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Abstract

In 1975 Kaplansky discussed “Ten conjectures on Hopf algebras” during a lec

ture at the University of Chicago. The first of these conjectures concerned freeness of 

a Hopf algebra as a module over a subHopfalgebra. Specifically he conjectured that “a 

Hopf algebra is free as a module over any subHopfalgebra”. Although this was quickly 

shown to be false in the infinite dimensional case, the finite dimensional case turned out 

to be true, and was proven 14 years later by Nichols and Zoeller. This result is the heart 

of this paper.

The Nichols-Zoeller freeness theorem states that a finite dimensional Hopf al

gebra is free as a module over any subHopfalgebra. We will prove this theorem, as well 

as the first significant generalization of this theorem, which was proven three years later. 

This generalization says that if the Hopf algebra is infinite dimensional, then the Hopf 

algebra is still free if the subHopfalgebra is finite dimensional and semisimple. We will 

also look at several other significant generalizations that have since been proven.
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Chapter 1

Introduction

In the last 20 years, the study of quantum physics has been revolutionized 

by the discovery of the connection between quantum groups and a previously obscure, 

abstract field of mathematics known as Hopf algebras. Mathematicians have known of 
Hopf algebras for over 60 years, but it was only with the connection to quantum groups 

that their application became apparent. Because of this connection, many advances in 

this field have become very important to several different disciplines in recent years. This 
paper will focus on the study of the ring theoretic properties of Hopf algebras.

The idea of a Hopf algebra originated in the work of Heinz Hopf. He discovered 
this structure in 1941 while working on homology and cohomology of topological groups 

[Hop41]. Several fundamental papers were written on the subject over the next two 

decades. Hopf algebras were developed in the context of topology in [Bor53] and [MM65], 

and then were developed in the context of algebraic geometry in [Car57] where they were 
called “hyperalgebras”. It wasn’t until 1969 that a text that gave a unifying development 

of the topic was published. It was during this year that Moss Sweedier published “Hopf 
Algebras”, which is still considered the standard text on the basics of the subject today.

After the publication of Sweedler’s book, mathematicians continued to develop 

the theory of Hopf algebras. In 1975 Irving Kaplansky stated ten conjectures on Hopf 

algebras during a lecture at the University of Chicago [Kap75]. Since then several of 

his conjectures have been settled, but the first one was the most important because 

of its extensive use. The first of these conjecture dealt with the relationship between 

Hopf algebras and their subHopfalgebras. It was already known that a Hopf algebra 
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was a module over any of its subHopfalgebras, but it was not known when it was a free 

module. Kaplansky conjectured that “A Hopf algebra is free as a module over any of its 

subHopfalgebras”. Immediately it was shown by Oberst and Schneider in [OS74] that 

this was not true in the infinite dimensional case. The finite diminsional case, however, 
remained open for 14 years until a former student of Kaplansky, Warren Nichols, along 

with one of his own students, M. Bettina Zoeller, settled the question in 1989. The 

celebrated Nichols-Zoeller theorem allowed researchers in Hopf algebras to deal with all 

finite dimensional Hopf algebras as free modules over any subHopfalebra of itself. As we 
will see in this paper, this is similar to working with a basis for a vector space, which 
simplifies many proofs and calculations within this field.

Proving the Nichols-Zoeller theorem will be the main focus of this paper. In 

order to accomplish this goal we must first go through a rigorous study of quite a few 

topics in algebra. Among these is a look at algebras, coalgebras, bialgebras, and Hopf 
algebras in Chapter 2. We will next study modules, comodules and Hopf modules in 

Chapter 3. After all this is done we will then be able to prove all the important theorems 
that are neccessary to prove the Nichols-Zoeller Theroem. We will end the paper by 
giving the proof of one generalization of the theorem that was also proven by Nichols 

and Zoeller (by this time Richmond). We will also state several other generalizations, as 
well as mentioning a few open questions that remain in this field. Thoughout this paper 
it will be assumed that the reader has an understanding of basic abstract algebra and 
linear algebra.
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Chapter 2

Algebras to Hopf Algebras

In the study of Hopf algebras, there are three key structures that we must 

understand before we can construct a Hopf algebra. In this chapter, we will begin with 

an algebra, dualize this to a coalgebra, and then discuss a combined structure called a 

bialgebra. From this point we can define a Hopf algebra based on a bialgebra. Even 
though the concepts introduced here may be unfamiliar in their full generality, we will 
see that there are many familiar sets which serve as good examples of each. This will 

be very helpful in building an understanding of these structures. We end the chapter 
with a discussion of a dual space to a vector space, and the duality relationships of the 
structures in this chapter.

2.1 Algebras

We start with an item that is used extensively throughout this field of study. 
A tensor product is similar to a cross product in that it makes pairs of elements from 
different sets, but that is where the similarities end. The basic difference is that a cross 
product is linear in both variables together, while a tensor product is linear in each 

variable separately.

Definition 2.1. Let V and W be k-vector spaces. The tensor product of V and W over 

k is the set {(v, w) | v € V, and w G IF} along with the following three relations:

1. («i,w) + = (vi+V2,w)
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2. (y, wi) + (v, W2) = (y, wj + W2)

3. a(y,w) = (ckv,w) = (y,aw)

This tensor product is denoted V && W.

It can be verified that the new set is also a vector space using the first and 
second properties for addition and the third property for scalar multiplication. When 

it is clear from the context what field we are talking about, we often drop k from the 

notation and simply write V ® W. There are a few subtleties in this definition that are 
easily missed. An important result of the third property is that zero does not come from 
just the combination of zero from each vector space. For any v 6 V and w G W then 

(0, w) = (y, 0) = (0,0). Thus zero only requires one side of the pair to be zero, but since 

we are working over a field there axe no zero divisors. Thus we cannot get zero from a 
single element that did not have zero on one side to begin with. This tells us that zero 
is actually an equivalence class of elements. It turns out that all elements of the tensors 

product are also an equivalence class of elements. This is due to the fact that often when 
we add in this new vector space, items do not combine because properties one and two 

only allow elements with one side equal to be added. However, a variety of elements can 

be simplified to the same representative element. Thus a general element of this new 

vector space is actually a finite formal sum of elements. We denote the equivalence class 
of elements [(u, w)] as v ® w. In set notation the new vector space can be rewritten as 
follows:

V® W = Vi ® Wi | vi € V, and G IT}
i

We are now ready to define our first important structure. There are many ways 
to define an algebra, but the use of tensor products and commutative diagrams facilitates 
the dualization of an algebra to a coalgebra in the next section.

Definition 2.2. Let A; be a field and A a ring and a vector space over k. Also let 

u : k —> A (the unit) and p : A ® A —> A (multiplication) be linear maps. (A, /y u) is an
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algebra if the following diagrams commute:

A ® A® A
id® p

A® A

p,®id

A® A------------- A

Each of these diagrams can be translated into one of the usual defining ex

pression of an algebra. The first diagram gives us associativity of multiplication, or 

(ab)c = a(bc) for all a,b,c£ A. The second diagram gives us the unit property, or that 
(ct • lyi)a = a(a • 1a). Depending on what we are doing, we may switch around from the 
diagram to the formulas as needed.

We also have a concept of algebra maps. We again use commutative diagrams 
in the definition in order to simplify dualization in the next section.

Definition 2.3. Let A and B be algebras, f : A —» B is an algebra map if the following 
diagrams commute:

Translating these diagrams into formulas we also get the usual defining char

acteristics of a map. These expressions are f(xy) = for all x,y £ A (i.e. f is

multiplicative) and /(1a) — 1b- This definition will be most important to our concept 
of a bialgebra later in the chapter.

Some important sets can be shown to be algebras with appropriate maps. Two 
familiar examples are fc[t] (polynomials over a field fc) with the usual polynomial multi
plication as p and usual scalar multiplication as u, and Mn (&) (n x n matrices over a field 
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k) with usual matrix multiplication as p and usual scalar multiplication as u. We also 
look at three not so familiar examples. These are polynomials over Mn(k) (O, 

the group algebra kG, and Sweedlers 4-dimensional Hopf algebra (Hi). We will look at 

these five examples in relationship to algebras, coalgebras, and bialgebras, with three of 

them also qualifying as Hopf algebras. Unless otherwise noted, any set we consider is 

assumed to be a vector space over an appropriate field k as well as a ring. Also for each 

set A we define the unit u : fc —* A as u(a) = a-1^ for all a G k.

Example 2.4. Consider the set of polynomials over a field k along with scalar multiplica
tion inherited from its vector space structure and usual polynomial multiplication. This 

set can be defined as k[t] = {| oti G fc}. We know already that this set is a vector 

space and a ring, and thus only need to show that the two algebra diagrams commute. 

We begin by taking general elements and chasing them around the first diagram.

i i,j

5? ® y? <*mtm ---------
i,j m i,j,m

The two paths yield the same result since multiplication in the field is associa

tive. We can now chase a general element around the second diagram. Note that this 
diagram has two independent branches, so we treat them seperately.

(.0 ■ hi!]) ® 52 ait'

Y^ai/3f
i

E/W
i
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On the left side, we start with the fact that l^j = 1&. This gives us 

= = Si (/?)<*$ ^ and, using the definition of scalar multi
plication, we have our desired equality. Similarly, the right side holds when we include 
associativity in k. We therefore have that (&[£],//, u) is an algebra. Also, since polynomial 

multiplication is always commutative, then fc[i] is a commutative algebra.

Example 2.5. Consider the nxn matrices over the field k, denoted Mn(fc). In terms 
of the standard basis {Eij}, where Ey is the matrix with 1 in the ijth position and 0 

everywhere else, we get Mn(k) = {• oiijEij | azj e &}. When considering Mn(k), 

it becomes easier to translate the algebra diagrams into equations, and then check for 
equality. The diagrams translate into the following two equalities.

(1) A(BC) = (AB)C 

Let A,BeMn(k).
(AB)C = ([%>,])[%•]

= Efc=l Oifc&AtfKctf]
= E(j=l(Z2/c=l aikbkg)cgj]

— Efc=l aik(£g=l bkgcgj)] 
= [%']E5=i bigcgj] 

~ [aij]([^j] [Cijj) 
= A(BC)

(2) (cd a) A = A(cd>i). Recall that lwn(fc) = I-

(al) A = (a[lii])[%'l

= [o!zz][av]
~ [a°zj]
= [flijOf]

= [ajj] (afljj])

= A(al)

Therefore, (Mn(k), [i,u) is an algebra. We consider commutativity by using two basis 

elements E^ and Ejk with i / j / k. EijEjk = E^ but EjkEij = 0. Thus Mn(k) is not 
commutative since matrix multiplication is not commutative.
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Example 2.6. We can combine the properties of the two previous sets to get a new 

set which is also an algebra. Let (7[Mn(fc)] = 1 1 < < n] be the set of
polynomial functions on the n2 commuting variables Xij where Xij (Em) = and 
XijXij = X$i. The second property eleminates the need for exponents in our notation, 

so a general element in O[Afn(fc)] would be where the index m indicates

which multiplicative combination of the variables we are dealing with. Using polynomial 

multiplication as in example 2.4, we can show that this is an algebra. We will not need 

the scalars since /z and u are linear. We begin by checking associativity.

eiix«®eiix«®eii*v —* eii^e^ii^
li(& id.

E"8n*«
E"4n^®En^ —-—■ E"Tpv

5* 
In each multiplication step we use the fact that the X^’s commute and that X^Xij = X2 
to get that for each two terms we multiply we get one of the original terms of the sum 
back. This gives us the coefficient (n2)2 = n4 for each term in the resulting product. 
Next we chase a general element around the second diagram.

eii^®/?

E/’EPv
Using the fact that It = lc»[jvfn(fc)] the definition of multiplication we 

see that the both sides are equal, and thus the second diagram commutes. Therefore 

(O[IWn(fc)], l^u) is an algebra. Just like in example 2.4, C/M/fc)] is commutative since 
polynomial multiplication over commuting variables is always commutative.
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Example 2.7. Let A; be a field and G be a group. Define a group algebra as the set of 

formal sums kG = {52^=1 ai9i \ ai k)9i G G}. kG is defined as a vector space with 
basis {g | g G G}, and is an algebra via multiplication defined over the finite formal sums 

as (52 ai9i)(HPjhj) = Hf^gihj aiPjf- We now need to show the two algebra diagrams 
commute. We begin by chasing general elements around the first diagram.

5 &i9i ® 5 ftj9j 0 5 Tm9m
i j m

id® fi Ctiif 0 'y
i h—gjQm

f~gi(gj9m)

*■ 5 Tmd
d~(j}igj )gm

By associativity in the field and in the group we have that the two paths are equivalent.

Now we chase a general element around the second diagram.

(0 • lfcG 0 52 ai9i

^P<*i9i
i

52 ai@9i
z

By definition of multiplication in kG the right side becomes oti9i(fi ■ 1&g) = 

52i at^9ilkG = 52/ ati3gi, and so the right side commutes. Similiarly on the left side 

we have £Y(/3 • lkG)&i9i ~ Hi 0ailkG9i = Hi0ai9i> and thus the right side commutes. 
Therefore (kG, //, u) is an algebra.

Whether or not kG is commutative depends on G itself. In fact kG is commu

tative iff G is an abelian group.

One reason this is an important set to use while building up the notation is that 

the Nichols-Zoeller theorem was first shown to be true in the specific case kG [NZ89b]. 
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Another reason will be seen in the next section when we describe what we call the 
group-like elements of a Hopf algebra.

Example 2.8. Sweedler first described the unique 4-dimensional Hopf algebra PI 4 
[Swe69]. It is the smallest non-commutative, non-cocommutative Hopf algebra. It is de

fined as #4 — A;{1,g, x, gx | g2 — 1, x2 — 0,xg = —gx} for any field k such that charfc 2. 

In terms of this notation, a general element of this set is ai 1 4- agg 4- axx + agxgx, or 

to simplify This allows us to define multiplication as follows:

( E( E
\h&{l,x,g,gx}

= ahafy

V=hf

We begin here by proving IP4 is an algebra. Chasing the second form of the general 
elements around the first diagram we get:

£ aoa ® £
&€ fl ,3,0,3®} eg {1,3,3,33}

ace
id® p 5? a^a

ag{ 1,3,3,03} e—bc
£

p®id

£ Wid ® 52 acc
d=ab

O<z

h—a(bc)

------------------------- ** /J (aaab)acf »-------------------- f^b)c

By associativity of k we know that the scalars are equal, so we only will need to check 

associativity of the sum of the basis elements in H4.

[(1 + g 4- x 4- gx)(l 4- g + x + gx)] (1 + g 4- x + gx)

= (l + g-\~x-[-gx + g + l-Fgx + x + x-gx + gx — x)(l 4- g 4- x + gx)

— (2 + 2g + 2x 4- 2gx)(l 4- g + x 4- gx)

= 2(1 4- g 4- x 4- grr)(l 4- g 4- x 4- gx) 

(1 4- g 4- x 4* gz)[(l 4- g 4- x 4- gx)(l 4- g 4- x 4- gx)]
= (1 4- g 4- x 4- #z)(l + g + x + gx + g + l + gx + x + x-gx + gx-x)

= (1 4- g 4- x 4- gx) (2 4- 2g 4- 2x 4- 2gx)

= 2(14- g + # + g#)(l 4-g + x-\~ gx)
Since the end results of the two equations are equal, then H4 is associative. Now we 
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chase the general element around the second diagram, beginning with the left branch. 
Here we use the first form of the general element.

and by definition of multiplication, we have

(/? ■ l)(ail + agg + axx + agxgx)

= /3ai 1 + (3agg 4- /3axx 4- &oigxgx

= /?(ail + agg 4- otxx + agxgx)
Which means the left side commutes. Similiarly, on the right side we have:

Again by definition of multiplication in H4, we have

(ail 4- agg + axx + agxgx)(j3 • 1)
— ai/31 4- ag/3g 4- axftx + a9Xflgx

— (3ai 1 + /3agg 4- /3axx 4- /3agxgx

= + agg 4- axx + agxgx)

Thus, both sides of the second diagram commute. Therefore, is an algebra.

H4 is not commutative since gx = —xg xg, unless char A: = 2.
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2.2 Coalgebras

The next important step we take is to dualize the idea of an algebra, thus 

defining what is called a coalgebra. Here we will see the usefulness of the diagrams we 

used to define an algebra as we define this new structure. Also at this stage tensor 
products become vitally important, since comultiplication A “reverses” multiplication 
and sends a general element to a tensor product of elements from the same set.

Definition 2.9. A coalgebra is a triple (C, A,e) with C a vector space and linear maps 

A : C —> C ® C (comultiplication) and e : C —> k (the counit) such that the following 
diagrams commute:

C®C

C®C —----r C®C®C
id® A

C
A

A A ® id

These diagrams can be translated into formulas. The first diagram is coassocia
tivity of A. In terms of functions we have that A® id = id® A. This gives us in terms of 

elements that if A(c) = EXi <k®ej, A(di) ~ and A(eJ = 52fc=i hik^Pik
then

fij ® 9ij ® = di ® hn* ® Pifa.

Unfortunately, this notation can become cumbersome when A is applied multiple times. 

Sweedler first introduced “sigma notation” for the application of A to address this prob

lem [Swe69]. In this notation, we denote A(c) = 52c(i) ® c(2)> where and C(2) are 
symbolic, and do not represent specific elements in C. Since A is coassociative, when 
we apply A again, it does not matter which of the two elements we apply it to. Thus we 

get Sc(i)(i) ® c(i)(2) ® c(2) = Sc(i) ®c(2)(1) ®c(2)(2)> anci so we may abbreviate and write 
52c(i) ® C(2) ® 0(3). When using this notation, we often even drop the parentheses and 
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write that A(c) = ci ® c2- This notation is useful when we are dealing with a general 
coalgebra. When dealing with a specific coalgebra for which A is specifically defined, we 
do not necessarily need this notation. This notation also allows us to write the formula 

for the second diagram as ^2s(ci)c2 = c = ^s(c2)ci.
We also need to dualize the idea of an algebra map. This is done in the same 

manner as with a coalgebra, by reversing the arrows of the original definition.

Definition 2.10. Let (<7,Ac,ec) and (-0, Ap,££>) be coalgebras, f : C —» D is a 
coalgebra map if the following diagrams commute:

We can also translate these into formulas as we did with the algebra map. The 

first diagram gives that X}/(ci) ® /(ca) — 52(/(c))i ® (/(c))2- The second diagram 
gives that £c(c) — Just as before, We will be examining our five example sets
(A?[t], Mn(k), kG, and Hf) in the context of a coalgebra. Each of these will
be shown to be a coalgebra with the appropriate maps.

Example 2.11. Consider fc[i] along with the maps A and e defined on basis elements 
of the standard basis and extended linearly and multiplicatively as follows:

A : k[t] —* fc[t] ® &[£] A(t) 
e : fc[t] —> k s(t) = 0

Since A is defined on t and extended linearly and multiplicatively, we only need to check 
coassociativity for the basis element t.
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A
t t®1+1®t

A A ® id

(£®l + l®t)®l + l®l®£

t ® 1 + 1 ® t------- * t®l®l + l®(t®l + l®t)
id® A

We can see that if we expand each result we get !®1®£ + £®1®1 + I®t®l. Thus the
first diagram commutes. Next, we chase a general element around the second diagram.

On the left we use the scalar property of the tensor product and the fact that 

e(t) = 0 to reduce the sum. Also, since e(ti — fc) = 0 except for when i = k, then only
the case when i = k is not zero. This reduces the sum to the following.

E * ® = E ® = E 1 ® ait* = 1 ® arf*

Thus the left side is equivalent. We can show by a similar argument that the right 

side is also equivalent, and so the second diagram commutes. Therefore (fc[t]> A,s) is a 

coalgebra. In general, if C is any coalgebra, and c G C such that A(c) =c®l+l®c 

then c is called a primitive element. The set of primitive elements in C is denoted P(C).

More generally, we can replace each occurrence of 1 with any other group-like element 

as defined later in example 2.14. In this case A(c) = c®^ + /i®cfor some g, h G G(C'), 
and c is called quasi-primitive. We denote the set of all such c as
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Example 2.12. Consider Mn(k) along with the maps A and £ which axe defined as 
follows on the standard basis elements and extended linearly and multiplicatively:

A : Mn(k) —> Mn(k) 0 Mn(k) A(Eij) = Eik ® Ekj

£ : Mn(k) -> k e(Eij) = 3^

We know that Mn(k) is a vector space, and since we have defined A and £ on basis 

elements extended linearly, they are linear on general elements. Thus, we only need to 

show co associativity and the counit property, i.e. that the coalgebra diagrams commute. 

Let A G Mn(k), In terms of the standard basis A = a-ijEij. Chasing this element 
around the first diagram we have:

dijEij ► aijEik ® E^j
i,j,k

A A (g> id

j Eip ® Epk (g) Ekj
i,3,k,P

&ijEik ® Ekj QijEik ® Ekm ® Emj
i,j,k

Now, ^2i,j,k,p aij^ip ® Epk ® Ekj = ^i,j,k,m aiJEik ® Ekm ® Emj, since p and m run over 
the same values. So the first diagram commutes, and Mn(k) is cocommutative. We chase
the same general element around the second diagram to verify the counit property.

ij,k
OtijEik ® Ekj

°^ij^{Eik) ® Ekj A

1 ® O^ijEij C^ijEij (g) 1
i,3

On the left hand side we have JL k etaijEng) (g) E^j- First, since £ is linear we can pull 

our otij out. This leaves us at JT j kaij£(Eik) ® Ekj. Next, by definition £(Elk) = 0
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when i f k, and thus all these terms in the sum drop out. What is left is when i = k, 
and in this case e(Eik) = 1- This (along with the scalar property of a tensor product) 

reduces the sum to 1 0 Ht,j aijEiL and thus the left side of the diagram commutes. By 
a similar argument on the right hand side, only the case when k = j survives, leaving 

Hi,j ® I, and thus the right hand side of the diagram commutes. Since both

diagrams commute, (Mn(k), A,e) is a coalgebra.

Example 2.13. When we proved (C?[Mn(fc)], u) was an algebra in example 2.6, we 

used the same maps as with k[t]. For its coalgebra structure we will use A and e similar 
to Mn(k}. Specifically we define A and e on the basis elements (extended linearly and 
multiplicatively) as follows:

A : O[M„(fc)] -> ® O[Mn(fc)] A(XV) = SL1 ** ®

e : O[M„(fc)] -» k epCij) = <5}

We start by chasing a base element around the first diagram to check coassociativity.

A

A

Checking the results we see that Hk^HpXip® Xpk) 0 X^j — Hk^-ik 0

(Hr-^km 0 Ymj), since p and r run over the same values. Thus (7[Mn(A;)] is coasso-
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ciative. Chasing the same basis element around the second diagram we have:

On the top left hand side we have ® By definition e(Xifc) = 0 when

i 0 k, and thus all these terms in the sum drop out. What is left is when i = fc, and 

in this case £(Xim) = 1. Because of this the sum reduces to 1 ® Xij, and thus the left 
side of the diagram commutes. By a similar argument on the right hand side, only the 

case when k = j survives, leaving X^ ® 1, and thus the right hand side of the diagram 
commutes. Since both diagrams commute, A,e) is a coalgebra.

Example 2.14. For kG we define the maps A and e on the basis elements as follows 
and extend linearly and multiplicatively.

A : kG —* kG ® kG A(g) — g®g
s : kG —> k e(g) = 1

Again, we already are given that kG is a vector space. We can then begin by checking 
that the first diagram commutes by chasing a basis element around the diagram.

A
9-------------- - g® g

A A ® id

(g®g)®g

9®g id® A g ® (g ® g)
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It is easy to see that these two paths are equal (since all three elements of the tensor 

product are the same), and thus the first diagram commutes. We then chase a general 
element around the second diagram.

On each side we need only the fact that s(g) = 1 for all g G G to see that 

this diagram commutes. Therefore, (kG,A,e) is a coalgebra. In general, if C is any 
coalgebra, then if A(c) = c® c we call c e C a group-like element. The set of group-like 

elements in C is denoted G(C). For kG the set of group-like elements is G(C) = G.

Example 2.15. For we define our maps asA(t?) = g ® g, A (a:) = j:®l + tjf®a:, 
s(g) — 1, and e(x) = 0. Again we extend linearly and multiplicatively. Note that 
comultiplication of x generalizes comultiplication for a quasi-primitive element. Chasing 

a the two basis elements g and x around the first diagram we check that it commutes.

A
g-------------- ► g®g

A A ® id

(g® g) ®g

9 ®9 . / 9 ® (9 ® 9)zd ® A
As in the previous example we need only the fact that e(g) = 1 for all g G G to see that 
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this diagram commutes. We next check coassociativity for x.

A
x------------------------------ x ® 1 + g ® x

A A ® id

(x ® 1 + g ® x) ® 1 + (g ® g) ® x

x®l-y g®x
id® A

rr®(l®l) + ^®(3;®l+5®ic)

We see that if we expand each tensor product using the additive properties of a tensor 

product we get + + from both paths. Since A is linear and
multiplicative, then coassociativity holds on a general element.

For the second diagram we only need to check the basis elements g, and x (since both 
maps are linear and multiplicative).

For the above diagrams we have that it commutes since e(g) = 1. We then check the 
second diagram for x G II4.
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Using the fact that s(.t) = 0, e(l) = 1, and s(g) = 1 we see that this diagram commutes. 

Since both A and e are both linear and multiplicative, we have that the second diagram 
commutes for a general element. Therefore (LZ4, A,ej is a coalgebra.
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2.3 Bialgebras

We have seen so far that a lot of sets qualify as both an algebra and a coalgebra. 
The next step is to unify these two structures with a compatibility condition. This helps 

us gain an understanding of how the two previous structures work together, and provides 
a powerful mechanism for working with these sets.

Definition 2.16. Let B be a vector space over k such that (B,pt,u) is an algebra and 

(B,A,e) is a coalgebra. (B, p, u, A, e) is a bialgebra if either of the following (equivalent) 
conditions holds:
1. A and e are algebra maps

2. // and u are coalgebra maps.

It would be prudent for us to prove that these two conditions are in fact equiv
alent.

Proof. This proof could be worked through formulaically, but we would find this to 

be very tedious, and difficult to understand. Fortunately we have another tool, the 

commutative diagrams. By using the diagrams from the definition of an algebra map 
(definition 2.3) and the definition of a coalgebra map (definition 2.10) the proof becomes 
easier and clearer.

Let a,b G B. We will be proving both directions of the equivalence of the 

statements simultaneously. We will start by looking at what the statement that A is an 
algebra map will give us. The diagram for the fact that A is multiplicative gives us the 
following.

ab-----—------ - 2^(ad)i ® («6)2

Thus we have that ai&i ® U2&2 = 52(a6)i ® (^2 whenever A is an algebra map. Now 
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looking at the statement that p is a coalgebra map, we get an interesting result.

/z
a®b----------------------------► ab

A

® (a6)2

7 (di ®bi)®(a,2® &2) --------- ► 2 Gl&l ® «2&2fl®p

We then have here that ® a^b^ = 52(a5)i ® (n&)2 whenever p is a coalgebra
map. This is exactly what we got from the last diagram. This tells us the first diagram 
commutes if and only if the second diagram commutes. For each of the other statements 

above, as we check the diagrams we will find a similar if and only if condition, which will 
then give us that statement 1) and 2) are equivalent. □

Before we move to our example sets we will prove one more proposition about 
the kernel of the counit. We will use this in two of our examples below.

Proposition 2.17. Let (C,A,e) be a coalgebra that is also a ring. If e is an algebra 
map, then keifs) is an ideal of C.

Proof. Let (C, A,e) be a coalgebra that is also a ring, and let e be an algebra map. By 
definition of an algebra map, if c, d G C then s(cd) = e(c)e(d) (i.e. e is multiplicative). 
Consider ker{s) = {c G C | e(c) = 0}. We show that fcer(s) is an ideal of C.
Let x G ker(s) and c G C. Then

s(xc) = e(x)e(c) = 0e(c) = 0

e(cx) = e(c)e(x) = e(c)0 = 0

Thus xc, ex G kerbs'), and so ker(s) is an ideal of C. □

We now investigate our five examples with our new definition. At this point we 
will lose one of our sets.
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Example 2.18. For A;[i] we use the way we defined A and e to show it is a bialgebra. 
In example 2.11, we defined A and e on basis elements and extended linearly and mul

tiplicatively, Thus both A and e are multiplicative. A consequence of these maps being 

multiplicative is that A(l) = 1 and (e, 1) = 1 (since A(t) = A(t - 1) = A(i)A(l), and 
similarly for e). These combined give us that A and s are algebra maps, and therefore 

fc[t] is a, bialgebra.

Example 2.19. With Mn(k) we quickly run into a problem. The maps A and e we 

defined in example 2.12 are not algebra maps, since neither of them preserves 1 (the 

n x n identity matrix):

=A(5Xi^«)

= 1X1 IXlUfc ® Eki) / I ® I

= e(lXi^)
= 1X1^)
= IXi 1
= 71 / 1

This might lead us to believe we have simply used the wrong maps when showing Mn(k) 

is a coalgebra, but it turns out the problem is in the fact that Mn(k) is a simple ring (a 
ring with only trivial ideals). Because of this Mn(k) can never be a bialgebra. We prove 
this by contradiction.

Proof Assume there exists e : Mn(kf) —> k such that e is an algebra map. Then by 
proposition 2.17 we have that fcer(ej is an ideal of Mn(k). We also know that Mn(k) is 
a simple ring [FD93]. This tells us that {0} and Mn(k) are the only ideals of Mn(k). 

We check whether ker(e) is equal to either of these ideals.

(l)Assume ker(e) = {0}.

0 G ker(e)

=>EiiEjj = 0Vi^j

=> s(EUEjj) = 0
=> s(Eii)e(Ejj) = 0 (since s is multiplicative)



24

=> either Eu G ker(e) or Ejj G ker(e) (a contradiction)

(2) e(l) = 1 (Since £ is an algebra map)
=> 1 ker(E)

=> ker(e) / Mn(k)

So by (1) and (2) ker(e) is not an ideal of Mn(k) (a contradiction). This implies 

that e : Mn(k) k can never be an algebra map, and thus Mn(k) can never be a 

bialgebra. □

Example 2.20. Although the last example showed that Mn(k) can never be a bialgebra, 

there is something different about the set O[Mn(A:)] that will allow us to circumvent 

the problem. The differences we find are that = 1 while lc>[Mn(&)] — lfc> and
that <P[Afn(fc)] is not a simple ring. This allows us to prove that A and £ are algebra 
maps. First since we defined A and £ on basis elements and extended linearly and 
multiplicatively, then A and £ are multiplicative on a general element. From the fact 

that A is multiplicative, we know that

(Xn®Xu)(l®l) = (Xn®Xn) = A(Xn) = A(Xn-l) = A(Xn)A(l) = (Xn®Xn)A(l) 

which gives us that A(l) = 1 ® 1. Similarly we know that (e, 1) = 1. Thus A and £ are 
algebra maps, and is a bialgebra.

Example 2.21. Just as for &[<]> we use the way we defined A and £ to prove kG is 
a bialgebra. We defined both A and £ on basis elements and extended linearly and 
multiplicatively, thus they are both multiplicative. To show that the unit property holds 
for A and e we use the fact that I^g = 1g- This gives us that A(l) = 1 ® 1 and (e, 1) = 1 
since 1 G G. Therefore A and £ are algebra maps, and kG is a bialgebra.

Example 2.22. For we have a similar situation in that A and £ are defined on basis 

elements and extended linearly and multiplicatively. Thus A and £ are multiplicative. 

Also since 1 G G(Hf), then A(l) = 1 ® 1 and (e, 1) = 1, so A and £ are algebra maps, 

and is a bialgebra.
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2.4 Hopf Algebras

Our last step is to add an additional property to a bialgebra to make it a Hopf 

algebra. This additional property is one that creates an psuedo “inverse” for the set. 
This is important because often Hopf algebra elements do not have usual inverses.

Definition 2.23. Let (77,/i,-a, A,e) be a bialgebra, if there exists S G Homk(HyH) 

such that ^2hS(hi)h2 — hiSih^) for all h G II, then S is called the
antipode of 77, and II is called a Hopf algebra.

We now prove a few important properties of the antipode.

Theorem 2.24. If H is a Hopf algebra with antipode S, then the following three prop

erties hold.

1. S(hk) = S(k)S(h) for all h,k G H and S(l) = 1 (i.e. S is antimultiplicative).

2. AoS = ro(S®S,)oA and e o S = e (i.e. S is anticocommutative).

3. £h2S-1(hi) =e(h) =

Proof. We follow the original proof in [Swe69] which is updated in [Abe80] and [Kas95],

1) Define elements P, TV 6 Homk(H®H, H) as follows. For k,h G H let P(h®k) — S(hk) 
and N(h®k) = S(k)S(h). If p is multiplication, u the unit, and £ the counit in H, then 
if we can show P*p = ue = p*N then we have that P — N.

(P*p)(h®k) = 52P((A® ^)2)

= -^(^1 ® ki)p(h2 ® k2)
^^S(h1k1)h2k2

= ^S({hk)1)(hk)2
— e(hk)

= E(h)e(k)

(p * N)(h ®k) = ^2p(fh ® k)i)N(fh ® fc)2)

— ® ki)N(h2 ® k2)

= £M*W2)
= £(h)e(k)
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Thus S(hk) — S(k)S(h). Also since e(l) = 1 and A(l) = 101 then:

l = £(l) = (id*5)(l) = 5(l)

Thus 5(1) = 1, and S is antimultiplicative.

2) Similar to above, we define elements V,Re HomifH, H®H) as V = to(S 0 5) oA 

and R = A o 5. Again if we can show RoA=ue = AoV then we have that R = V.

(HoA)(h) = £Ao5(hi)A(h2)
= A£S(fti)fc2)
= A o (u o e(h))

= uh®h 0 e'(h)

(AoV)(A) = £(M0h2)(5(h4)0 5(h3))

= HhiS(h4)®h2S(h3)
= Hhi^(h3)®e(h2)

= EM5(h3)e(h2) 0 1
= HhiS(h2) 01

= e(h) 0 1

= uh®h 0 e(h)

Thus r o (5 0 5) o A = A o 5. Also £ o 5 = e since

e(h) = s(h)s(l) = eowo s(h) = 52 ^(S(hi)e(h2')) = e o 5(h)

Therefore 5 is antico commutative.

3) Beginning with the antipode property of 5 we have that ^2ti5(t2) = e(t) — H *^(^1)^2 
for all t 6 H. By theorem 4.6 we know 5 is bijective, and so 5-1 is bijective. Thus 

there exist h G H such that t = 5_1(h). Substituting this throughout the equation we 

have the following.

5Z*i5(t2) =e(t) =£S(ti)t2
E(S“1h)15((5-1h)2) =<5“1h) =S5((5-1h)i)(5-1h)2

EJ5'"1/i25(5-1h2) = e(h) = D5(5-1h2)5-1hi 
= e(h) =
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Since t was arbitrary, this is true for all h 6 H. □

We are now ready to complete our remaining four example sets. For three of 
these we will indentify an antipode, and show that it is a Hopf algebra. For our fourth 

example, O[Mn(A;)], we find that it does not have such an antipode, and so is not a Hopf 
algebra.

Example 2.25. Since example 2.18 tells us that &[t] is a bialgebra, we only need to find 

an antipode. Consider S such that S(t) = —t and extend linearly. We check the antipode 

property for a general element. Recall A(t) = t«8>l-|-l®t and A is multiplicative and 
linear so A£ c^t1) =Y.ai £Uo ®tk-

E <* £ Q) = £ “- £ Q) (-ir V =

The last step of each equality comes from the binomial theorem with x = — 1. In this 
case (1 — 1) = 0 = Zjt=o(—!)*(£)> thus the only term that remains is when i = 0. We 

next note that by definition e(t) — 0 so when we take e of a general element from fc[t] 

the only term that survives is the constant. This gives us ai^) ~ a0- Therefore the 
antipode property holds, and &[£] is a Hopf algebra.

In general for any Hopf algebra H, if c G Pgjh,(H), then it must be true that 
5(c) = —h_1cp_1.

Example 2.26. with <9[Mn(fc)] we have an example of a bialgebra that can never be a 

Hopf algebra. This is proved by contradiction.

Proof. Assume there, exists an antipode 5 G Homk((9[Mn(k)],0[Mn(k)]) such that 
C?[Mn(fc)] is a Hopf algebra. Consider the element detX =det[Xy]. detX is a a group- 

like element of (9[Mn(fc)]. The calculation of this is extremely long, so we give it for the 
case of n = 2 to get the flavor. For n = 2, detX = XnX22 — X12X21. We then show 
that A(detX) = detX ® detX.
A(detX) = A(X11X22-X12X21)

= A(XUX22) - A(Xi2X2i)
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= A(Xn)A(X22) - A(X12)A(X2i)

= (-X11 ® -^11 + A?12 ® X21)(X21 ® X]2 + X22 ® X22) ~ (-Xil ® -Y12 + X12 ® X22)(X2l ® 

Xu + X22 ® Y21)

= X11X22 ® X11X22 + -X12-Y2I ® ^12X21 — X11X22 ® X12X21 — X12X21 ® X11X22

= (X11X22 — X12X2L) ® X11X22 + (X11X22 — X12X21) ® —X12X21

— (X11X22 — -Y12X21) ® (X 21X22 — X12X21)
Also, since 0[ilfn(fc)] is a Hopf algebra with antipode S, then 5(detX) = (detX)-1 (since 
this is true for all group-like elements of any Hopf algebra). However, (detX)"1 does not 
exists in <9[Afn(A:)] (since polynomials do not have polynomial multiplicative inverses), so 

S does not exist (a contradiction). Therefore, O[Mn(&)] can never be a Hopf algebra. □

Example 2.27. Again, since kG is a bialgebra by example 2.21 we just need to verify 

the antipode. Consider S G HomifkG, kG) where S(g) = g~Y for all g G G (extended 
linearly and multiplicatively). We check that S satisfies the antipode property, starting 

from the left.

^aiS(gi)gi = ^aigf1gi = =

52 ^igtS(gi) = 52 ^gr1 = 52 ailk° = £(52

Therefore kG is a Hopf algebra.
In general, for any Hopf algebra H, if g G G(H) then S(g) = g_1.

Example 2.28. For the bialgebra (H4,/z, u, A,e) we need to define the antipode S 
on each of the basis elements. In order for S to be an antipode then we must have 

5(1) = 1. Since g G GfELi) than S(g) = g~l but g is its own inverse so S(g) = g. 
Also, since x G Piig(Hi) then S(x) = —gx. For gx we use the anti-algebra morphism 
property of 5 to get S(gx) — S(x)S(g) = —gxg = ggx = x. Since 5 and e are linear and 

S is antimultiplicative, it is enough to check the antipode property for the basis elements.

5(1)1 = 1 • 1 = e(i)i = 1.1 = 15(1)

S(g)g = g2 = 1 = £(5)1 = 1 = g2 = gS(g)
S(x)l + S(g)x — —gx + gx = 0 = e(xc)1 = 0 = 3: — x = x — ggx = 3:5(1) + gS(x)

Therefore is a Hopf algebra.
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2.5 Duality

We will now end the chapter with a few notes about duality as it relates to the 

structures presented here. As mentioned before, we got our definition of a coalgebra by 

dualizing the definition of an algebra. This connection is so strong, that we can prove 
some theorems about the dual spaces of algebras and coalgebras with respect to their 

structure under all the important definitions of this chapter. We start with a formal 

definition of a dual space to a vector space.

Definition 2.29. Let V be a fc-vector space. The dual space to V, denoted V* is the 

set of all linear functionals on V. In set notation we have:

V* = {/ 6 Endk(V) | af(y) + /?/(w) = f(av + /3w)Va, ft G k and u, w G V}.

We can also dualize a map between vector spaces. Given two (finite dimen

sional) vector spaces U and V , and a mapping f : V V we may dualize this concept 
by defining /* : V* —> U* as /*(v*)(u) = v*{f(u)). In some circumstances this dualiza- 

tion also works in the infinite dimensional case, as we will see below. In particular, the 

dual of a coalgebra is an algebra.

Theorem 2.30. If C is a coalgebra, then C* is an algebra with multiplication p = A* 
and unit u = e*.

Proof. We first note that (C ® C)* C. C* ®C* with equality holding in the finite dimen
sional case. This allows us to restrict A* to simply C*®C* to get a map p : C*®C* —> C*. 
We now prove our statement by dualizing the diagrams. First we check that p is asso

ciative. This is true since A is coassociative.

m(m(/ ® ff) ® &)(c) = A*(A*(/ ® g)®h)(c)
= (A*(f ®g) ® Zi)(A(c))

= A*((/®5),Ci)(7l,C2>

= {f®g)H(c1)){hic2)

=
= {f,<A){g®h,Afc2))
= {f ® A*(g®h),&(c)}

= A* (/ ® A*(# ® h))(c)

- p(f ® p(g ® h))(c)
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Thus (i ia associative, and so the first algebra diagram commutes. We now check the 

second diagram by formula.

= (a/)(e(c))
= e(c)(a/)(l)
= e(c)£*(af) 

= £*(a/)(c)

Thus the second diagram commutes, and so (C*, A*,e*) is an algebra. □

It would be convenient if the converse of this theorem were also true, but 

unfortunately we run into a problem. All is well in the finite dimensional case, but in 

the general infinite dimensional case we have an issue. In the proof above we used the 
fact that (C ®C)* Q C* ®C*. When we have an algebra A, Then A* ® A* is a proper 
subset of (A ® A)*, so it is often the case that the image of our A = p* will not lie in 

A* 0 A*. To overcome this we will need a new definition.

Definition 2.31. Let A be a ^-algebra. The finite dual of A is A° = {/ G A* | /(/) = 

0, for some ideal I of A such that dimA/I < 1}.

This new definition now allows us to prove a partial converse of Theorem 2.30.

Theorem 2.32. If A is an algebra, then A° is a coalgebra, with comultiplication A = p* 

and counit e = u*.

Proof. We know from [Mon93] that if we restrict ourselves to A°, then /z*(A°) C A*<g>A*. 
We will need to show that the two coalgebra diagrams commute for our maps p* and u*. 
Let f G A0 and a, b, c G A. We will only check one side of the counit diagram for u*.

(id ® u*)(p*)(f)(a ® b) — id®u*f(p(a®bf)

= id® u*f(ab)

= f(o.u(b)} 
= f(a)u(b)

= (u® f)(a ® b)

Thus the counit diagram commutes for u*. We next check coassociativity by using the 



31

fact that p is associative.

(p*)(id ® /x*)(/)(a® (b ® c)) = (p*)f((id ® p)(a ® (6® c)))

= (p*)f(a®bc)

= f(p(a®bc))

= f(a(bc))

= f((ab)c)

’ = f(p(ab ® c))
= (p*)f(ab®c)

= (m*)/((m ® id)((a ® b) ® c))
= (/2*)(/z* ® zd)(/)((a® b) ® c)

Thus p* is coassociative, and so (A°, p*,u*) is a coalgebra. □

With these two dualizations we will now be able to dualize our combined struc

tures with the following theorem. Again our result is limited to the finite dual, but 
remember that if our vector space is finite dimensional, then V° = V*.

Theorem 2.33. If (B,p,u,S,£) is a bialgebra, then (B°, &*,£*, p*,u*) is a bialgebra. 

If B = H is a Hopf algebra with antipode S, then H° is a Hopf algebra with antipode S*. 

Proof. We know from the previous theorems that (B°,A*,e*) is an algebra and 
(B0,/z*,n*) is a coalgebra. We thus only need to check the compatibility conditions. 

We will check that = //* and £b° — u* are algebra maps using the formula condi
tions. Let a, b € B, f G B°, and a G k. First p* and u* are multiplicative by definition. 
Also /z* preserves 1 by the following.

p* (id) (a®b) = id(p(a ® b))
= id(ab)

= ab

= id(a)id(b)

= (id ® id)(a ® b)

Thus p*(id) = id <8 id. Also u* preserves 1 since:

u*(id)(a) = id(u(a))
— id(a • 1)
= a • 1



32

Thus u*(id) = 1. This gives us that p* and u* are algebra maps, and so B° is a bialgebra. 
We would now like to show that if B = H is a Hopf algebra with antipode S, then 11° is 
a Hopf algebra with antipode 5*. So for S* to be an antipode, we need to show that S* is 

the inverse of idnc under convolution, or (5* *id)(f)(h) — €*(/)«* (h) = (id* 5*)(/)(h).

(5* * id)(/)(h) = A*(5* ® idfi^f)(h)

= (S* ®id)(/Pf)A(h)
= (S^®id)(^ffi^h1®h2)

= (5* ® hi ® h2f)

= (S*®id)f(£hih2))

= f(Sfhl)hZ)

=
= e*(f)u*(h)

By similar calculation, we will get the other half of our equality, and so H° is a Hopf 

algebra with antipode S*. □

We can extend each of the above theorems to the finite dimensional case with 

the following corollary. Each statement is proven simply by remembering that if V is a 

finite dimensional vector space then V° = V*.

Corollary 2.34. Let H be a finite dimensional Hopf algebra. Then:

1. (H*> fi* ,u*) is a coalgebra.

2. (77*. A*, c*) is an algebra.

3. (H*, A*,«*) is a bialgebra.

4. H* is a Hopf algebra with antipode S*.
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Chapter 3

Modules to Hopf Modules

In this chapter we look at sets that act in various ways on the structures we 

have constructed. Beginning with algebras we have a module, which is similiar to a 
vector space. From there we will dualize to a comodule, and then combine these two 

into a Hopf module. Our ultimate goal is to then prove the Fundamental Theorem of 
Hopf Modules. This theorem tells us that all Hopf modules are essentially trivial. It is 
a key piece to proving the Nichols-Zeoller freeness theorem. Throughout this chapter 11 
will represent a Hopf algebra.

3.1 Modules and Comodules

There are many ways to define a module. In general, a module is defined as 
an additive abelian group over a ring. For our purposes we will be defining a module as 
a vector space over an algebra. We can do this since a vector space is also an additive 
abelian group, and an algebra is also a ring. The difference we find with this definition is 
that we have an additional connection between the underlying field and the action of the 
module. This additional structure is represented in the second commutative diagram of 

the following definition.

Definition 3.1. Let A be an algebra. A vector space M is a (left) A-module along with 

the linear map 7 : A0M —> M and scalar multiplication a : k®M M if the following 

diagrams commute.
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A®A®M
p ® id

A®M

id ® 7

A® M------------- ►
7

7

M

Just as with our algebra definition in the last chapter, this definition is a di- 

agramatic version of the usual definition of a module, the first diagram gives us the 
associative property of the action, and the second diagram (as mentioned above) tells us 

that for each a G k there is an element a G A that act on M in the same way as scalar 

multiplication of a on M. We can now dualize this definition to define a comodule.

Definition 3.2. Let C be a coalgebra. A vector space M along with the linear map 

p : M Ad ® C is a (right) C-comodule if the following diagrams commute.

P M ®C

id® A

M ® C------- - M ® C ®C
p®id

M

P

The second diagram gives us a useful formula for working with comodules. It 

says that for m G M then 52e(mi)mo = m. Next, we need some notation for the 
coaction p. As for A in the last chapter, we use summation notation for p. We write 

p(m) — ® m(i) = ® W where mo G M and mi G C. This preserves
the notation in the last chapter, in that these are not specific elements, but symbolic 
representations of the elements. We can also apply p a second time to the left element, 
or we can apply A to the right element. Because the first diagram in the definition 

commutes, we have that (p ® id) o p — (id ® A) o' p, and so we may write J2(mo)o ® 

(mo)i®m2 = J2mo® (mi)i® (mi)2 = 52mo®mi®m2 where mo G M and mi,m2 G C.

Just like before there is a strong connection between modules and comodules 

with respect to dual spaces. We show this in the following two lemmas.

Lemma 3.3. If M is a right C-comodule, then M is a left C*-module. 
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Proof. Let M be a right C-comodule with coaction p : M —» M®C. Define 7 : C*®M —+ 

M to be 7(7 0 m) = f - m = mi/mo- We show that for this map the two module 

diagrams commute, and so 7 is an an action for C* on M. Using the formula form, the 

first diagram checks for associativity of the action. Let f,g£.C*.

f -(g-m) = f ■ (^9,

= 12(9,mi){f -m0)

= Z\f

=

Thus our action is associative. For the second diagram we need to show that £ • m = m.

e -m =
= 771

Therefore M is a left C*-module. □

The next question here becomes whether or not the converse of this lemma is 

true. Unfortunately a full converse is not possible, since Theorem 2.32 showed us that if 
A is an algebra, then only the finite dual A° is a coalgebra. So we restrict ourselves to 
the finite dual of A as follows to get a version of the converse.

Lemma 3.4. Let M be a left A-module. Then M is a right A°-comodule {A • m} is

finite dimensional for all m € M.

Proof. (=>) We use the standard notation of the right A° coaction defined as 

p(m) = Emo ® mi where mi E A°. By the construction of Lemma 3.3 we use the 

action a ■ m = EXa’mi)mo f°r a € A. Thus A • m is spanned by the set {mo}> and 
since this set is finite, A • m is finite diminsional.

(4=) Assume A ■ m is finite dimensional. For m G M denote by {7ni,...,mn} a 

basis for A • m. Thus for all a G A, a • m = f°r some ft € A°. Now let
(p : A —> Endk(A ■ m) be defined by ip(a) • (b • m) = ab - m. Next consider the ideal 
I = ker(<p): I is cofinite dimensional since A - M is finite dimensional by assumption.
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This implies M/I is finite dimensional. Thus by Thereom 9.1.1 in [Mon93] each fa 

vanishes on I, and so by Definition 2.31 fa G A°. M then becomes an A°-comodule via 

p : M M ® A° given by m ® fa- □

For each of the two lemmas above we look at an example of how these are 
applied to general algebras and coalgebras.

Example 3.5. Let C be a coalgebra. Then C is a right C'-module using p = A. From 

Lemma 3.3 we get a left action of C* on C. Let f e C* and c 6 C. Explicitly the action 

is:
f-c^fac^

However, we have also seen that C* is an algebra by Theorem 2.32. We can then apply 

this to right multiplication in C*. This yields us:

(9>/ c) = {g,^{f,c2)c1} = 52</>c2)te>ci) = (9fa$

We denote this relationship by say that —is the transpose of right muliplication of (7* 

on itself.
Similarly, we can define a right action which is the transpose of left multi

plication of C* on itself.

Example 3.6. If we start with an algebra A, then we can also define a left action on 
A* by A. Given a G A and f G A*, then a —? f is defined to be the element of A* such 
that for all b G A,

fab) = (faab).

We do not have an explicit formula for this action in general, because we saw in theorem 

2.32 that A* in general is not a coalgebra. Now, if f G A°, then it makes sense to talk 

about A(/), so we can then write:

In this case we denote the relationship by saying that —k is the transpose of right multi
plication by a on A. Again, we can also define a right action which is the transpose 

of left multiplication of a on A.
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The next two definitions give us special subsets of both modules and comodules, 

which will be important to the Fundamental Theorem of Hopf Modules, and to the 

concept on an integral in the next chapter.

Definition 3.7. Let M be a left ff-module. The invariants of H on M are the set 

Mh — {m G M | h ■ m = s(7i)m,V/i G H}.

Definition 3.8. Let M be a right ZZ-comodule. The coinvariants of H in M are the set 

McoH — {m G M | p(rn) = m ® 1}.

These sets are “special” in the sense that they provide us with elements in M 
for which the action or coaction of H on these elements are essentially trivial. This will 
be crucial in the understanding the structure of Hopf algebras, for example in the proof 

of Fundamental Theorem of Hopf Modules at the end of this chapter.
We now look at two lemmas that deal with the relationship between these sets 

with respect to dual spaces.

Lemma 3.9. Let M be a right H-comodule that is also a left H* -module. Then MH* = 

McoH.

Proof Let M be a right //-comodulc and a left 17*-module. We show by double 
inclusion that MH* — McoH

1) Mh* C McoH

Let m G MH\ Thus m ■ f = e*(f)m for all f G H*, and by definition £*(/) = (/, 1), so 
m- f = (f, l)m. Now we show that p(rn) = m ® 1.

Let p(m) = X2 mo ® mi = mi ® hi. Assume without loss of generality that 
the m/s are linearly independent and mi = m. This can be done since M is a vector 
space, so any set {mJ can be rewritten this way by simply multiplying its representation 

as basis elements by scalars. The scalars needed are taken from the other side of the 
tensor product. This is acceptable because it does not matter what the element on other 

side of the tensor product is. We now let f G and apply f to m using this form of 
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p(m).

=f-m

= 52i=l</> hi)mi

= (f, ht}mi + Ei=2<A hi)mi

= Z2i=2^/>^)mi Since m^=m
= (/j hi)m Since the set {m$}is linearly independent

We get two important results from this. First we used the fact that (fjii) = 0, for 

i = 2,..., I for all f 6 H*. This gives us that hi — 0, for i = 2,..., i, since 0 is the only 
element of H that every element of //* takes to 0. Second we have that (/, 1) = (/, hi) 

which implies that hi = 1, again since 1 is the only element of H that every element of 

H* takes to 1. These two combined give us p(m) = 52i=i m,i ® hi = mi ® hi — m ® 1. 
Thus m G McoH.

2) MH* □ McoH. , ■ .

Let m G . This means p(m) = m ® 1 or that 52 mo ® = m, ® 1 (by sigma

notation of p). Now for any f G H*.

f-m — 52(/j 7711)7710 By the construction in the proof of Lemma 2.30
— (/, l)m Since 52 mo ®mi = m ® 1

=

Thus m G MH*. □

Lemina 3.10. Let M be a left H-module that is also a right H°-comodule. Then MH = 
M00^0.

Proof. Let Af be a left //-module and a right Z/°-comodule. We will show that 

MH = McoH° by double inclusion.

1) Mh C McoH°.

Let m G MH. This means that h ■ m = e(h)m for all h G H. As before, we can 

rearrange p(m) = 52 mo ® /i as the finite sum 52 mi ® ft where mi — m. We also need 
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to remember that e = 1mcoh° .

(s, h)m = h-m

= {h, fi)mi +

= (h, /i)m + fi)mi
= (h,fa)m

From this we get that (e,h) = (fa,h) for all h E H, thus e = fa. We also get that 
(fa, hi) = 0 for i = 2,... ,n and all h G H, thus fa = 0 for i = 2,n since 0 is the only- 

element of H* that takes every element of H to 0. We now apply p.

p(m)
— m® fa £ = 0 for i = 2,..., n
= m ® e fa = e

——■ m ® lj^caH°

Therefore m G McoH°.

2)Mh D McoH°.

Let m G McoH°. This means that p(m) = J3 mo ® fl — m ® 1. Let h G H and apply h 

to m.
h-m

= (h, e)m Since mo ® fi = m ® 1
— e(h)m

Therefore m G MH. □

We now define what it means to be free as a module. Our definition is a version 

of one that is stated (but not numbered) in [Lam76], but is specific for an algebra which, 

again, is a ring as one of its base structures.

Definition 3.11. Let A be an algebra and M be a left A-module. M is called free if 
there exists a set {mi | i G I, mi G M] such that every element m G M can be written 

uniquely as m = aprii where di G A and all but a finite number of a/s are 0.

At face value this definition seems like a restatement of a basis of a vector space. 
It is true that, since a field is also a ring, a vector space also qualifies as a free module. 
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So this definition is, in fact, a generalization of a basis of a vector space. However for free 
modules that are not vector spaces, there is a fundamental difference. This difference 

is in the fact that the “scalars” come from a ring which is not a field. This difference 

causes us to lose some of the properties of a vector space. The most important of these 

has to do with zero. In a vector space if av = 0, then either a = 0 or v = 0. In a free 

module it is possible that a ■ m = 0 with a / 0 and m / 0, since a ring can have zero 

divisors.
Despite this difference, the most important property remains. Freeness gives 

us the ability to write a general element as a linear combination of basis elements. This 

ability is an invaluable tool in work with modules.
we also have the concept of a faithful module, which will be used in the proof 

of the Nichols-Zoeller Theorem. This definition also is a version of one found in [Lam76], 

but is specific to an algebra.

Definition 3.12. Let A be an algebra and M be a left A-module. M is called faithful 

if for all a G A such that a / 0 the set {a • M} {0}.

What this means is that if a 0 then there exist at least one m G M such that 

a-m^ 0.
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3.2 Hopf Modules

We begin this section with a definition of a module structure for the tensor 

product of two modules. We do this because it is necassary for the compatibility con

dition in the definition of a Hopf module. As before throughout this section II will 

represent a Hopf algebra.

Definition 3.13. Let V and W be left //-modules. Then is also a left //-module,

via
h- (v®w) = • v) ® (h2 - w)

for all h € H, v G V, and w G W.

The particular action in the above definition is interesting because it incorpo

rates elements of the algebra and coalgebra structure of H. We use multiplication from 
the algebra structure, and comultiplication from the coalgebra structure. Because of this, 

II is required to be at least a bialgebra for this definition to hold. With this definition 
we can now move to the important structure of this section, the Hopf module, which 
uses this action in its definition. The crucial addition to the structure is a compatibility 
condition between the module and comodule structure on M.

Definition 3.14. Let M be a right //-module and a right //-comodule. Then M is a 
right ILIIopf module if p : M —*■ M®H from the comodule structure is a right //-module 

map. That is, • h)i ® (m • h)2 = 52 mo • hi ® mih2 for all m G M and h G H.

More generally, we can replace II in the module part with any subHopfalgebra 

K, and say that M is a right (IfK)-Hopf module. The next example demonstrates what 
it means for a Hopf module to be trivial.

Example 3.15. For a Hopf algebra H, H itself is an //-Hopf module by letting p = A. 

This is due to the fact that since H is also a bialgebra, then A is an algebra map, thus 

making it also an //-module map.

Also, if we let W be any right //-module, Then W ® H is a right //-Hopf 

module by setting p = id® A. As a specific case of this let W be the //-module defined 

by w ■ h = e(h)w for all w G W and h G H. Thus W is trivial in the sense that 
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W = McoH. If we again consider the If-Hopf module W 0 H we now see that for all 
w G W and k,h G H:

(w 0 k) ■ h = £2 w • hi 0 kh2

= £e(hi)w 0 kh2

— Hw® ke(hf)h2 
= w 0 kh

Thus (w 0 k) • h — w 0 kh. Such an H-Hopf module is called a trivial Hopf module.

We end this chapter with the Fundamental Theorem of Hopf Modules. The 
proof of this theorem is based on an outline given in [Mon93], and also appears in [Swe69] 

and [Abe80]. In this theorem we see that.all Hopf modules are essentially trivial. Hopf 
modules are nevertheless important, since the difficulty is in proving that something is 
in fact a Hopf module at all. In situations where it is possible to prove that a set is a 

Hopf module, the properties of that set are well understood.

Theorem 3.16. The Fundamental Theorem of Hopf Modules. LetM be a right 

H-Hopf module. Then M = McoH 0 H as right H-Hopf modules, where McoH 0 H is a 
trivial Hopf module. In particular, M is a free right H-module of rank = dimk(McoH).

Proof. We begin by defining maps a : Mc°& 0 H —> M by a(m 0 h) = m • h and 
ft : M —► M ®H by /3(m) = H mo ' (Smi) ®m2. First we show that ft(M) C McoH 0 H 
by showing that 52 mo • (5mi) G for all m G M. Let m G M.

p(Hmo ' (SmiY) = 52(mo • (5mi))0 0 (mo ■ (Smi))i
= 5Zmo ■ (5m2)i 0mi(Sm2)2

= 52 mo • 8(013) ® miS(m2)

— 52 mo • S(m2) 0s(mi)
= 52mo • £(7^i)8(m2) 0 1 
= 52 mo ■ 8 (mi) ® 1

Thus ft(M) C MmH 0 H. Next we need to show that aft = id and fta = id.

aft(m) = o(52 mo ’ (Smi) 0 m2)

= 52(™o • (8mi)) ■ m2

= 52 mo ■ ((Smi)m2)
- 52 mo • e(w)
— m
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Thus ap = id. Now we show the other direction. Recall that since m G McoH then 

p(m) = m ® 1 or 52 mo ® ® 1-

pa(m ® h) = p(m • h)

— 52(m ' ^)o ■ S(m ■ h)i ® (m ■ h)2
= 52mo ’ hiS(mi • h2) ® m2h3

= 52771 ’ ‘ h2) ® h3
= 52™ ' hiSfa) ® h3

= 52m ■ £(^i) ® h2
= ® £(hi)h2
= m ® h

Thus pa = id. We now show that a and p are both //-module maps.

a(m ® hg) — m • (hg)

= (m • h)g

— a(m ® h)g

Thus a is an //-module map. Now applying P to m ■ hwe show that P is an //-module 

map.
p(m • h) = 52(m ’ ^)o • ■ h)i ® (m • h)2

= 52 mo ■ hiS(mi ■ h2) ® m2h3

= 52 mo • hiS(h2)S(mi) ® m2h3
— 52™ o • e(hi)S(mi) ® m2h2

= s(mi) ® 7n2e(Ai)^2
= 52 mo ’ S(mi) ® m2h
— p(m)h

This tells us that a and P are both //-module maps, and since a and P are inverses, 
then a is an isomorphism of //-modules. We now check that a and p are H-eomodule 

maps.
(a ® id)(pM®x)(m ®h) = (a ® id)(^m0 ® hi ® mih2)

= 52 mo • hi ® mih2
= 52 ™ ■ hi ® h2
= p(m)h
= p(m • h)

= p(a(m ® h))
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Thus a is an H-comodule map. Checking 3 we get the following.

(0®id)p(m) = (0® id) (£) mo® mi)
= (w)o • S(m0)i 0 (mo)2 ® mx
= 52moS'(mi) 0 m2 ® m3
= (id ® A)/3(m)

So a and 0 are H-comodule maps, and since a and 0 are inverses, then a is an isomor
phism of H-comodules. Also since a is also an isomorphism of H-modules, then a is an 

isomorphism of Hopf modules. □



45

Chapter 4

Freeness of Hopf Algebras

In this final chapter we will take a deeper look at the concept of a free module, 

and then prove the important result of the paper. The concept of a free module is very 
important to the study of Hopf algebras. In linear algebra, when we work with vector 
spaces one of the most common techniques used is to use the basis of the vector space by 

writing general elements in terms of the basis. This gives us the ability to prove results 
for just the basis elements, and then easily extend those result to general elements. The 

same idea works for modules. If we can show a module is free, then we get a set of 

elements for the module that is similar to a basis. The difficulty is that although a 
vector space always has a basis, modules are not always free.

Mathematicians ran into this problem when researching Hopf algebras. It was 

known that a Hopf algebra was a module over any subHopfalgebra, but determining 
whether it was a free module was not easy. Kaplansky conjectured in 1975 that it was 
always true that a Hopf algebra was free over any subHopfalgebra [Kap75]. His original 
conjecture did not specify the dimension of the Hopf algebra. Immediately after this, it 

was shown that freeness does not hold in the general, infinite dimensional case [OS74]. It 
took fourteen years, but Warren Nichols (a former student of Kaplansky) and M. Bettina 

Zoeller (a student of Nichols) settled the question for the finite dimensional case in 1989. 
We will give a proof of this result here, as well as one important generalization they 

proved three years later. We will end by stating a few other important generalizations 
that have been proven since then, as well as some open questions on the subject.
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4.1 Integrals

In this section we lay out two important concepts. First we discuss integrals 

which are special subsets of elements from a Hopf algebra. We then take a brief look at 

direct sums and semisimplicity, which are important to the main result of this chapter 

as well as the first generalization. We will begin with a definition of an integral, which 
comes from the idea of invariants introduced in the last chapter.

Definition 4.1. A left integral in H is an element t € H such that ht = e(h)t for all 
h 6 H; a right integral in H is an element / e H such that t'h = Efhft for all h 6 H. 

The sets of left and right integrals are denoted by and respectively. H is called 

unimodular if Jj./ —

It is interesting to note that when we consider H as a vector space, then 

and are each subspaces of H. We prove this with the next proposition.

Proposition 4.2. and are each subspaces of H.

Proof. We will only prove in detail that is a subspace, since the calculations will 
be similar for We first show that 0 G flH- This is true since for any h G H, 

hO = 0 = e(/i.)0. Next we show that is closed under addition and scalar multiplication. 

Let ti, t2 € fx and a G k.

h(ti + tf) = hti + ht2

= £(h)ti +s(/i)t2

= e(/i)(ti+ t2)

h(ati) = (ha)ti
= ahti

= ae(h)ti

— e(h)ati

Thus ti +12 G Jh and ati G Therefore is a subspace of H. □

The issue of unimodularity becomes trivial when the Hopf algebra is commu

tative. This is because ht = th so if t G then t G and visa versa. In the following 

examples we will consider the integrals of two non-commutative Hopf algebras.
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Example 4.3. The Hopf algebra H4 has left and right integrals but is not unimodular. 
This is due mostly to the fact that is not commutative. We begin by considering 

a general element IL] and assume that it is a right integral. In doing this we will 

discover what form this element must have in order to be a right integral. Let t = 

oi + agg 4- axx -I- agxgx G be a right integral. Thus ht = e(h)t for all h G H4. Take 

the specific case of when h = g. since e(g) = 1, then in order for t to be an integral we 

must have gt = t.
ht = g(ai + agg + axx 4- agxgx)

= a±g + agg2 4- axgx + agxg2x

~ &g a±gagxx 4- agxx

So in order for t to be a right integral, then cti = ag and ax = agx. Next consider the 

case when h = x. Since e(x) = 0 then in order for t to be a right integral we must get 

xt — 0.
ht ~ x(ai + a±g + axx 4- axgx)

= aix 4- a±xg 4- axx2 4- axxgx

— ctirr — a±gx

this time we have the requirement that n.] = 0 and ag = 0 for t to be a right integral. 
Combining this with what we learned previously, we know that all right integral will 
have the form ax 4- agx. Thus the space of right integrals is generated by the element 
x 4- gx, or = {a (7; 4- gx) | a G fc}. By a similar process we arrive at the fact that all 

left integrals will have the form ax — agx, and so — gx) | a G &}. Therefore

H4 is not unimodular.

Example 4.4. Consider the group algebra kG. As noted in Example 2.7, kG is com
mutative iff G is an abelian group. We have already seen that if kG is commutative, 
then kG is unimodular. We will consider the case where G is not necessarily abelian and 

show that kG is unimodular even then. Let 52 ag9 G represent a general element of 
kG. we know that c(g) = 1 for all g € G, so c(^2 ag9) = 52 ag- This means for a right 

integral, we need to find an element t G kG such that t(J2 agd) — (52 ag)^- Consider the
element t = 52he<? h- Multiplying this by a general element from the right we get the 

following:
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Thus EheG h is a right integral. By similar calculations EheG *s a^so a integral. 
This is the only element (up to multiplication by a scalar) that is either type of integral, 

so kG is unimodular.

It is interesting to note that all the spaces of left and right integrals in these 

examples are one dimensional. This will turn out to be true in general. Before we 
can prove this though, we need the following lemma about the dual space H* being an 

JJ-Hopf module when H is finite dimensional.

Lemma 4.5. Let H be a finite dimensional Hopf algebra. Then H* is a right H-Hopf 

module.

Proof. First, we show that H* is a right //-comodule. We know that H* is a left H*- 

module via left multiplication. So if {/i,..., fn} is a basis for H* and f G H*, then 

there exist hi,.. .,hn G H such that for any g G H then gf = E<0> hi)gi‘ Corollary 
2.34 gives us that H* is a right (H*)*-comoduIe, thus H* is a right /7-comodule. The 

comodule map p : //* —> H* 0 H is given by p(f) — 'If.gi® hi.
Also, H* is a right //-module as follows. Let t— be the action of H on H* such 

that if f G H* and l,h G H, then f x- h = Sh —f and {f x- h, I) = (f, IS(h)). We 

next show that p is an //-module map. We start with a technical fact.

E((^2 $)/) 'r- hi = E«£f2, h2)gif) hl
= Shi ((g2ih2)gif)
= (g2,h2)Shi (gif)
= (g2fh3)(Sh2^91)(Shi^f)

= ((93,h3)(g2,Sh2}gi)(Shi /)
= ({g2,h3Sh2}gi)(Shi f)

= (g2^(h2)iH)gi(Shi f)

= s(h2)e(g2)gi(Shi f)

= e(g2)gi(s(h2)Shi f)

= 9(Sh^f)

= g(f^-h)

Now we need to show that p(f x- h) = E(/o hi)® fih2 = p(f) ■ h. This is equivalent 
to showing that g(f v- h) = EOh fih2}(fo x- hi). Using the equality above we can do 
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this as follows.
g(f ^h) = S((^2 ff)f) hi

= E((ft2 9, /i>/o) t- hi
= 'E{h2^9Ji}(fo^h1)

= £<0,/iM(/o v- hi)

Therefore p is an //-module map, and so by Definition 3.14 II* is a right //-Hopf module.
□

Theorem 4.6. Let H be a finite dimensional Hopf algebra. Then

1. Jh and ftf are each one dimensional vector spaces.

2. The antipode S of H is bijective, and = ,/J;-

Proof.
1) We begin with Theorem 4.5 that states H* is a right //-Ilopf module. This also 

means H is a right //*-Hopf module, since it is also true that 11 is the dual space of 

H*. Thus by the Fundamental Theorem of Hopf Modules, Theorem 3.16, we see that 

H®Hc°h* K*. Also dimH* =dimH (since this is true for any finite dimensional 
vector space [Lam76]), then dim(HCOjff*) = 1. But by Lemma 3.10, we have that:

= h« = {heH\ht = e(h)t,yt eH}= [
Jfi

where ht represents left multiplication in H. Since dim(//"?z/*) = 1 and H00*1* = 
then dim = 1. Before we show that is one dimensional, we will need to prove 

part 2) of the theorem.

2) To show that S is bijective, let f € and / =4 0. If h G kerS, and a : H* ® H —> H 
is the map from the proof of Theorem 3.16, then:

a(f®h) = Sh^f = 0

Since a is an isomorphism, and thus injective, then f ®h = 0. Thus since f 0 and //* 

has no zero divisors, then h = 0. So since kerS = 0 then S is injective. Also, since H is 

finite dimensional, then S is bijective.
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We can now show that S(f^) = fjr Let tin and let h E H. We need to 

show that 5(t) G This one direction is sufficient since S is bijective. First, since S 

is bijective then for all h G H there exist b G H such that 5(6) = h.

hS(t) = S(b)S(t)

= S(tb)

= S(e(b)t)
= e(b)S(t) 

= etS-'tyStt)

— e(h)S(t)

Thus S(f#)= and is one dimensional since flH is one dimensional. □

For completeness, we will include the following definitions and result that will 

be necessary for the last section. Some of the results list are include without proof, but 

a reference as to where the proof can be found is provided.

Definition 4.7. Let A be an algebra and let {Mi}i&j be a family of left A-modules.

1. Let mi G Mi for all i G I. The direct sum of (denoted is the set
of all finite formal sums For a finite family we write Mi © • ■ • ® Mn. Also
by M- ’ we mean the direct sum of r copies of Mi

2. A left module M is called indecomposable if it is not the direct sum of non-zero 

submodules.

3. The principal indecomposable modules of A (denoted Pi) are all the indecomposable 
A-modules which are also a submodule of A.

Definition 4.8. Let A be an algebra and M be a left A-module. M is called simple if the 

only subsets of M that are also left A-modules are {0} and M. M is called semisimple 

if it is the direct sum of simple modules

Theorem 4.9. Let A be an algebra and M be a right A-module. M is a free right 
A-module O M = A^ for some s > 0.
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Proof. This proof simply shows how the definition of the first statement is equivalent to 

the definition of the second statement.

M is a free right A-modulc

4=,- There exist a set {mi} such that if m G M then m = H (WKi for a finite number of 

at G A
m = £ ap jh' a,- G A: (by the second diagram of the definition of a module)
M = A^ for some s > 0. □

Theorem 4.10. (Classic Krull-Schmidt Theorem [Lam76]) If A is an algebra 

and M is a right A-module, then every indecomposable summand of M is a principal 
indecomposable right A-module.

Theorem 4.11. (Theorem 59.3 in [CR62]) Let A be an algebra, Pi be the principle 
indecomposable modules of A, and let M be any right A-module. M is faithful each 

Pi is isomorphic to a summand of M.
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4.2 The Nichols-Zoeller Theorem

The next series of lemmas and theorems follows the original sequence presented 

in [NR92]. This sequence then ends with the original Nichols-Zoeller theorem. With the 

exception of Lemma 4.12 (which is proposition 1 from [Rad78]), an outline of each proof 

was provided in the original paper. This lemma will be stated without proof. Note that 

for the first lemma H need only be a bialgebra which is not necessarily a Hopf algebra. 

This is fine since the definition of a Hopf module does not use the antipode S in its 
definition, so we can still have a Hopf module over a bialgebra.

Lemma 4.12. Let H be a bialgebra, and let K be a finite dimensional subbialgebra of 
H. If every finite dimensional left (H,K)~Hopf module M is free over K, then every left 
(H,K)~ Hopf module M is free over K.

Lemma 4.13. Let H be a Hopf algebra with bijective antipode, let K be a subHopfalgebra, 
and let M be a right (H,K)-Hopf module. Then M ®H = M^dzmIi^ as right K-modules.

Proof. Let Hq be H as a vector space with the action h • k = e(k)h for all A e H and 
k 6 K. Hq is thus a right K-module that is trivial in the sense that Hq = Hq- as 

H-modules. We then know from Definition 3.13 that M® Hq is a right H-module. Since 
M 0 Hq = we need only to show that M ® Hq = M ® H as right Jf-modules.

Let : M ® Hq M ® H with <&(m 0 h) — (1 0 h)p(m) = 5Zmo ® hm\. 
We show that $ is an isomorphism of vector spaces. First, Using the fact that p is a 
right K-module map (since M is a right (H, X)-Hopf module), we show that is a right 
/<-module map.

0 h) ■ k =(1® h)p(m)k

= (1 0 h)p(mk)

— <b(mk ® h)

— $((m ®h)-k)

Next, define ty-. M®H^M®Hoas ® h) = ^mo ® hS~l(mi). We now show 
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that $ and $ are in fact inverses.

<bty(m®h) =■ mo ® hS-^mi))

= 52(mo)o ® h^S^m^mo)!

— 52 mo ® h(5"1m2)mi
— 52 mo ® hsfmi)
— 52£(mi)mo ® h
= m® h

Thus $$ = id. Checking the other direction we get:

$$(m®h) = $(52 mo ® hmi)

= 52mo ® hm25-1(mi)
= 52 mo ® he (mi)
= 52 £(mi )mo ® h
= m® h

So we also have that $$ ■= id. Thus $ is indeed an isomorphism of K-modules. □

Lemma 4.14. Let K be a Hopf algebra, and let W be a right K-module. Then W ® K 

is free over K. If the antipode is bijective, then K ®W is free over K.

Proof. From [Swe69] W® K has a right K-comodule structure via p = id® A : W®K —> 
(VK ®K)®K defined as w ® h >-> (w ® hi) ® h2. We also have a right K action defined 

as m® h) • k = (m ® h)(l ® k) — m® hk. We show that p is a K-module map. Let 

h,k 6 K and w 6 W.

p(w ®h)-k = (w ® hi ® /12) ■ k

= (w ® hi® h2)(l ® fci ® ^2)
— w ® hiki ® h2&2
= w® (hk)i ® (hk)2

= p(w ® hk)
= p((w ® h)(l ® k))

= p((w ®h)-k)

Thus W®K is a right K-Hopf module, so by the Fundamental Theorem of Hopf Modules, 

Theorem 3.16, W ® K is free over K. □
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Lemma 4.15. Let A be a finite-dimensional algebra, and let W be a finitely-generated 

left A-module. Then there exist a positive integer r such that F®E as A-modules,

where F is free and E is not faithful.

Proof. Let W be any finitely generated left A-module. Consider the two cases of when 

W is not faithful and when W is faithful. For the case when W is not faithful, then the 

conclusion holds for r — 1, F = (0), and W = E.

Consider the case when is faithful. Let Pi,..., Pt be the principal inde
composable left A-modules, or A = p(nA ® ® p(n0 as A-modules. Let r be the

least common multiple of ni,... ,nt. Note that by Theorem 59.3 of [CR62], W is faith

ful if and only if each Pi is isomorphic to a summand of W. This allows us to write 
W = p(wh (b ... ® p(w0 © Q where no summand of Q is a principal indecomposable 
module. Then we have W= P^rW1^ © • • • © p(rw0 © Now let s be the mini

mum of ..., thus s = for some j. We can regroup our P$’s so that we get 

© P, where E is not isomorphic to any summand of Pj because all copies 
of Pj have been placed in A^\ We know that A^ if always free as a left A-modules, 

so we may set F = A^\ It follows from theorem 59.3 of [CR62] that since there is one 

principal indecomposable module Pj that is not isomorphic to a summand of E, that E 
is not faithful, thus IT*7') = where where F is free and E is not faithful. □

Lemma 4.16. Let K be a finite-dimensional Hopf algebra and W a finitely generated 
left K-module. If there exists an integer r > 0 such that yy-ee over then W is

free over K.

Proof. We begin by writing K = K/ © • • • © as a direct sum of principal indecompos
able left //-modules. Let A be a nonzero left integral of K. We can write A = Ax -I—I- An 
where Xi G Kt for i =■ 1,... ,n. Since flK is a vector space, and thus closed under addi

tion, then each A; is also left integral. Also since by Theorem 4.6 is one dimensional 

we must have that A = A$ for some i. Without loss of generality, we can say that A = Ai, 

so Xi = 0 for i > 1. This tells us for i > 1, Ki cannot contain any nonzero left integral 

of K, so Ki is not isomorphic to Ki.
Next, let Pi, P2,..., Pt bie the principal indecomposable left //-modules, with 

Pi = Ki from above. We write K = //4n’^ © P^n2^ © ■ • • © p/n^ as left //-modules. 

Since we have that Ki contains all the left integrals of K} then ni = 1. Now, let W
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be a finitely generated left K-module such that IdT7’) js free a left K-module for 

some integer r > 0. We say that for some integer s > 0 since this is
true for any free module. By the classic Krull-Schmidt theorem, every indecomposable 

summand of W is a principal indecomposable left K-modulc [Lam76j. Thus we can 
write W 2* k}W1) ffi P2(“2’ ® ■ • • ® P((w,), and so IV<r> S k'™1’ ® P2f""2) ® • • • ffi Pt(rro,). 

Since TV^ s then rwz = snt for i = 1, ...,£. We already know that n\ — 1 so 

rwi = s. This gives us that rwi = rwini. Thus Wj = wini for all z, and so W = 
KfWini) © p(w'n~V © . -. ® S rM or w S K(w^. Therefore W is a free left

K-module. □

The two theorems that end this section are the main results of the original 

paper. The first one is a partial converse of Lemma 4.14, and the second is the Nichols- 
Zoeller Theorem.

Theorem 4.17. Let K be a finite-dimensional Hopf Algebra and W a finitely-generated 

right K-module. Suppose there exists a finitely-generated faithful right K-module L such 
that W ® L~ w(dtmL) as right K-modules. Then IV is free over K.

Proof. First by Lemma 4.16 it suffices to show that for some integer r > 0 IV^ is a free 

left K-module. By Lemma 4.15 we know that there exists r > 0 such that = F® E 
where F is free and E is not faithful.

Now suppose that there exist a finitely generated faithful left K-module L such, 
that L ® W = W{dimL). By the additive property of a tensor we have that L ® =
(L® IV) and then by the above we would have (L®IV/r) = iy(rdimL) =
Since we only need to show that the statement is true for TV^, then without loss of 

generality we may replace Wwith. IV, which tells us TV = F © E. Similarly we may 
replace L with L^r ) for some positive integer /, thus by Lemma 4.15 we may assume 

L = ® E', where F' is free and E' is not faithful. Also, since L is faithful then L is
not isomorphic to E', and so F' is a nonzero free left K-module.
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Let t = dimL. We now get the following isomorphisms:

(F®E)& By the definition of a direct sum

Since F © E = W

= L® W Since L ® W =

= L®(F®E)

= (L®F)® (L® E) By the additive property of a tensor product

Now Lemma 4.14 tells us F® = L® F so E® = L®E. This then gives us the following 

isomorphisms.

£/(t) = L ® £

(F' ^^E Since L = F' © E'

= (F' ® E) © (E* ® E) By the additive property of a tensor product

If E 7^ 0, then by Lemma 4.14, Ff ® E is a nonzero free left K-module, but this is not 

possible since since E^ is not faithful. So E = 0 and thus W = F, and so W is free. □

Theorem 4.18. Nichols-Zoeller Theorem. Let H be a finite dimensional Hopf 
algebra and let K be a subHopfalgebra. Then every right (H,K)-Hopf module is free as a 

right K-module. In particular H is free as a right K-module.

Proof. By Lemma 4.12 it is sufficient to show that every finite dimensional right (H, K)- 

Hopf algebra is free as a right K-module. By Lemma 4.13 we know that M ® H =
33 K-modules. Since H itself is faithful as a right K-module and finite 

dimensional (thus finitely generated), then we can apply Theorem 4.17 to see that M is 

free as a right 7<-module. □
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4.3 Generalizations of The Nichols-Zoeller Theorem

After the publication of Theorem 4.18, the question of “How far can we gener

alize?” became the focus of researchers. Since then many important generalizations have 

been proven. The first important generalization was made three years after the original 
theorem by Nichols and Richmond (previously Zoeller). This generalization specified 
that if the Hopf algebra was not finite dimensional, then it would still be free if the 

subHopfalgebra was finite dimensional and semisimple. We will prove this generaliza
tion following the original paper [NR92]. After this we will state, without proof, a few 

other generalizations of the Nichols-Zoeller Theorem. We begin with a lemma which is 

a generalization of Lemma 4.13 in the previous section.

Lemma 4.19. Let H be a Hopf algebra with antipode S, let K be a subHopfalgebra of 

H, and let M be a (H, K)-Hopf module. Consider (H 0 M, *) to be a left K-module via 
the action k * (h®m) = ^hS(ki) 0 fc2m for all k G K, h e H and m G M. Then 
(H as left K-modules.

Proof. Let Hq be the vector space as in the proof of Lemma 4.13. From that proof Hq is 
a left //-module via the action k-h = e(k)h for all kinK and h G H. and so we had that 

Hq 0 M = as //-modules. Define F : Hq ® M (H ® M, *) as F(h 0 m) =
sumhS(mi) 0 m2 for all h G H and m G M. Also define T : (H 0 M, *) —> Hq 0 M as 

T(h 0 m) = E hmi 0 m2 for all h G H and m G M. We begin by showing that F is a 
//-module map.

k * F(h 0 m) = fc * (E hS(mi)m2)
= ^hS(mi)S(ki) 0 fc2m2

— E^’GMi) ® (hm)2
= F(h 0 km)
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Thus F is a K-module map. We next need to show that T = F T.

FT(h ®m) = F(H ® m2)

= X)hmiS((m2)i) ® (m2)2
— H hmi5(m2) 0 m3

= 52^e(mi) 0 m2

= 23h0£(mi)m2
— h®m

TF(h 0 m) = T(H hS(mi) 0 m2)

= 52h5(m1)(m2)i 0 (m2)2
= Hh(8m1)m2 0m3
= J2he(mi) 0 m2
= 52h0e(mi)m2
= h 0 m

Thus T = F_1, and so F is an isomorphism of K-modules. □

Lemma 4.20. Let H be a Hopf algebra, and let K be a subHopf algebra whose antipode S 

is injective. Then every nonzero (H,K)-Hopf module M is faithful as a left K-module.

Proof. Consider the K-module (K 0 M, .*) as defined in the last proof, the K-module 
homomorphism S ® id ■. K ® M —> (K 0 M, *), and the inclusion map i : (K 0 M, *)• —> 

(H 0 M, *). Since S is injective, then io (S 0 id) embeds K 0 M into (H ® M, *) as a 
K-module. By Lemma 4.19 it follows that M^dimf/^ contains a K-submodule isomorphic 
to K 0 M. By Lemma 4.14 of the last section, K 0 M is a free K-module, thus M^d'imH'i 

is faithful, and so M is faithful. □

We are now ready to state and prove our generalization. This is proved by 

contradiction, using the lemma we just proved above.

Theorem 4.21. (Generalized Nichols-Zoeller Theorem 1) Let H be a Hopf alge

bra, and let K be a finite dimensional, semisimple subHopfalgebra of H. Then H is free 

as a K-module. More generally, every infinite dimensional (H,K)-Hopf module is free as 

a left K-module.
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Proof. Let M be an infinite dimensional (H, AT)-Hopf module. Assume Af is not a free 
K-module. This tells us there exists some simple K-module L, for which the sum W 
of submodules of M which are isomorphic L has dimension less than the dimension of 

M. In other words dimW < dimM. Let N — W H* be the (H, Al)-Hopf module 

generated by W. Since dirruV < dimW, then it is also true that dimTV < dim AL So the 

quotient M/N is a nonzero (H, AJ-Hopf module, but contains no copy of L, since we 

have removed all copies of L with quotient. Thus M/N is not faithful, a contradiction 

to Lemma 4.20. Therefore M is a free AT-module. □

Nichols and Zoeller also showed in a paper previous to this that the theorem 
could not be strengthened to the assertion that if H is infinite dimensional, then the 
theorem holds for every (II, AT)-Hopf module (Le. the finite ones also) [NZ89a]. They 
also conjectured (but did not provide a counterexample) that it was not possible to 
remove the condition that K be semisimple. That same year Schneider found that 
instead of completely removing the condition that the subHopfalgebra K be semisimple, 

it could be replaced with the property of being normal [Sch93]. The following theorem 

was the result of this replacement.

Theorem 4.22. (Generalized Nichols-Zoeller Theorem 2) Let H be a Hopf alge

bra, and let K be a finite dimensional, normal subHopfalgebra of H. Then H is free as 
a K-module. More generally, every infinite dimensional (H,K)-Hopf module is free as a 

left K-module.

More recently, Schauenburg extended the Nichols-Zoeller theorem to another 
version of a Hopf algebra called a quasi-Hopf algebra [Sch04]. Without giving a formal 

definition, a quasi-Hopf algebra is basically a Hopf algebra that lacks coassociativity. 
The result of his paper was the following theorem.

Theorem 4.23. (Generalized Nichols-Zoeller Theorem 3) Let H be a finite di

mensional quasi-Hopf algebra, and let K C H be a subquasibialgebra which has a quasi

antipode. Then every (H,K)-Hopf module that is finitely generated as a K-module, is 

free as a left K-module.

Several other generalizations have been proven, but these replace K in the 

theorem with something other than a subHopfalgebra; These generalizations are not 
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apparently helpful in settling the question of freeness of Hopf algebras over subHopfalge- 
bras. One question that has not been settled is “Over what type of infinite dimensional 

subHopfalgebras are Hopf algebras free?” There is also an open question as to whether a 

weaker version of freeness called faithful flatness is true in the general infinite dimensional 

case. Schauenburg has found several possible counterexamples that depend on properties 

that are not proven yet, but give an indication that the answer will be negative [SchOO].

The study of Hopf algebras has benefited greatly from the work done on the 
concept of freeness. This can be seen by the frequency with which the original Nichols- 
Zoeller theorem is referenced in current research articles. The ability to consider a Hopf 
algebra as a free module has allowed researchers to expand what is known about Hopf 

algebras, and will continue to open the doors to other researchers who look to advance 

knowledge on this subject.
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