

Note that h(x) in equation (2.2) is infinitely differentiable and that g(x) is C2(D).

Then, at 5, 
g(5) = h(S), 

g’(6) = h'{S) = 5-1,

and 9f'W ~ A"(5) = ~m>
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In the region [0,6], g" = —m. Since rjeP1 > 0 and (L — xpB)u > 0, we will have 

to show in equation (2.9) that (J3xg — xpB)g — g" > 0 for equation (2.10) to be 

satisfied. Now
(6xq — xpB)g — g,f = (@xg — xpB)g + m

> —xpBg + m.

(/3xg ~xpB)g-g,f > 0.

In the region (6, a — 6), we can write

(/3xg — xpB)g — g" = /3gxg — g'xpB — g"

> p6gm.ins<x<a-5g - ap(max5<x<a_5B)(Tnaxs<x<a_5g) 

-max5<a:<a_5s".

But in this region, min5<a:<a_5p = min5<a:<o_^h, max5<a;<a_5^ = 1, maxJ<a;<a_aB = 

max0<x<a|S[ = m, and max5<x<a_i|p,,| = max5<;c<£I_5|/i"|.

Therefore,

(J3xg - xpB)g - grf > 36qmins<x<a~5h - ap(max5<a;<a_5|B|) - max5<x<a_5h"

= p6gxmns<x<a-5h - apm - max5<x<a_sh,r

> 0.

In the region [a — 6, a], we also have

(J3xg — xpB)g — g" = flgxg — gxpB — g!t

> (3(a — b)grmna~&<x<ag - ap(maxo_(j<a;<oB)(maxa„5<a:<ap) 

maxa_ $<x<a9 •

But in this region, min^-^^ = g(a - 6), maxa_<5<;c<n<7 = 1, maxa_5<x<aB = 

max0<x<a|B| = m, and g" = -m.
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Therefore,

Let

G

> 0.

Now, we will show that w > 0 on D x [0, r]. Suppose w < 0 somewhere on 

D x [0, r], then the set = {t : w(x,t) < 0 for some x G D] is non-empty. 

t = inf z^. Since w(x, 0) > 0, we have 0 <t <r. Suppose there exist some x 

such that w(x,t) = 0. If x = 0, then, from equation (2.3), we have wx(0, t) 

But

D

0.<

>0

m r w(®,t)-w(0,i)
wx(0,i) = hmx_0+--------- —------- .

U
With w(0,t) = 0 and w(x,t) > 0 we have wz(0,t) > 0. This implies that 

wx(0tty > 0. This is a contradiction which shows that x 0.

Now, suppose that x — a, then w(a,t) = 0, and from equation (2.4), we have 

wx(a,f) > 0. But

a — x
, r w(a,t) - w(x,f)wx(a,t) = hmz^a-—

With w(a, t) = 0 and w(x, t) > 0 we have

iim__ < 0
a — x

Therefore, 0 < wx(a, t) < 0. This is a contradiction which also shows that x a.

Therefore, x G (0, a). On the other hand, since w attains its local minimum at 

(x, i), then wxx(x,t) > 0. Also, wfx.t) < 0, hence xqwt(x,t) < 0. But

(L — xpB)w(x,ty > 0.

Therefore,

(L — xpB)w(x,t)

xqwt(x,t)

= Lw(x, t) — xpBw(x} t)

= xqwfx,t) — wxx(x,t) — xpBw(x,t),

= (L — xpB)w(x,t) + wxx(x,t)4-xpBw(x,t).



9

Since t) > 0 and xpBw(x,t) = 0, then

xqwt(x,f) > (L — xpB)w(x,f).

But xq > 0 and wt(x,t) < 0 which implies that xqwt(x,t) < 0.

Therefore,

0 > xqwt(x,t) > (L — xpB)w(x,t) > 0.

This is a contradiction which proves that w > 0 in D x [0,r].

From w = u + r/ge^‘, thus u = w — rige^. As » 0+, u —» w, therefore, u > 0.

Thus, the theorem is proved.

□

2.2 Uniqueness and Properties of the Solution

The following lemma and its proof are similar to Lemma 2.2 of [Dya08].

Lemma 2.2. The problem (1-1) has, at most, one solution u. The solution has the 

following properties:

i. u> 0 in D x (0,T);

ii. u is a strictly increasing function oft for all x G D.

Proof. Need to show that u is at most unique. Assume that there are two distinct 

solutions, Ui and u2, to the problem (1.1). Let y = ui — u2 and let z = u2 — u± 

such that z = — y. Since ui and u2 are solutions to the problem, then Lui — 

xquit - ulxx = xpf(u1) and Lu2 = xqu2t - u2xx = xpf(u2). Therefore,

%quit = uljM +rcp/(u1),

4 ui(x, 0) = 0,

k ^(0,t) = 0 = ulx(a,t),

(2-11)



Subtracting equation (2.12) from equation (2.11), we have

xq(ult-u2t) = ulxx~u2xx + xp(f(ui) - /(u2)),

< wi(a;,0)-u2(®>0) = 0,
[ ^u(0,i)-u2l(0,t) = 0 = ulx(a,t) — u2x(a,t).

By the Mean Value Theorem [Lay], f(ui)—f(u2) = (ui~u2)f,(fi') with £ e [ui, u2]. 

Therefore,
f xqyt = yxx + afyflg),

< y(x,t) = 0, (2.13)

— 0 — yx(a,t).

Equation (2.13) satisfies theorem 2.1 with B(x,t) = therefore, y > 0 in

D.

Subtracting equation (2.11) from equation (2.12), we have

xq(u2t-ult) = + ^(/(wz) ~ /(«i)),

< u2(x, 0) - ui(x, 0) = 0,

< u2x(0,t)-ulx(0,t) = 0 = u2x(a,t)-ulx(a,t).

Again by the Mean Value Theorem [Lay], f(u2) — /(ui) = («2 — Ui)f,(C') with 

C e [ui, w2). Therefore,

f xqZt = zxx + xpzf'(C),
j M = 0, (2.14)

[ ^(0,t) = 0 = zx(a}t).

Equation (2.14) satisfies theorem 2.1 with B(x,t) = fr(C(x,t)), therefore z > 0 in 

D.

We already had y > 0. With z > 0 and z = —y, which implies that — y > 0. The
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only possible conclusion is that y = 0, which implies that ui = u2.

(i): We are going to show that u > 0 in D x (0,T). Let y = u — 0. Since u is 

a solution, then
tixx ’ f — 0]

u(x,0) = 0, (2.15)

^a;(0,/) — 0 — ux((i,i),

and we know that /(0) > 0 for x G D, therefore,

0-0-a*/(0) < 0,
0 = 0, (2.16)

0 = 0 = 0.

Subtracting equation (2.16) from equation (2.15), we have

xqut - uxx - xp(f(u) ~ f(0)) > 0,

u(x, 0) = 0,

k ^(0,/) = 0 = ux(a,t).

By the Mean Value Theorem [Lay],

xgyt~ yxx - xpff(T])y > 0, for some p(x,t) G [0,u].
< yfeO) = 0, (2.17)

. yx(0,t) = 0 = yx(a}t).

Equation (2.17) satisfies theorem 2.1 with /'(??) = B. Therefore, y > 0.

If y = 0, then by the theorem 12 from Appendix B, we will have, from equation 

(2-17),

0 = xqyt - yxx - xpf(rf)y > 0.

This is a contradiction, which proves that y > 0 in D.

Let us consider the boundary, x = 0 and x = a.

Suppose y attains its minimum value zero at x = 0 or x = a. By the parabolic 
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version of Hopf’s Lemma [Lemma 7 in Appendix A], yx(0,t) > 0 and yx(a,t) < 0.

This contradiction shows that u > 0 on D.

(ii): For any h G (0,T), let be defined in = (0,a) x (0,T — h) by

MM) == u(x, t + h) and let y — -■ u.

Since Uh and u satisfy problem ( 1.1), we write

f xquht - uhxx - xpf(uh) = o, in

< uh(x, 0) = u(x, h), on D,
[ u^(0,t) = 0 = Uhx(a,t), 0 <t <T - h

also

I xqu — uxx - xpf(u) > 0, in Q,

< u(x,0) = 0, on D,
1 ux(0,t) = 0 = MM), 0 <t <T.

(2-18)

(2.19)

From part (i) above we showed that u > 0 in D. Therefore, u(x, h) > 0 for all 

xeD. This implies that u(x, h) — u(x, 0) > 0.

Subtracting equation (2.19) from (2.18), we have

xq(uh- u) - (uhxx-uxx) - xp{f(uh) ~ f(u)) = 0,

< Uh(x, 0) — u(x, 0) > 0,

. uhx(0,t) - = 0 = uhx(a,t) — ux(a,t).

By the Mean Value Theorem, f(uh) — f(u) — for some between Uh and u.

Therefore,

f xqyt - yxx - xpf'(q)y = 0, in

< y(z,0) > 0, in D,
I Vs(0,t) = 0 = yx(a,t), 0 <t <T - h.

for some < between and u. By Theorem 2.1, y > 0. If y — 0 at some interior 

point (x3, t3) G (0,a) x (0,T — h), then by the strong maximum principle y = 0 in 

(0, a) x (0, i3]. This contradicts the initial condition y(x, 0) > 0 on D. Therefore, 

y > 0 at any point in (0, a). If y = 0 at some point, say (0, t), then by the parabolic 
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version of Hopf’s Lemma [Lemma 7 in Appendix B], yx(ff t) > 0. Similarly, if y = 0 

at some point (a,t), then yx^t) < 0. These contradict yx(0, t) = 0 = yx{a,t), 

respectively. Thus, u is a strictly increasing function of t for x 6 D.

□

2.3 Construction of an Upper Solution

The following lemma and its proof were adopted from [Dya08].

Lemma 2.3. There exist some positive constants to (< T) and cE (0, c) such that 

the problem (1.1) has an upper solution p(x, t) G C2,1([0, a] x [0, to]), € (0,c]

and p depends on f, a, p, and q.

Let us define some constants that will be used in the proof of this theorem.

Definition 2.4. Let us choose constants m > 0, 0 < 7 < min 

so that

and K > m

+ /(0))) <
0 < —(l/2)72 — 7 + m < m,

+ /(0))) > 1 + 7(0),
Ka”(l + /(0)) < c.

(2.20)

m is sufficiently small such that the growth of f is less than 1 when u varies from 

0 to map(j + /(0)).

Let 0 < e < 7 and Dc = (g, a).

Proof. We will consider the following problem:

Luc = xpf(u£) inDex(0,to],

ue(x, 0) = 0 on De,

uCx(e, t) = 0 = u£x(a, t) for 0 < t < t0.

(2.21)
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Let us construct an upper solution p(x,t) G C2,1 x (D x [0,io]) for all where 

c < 7. Let

12 1—^x — x + m,

h(x),

—|(a — x)2 — (a — a) + m,

0 < ir < 7,

7 < x < a — y, 

a — y < x < a, 

where h(x) is a positive C°° function chosen such that 0(x) is in C2(D) and
A

max7<a;<a_7h(a;) < m.

Note that, for 0 < x < 7, 0'(x) — —x — 1, 0'(x) < 0 and 0'(O) = —1.

For a — y < x < a, 0'(x) = — (a — x) + 1 and 0'(a) = 1. Also, max(0(ir)) = m and 
mino<a;<7^(^) = ~r72 — 7 + m. Since f is continuous, there exist ti such that the 

initial-value problem

?(t)=(1+ma^<:y|e"l):y(XT), r(o)=«”(i+/(o)),
7?(min7<x<a6’)

has a unique solution for 0 < t < ti-

Observe that r(t) is an increasing function because r'(t) > 0. Since t(0) = 

np(l + /(0)), it follows from equation (2.20) that < 1 + /(0).

Now, let us choose some constant t0 in (0, ii] such that

/(mr(t0)) < l + /(0),

and

r(i0) < ap/(^(l + /(0)))<aV(^).

Let p(x,t) = 0(x)r(t). Then, for any x e [0,7] and t G (0,to], xq0r/ > 0 and 

0,r = —1 which is less than zero. Hence, pt — Or' and pxx = 0"r — —r. 

Therefore,

Lp - xpf(p) = xqpt - pxx ~ xpf(p)

= Xq0T( - T0,i — Xpf(0T).
(2.22)
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The expression xq0rf is greater than zero, so it can be ignored in order to minimize 

the right hand side of equation (2.22). Since 0" = — 1, then —t0" = r. Therefore,

Lp - xpf(p) >r~ xpf(0r)

Since r is an increasing function, it is minimum at t = 0 and maximum at t = tQ. 

Then, r(t) > r(0) and r(t) < r(i0) for 0 < t < t0. Therefore,

L/i - xpf(p) > r(0) - xpf{0(0)r(tQ)).

But t(0) = ap(l + /(0)) and 0(0) = m. Therefore,

Lp — xpf(p) > ap(l + /(0))-ap/(mT(to))
= ap[(l + /(O))-/(mr(to))].

But, /(mr(to)) < 1 + /(0) and ap > 0. Hence,

ap[(l + /(0)) - /(mr(t0))] > 0.

Therefore, Lp — xpf(p) > 0 for x e [0,7].

Now, for any x G (7,a] and t G (0, to], wc have

Lp - xpf(p) = xqpt - pxx - xpf(p)

= xqGrf — t0" — xpf(6r)

> 79 (mm7<x<o0)r'(t) - r(t0) (max7<x<a|0"|) - apf(0r)

> 79 (min7<x<a0) r'(t) - r(t0) (maxT<a!<a|0',|) - apf(mr)

> 79 (min7<a:<a0) r'(t) - r(t0) (maxy<x<a|0''|) - apf(Kr)

> 79 (min7<x<o0) rf(t) - apf(Kr) (max7<a.<o|0"|) - apf(Kr)

= 0.

From construction, p(xfty = 0(z)t(O) = 0(x)ap(l + /(0)) > 0(z) = u(x, 0) = 0. 

Mx(0)t) = 0'(O)TW < Mx(fl)t) = > 0, and p(x, t) G C2,1(D x [0, t]).
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Let y = p — ue. Then

Ly - xpff(d)y >

3/(0) >

^(M) <

0 in Dc x (0,i]o,

0,x G D.

0, yx(a,t) > 0, te[O,to], 

where d is between p and u, for all e < 7. By theorem 2.1, function y = p — u€ > 0. 

We also observe that by construction p(x,t) depends only on /, a, p, and q.

□

Lemma 2.5. Let 0 < 61 < e2 < 7 and suppose uei and ue2 are solutions of the 

problem (2.21) on (O,to). If p < q, then u£x < 0 and u£1 > u(2 in Qe2. If p > q} 

then u,x > 0 and uei < u,2 in Qe2.

Proof. We will prove the case where p > q.
Let 0 < c < min ^7, Let ue be a solution to the regular problem

f Lu, = xpfM, ' (z,t)GQe,

< u,(x,Q) = 0, on D„
[ wex(e,t) = Q = u,Ja,t), 9<t<T,

and u, is positive in D, x (0,T).

Now

(2.23)

Lu£ = xqu£t - u,xx = xpf(u,).

Differentiating with respect to x, we have

1

qxg X + xquetx - u€xxx = pxp 1f(ue) + xpuexfl(ue).

Observe that xqu,tx — u,xxx = Lu,x. Therefore,

Lu,x - xpu,j\u,x) = pxp^f(u,) - qxq~xu,t.

But, from xqu,t — u,xx = xpf(u,), we have

Uet = qf(u,)+x qu,xx, 

qx^u^ = qxp-lf(u£) + qx-lutxx.
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Therefore,

Lu^ - = pxp~lf(u£) - qxp~lf(uf) - qx^u£xx.

q &But qx~ru£xx — -~u£x. Therefore,
x ox

Lu‘x + X^XU‘x ~= (p-

Therefore, differentiating problem (2.23) with respect to x gives the following prob­

lem:

+ = (p-jJa’VW, (x,i)eD<x(o,r),

< u£x(x,ty = 0, on[e,a], (2-24)

u^,t) = 0 = u£x(a,t), 0<t<T.

Since e > 0, problem (2.24) is regular, i.e. x > 0. And f'(u£) is bounded on 

D£. Therefore, we can apply theorem 12 (The Strong Maximum Principle) to the 

problem to determine the nature of u£.

Now, if p > q, then (p — q)xp~1f(u£) > 0. Therefore, by theorem 12, u£x > 0 for 

(x,t) G I)£ x (0,T].

Similarly, if p < q, then (p — ^).Tp-1/('ue) < 0, and by theorem 12, u£x < 0 for 
(x,t) G A x (0,T].

However, u£x / 0 in D because if it is zero then, equation (2.24) will not hold.

Let 0 < 6i < e2 < 7 and p > q. Then u£lx(e2,t) > 0. Let y = u£l — u£2. u£i 

satisfies

Xqu£lt -U£lxx -xpf(u£l) = 0, 

wei(rr,0) = 0,

«eiJe2,i) > 0, 

u£lx(a,t) = 0,

in fie2, 

on [ci,a], 

0 < t < T, 

0 < t < T.

(2.25)
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Similarly, uC2 satisfies:

-xpf(ue2) = 0, in fiC2,

Ue2(z,0) = 0, on [e2,a],

U£2X (e2> £) “ 0, 0 < t < T,

^(M) = 0, 0 < t < T.

(2.26)

Subtracting equation (2.26) from equation (2.25), we have

xq(ueit -ue2t) - (u£lxx ~uC2xx) -xp(J(u£1) = 0,

uC1(x,0) - u£2(z,0) = 0, 

ueix(e2,t) - u£2x(e2,t) > 0,

Uelx(a,t) ~ u£2x(a,t) = 0,

in ^e2) 
on [€2, a], 

0 < t < T, 

0 < i < T.

f(u£l) - f(ui2) = /'(0i)(u€1 - u£2) in Qe2 for some G [u€1,u€2]. Therefore,

xqyt ~ yxx ~ = 0,
y(z,0) = 0, 

2Ac(^2> > 0j

yx(^t) = 0,

in f^e25 
for x G [e2, a], 
for 0 < t > T, 

for 0 < t > T.

Therefore, by the Comparison Theorem 2.1, y < 0.

If y = 0 at some interior point (x^t^) G (e2,a) x (0,T) then, by theorem 12 

(The Strong Maximum Principle), y — 0 in (e2, a) x (0, t4]. But yx(e2, t) — u€lx > 0. 

This is a contradiction. Therefore, if p > q, then ?zei < u£2 in QC2.

Similarly, if p < q, then u£1 > u€2 in Q.

□

2.4 Existence of the Solution

The proof of the following result is a modification of that of Lemma 2 of [CL01].

Theorem 2.6. Problem (1.1) has a classical solution u(x,t) G C([0,a] x [0, to]) O 

C2,1((0,al x [0, t0]).
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Proof. Equation (2.21) can be written as

ud ~ = (2.27)

i. The cylindrical domain of problem (2.27) is De x (0,T). Evidently, De is a 

bounded and connected domain in R. i.e., De = (c,ft). The boundary of De 

is 5D£ G C2+a, with 0 < a <1.

ii. Qe = Dcx [0, to]-

iii. From problem (2.21), we have

xquet -u£xx = xpf(uf), 

u£t-x~qu£xx = xp-qf(uf).

with x > 0, x~q and xp~q are Ca continuous.

iv. Since x > 0, then x~q > 0.

v. The boundary condition is ?g(.t,0) = 0 and 0 G C2+Oi.

vi. u£x(e,t) = 0 G C2+a(p£).

vii. Here u£x(e}t) = u£x(a,t) = 0.

The conclusion is that problem (2.27) satisfies [Wan97]’s hypothesis P and so, 
by [Wan97]’s theorem 3.1, this problem has a solution u£ G C2+a,1+§ ([e, a] x [0, to]). 

From lemma 2.5, which was proved previously, for 0 < ex < e2 < 7, if p < q then 
iiei > u(2 in Y2£2, while, if p > q then u£1 < u£2 in Qe2. Therefore, the sequence of 

u£s is monotone and bounded and so, there is a Lim£_>owc(x, i) for all (x,t) G Q 

and we call this limit u(x,t).

Now, we have to show that u(x,t) is a classical solution of problem (1.1).

For any point G (0,a) x (0,t0), there exist a set Q = [&i, d2] x [0, t7] C

D x [0, t0] such that Q < b± < xG < b2 < a and 0 < t6 < t7 < t0.
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From lemma 2.3, we have shown that p(x, t) is an upper solution to the problem 

(1.1). Therefore, the solution u£ < p and it is finite in Q.

Note: ||ue| |l- is the norm of u£ in space Lg as defined in [p. 154 [McO96]] and, 

also in Appendix A.

For p G £p(n), we may define

Therefore,

for 1 < q < oo.

Since u£(x) < p(x), then

But p is finite, so,

can write

is less than some constant ki. Therefore, we

Also,
1Hl,-{<2) = (J \xp~gf(ue\^dx

If p < q, the largest value of xp~q will be at x = b±. Therefore,
i
7 < (J

Since u£(x) < p(x), then

’/(ue)l’<fc) < bl 5 [ \f(ju\"dx
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If p > q, the largest value of xp q will be at x = 62. By analogy, we have

Therefore, for any constant q > 1 we have,

i.

INta < IImIImq) -

ii.

ll^-V(«e)llL,-«3) < 6i‘?II/WIIl5(q), if p < g-

111

x” < &2 ’ll/Wllw). ifp>g-

By [[LSU68], p 341-342, 351], ue G W<2,1(<?). By the embedding theorem [[LSU68], 
p 61 & 80], W-’l(Q) <—> Ha4(Q), with 0 < a < 1, and q >max|3, t 2 g|. Then 

IIMjfM(q) — ^2 for some positive constant Zc2.
Using the definition of Ha^2(Q) given on [p.155,156 [McO96]], we have

lkP Q/(«e)11H«.«/2(Q) oo

+

+ SUP(a:,Z)(:r,t)e(?

|a:p qf(ufx,t'))-xp qf(ue(x,t))\ 
| , Aq | Gf

[t — £|°72

Since ut is bounded above by p and xp q is bounded above by q (because p < q), 

then

l|zp V(Mlloo < 6? 9II/(m)IIoo

Now

o|zp qf(ufx,t))-xp qf(ufx,t))\ 
OUp(x,i)(x,t)eQ _ £|a

C„„ \xp~qf(u£(x,t)) - xp-qf(ue(x,t))+xp-qf(u£(x,t)} - xp-qf(ufx,t))\
— bWP(x,t)(x,t)€Q 1^, _ £|tt

O..„ M/MM) - xp-qf(u€(x,t))\

+ kUPfx.tX^tJCQ | _ ~iQ
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By the Mean Value Theorem [Lay], f(u,(x}t)) — f(u,(x,t)) — /'(£)(«e(a;,£) “ 

ue(^,t)), where £ e [u€(aJ,t),u,(x,t)]. Note that xp~q is bounded above by 5J-9 

when p < q. Therefore,
„ - /(ue(a,t))l
buP(x,t),(x,t)GQ _ -|a

- \xf-qf(u^x,ty) -
+ &uP(x,t),(a:,i)€Q |£ _ £|ct/2

aM/'CQIkCM) - Ue(x,t)l
bUP(x,t),(a&f0GQ
_ aM/pteCM)) - f(uc(x,t))

+ &UP(a:,t),(a:,i)6Q _ ^a/2

— ll/'WHoo*? ?l|Ue||/p».a/2(Q)-

n f(u,(x,t))\xp~q — Xp~q\ H ... n ,,SuP(».t),fei)eo  1 - H/(M)lloo||a:p-g|lH"(Q)-
LjL iV I

Putting all together, we have

iizp_v(«£)iIh->.«/2(q) < ^-’ii/wiioo+6i“’ii/'(/*)iiooii«£iiH..o/3(Q) ,2 28.
+ l|/(/Z)||oo||^P-’|[iro."/2(Q)-

Since the components on the right hand side of equation (2.28) are bounded, we 

can say that

ll^"’f(“£)llH».<>/2(<3) < k3,

for some positive k3 which is independent of c.

Going through the same analysis for p > q we have

||^"V(^)|I^.“/2(q) < ^3,

for some positive k3 which is also independent of e.

By theorem 10 of [LSU68], pp 351 and 352], we have

11*411 H2+a'>i+“/2(ne) — &4?

for some constant k.\ which is independent of e:

Since we have the space jf2+a,1+a/2i then, u(, u(x, u,xx, u,t are equicontinuous in Q. 
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By Ascoli-Arzela theorem [Eva98], ||w||h2+°‘.1+q/2(q) — &4 and the partial derivatives 
of u are the limits of the corresponding derivatives of ue. Thus, u(x,t) G C(D) 0 

^((O,^ x [0,to])-
□

2.5 Unboundedness of f(u)

If T is the supremum over to for which the problem (1.1) has a unique solution 

u(x, i) G C(D) P C2,1((0, a] x [0, t0]) so that u < c. Then, there is a unique solution 

u(x,t) G G(D x [O,/1)) n C2,1((0,a] x [0, T)), where u < c.

The proof of this theorem is similar to that in [Flo91].

Theorem 2.7. IfT < oo, then f(u) is unbounded in Q.

Proof. Let’s assume that f(u) is bounded above by some positive constant M in Q. 

From theorem 2.6, we know that there is a unique solution u < c where c is where 

the solution quenches. Since f(u) is bounded above, there exist a unique number 

c* > 0 such that u < c* < c.

We would like to show that f(u) can be continued into a time interval [0, T + ti] 
for some ti > 0. To do this, we want to show that the problem (1.1) has an upper 

solution p(x,t) G C72»1([0,a] x [T,T + ti]).

Let us chose constants as follows:

i. To small enough so that

/(0.5(c + c*)t0)<1 + /(0).

ii. K* large enough so that
T0 < ap/(K*T0).

- zz* c + c*in. K > —-—
2

r a i'] _ x* c + c*
iv. 0 < 7 < min < -, - > is such that —-—y2 — 7 H----- -— > c*.



24

Let

G(x) — <

K* 2 c + c*
------ x — x 4---------- 

2 2

(a-x) +
c + c*

2

0 < x < 7,

7 < x < a — 7, 

a — 7 < x < a.

(2.29)

Where h(x) is a C°° function chosen such that c* < h(x) < —-— and 0(x) is 

in C2(B).

Note that for 0 < x < 7, 6f(x) < 0, and 0'(O) = —K*.

A sketch of 0(x) is shown in fig 2.2. Since f is continuous, the initial-value problem

-f(t _T)= (aP/( ’̂lt^W)(max7<a:<a|^l + 1) 

7<7min5<;c<a0
T (0) = T0

has a unique solution for 0 < t < i2. Observe that r'(t) is positive, so, r(t) is an 

increasing function.

Let us chose ii in (O,^] small enough such that

/(0.5(c4- c*)f(ti)) < 1 + /(0), 
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and

f(*i) < apf(K*TQ)) < a?

Let fi(x, t) — §(x)r(t—T). Then, for any x G [0,7], and t G (T,T+t2], xq0Tl > 0 

and 0” = ~K* < 0. Therefore,

Lji - jixx-xpf(ji')

= xW' -fe" -xff(ef).

We have mino<x<5X90T' = 0 and maxQ<x<yT&" — f(0) because = — K*. There­

fore,
Ljl-xpf(fi) > 7Ct(0) -

> /<W(1 + /(0)) - aV(0-5(c + c*)f (t0)

= ap[K*(l + f(0)) - /(0.5(c + c*)r(t0)]

> 0.

For any x G (7, a], we have

L/i - xpf(fi) = xqfit - fixx - xpf(fi)
= xq§P -r§" -xpf(§r)

> 7p'r/(i)(min^<a:<o6') - f(max^<x<o|6f"|) - ap/(0.5(c + c*)f(t)).

But r(ii) < apf(K*f(t)) and since f is an increasing function and by definition of 

/C,f(0.5(c+C*)T(t))</(K*T(i)),

Ljj, - xpf(fi) > gqff(t - T)(miny<x<a§) - ap/(/<*T(io))max^<x<a|^j) - apf(K*r(tx))

= - T) - + IWC^W)]
79min^<a;<a0

= 0.

By theorem 2.1, p,(x, t) is an upper solution of u on D x [T, T 4- tx]. As in lemma

2.5 and theorem 2.6, it can be shown that the problem (2.1) has a unique solution 

u(x,t) G C(D x [0,T4-ti])nC2,1((0, a] x [0,T4-ix]). This contradicts the definition 

of T, and hence, the theorem is proved. □
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2.6 Influence of Constants p and q on ux(X)t)

This lemma and its proof are similar to Lemma 2.7 of [Dya08].

Lemma 2.8. For any {x,t) 6 Q, tfp> QI then ux(x,t) > 0, while ifp<q, then 

ux(x,t) < 0.

Proof. From lemma 2.5, we know that if p < q, then u£x < 0 in QC2 while if p > q, 

then u£x > 0 in Q£2. From lemma 2.6, a solution of problem (2.1) is u = lime^o'ue. 

Therefore, when p > q, ux > 0 and when p < q, ux < 0 in Qe2. We have, in Q

(L - xpf(u))ux = Lux - xpf'(u)ux,

= Xquxt-uxxx-xpf(u)ux.

But

xpf(u) = xQut - uxx. (2.30)

Differentiating both sides of equation (2.30) with respect to x, we have 

px^f^u) + xpf(u)ux = qx^Ut + xqutx ~ uxxx,

xpf'(u)ux = -pxp^f(u) + qx^Ut + xqutx ~ uxxx. 

Therefore,

As in the proof of Lemma 2.5, we obtain ux > 0 if p > q, while ux < 0 if p < q.

□
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Chapter 3

Quenching At The Boundary

The lemma and theorem in this chapter show that the solution quenches only 

at the boundaries. They are respectively adopted from lemma 3.1 and theorem 3.2 

of [Dya08],

Lemma 3.1. The following holds:

i. Let 0 < Xi < x2 < a. Let p > q and the positive number To <T be such that

t) > 0 in (fi, x2) x Then there is no quenching point in (xi,x2).

ii. Let 0 < x-l < x2 < a. Let p < q and the positive number To <T be such that 

ux(x, t) <0 in (xi,x2) x (Tq, T). Then there is no quenching point in (x\, x2).

Proof, (i) p> q: We will prove this part of the theorem by showing a contradic­

tion. Suppose that there exist some .Tq £ (^1^2) such that u quenches at x = a?o- 

By lemma 2.2, ut > 0. From lemma 2.8, lim^T?z(£,i) = c for xo < x < x2. For 

x() < x3 < X4 < x2, let

z(x, t) = ux(x, t) - eh(x) in (x3, xf) x (To, T),
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/ (3J _ 37^?) 7F 1
where h(x) = sin ( —-----=— I + 1, and e is a positive constant to be determined.

\ x4-x3 J

h = -------— cos —3----- z— .
X4-X3 \ X4-X3 J

h" = -KJ+YsinfcSlkY
\X4-X3J V x4 -X3 J

Zx = VXX ch .

dh dfh
Now, Lz = Lux — Leh and Leh = xpe—---- <:—■ Since h is only a function of x,

_ dt dx2

-— = 0, leaving us with Leh = From equation (2.31), Lux = xpf'(u)ux +
U>b CbJb
(p — q)xp~1f(u) — qx~ruxx- Therefore,

xpf'(u)ux + (p - q)xp~lf(u) - qx~luxx + eh",

qx~xu£X ~ qx~1eh/,

xpf'(u)ux - xpf'(u)eh.

Lz = 
q dz 
x dx 

and xpf'(u)z —

Therefore,

7T

Z - xpf(u)ux + (p - q)xp 1f(u) - qx 1uxx + eh"

+ qx~ruXx - qx^eh' - xpf'(u)ux + xpff(u)eh 
= —qx^eh! + xpf'eh + (p — q)xp~] f + eh".

MaxX3<x<xAQX-1ehf) = qx^e(Maxi3<x<X4hf) = qx^e ( „ _ ).
V;4 — S'3'

Since = 1, then xpf'eh > x^f'e. Since p > q, (p — g)xp_1/ > 0,

so, ignoring (p — q,)t7’“1/ will help minimize the expression. Minf3<x<£4ft" = 

— ( - % ] • Therefore,
VE4-Z3/

2' (3-1)

Since u —> c as t —> T in (£3, £4), there exist some > To such that
/ \ 2’

53(z4-£3)
(3.2)
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Since ux > 0, e can be chosen so small that z(x, Ti) > 0 for x 6 [£3, x4]. At x = x3, 

and at x = X4, z > 0. By the Maximum Principle, z > 0 in [x3, £4] x [7i,T). Thus

^(iE, t)

in [x3, x4] x pi, T).

Integrating the above inequality from x3 to.£4, we have

u(x<i,t) — u(x3,t) >

Ast —> T, the left hand side tends to c—c = 0 while the right hand side remains 

positive. This contradiction shows that there is no quenching point in (x4, x2)-

(ii) p < q: We will also prove this part of the theorem by showing a contra­

diction. Suppose that there exist some G (ah, x2) such that u quenches at x = x0. 

By lemma 2.2, ut > 0. From lemma 2.8, limt_>r^(a;)i) = c for xq < x < x2. For 

#0 < £3 < £4 < x2, let

z(x,t) = ux(x,t) - eh(x) in (x3,x4) x (7o,T),

where h(x) = sin
(x — X4)7F

X4 - xs
— 1, and e is a positive constant to be determined.

h' =

h" =

-^ac =

~ * dh dPh .
Now, Lz = Lux — Leh and Leh = xpe—---- e—Since h is only a function of x,

A dt dx2

= 0, leaving us with Leh = —From equation (2.31), Lux = xpf'(u)ux +
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(p~ q)xp 1f(u) — qx luxx. Therefore,

Lz = xpf(u)ux + (p- q)xp 1f(u) - qx luxx + eh", 
Qdz _x _x *

= qx uxx — qx leh,
x ax

and xpf(u)z = xpf,(u)ux — xpf/(u)eh.

Therefore,

+ xi ~ Z = xPf(u)u^ + (p - qjxP^ftu) — qx~xuxx + eh"

+ qx~1uxx - qx~fh! - xpf(u)ux 4- xpf(u)eh

= —qx~1eh' + xpffeh + (p — q)xp_1f + eh".

7TMax43<a;<fe4(-gx xehf) = qx3 xe ( , , 1.
\#4 -

A A

Since Max£3<x<$4/i = —1, then xpfeh < x3fe. Since p < q, 

so, ignoring (p — q)#p_7 will help maximize the expression, 
f a a • Therefore,
\a?4 - W

QX3 APfN-L. ___
A A *^3 J I / A /--------- (x4 - a

^7 /

(P - q)xp 7 < 0,

M&x&3<x<&4h" =

2‘ (3.3)
— 6

Since u —> c as t —> T in (£3,£4), there exist some T± > To such that

1 W
J[U)-xp x3(x4-x3)

2"

(3.4)

Since ux <0, e can be chosen small enough so that z(x, Tx) < 0 for x 6 [£3, xj. At 

x = £3, and at x = x4, z < 0. By the Maximum Principle, z < 0 in [x3, £4] x [Ti,T). 

Thus,
ux(x,t) < eh(x)

= esin - e in [£3,£4] x [TltT).
\ X4-Z3 J
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Integrating the above inequality from x3 to #4, we have

£4

U(x4,t) — u(x3,t) < — ex
- ±3

As t —> T, the left hand side tends to c—c = 0 while the right hand side remains 

negative. This contradiction shows that there is no quenching point in (#i,rc2)-

□

Theorem 3.2. Suppose u quenches,

i. Ifp>q,x~ais the only quenching point.

ii. If p < q, x = 0 is the only quenching point.

Proof, i) By lemma 2.8, ux > 0 in fl Therefore, x = a is a quenching point. By 

lemma 3.1, there is no quenching point in D. Therefore, x = 0 is not the quenching 

point.

ii) By lemma 2.8, ux < 0 in Q. Therefore, x = 0 is a quenching point. By lemma 

3.1, there is no quenching point in D. Therefore, x = a is not the quenching point.
□
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Chapter 4

Complete Quenching

The following theorem demonstrates that if p — q, then the solution quenches 

on D.

Theorem 4.1. Letp = q. Ifu quenches, then the quenching set for the solution of 

(2.1) is D.

Proof We had
Lu = xqUt — uxx = xpf(u) 

xqut = xp f (u) + uxx.

Since q = p, we have

Below, v(t) is a solution of the initial value problem;

< vt = /W
1 v(0) = 0.

in (4.1)

Then vx = 0 and, therefore, vxx = 0. xqvt — vxx = xpf(y) and xqvt = xpf(v) 4- vxx. 

But q = p, therefore vt = f(y). v is a unique solution of problem (2.1). Quenching 

of (4.1) occurs since limv_c- f(y) == oo for some constant c. Since the function does 

not depend on x, the quenching is on D.

□
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Example. Let us consider the Ordinary Differential Equation (ODE) with 

initial condition:

< 1 — u
I 40) = o,

where u is a function of the independent variable t. Let us solve for u using 

separation of variables method:
du _ 1
dt 1 — u’

(1 — u)du — dt.

Integrating both sides of the preceding equation will produce
1 2

u — -u = t + c.

The given initial condition was that u(0) = 0 which means that when t = 0, u is 0.

This implies that the constant of integration c is zero. Therefore 
1 9

u--u =

u2 — 2u -I- 2t = 0.

Solving for u using quadratic formula, we obtain

u = 1 - VI ~ 2t.

Now, at t = 0.5, u — 1, and u’ = oo. Therefore quenching occurs at t = 0.5. 

The function u(t) = 1 — \/l — 2t is the solution of the initial value problem 
f - j-1-.

and Ut = — becomes unbounded. Therefore, solution u(t) of ( 4.2) quenches in
1 — u

finite time t = 0.5 and the quenching set is [0, a].

? 1 — u
[ u(0) = 0.

On the other hand, u(t) formally satisfies the following problem:
xq

in (0,a) x (0,0.5),xqut — "I” H1 — u
(4-2)u(0, t) = 0 for any 0 < x < a,

0 — ux (a,t) for 0 < t < 0.5,

since ux(t) = 0, uxx(t) = 0, and xqut = uxx +
1

When t = 0.5. u(0.5) = 1 
1 - u ' ’
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Appendix A

1. Definitions of some basic function spaces.

Definition 1. Let X denote a real linear space. A mapping || 11 : X —> [0, oo) 

is called a norm if

(a) ||u + v|| < ||n|| + ||v|| for all u,v G X.

(b) ||Au|| = |A||[u|| for allu eX,Xe R.

(c) 11u11 = 0 if and only ifu = 0.

Hereafter we assume X is a normed linear space.

Definition 2. We say a sequence C X converges to u G X, written

uk—*■ u

if
lim ||ufc “u|| =0.K—*-00

Definition 3. (a) A sequence C X is called a Cauchy sequence

provided for each e > 0 there exists N > 0 such that

Ik — ui 11 < e for all k,l > N.

(b) X is complete if each Cauchy sequence in X converges; that is, whenever 

is a Cauchy sequence, there exists u G X such that 

converges to u.
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(c) A Banach space X is a complete, normed linear space.

is the Banach space consisting of all functions on Q with the norm

Also,

||u| |oo,n = vrainmax|?z|.

LqAQr) is the Banach space consisting of all functions on Qr with a finite 

norm

)

where q > 1 and r > 1.

Generalized derivatives are to be understood in the way that is now custom­

ary in the majority of papers on differential equations.

IV^(Q) for I integral is the Banach space consisting of all elements of £g(Q) 

having generalized derivatives of all forms up to order I inclusively, that are 

Qth-power summable on Q. The norm in is defined by the equality

IMI& = (A.l)
J=o

where

(A-2)
O')

The symbol D3X denotes any derivative of u(x) with respect to x of order j, 

while denotes summation over possible derivatives of u of order j. For 
domains with ’’not too bad” boundaries Wj(Q) coincides with the closure in 

norm ( A.l) of the set of all functions that are infinitely differentiable in Q. 
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This will be true, for example, for domains with piecewise-smooth boundaries. 

Sometimes is written in place of TV^(Q), particularly if the domain Q is 

subject to further refinement.

For u G LP(Q), we may define

||u||p = (/ |u(x)|pdx^ for 1 < p < oo.

We proceed to define the Holder spaces Hl(D) and HlM2(fl), where I is always 

a non-integral positive number.

Definition 4. Hl(D) is the Banach space whose elements are continuous 

functions u(x) in D having in D continuous derivatives up to order [Z] inclu­

sively and a finite value for the quantity

Bl
Mt’ = (AS + Z <“)d . (A.3)

3=0

where
(u)p’ = I“Id' =

Wi? = EwlW’- 
(AS = E(W) « ■

Equality (A.3) defines the norm |u|^ in

Definition 5. Hl,l/2(fl) is the Banach space of functions u(x,t) that are con­

tinuous in Q; together with all derivatives of the form for 2r + s < I,

and have a finite norm

KIrf = «l? + 5Mj=0 (A.4)
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where

(“)x,n2>

= |u|^ = masn|ti|.

= £(2r+s-J) P?£>rf ■

= W^+k<%2)-

— S(2r+s-|J|) Wt^>xu)x,n‘^ ■

= So<7-2r-s<2 (EtExu)t,Q2

2. Hopf’s Lemma

Definition 6. The inside Strong Sphere Property. Let P° = (x°,tQ) be a 

point on the boundary 951 of a domain Q. If there exists a closed ball B with 

center (x,t) such that B C Q, B n 9Q = {P0}, und if x x°, then we say 

that P° has the inside strong sphere property.

Lemma 7. Let the foregoing assumptions be satisfied and let P° have the 

inside strong sphere property. Assume further that, for some neighborhood V 

ofPQ, u < M in D(~\V. Then, for any non-tangential inward direction t, 

du .. . „ -— = lim inf—- <0 at P°.
dr Ar-^o J At

By a non-tangential inward direction we mean direction pointing from P° into 

the interior of the ball B whose boundary touches dD at P°.

3. Ascoli-Arzela Compactness Criterion Suppose that is a se­

quence of real-valued functions defined on Rn such that

|A(.t)| < M (k = l,...,x e Rn)

for some constant M, and the {A}^ are uniformly equicontinuous. Then 

there exist a subsequence {AjjJii C {A}£i and a continuous function f, 

such that

—* f uniformly on compact subsets of Rn.

To say the {A}£i are uniformly equicontinuous means that for each e > 0, 

there exists 3 > 0, such that |rc — y\ < 3 implies |AG'C) ~ A(z/)l < e> for 

x,y G Rn, k = 1,.....
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4. Other Definition.

Definition 8. p(x,t) € C2,1([0,a] x [0,7]) is an upper solution for problem 

( 1.1) if it satisfies the following:

Lp - xpf(p) > 0, in Q,
p(x,Q) > M,o), 0 < x < a,

< o, 0<t<T,

Px (&? i) > 0, 0 <t <T.
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Appendix B

1. The Mean Value Theorem

Theorem 9. (Mean Value Theorem) Let f be a continuous function on [a, 6] 
that is differentiable on (a, b). Then there exist at least one point c G (a, b) 

such that

f'(c) = o — a

2. The Maximum Principle

Consider the operator

in an (n + 1/dimensional domain Q with the following assumptions:

(a) L is parabolic in Q, i.e., for every (x, t) G Q and for any real vector C/0,

> 0;

(b) the coefficients of L are continuous functions in Q;

(c) c(x, t) < 0 in Q.

The functions u in (B.l) are always assumed to have two continuous x- 

derivatives and one continuous t—derivative in Q.

Definition 10. Notation. For any point P° = (£°,t°) in Q, we denote by 

S(P°) the set of all points Q in Q which can be connected to P° by a simple 
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continuous curve in Q along which the t— coordinate is nondecreasing from Q 

to PQ. By C(P°), we denote the component (in t = t°) ofQn{t = i0} which 

contains P°. Note that S(P°) D C(PQ).

Theorem 11. Let (2a), (2b), (2c) hold. If Lu > 0 (Lu < 0J in Q and if 

u has in D a positive maximum (negative minimum) which is attained at a 

point P°(x°, tQ), then u(P) = u(P°) for all P € S(P°).

3. Extensions of the Maximum Principle

Theorem 12. Let ( 2a), ( 2b) hold. If u < 0 (u > 0) in S(P°), Lu > 0 

(Lu < 0) in S(P°) and u(PQ) = 0, then u = 0 in S(P°).
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