
California State University, San Bernardino California State University, San Bernardino

CSUSB ScholarWorks CSUSB ScholarWorks

Theses Digitization Project John M. Pfau Library

2008

Design and implementation of a multi-player role playing game Design and implementation of a multi-player role playing game

Giang Tuan Trang

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project

 Part of the Databases and Information Systems Commons, and the Software Engineering Commons

Recommended Citation Recommended Citation
Trang, Giang Tuan, "Design and implementation of a multi-player role playing game" (2008). Theses
Digitization Project. 3493.
https://scholarworks.lib.csusb.edu/etd-project/3493

This Project is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has
been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks.
For more information, please contact scholarworks@csusb.edu.

https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd-project
https://scholarworks.lib.csusb.edu/library
https://scholarworks.lib.csusb.edu/etd-project?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F3493&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F3493&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F3493&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd-project/3493?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F3493&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

DESIGN AND IMPLEMENTATION OF A MULTI-PLAYER

ROLE PLAYING GAME

A Project

Presented to the

Faculty of

California State University,

San Bernardino

by

Giang Tuan Trang

December 2008

Date

ABSTRACT

Modern hardware had taken the gamming industry to its

climax. Quad-core machines with high performance GPU and

Pentium II with 16 MB graphic card will perform the same on

simple Hello World program. While most software complexity

does not grow at the rate defined by Moore's law (double

every 1.5 year), the game applications utilize full

potential of today's computer hardware. Furthermore, the

availability of high speed access has increase

significantly during the pass five years making multiplayer

online gaming more accessible to everyone.

Despite the high volume of recent new releases,

creating a good game application is not quite simple.

Careful consideration must be made in hardware utilization,

response time, and game logic. Furthermore, storyline,

graphic and game quests must be maximized to keep player's

interest. Therefore, learning to program a modern game,

particularly multiplayer game, is a stepping stone to build

future's state-of-the-are software solutions.

TABLE OF CONTENTS

ABSTRACT..iii

LIST OF FIGURES vi

CHAPTER ONE: INTRODUCTION 1

The Team...................................... 2

Design Overview 3

Report Overview 8

CHAPTER TWO: CLIENT-SERVER COMMUNICATION

Overview 9

Client Side.....................................10

Server Side.....................................15

Client-Server Interactions 20

Pre-login State 21

Avatar Selection State 23

Loading Map State.......................... 24

Game Play State....................... ' . . 24

CHAPTER THREE: SERVER ARCHITECTURE

Overview...26

Name Spaces.....................................27

Persistence.....................................30

Game Loop.......................................32

Usage Scenarios.................................33

Load Capacity...............................33

iv

Shoot a Fireball.......................... 33

Activate a Mortal...........................34

Activate a Treasure Box.....................34

CHAPTER FOUR: CLIENT ARCHITECTURE

Overview...................................... 3 6

Initialization 37

Game Loop.................................. . 39

Game Play State.............................. 40

Shoot a Fireball........................ 41

Memory Management...............................44

The Graphic Engine.........................44

The Approaches............................ 46

CHAPTER FIVE: DEPLOYMENT

Overview...50

Create Client Setup Program 50

Server Deployment Architecture 60

CHAPTER SIX: CONCLUSION

Current Progress 62

Future Direction 63

REFERENCES...66

v

LIST OF FIGURES

Figure 1. Client-Server’s Physical Arrangement ... 4

Figure 2. Project Package Diagram 6

Figure 3. Communication Project Dependencies
Diagram 9

Figure 4. Client Communication System 10

Figure 5. Read and Write to Message Queue 13

Figure 6. Using a Lock to Achieve Mutual
Exclusion...................................14

Figure 7. Server Communication System 16

Figure 8. Implementation of Listening Mechanism ... 18

Figure 9. Client State Diagram 21

Figure 10. Client Sends Login Message 21

Figure 11. Server Reads Login Message 22

Figure 12. Data Access Object Example 28

Figure 13. Server Entity-Relationship Diagram 29

Figure 14. Client Architecture 36

Figure 15. Create Fire Ball Method.................. 42

Figure 16. Fire Ball Update Method.................. 43

Figure 17. Using a Lock to Clean Up Textures 49

Figure 18. Add New Project.......................... 51

Figure 19. Add New Project Wizard.................... 52

Figure 20. Setup Wizard 1............................ 53

Figure 21. Setup Wizard 3............................ 54

vi

55Figure 22. Drag and Drop Additional Files

Figure 23. Setup Project File Structure 56

Figure 24. Create.Uninstall.bat 57

Figure 25. Project Build Mode Window.................59

Figure 26. Server Deployment 60

vii

CHAPTER ONE

INTRODUCTION

In the field of computer science, the topic of game

programming is sometimes misjudged as lacking

seriousness. However, recently, it appears that the

gamming industry has evolved greatly and topics such as

XBOX, PS2, and World of the Warcraft are often centers of

students' conversations. Coincidence or not, many

computer science students are driven to universities to

acquire the skills necessary to join this challenging and

entertaining profession.

Although the word "game" doesn't sound too serious,

game programming is among the most complex types of

programming. Evidently, gaming and scientific

applications are the only types of applications that

utilize all the potential of today's state-of-the-art

hardware. A game application is a real time application.

All computations of game logic, communications and

graphics must be done not only fast as possible but also

as consistently as possible. Especially, in a multiplayer

game environment, resource optimizations must be done

1

precisely or else a weak (or erroneous) node in the

gaming network will slow down and cause lagging to other

players. In a multiplayer role-playing game (MRPG), the

setting usually involves a virtual world, playable and

non-playable characters, and entities of various kinds

ranging from something as large as a mountain or a

building to something as small as a bullet or a coin.

Therefore, the application has to solve complicated

problems such as physical motion, collision detection,

and graphical representation of those entities in the

virtual 3D world. That is not to mention the problem of

implementing storyline and the social interactions among

characters in the game logic.

The Team

It was fortunate for the students who are interested

in game programming that the Department of Computer

Science and Engineering of CSUSB started to encourage,

promote and support game programming. Led by Dr. David

Turner and Dr. Arturo Concepcion, a team of approximately

15 students were formed to solve a game programming

problem in the summer of 2008. The team consisted of

students from various programming backgrounds and

2

interests. Some team members preferred to work on game

logic design and some preferred to contribute to graphic

design. The software architecture is mainly developed by

Dr David Turner with great help of William Herrera, a

student of the Department of Computer Science and

Engineering. Due to conflicting schedules, team members

often worked remotely; however, they met regularly to

report on project status. The team's goal was to finish

the first working artifact minus the art work by the end

of summer 2008. This first artifact with a concrete,

solid architecture will serve as a foundation for future

students to learn game programming.

Design Overview

The project was designed using client-server

architecture. As shown in Figure 1, the client (physical)

machine consists of a virtual machine (VM) running C#

code. This code is called managed code since it has a

garbage collector that automatically handles memory that

is no longer referenced. The VM also calls routines from

external libraries such as OpenGL and SDL. These

libraries run on unmanaged code. Used memory must be

manually reclaimed in unmanaged environment. The VM also

3

read configuration files in it local file system.

The server also runs on a virtual machine. It runs

only manage code. The server exchange data locally with

mySQL, a database storage. It also reads its

configuration files through its local file system.

Figure 1. Client-Server's Physical Arrangement

MRPG was designed with modularity in mind. The

project is a composition of eleven smaller projects (or

packages) as shown in Figure 2. This modulus design

serves two main purposes. First, it allows team members

to work on their parts independently without affecting

others' part, given that the application programming

interface (API) rule is obeyed. Secondly, the design is

4

highly cohesive, meaning that the responsibilities within

a module are strongly related. It also implies that the

separations of modules are clear and unambiguous.

Therefore, MRPG will be easy to maintain, test and debug.

A good example for this trait of the project is the

ServerDatabase sub-project. It deals only with data

reading and writing. Thus, when debugging a communication

error, the developer can save time by leaving

ServerDatabase last on the list to check.

In the Project Dependencies diagram, the sub-projects:

Gui, Mobius, MobiusClient, Clientcommunication and

ClientCollisionSystem reside on client machine.

Servercommunication, ServerDatabase and Server packages

run on the server. Share among client and server is

CommunicationMessagesTypes acting as a protocol for

exchanging messages. Testcommunication package is used

for verifying the correctness in client-server

communications.

On client side, Gui package handles all user

interactions with the game such as logging in, selecting

characters, accessing the menu and choosing weapons. Gui

displays and handles mostly everything that user interact

with that is not an entity in the game world. On the

5

other hand, Mobius package, arbitrarily named by Will

Herrera, displays the graphical game world and its

entities in 3D. It processes a user's interaction with

game entities such as selecting an object, choosing a

target and navigating the character. It's mostly

responsible for all 3D aspects of the game including

animations of weapon firing and character movements.

July 11,2000Project Dependencies

Teste ornmumc ati on

Figure 2. Project Package Diagram

6

The ClientCollisionSystem detect physical

interactions of objects in the game world. For example,

it needs to notify the Mobius when an entity accouters a

wall in its path or to detect whether a fireball actually

hit the target.

MoubiusClient brings Gui, Mobius,

ClientCollisionSystem and Clientcommunication together

for execution. It contains the main thread of execution.

It handles the top level logic of the game state such as

transitioning among Pre Login state, Avatar Selection

state and Load Map State.

On the server side, Server makes use of

Servercommunication for communicating with client and

ServerDatabase for storing persistence data.

ServerDatabase keeps track of user accounts, character

inventories and saved games.

This overall design was reengineered multiple times

throughout the development phase. It was changed at

various times to finally accommodate most constrains as

they were encountered. The project is versioned to be

used as a learning tool for future students; therefore,

its foundation must be as solid as possible.

7

Report Overview

In subsequent chapters, details of project design

and implementation will be discussed. Chapter 2 focuses

on communication by describing Clientcommunication,

Servercommunication and CommunicatioriMessage project. In

Chapter 3, Server and ServerDatabase are the two main

projects that make up the architecture of the server.

They are responsible for game logic and data storage.

Client side project such as MobiusClient, Gui,

Clientsound, ManagedMobius and PhysicsSystem, handles

graphic display, graphical user interface, sound and

physics in the game world. These subjects are the main

topics of Chapter 4. Chapter 5 discusses about deployment

of the server and client. Details in setting up server

and installing client program will be discussed. Chapter

6 concludes the report with suggestions for future

improvement.

8

CHAPTER TWO

CLIENT-SERVER COMMUNICATION

Overview

In this chapter, details design of communication

system will be revealed. We'll discuss about key features

of client side and sever side designs. We'll begin by

describing the overall structure of the involving

packages and we'll go into details of different type of

messages.

Figure 3. Communication Project Dependencies Diagram

9

MRPG follows client-server architecture. In Figure

3, the communication between the client and the server is

handled by three packages: ClientCommunication,

Servercommunication and CommunicationMessageType. As

their names suggest, Clientcommunication runs on client

side and Servercommunication runs on the server side.

Both client and server use CommunicationMessageType as

the protocol for exchanging messages. Therefore,

CommunicationMessageType instances must be identical.

Client Side

Client Communication System Jufy 25, 2008

Communicationsystem

+cocket
♦blnwyVWter
*Mn»yReeidi5r
*lncorringMes3ageQueLi«

♦RetcweasagBOeteqdetfafrwYRpadeO Message

Message

LoginSuccessMesiage

.Read(bkwyRflodorX LoglnSuccosaMgdaoga

I

LogtnFallureMeatage

CreateAvatarMessage

’RMOCHrwyRHderX CreaeAvolarMaasapo

SetHeatthMeaaago

>ReadCblbwyRea<tor):
---i---------

Figure 4. Client Communication System

10

In Clientcommunication package (Figure 4),

Communicationsystem class is the heart of the package.

Communicationsystem class has static reference to a

Socket, a Binarywriter, a BinaryReader, a queue of

messages and a Dictionary of all acceptable message types

such as login success message, login failure message, and

create avatar message. The message queue contains

implementation instances of Message interface. All

message types must implement Message interface. A typical

message type such as LoginSuccessMessage has a Read

method that uses the static BinaryReader mentioned to

interpret the message received from the server. To send a

message such as login message to the server, the client's

Communicationsystem provides the SendLoginMessage that

uses the BinaryWrite to write to the Socket object. The

Socket class, accordding to Microsoft's C# documentation

[1], allows program to perform both synchronous and

assynchronous data trasfer using communication protocol

such as IP, TCP or UDP. A socket instance represents a

channel of communication between two end-points.

When the client program first starts, no

communication exists between the client and the server.

When a user clicks on the login button, the client will

11

read the server's information from its configuration file

creating a socket to initiate a connection. Reference to

the socket is kept as a static variable for future usage.

Immediately affter the socket creation, Communication

System will fork a static thread that is strictly

designed for listening to messages receiving from the

server. All messages received are queued up and processed

in first-in-first-out (FIFO) manner by the main thread.

This design follows the producer-consumer pattern to

achieve concurrency in receiving messages and processing

game logic. It's very important that the messages are

received as soon as possible in a real-time system. If it

was done in a single thread, the game play will be on

paused every time it makes a blocking call to the socket.

Consequently, the game play would not run as smoothly in

user's view. Furthermore, perhaps it will introduce the

complexity of handling messages that had arrives late.

Since the Communication System has its own thread

for queuing up the messages and the main thread processes

the messages, it's extremely important to make sure the

read and write operations to the queue are thread safe.

Base on Microsoft's documentation [1], object of List

class is not thread safe. Therefore, to achieve mutual

12

exclusion, we must make use of the lock when accessing the

queue. The implementation of the message queue is as

follow:

static void queueUplncomingMessages()
{

while (true)
{

Message message = null;
try
{

message = ReadMessageO;
}
catch (Exception)
{

lock (incomingMessageQueue)
{

incomingMessageQueue.Clear();
}
return;

}
lock (incomingMessageQueue)
{

incomingMessageQueue.Add(message);
}

}
}

static Message ReadMessageO
{

string messageType = binaryReader.Readstring ();
ReadMessageDelegate readMessageDelegate =

readMessageDelegateDietionary[messageType];
return readMessageDelegate(binaryReader);

}

Figure 5. Read and Write to Message Queue

Method queueUpIncomingMessages is called by the

IncomingMessagesThread. The thread enter an infinite loop

13

that checkes for newmessages and stores them in

IncomingMessageQueue. To ensure thread safety, keyword

"lock" was used to make sure that only one thread can

access incomingMessageQueue at a time. In the event of

connection failure, the thread will clear out the queue

and returns.

public static Message GetNextReceivedMessage()
{

if (incomingMessageQueue.Count == 0)
(

return null;
}
Message message = null;
lock (incomingMessageQueue)
(

message = incomingMessageQueue[0];
incomingMessageQueue.RemoveAt(0);

)
return message;

)

Figure 6. Using a Lock to Achieve Mutual Exclusion

From Figure 6, the GetNextReceivedMessage method is

called by the main thread during each update cycle. The

method is called repeatedly until all messages are

processed. Again, to avoid multithread conflict, the

keyword "lock" was used to ensure exclusive usage.

14

Server Side

The CommunicationSystem of the server, in contrary

to client side, need to handle multiple connections

simultaneously. Therefore, it maintains a list of

Communicationchannel as shown in Figure 7. Each

Communicationchannel instance corresponds to a connected

client. Similar to client side, the server has a

dictionary of acceptable message type encapsulated by

CommunicationSystem. The dictionary maps a message type

to its appropriate message reader. CommunicationSystem

also has a static listenSocket which strictly handle new

connections.

The Communicationchannel, similar to client's

CommunicationSystem, has reference to a socket, a message

queue and its own Thread. The thread independently queues

up the messages sent by some particular client.

15

Communicationchannel

«hC0d*i(>i*tr9SBgMp7ead
*$oc±d
+ttwyWker
+bh&ryf?eodor
♦ha>rinpMMMQe Queue

♦RsftiXenaytiOelqjuleCitia/ncadeij kfcxwgs
*t*dM90

AfteecMw MgefttarynooderX Uessege
+SencL(»0in$ucCQ>5Mo$$ageO
+SendLooinFnAfeMci3309cO
*SendAyriafLlsfMe3«agB(Bv^etU!d}
•SendSe!Ma04eMe^Om0l<anwjteYQrErtnipt^,

pteyejCftryPortYjjbyer&lryP'QWZ.
ftoyw&tryfWRxjiteyacErtryRfrtfty,
ffeyv&tryPprtRz)

•SeraiAddCapkbttyMaMgB(capaMy)
*SeTKftim&^CpaWyfcto33<>giXcapaM
*SefKCMtasmTe)wenldryMe9s^e(VeniHABn>C>033t

Iwirtne)
*SendRsfnov«t9fiiFrcnik ,wcrdoryMesg9ge(artkl^d)
*SendCreaeM4perttYMessert^

entyNam*^
y«i/Kjy/z,
CCrrrtwwiory)

+SendCreetK1w«!w**eswaetertiMd,enti(rO»M.
eriftName.chiirectaLovd,
x^/x/y/zj
mexHcsCi^asMftnp,
heethjAfina,
CoflrtrireritcrY)

•SefuCeteleCrllyMfllsD^erdYkO
*SertMcv<Jtiy*fea leyEfci tljty.y J j*»

ry/l)
+Seft&M£rafYU£Mcttage(Q-ttyid£onifriErtiie3)
■*SerriCre« e AcUoriMmtgg^icnld^arcftkl,

targetWhcapebBy)
+ScrxiSlopActi(xiMassage(iKtiDnld)
*SendSetMcdtN*33age(enttyldlfflarM}
*SendS0tMaxMarwMet«a^ert*Yti/nea^ ̂
*SefKEd*ta4l««r#*tte^ertt¥W;n>xHBrfh)
*S*nOtoMet»00(BrttVld)
*Senf)efel eNexsogefertr^d)
*$cndTnmfer&ttvlclnventDryMntagB(enrtytf)
*ScndL«encyRt?pQrae*te5tBp^tict8)
♦SendCrttfe Ayiilcf (iWdtarid4avrtarClaa a ,avalarKlame1

c^erUivel.mexHe^h^naxMM'ia,
CIMaTiCharKUrSpetsJnventery)

+SendCre4e9crta*fe««ege(artfytflerttyam,
j*

rxjyjzjcUflpjox,
toYJrtftRxXRy,
foRz)

*SendChalMeMaQe(eajcad,phanfie Namo^exl)

Server Communication System Auaust4,100a

S orv orC ommunl citlon

*btcnSodtd
♦mto^MinNirterQfCcrrnii.ric^tonChanriei#
*nunt»0fftsY«9
wommunlMtlonCharrielj

*OctComnjric«crClmneeyU8erwc(u3eTiWfv)
«H^«4W/iH4nirfMttwOfCffTFnriic^iondianneht

*OtlTe«r>ieu>y(Oei9titfBOicfiorHiyQ
+9artTcpUslertngQ
♦ShldownQ

Actio nRe quo itM outgo

I IqyiSxcessMmwB
I,
a'
I
a

Acq uirelte mRe qu eitMo »ag e

*Re«tt«wvReMer> tognfetreMeu»Ba

C h atRo qu estMo nag o

a
r
I
i
j *RcM(t*wyfieadg): Create Avatar hfcsgaflg

I
l‘

I
I
I
I

DIi cardEntttyMo ill g *

>Rwd(i*«vKMdw)r SaOteiWteww

r

I

Figure 7. Server Communication System

During start up, the main thread initializes the

CommunicationSystem by calling its Init method. The Init

method build the message dictionary, make note of the

delegate passed by the main thread. The delegate is a

pointer to a function to be called upon creation on a

Communicationchannel when a new client connects. The Init

method then calls StartTcpListening method marking its

16

readiness for accepting new client. Upon receiving a

request for new connection, the CommunicationSystem

creates a new Socket, instantiates a new

Communicationchannel with the newly created socket and

add the new CommunicationChannel to its

Communicationchannel List. Finally, the

Communicationsystem call the delegate that was passed

earlier by the main thread during start up. This call

will contruct the server's version of the PreLoginState.

Thus, a new client session begins. The actual

implementation of server listening mechanism is as

follow:

17

static void StartTcpListening(int port)
{
IPEndPoint localEndPoint = new IPEndPoint(IPAddress.Any, port);
listenSocket.Bind(localEndPoint);
listenSocket.Listen(port);
listenSocket.BeginAccept(AcceptCallback, null);

}

static void AcceptCallback(lAsyncResult ar)
{
Socket socket = listenSocket.EndAccept(ar);
Communicationchannel communicationchannel = new

Communicationchannel(socket);
lock (communicationchannels)
{

communicationchannels.Add(communicationchannel);
)
CreateCommunicationChannelEvent(communicationchannel) ;
listenSocket.BeginAccept(AcceptCallback, null);

}

Figure 8. Implementation of Listening Mechanism

The method StartTcpListening is called once during

start up. It binds the listenSocket to the localEndPoint.

The attribute IPAddress.Any specifies that the server

must listen to any network activities through all

networks interfaces on the server machine. The

listenSocket is then told to listen to the port specified

and begin acepting connections. It important to note that

18

BeginAccept method takes a function name (or delegate) as

its parameter. BeginAccept is a non-blocking call and

will return upon receiving client request, during which

the method AcceptCallback is called. While in

AcceptCallback, EndAccept returns the socket representing

the incoming connection. Thecoonection is then wrapped in

CummunicationChannel as metioned above. listenSocket then

resumes its usual listening state by calling BeginAccept

again.

In general, the server always runs on a main thread,

which constantly loops through its client list to update

their game status. For every connected client, there is a

thread that runs concurent with it's peer threads and the

main thread. For every iteration in the game loop, the

main thread will loop through its Communicationchannel

List to check on the communication status. If a

connection is terminated, it will be added to the

deadCommunicationChannels list and eventually removed

from communicationChannel list. Of course the thread safe

rule must be obeyed using the locking mechanism when

adding and removing items from communicationchannel list.

The key feature that allows the client and the

server to understand each other's message is the

19

CommunicationMessageType package. The package has a

MessageTypes class define the message type constants. For

instance, the string "login" define the message that is

sent by the client requesting to login to the server.

CommunicationMessageType also define classes that are

shared between client and server such as: CommEntity,

CommAvatar and CommCharacterSpell. These shared classes

contains attribute that are relevent to both the client

and the server. For example, the client has a Avatar

class that beside its name, it also has data that map to

its graphical representation. The server also has an

Avatar class but it doesn't need to know the graphical

attribute of an avatar. The CommAvatar class is to define

the intersection between both attribute sets making

communication more effectively be removing extraneous

attributes.

Client-Server Interactions

The folowing sub-section will describe all message

exchanging during all states of the client, Figure 9.

20

Client States Jut/10,2008

Figure 9. Client State Diagram

Pre-login State

When the client program starts, after

initialization, it enters immediately to Pre-login state,

Figure 9. While in Pre-login state, the client can only

send one type of message to the server, the LOGIN type.

The implementation of the login mechanism is as follow:

public static void sendLoginMessage(string username, string password)
{

binarywriter.Write(LOGIN);
binarywriter.write(username);
binarywriter.Write(password) ;

}

Figure 10. Client Sends Login Message

21

On the sever side, the server uses class

LoginMessage to read the message as follow:

internal static Message Read(BinaryReader binaryReader)
I

LoginMessage loginMessage = new LoginMessage();
loginMessage.username = binaryReader.Readstring();
loginMessage.password = binaryReader.Readstring();
return loginMessage;

}

Figure 11. Server Reads Login Message

The sever then validate credential provided and send

back to client either a LOGIN_FAILURE message or a

LOGIN_SUCCESS message. Client will need to use

LoginFailureMessage class or LoginSuccessMessage to read

the message similarly to the code snippets above. If the

received message was a failure, client terminates the

connection and resume Pre-login state. On the other hand,

if it was a success message, the client will transition

to AvatarSelectionState. Also, the server will transition

to its version of the AvatarSelectionState. There it will

fetch a list of avatars and send to the client

immediately. At any moment during the Pre login state,

the server and the client do not maintain communication.

22

Communication is initiated upon the login action and

terminates when first transiting back into Pre-login

state either through a logout action or when login fails.

Otherwise there will always be a connection in

AvatarSelectionState, LoadMapState and GamePlayState.

Avatar Selection State

Upon transitioning into avatar selection state, the

client will immediately receive an AVATAR—LIST message

from the server. The client will process the avatar list

and remain in avatar selection state for further

instruction from the user.

While in avatar selection state, the client has two

choices: to send a LOGOUT message to logout or to send

SELECT—AVATAR to inform the server about the chosen

avatar. If it is a logout message, client will

immediately transition back to Pre-login state.

Otherwise, if it is a select avatar message, the client

will remain in AvatarSlectionState and wait for further

instruction from the server.

After receiving the SELECT—AVATAR, the server will

fetch avater's attributes from the database and send them

back to the client using CREATE—AVATAR message. Sever

will transition to its MapLoadingState. It then will

23

fetch the map attributes and send to client the SET_MAP

message. On the other end, after receiving avatar's

attributes through the SELECT_AVATAR message, the client

stays in its current state and expect the SET_MAP message

from the server. When the message arrives, client will

transition to MapLoadingState state. At this point, both

the server and the client are in MapLoadingState, also

known as Loading Map State.

Loading Map State

After transitioning in to MapLoadingState, the

client will start loading the graphical representation of

the map into the memory. Loading map is a time consuming

process; therefore, user has an option to force an

EXIT_GAME if cannot wait for map loading to finish. If a

user takes this option, both end-points will return back

to AvatarSelectionState. Otherwise, after the map is

loaded, a MAP_LOAD_COMPLETION message will be sent to

the server and the client will transit to GamePlayState.

The server will do the same upon receiving the message.

Game Play State

During the GamePlayState, the server expect the

following type of message from the client: MOVE_REQUEST,

ACTION-REQUEST, STOP_ACTION-REQUEST , INTERACT_REQUEST,

24

ACQUIRE—ENTITY-REQUEST, RELEASE„ENTITY_LIST,

DISCARD-ENTITY, LATENCY-REQUEST, JOIN_CHANNEL-REQUEST,

LEAVE_CHANNEL-REQUEST and CHAT_REQUEST. to carry out game

logic among players. These types of request will not

result in state transitioning and therefore will be

discussed in Chapter 3, Server Architecture, and Chapter

4, Client Archichture instead. However, a EXIT—GAME

message will take client and server back to

AvatarSelectionState if user choose to exit game. Also,

if the game play result in a map transition, the client

will transition back to MapLoadingState temporarily to

load the new map and then resumes GamePlayState shortly.

Although the communication systems of both client

and server are relatively simple, they serve the project

effectively. They handle concurrency issues very well.

For maintainability, it's very easy to add new type of

message if needed to. It virtually doesn't affect the

existing codes. The new message just needs to implement

the Message interface and it new message send/receive

handlers.

25

CHAPTER THREE

SERVER ARCHITECTURE

Overview

In this chapter, we'll discuss in detail the

architecture of the server. We'll talk about how

persistent data are handled and the typical interactions

between the clients and the server within the game loop.

The server, besides being the center of all

communications, is the authority on game state. It

decides if a requested action from the client is

permitted and succeeds. Thus, clients send requests,

which the server either accepts or rejects. The server

makes decisions based on its knowledge of the overall

system at the given moment. For instance, player 1 can

request that a fire ball attack be carried out on player

2, but the server will decide whether the fireball attack

is permitted under the game play constraints (such as

minimum distance to target, completion of cool downs and

mana restrictions). After deciding that the attack is

permitted, the server then decides the amount of

resulting damage to player 2. There is one exception to

the rule that the server decides on the game state: the

26

server accepts all requested player positions. This

exception was allowed, in order to relieve the server of

performing the computationally expensive collision

detection with the terrain. During this initial

programming iteration, the server was not designed to

maintain the details of the terrain therefore cannot

enforce collision with the terrain.

Name Spaces

The server consists of five packages, or namespaces;

namely: Server, ServerDatabase, Servercommunication,

CommunicationMessageTypes and MathUtil. The Server

namespace is the execution entry point. It contains the

server-side game loop that, as mentioned above, controls

the game states and processes client requests. As a note

for future development, game Al will be calculated in

this namespace. As shown in the UML diagram in Figure 2,

the Server namespace depends on the ServerDatabase

namespace; it uses data access objects from

SserverDatabase in order to retrieve and save game

account information such as user accounts, game

characters and inventories. The ServerDatabase uses the

Data Access Object (DAO) design pattern to hide database

27

access details. For example, the LoginCredentialsDao

class has a static method FindByUsername that retrieves

user account credentials from the database, constructs a

Logincredentials object and returns it back to caller

(See Figure 12). This design pattern separates classes

that handle business logic from those that query the

database. It abstracts all the details of database access

into DAO objects, hence increasing cohesion in the

design.

Logincredentials

+username
-i-password

+LoginCredentialsO

A
I

Databasesystem

tconnedionStrinq
+getConneclion(): iDbConnection

A

I

I

1
LoginCredentialsDao

+FindByUsernatne(): LcginCredentrals

Figure 12. Data Access Object Example

28

The packages Servercommunication and

CommunicationMessageTypes provide the mechanisms for

exchanging messages between client and server. Detailed

descriptions of these packages were given in Chapter 2.

The utility package called Mathutil provides user defined

methods and mathematical data types.

Figure 13. Server Entity-Relationship Diagram

29

Persistence

Persistent data is data that survive server reboots.

In this project, persistent data appears in two different

formats: database format and XML file format. From

Entity-relationship diagram in Figure 13, the following

tables are created: login_credentials, avatar, inventory,

and spell_book.

The user account table, login_credentials, has

simply a username column and a password column. Username

is the primary key of the table. Password is in plain

text for testing purposes, but can be encrypted during

production operating mode.

A record in the avatar table links the avatar to a

user account. An avatar has a unique avatar name and

belongs to a predefined avatar class. The avatar table

also keeps track of levels, maximum mana, maximum health,

and ten action bar slots. The value of a level

corresponds to the experience and skills of the avatar.

The mana value allows the avatar to perform special tasks

such as healing or attacking. When the health value

decreases to zero, the avatar is considered killed.

Health value decreases when avatar is hit and increases

when taking a health potion, herb, or being healed by

30

another avatar.

The spell—book table records the avatars'

capabilities. Capabilities can be the ability to heal or

to perforin a special attack tactic.

An avatar can obtain items by interacting with the

world. Items that are obtained by the avatar are referred

to as inventory, and are stored in the inventory table.

Some items can be equipped, such as weapons and armor,

which is the ability for the avatar to hold, wear or use

the item. When a player equips an item, it is associated

with an equipment slot. Only one equipable item at a

time may occupy an equipment slot. The equipment slots

include weapon, hand (for gloves), head (for hats and

helmets), chest (chest armor), legs (leg armor), and feet

(boots and shoes). The state of the equipment slots are

kept in the inventory table.

Note that items are considered entities in the game

world along with other objects, such as portals, avatars,

or treasure boxes. An entity has a unique id and belongs

to a predefined entity class.

The second type of persistent data, XML, is stored

in text files. These files store map information such as

entities and their locations.

31

Game Loop

A game loop is an infinitely repeating sequence of

operations that the server code enters after

initialization. During an iteration of the loop, the

server has certain tasks to perform, such as processing

client requests and synchronizing all clients'

information. However, before entering the loop, the

server must preprocess some tasks during initialization.

When first started, the server enters an

initialization phase. First, it reads in the

configuration files for the database's location, port,

and login credentials. It then initializes the database

system. Second, it initializes a catalog of actions,

which is a list of supported actions such as fire ball

attack or healing. Similarly, it fills up a catalog of

equipment, which describes which equipment slot certain

items may occupy. Third, it initializes the game world by

reading the XML configuration files mentioned above. All

the maps are read and populated with entities. Portals

that link maps are also resolved. Finally, the server

reads in the communication configurations, sets up the

communication system as described in Chapter 2, and

starts listening for client connection requests.

32

Once initialization is done, the server enters the

game loop. Within each iteration, the server processes

its incoming message queues, creates outgoing messages to

clients, and updates the database with the latest

changes.

Usage Scenarios

Load Capacity

One type action user can perform is to load a

capability to the action bar slot. After client code has

determined that play wanted to load a capability, it will

construct a SET_ACTION_BAR_ENTRY message and send to the

server. This message type takes two parameters, a spell

name and an action bar slot index. The server acknowledge

the request and update the avatar's actionBarEntries at

requested index with the spell name specified.

Shoot a Fireball

When client code has determined user's choice of

target and type of action to be performed (firing a

fireball), it sends an ACTION_REQUEST to the server. The

server will determine the target based on the id provided

and confirmed that it's a Character type of target. The

server will load the FireBallAction and call Activate on

33

the requesting Character (source) and targeting Charater

(destination). Server will determine if the source

Character has enough mana and the is both entities are

within accceptable distance. If conditions satisfied,

server will deduct mana from source, decduct health from

destination, and adjust readyDeadline to provide cool

down period for next action. It also send

SendAnimationMessage message to both source and

destination for graphical display of the fireball

shooting.

Activate a Portal

When user activates a portal by clicking it, client

sends an INTERACT—REQ message to the server. If the

message contains a entity_id that points to a Portal, the

server will send a SET_MAP message to client with details

of position and orientation along with the name of the

map.

Activate a Treasure Box

Similar to activating a portal, when the entity is

the treasure box, server will determine if it's currently

opened by another player. If not, it will prepare a list

of CommEntity and send a OPEN_TREASURE—LIST message back

34

to client. It marks the treasure box as opened to lock

out other player from accessing the box.

The server while making many interaction decisions

among entities, it does not handle entity to terrain

collision. The server, during this development state, is

not to process graphical data other than 3-dimesional

coordinate system that is use for positioning

calculations.

35

CHAPTER FOUR

CLIENT ARCHITECTURE

Overview

In this chapter, we discuss the design of the

client, which is separated into the packages: Mobius,

MobiusClient, Clientsound and Gui. We'll see how

MobiusClient makes use of other packages to carry out the

graphics, sound and user interactions. Also the topic of

memory management will be discussed.

1 I
I I

I
I I
I I
I I

I I
1—L

/

MobiusClient

Figure 14. Client Architecture

36

As shown in Figure 14, the MobiusClient package is

the central component of the client architecture. It

contains the main execution method and the game loop. The

Clientsound package handles 2D and 3D sound. The Gui

package is responsible for the heads-up-display (HUD),

which is the graphical user interface that handles

interactions such as choosing a spell, putting on

equipment or striking with a weapon.

The Mobius package is placed into a library to

enforce stronger separation from the main client code.

It loads and generates the 3D terrain and renders the 3D

models comprising the game world. The Mobius library

provides the APIs for usage and hides all details of how

the rendering works. Missing from Figure 14 is

Communicationsystem, which was described in Chapter 2.

This was omitted to simplify the diagram.

Initialization

During start up, the main method first initializes

its memory with the server's information, such as address

and port number. The predefined server details are stored

in a local XML file called App.config. From the same XML

file, it reads the screen dimensions and title of the

37

game screen. With the screen dimensions, it initializes

the Simple Direct Media Layer (SDL), which is a free open

source library that enables cross-platform development.

The next item to initialize is the Mobius library. The

Mobius library provides an API that renders game entities

and special effects such as a fire ball animation. The

Mobius library also needs detailed description of the

entities and special effects, which can be found in

map_entities.xml and effects.xml respectively.

Next on the list is the sound system in the

Clientsound package. The sound system needs to initilize

startup criteria such as music volume, sound volume and

ambient sound volume. After the sound system is loaded,

the GUI system follows. The GUI system needs to set up

its model-view and projection matrices, and configure the

view port. The client also needs to load a list of

supported spells and initialize the spell system. The

spell system contains a map that associates a spell with

the function that handles its creation. Similarly, the

buff system is loaded with functions that handle buff

creation. (A buff is an effect that influences the state

of a character over a relatively long period of time.)

Finally, the client enters the pre-login state, calls the

38

state's activate method to prepare the login screen and

sets up the update method to waint for a user login

message. This completes the initialization phase of the

client.

Game Loop

After initialization, the client program enters the

game loop. In each iteration of the game loop, the client

calls the current state’s update method. This method

calls another method through a delegate (a function

reference) in order to process the current sub-state of

the state. For instance, if the delegate is set to a

function that waits for a specific response from the

server, the function will be called until it receives and

processes the response.

Next, MobiusClient calls the communication channel's

update method to send out any pending messages that may

have been created by the state's update method. It will

also check the global update event queue and invoke any

delegates that are registered into the queue.

After all game logic is processed, the client calls

the Mobius library to render the latest snapshot of the

visible 3D world. Then it calls the draw method of the

39

GUI system in order to render the visible components of

the user interface. Finally, the sound system is called

to allow the sound suystem to adjust playing sounds to

simulate 3D sound effects.

After executing the game logic, displaying graphics

and updating sounds, the game loop processes all the

events that generated by the user. In other words, it

handles user inputs. For example, if there is a delegate

that was registered to the key down event queue and there

is such an event detected by SDL, that delegate will be

called. These events include key down, key up, mouse

move, mouse button own and mouse button up. One exception

is that the program will shut down if the user clicks the

window exit icon.

Game Play State

Once the client is authenticated and the user

chooses an avatar, the client will transition into the

load map state. This state lasts momentarily and is

followed by the game play state as soon as the client

loads all graphics content for the current map. Upon

initilization, the game play state accepts the avatar,

the current map, and the heads up display (HUD) from the

40

load map state. It constructs a message processor that

has the details of how incomming message types are

handled. After initialization is done, the activate

method is called. The activate method populates the

entity dictionary, and moves the avartar to the initial

position in the map, and makes the HUD visible.

Shoot a Fireball

During the game play state, the player will be

invoking various capabilities of the avatar that he or

she controls. One such capability is to shoot a fire

ball. Before a fireball attack can be performed, the

fireball spell must be loaded onto the spell bar. The

player needs to select the target to register it to the

HUD and than activate the fire ball attack by either

clicking on the fireball icon in the action bar or

pressing its corresponding number on the keyboard. When

the user does this, the client will send the server an

action request message that carries the target id and the

name of the fireball spell. The server responds by

sending a create action message (Figure 15).

41

internal static Action Create (CreateActionllessage msg)
(

Character sourcecharacter =
(Character)BuffSystern.Map.EnticyldDictionary[msg.SourcecharacterId];

Character destinationcharacter =
(Character)BuffSystem.Map.EntityldDictionary [msg.DestinationcharacterId];

FireBall fireBall = new FireBall(destinationcharacter);
fireBall.effect = Mobius.Renderer.CreateEffect(effectName);

Vec3f sourcePosition » sourcecharacter.Position;
Vec3f destinationposition « destinationcharacter.Position;
sourcePosition.y += 4.Of;
destinationPosition.y +» 4.Of;
Mobius.Vector3 mobiusSourcePosition = new Mobius,Vector3(

sourcePosition.x,
sourcePosition.y,
sourcePosition.z);

Mobius.Vectors mobiusDestinationPosition = new IIobiu3.Vector3 (
destinationposition.x,
destinationPosition.y,
destinationposition.z);

fireBall.effect.Start(mobiusSourcePosition, mobiusDestinationPosition);
float distance « sourcePosition.DistanceFrom(destinationposition);
float secondsToImpact = distance / speed;
fireBall.timeToImpact = TimeSpan.FromSeconds(secondsToImpact);
Program.UpdateEvent += fireBall.Update;
return fireBall;

Figure 15. Create Fire Ball Method

In order to render the fireball animation, the

FireBall class needs the source and destination that mark

the fire ball's path. The fire ball object maintains a

reference to the destination character. The code calls

the Mobius library to generate an effect. The position of

the fire ball is adjusted 4 feet in the positive y

direction so that the fire balls strikes the character

target in it chest area. Once the fire ball is fired, the

42

delay (secondsToImpact) that takes the fire ball to reach

its destination will be calculated using the distance

between 2 characters and the speed of the fire ball. The

estimated time of arrival will also be calculated and

saved. The FireBall object then registers itself to

program's update event queue; so that its update method

runs in the game loop.

internal void Update (T.imeSpan-dt)
(

Vec3f destinationposition = destinationcharacter.Position;
timeToImpact -= dt;
if (timeToImpact <= TimeSpan.Zero)
{

PlayExplosion(destinationposition) ;
Destroy();
return;

}
destinationposition.y += 4.Of;
Mobius.Vector3 mobiusDestinationPosition = new Mobius.Vector3(

destinationposition.x,
destinationposition.y,
destinationposition.z);

effect.SetDestination(mobiusDestinationPosition);

Figure 16. Fire Ball Update Method

As shown in Figure 16, during a game loop update,

the fire ball's update method will be called. Here, if

the fire ball has reached its destination, it will play

an explosion indicating the fireball has expired. The

43

update method will also call the destroy method in order

to perform clean up, including deregistration from the

program's update event queue. Otherwise, the position of

the fire ball will advance according to its speed and

destination. The cycle continues until the fire ball

finally expires and destroys itself.

Memory Management

One important aspect that was considered when

choosing a programming language for this game was its

memory management capabilities. C# with .NET framework

was chosen over C++ due to its automatic memory

management capabilities. The .NET framework comes with a

runtime environment called Common Language Runtime (CLR).

It is Microsoft's implementation of the Common Language

Infrastructure (CRI), an ECMA and ISO standard [2]. The

CLR is a virtual machine with its own garbage collection

facilities that automatically clean up unreferenced

memory. In this project, minimizing memory management in

the code was a big plus when there are many higher

problems needed to be solved, such as communication,

camera control, and physical interaction.

The Graphic Engine

44

The project's vision extends beyond Microsoft

Windows. The project is built with future extensibility

to Linux and Macintosh in mind, which is the reason SDL

and OpenGL are used. OpenGL is encapsulated inside the

Tao framework which exposes an OpenGL like API in C#

syntax. The Tao framework is runable under the Mono

framework, another implementation of the CLI that ran be

run in Linux and Macintosh. In short, all programming and

choices of third party library will need to be Mono

compatible.

Switching back to memory usage, OpenGL libraries

will interact with the graphic card directly [2]. Graphic

card memory is not managed by the virtual machine.

Therefore, graphic card memory management must be done in

the code. For instance, in order to display a wooden box,

it's necessary to follow these steps:

1) Read the graphic file that contains the wood

texture.

2) Ask OpenGL to generate the texture and push it to

the graphic card's memory.

3) When the texture is no longer used, OpenGL must

be told to de-allocate the texture in the graphic

card.

45

Consequently, a central concern is how to handle

effectively this scheme of operation.

The Approaches

In general, there is a Texture class that is

responsible for calling OpenGL and saving the texture's

OpenGL handle as a member variable. During construction,

a Texture object will call the OpenGL function to

generate a new integer handle to identify the texture.

The problem is now how to tell OpenGL that a texture is

no longer needed.

In the first approach to cleaning up the texture, it

relies on the Texture destructor to call to tell OpenGL

to deallocate texture memory. However, this approach

failed, because destructor is called by the garbage

collector, which runs in a different thread. OpenGL

functions need to be called from a single thread in order

to work correctly. Consequently, when the garbage

collector trys to deallocate texture memory, OpenGL

throws an exception.

The second approach takes advantage of the

IDisposable interface that C# provides. The implementor

must implement the Dispose() method. This machanism

enforces a structured way of handling unmanaged objects,

46

which are objects that manage resources that are not

automatically released by the garbage collector. More

importantly, the thread that created the texture can call

this method manually to delete the texture. When

Dispose® is called manually, it flags the Texture

destructor not to call Dispose® when being collected.

This technique works as long as the programmer remembers

to call Dispose® before the destructor does. It's

cumbersome to have to remember to call Dispose®;

therefore, another approach was developed.

In the third approach, there is a static, global

list of integer handles to textures that need to be

deallocated from graphic card memory. If a texture is no

longer used, it will be added to the list by the texture

destructors. The main thread (same thread that created

the textures) will iterate through the list and de

allocate each texture in each iteration of the game loop,

which thus avoids violating the OpenGL policy. The

benefit of this approach is focusing texture de

allocation in one place. Also, the business of adding

textures to the list of texture handles can be done in

the destructor or at will.

The last approach raises one major concern that is

47

the issue of thread safety. As mentioned, the list of

handles to textures to delete is accessible through the

main thread and the garbage collection thread. Both

threads are free to add and delete items in and out of

the list at any time. The list is an instance of class

List in C#. The class List is not thread safe [2]. A

classic scenario of thread safety is one thread iterating

through the list while the other thread is deleting items

out of it. It's obviously a violation of the correctness

of the program. To resolve this issue, some kind of

mutual exclusion mechanism must be implemented to avoid

the above scenario. Fortunately, C# provides a technique

to handle such cases using locks. An example of its usage

is given below in Figure 17.

48

//Thread 1 - clear the textures

lock(texturesToDelete)
{

foreach (int textureName in texturesToDelete)
(

int name = textureName;
G1.glDeleteTextures(1, ref name);

}
texturesToDelete.Clear();

//End Thread 1

//Thread 2 - add texture to list

~ TextureO
{

lock(texturesToDelete)
{

texturesToDelete.add(this.textureld)
}

Figure 17. Using a Lock to Clean Up Textures

49

CHAPTER FIVE

DEPLOYMENT

Overview

In this chapter, we'll focus on the operating

environments of the client, the server and the

configurations necessary for them to communicate. We'll

discuss about hardware, software, and network

requirements. We'll walk through the process of compiling

an installable setup package for the client program.

We'll describe the organization of file structure in both

client and server.

Create Client Setup Program

The following procedure applies to clients running

Windows XP or a later Microsoft operating system. The

procedure will generate a single MSI file that contains

all the necessary libraries, executables, and data files.

From the MSI file, the user can automatically install the

client program. Once the program is installed, the user

can uninstall the program easily using either a shortcut

or Add and Remove Program user interface.

50

Figure 18. Add New Project

The fist step in creating the setup file is by

adding a Setup and Deployment project as shown in Figure

18.

1) Right click on solution icon, navigate to the

label "Add" and click on the "New Project" label.

51

tJame: [~MRPG

Reject types: Templates:

□-Visual C++ Visual Studio installed templates
; ATL

; - CLR Setup Project Web Setup Project

:■ General Merge Module Project ■TklSetup Wizard

; j- MFC
i Smart Device

||P CAB Project jg] Smart Device CAB Project

’-Win32 My Templates
'+ Other Languages
6- Other Project Types (^Search Online Templates...

; ■ Setup and Deployment;
‘ - Database

Extensibility

Create a Windows Installer project with the aid of a wizard,

Location: | C:\msproj\mrpg3\vs2005 lvjj I Browse---]

| OK | [Cancel]

Figure 19. Add New Project Wizard

2) As in Figure 19, an "Add New Project" window will

pop up. Select "Setup and Deployment" from the Project

types box and "Setup Wizard" from the Template box. Enter

the name of the program in the "Name" input box. In this

case, it's MPRG. Click OK.

52

S^tuj^izatd,

Welcome to the Setup Project Wizard

This wizard will lead you through the steps of creating a setup
project.

A setup project creates an installer for your application.

The project that is created can be used immediately or further
customized to add extra features not covered by this wizard.

Click Next to create a new setup project, or Cancel to exit the wizard.

I < Previous) Next > Finish Cancel

Figure 20. Setup Wizard 1

3) The "Setup Wizard" screen will popup as in Figure

20. Click "Next" to go to Setup Wizard step 2. In step 2,

select "Create setup for a windows application" and click

"Next."

53

Cancel[< Previous

Description: , • _________ .
Contains the DlLor EXE built by the project,

Figure 21. Setup Wizard 3

Choose project outputs to include
You can include outputs from other projects in your solution,

Which project output groups do you want to include?
Q Debug Symbols from Mathutil
□ Documentation Files from MathUtil
Q| Localized resources from MobiusClient
Q] XML Serialization Assemblies from MobiusClient
□ Content Files from MobiusClient

Q| Source Files from MobiusClient n
QJ Debug Symbols from MobiusClient
Q] Documentation Files from MobiusClient
Q| Localized resources from Gui

4) In Setup Wizard step 3 (Figure 21) check "Primary

output from MobiusClient." Click "Finish". We skipped

Setup Wizard step 4 (add additional files) because it's

more efficient if done manually without the help of the

wizard. At this point we have a File System window with 3

directories; Application Folder, User's Desktop, and

User's Programs Menu. These directories present the

client's installation directory, Desktop, and All Program

54

menu, respectively.

Figure 22. Drag and Drop Additional Files

5) In this step, as mentioned earlier, we'll add the

necessary files manually from MobiusClient directory.

Note that under Application Folder directory, there is a

"Primary output from MobiusClient" file. This file is the

execute file generated from MobiusClient project, visual

Studio 2005 also automatically imported 10 libraries,

namely [list imported file names} that it thinks the

55

program will need. However, the program also needs {list

file additional file names} libraries. Also, the program

needs data files. Therefore, we need to add the assets

and effects directories along with App.config file. We

need to drag-and-drop these files to the Application

folder as shown in Figure 22. It's a good idea to sort

the Name column in the File System window to remove

duplicates. Once done, the application folder should look

like the one shown in Figure 23.

Data Tools Action Window Community Help

yL? ,Deblja /.AnyCPU
,’J deadCommunicatlonChannels * /'ifjl t]

/File System (MRPG)’

...H JU File System on Target Machine ' Name Type
Ql effects Folder

■Cj User's Desktop 1*1 assets Folder
ii/ ’ -Cj User's Programs Menu ■OTao.OpenGLdll Assembly

b •O Ta o. Platform, Window.., Assembly

•C3Physlcs5ystem.dll Assembly
•O C lientCommunlcatlon. dll Assembly

-O Communi tationMessa,., Assembly

-OGui.dil Assembly

i ■OTao.FreeType.dll Assembly

i ■G3Mathtltil.dll Assembly

• O Tao, Ode .dll Assembly

1 »O Tao. FreeType. dll Assembly

•OCIientSound.dll Assembly

ManagedMobius. dll Assembly
is •O Tao.5dl.cll] Assembly

•OTao.Sdl.dli Assembly

•OTao.OpenGl.dll
SsDUdll

is) ode, dll

Assembly
File

File
Bl freetype&.dll File
Bl BulletDLL.dU File
B] thbi.dll File

i i=) App.config File

Prim ary output from... Output

Figure 23. Setup Project File Structure

56

6) In this step, we'll create shortcuts to the

executable and drop them to the user's desktop and Start

Menu. Right click on file "Primary output from

MobiusClient" and click on "Create Shortcut to Primary

output from MobiusClient (Active)" menu item. This will

result a new file called "Shortcut to Primary output from

MobiusClient (Active)". Rename this file to a user

friendly name such as MRPG. Copy the newly created file

to User's Desktop directory in File System. Also, add a

directory to User's Programs Menu called MRPG. Repeat the

above technique to add another shortcut to directory MRPG

under All Program menu.

Figure 24. Create Uninstall.bat

57

7) This step is to create an uninstaller under the

MRPG directory in the All Program menu. This is a third

option to uninstall the program besides "Add and Remove

Program" and the setup file, (Running the msi file while

the program is already installed will prompt the option

to uninstall the program,) Creating the uninstall file

requires creation of a batch file; let's call it

Uninstall.bat. As shown in Figure 24, use an editor such

as Notepad to enter the following command without quotes

and with a different 32 digit number: "Msiexec /x

{3312B256-1379-4739-B402-E9DA2760453C}" As shown in the

figure, The 32 digit number is in the command is the

unique identifier of the program and can be obtained by

viewing the Properties Window of the Setup project. When

the command executes, the operating system will prompt

user to complete the uninstalling process. Finally,

attach the Uninstall.bat file to MRPG.

58

Active solution configuration; Active solution platform:

Any CPUDebug

<New...>
<Edit...>
Lunmionirauuiimessdye types utiuuy

Platform

Any CPU

deploy);

Cui Debug Any CPU

MathUtil ’ Debug Any CPU

MobiusClient Debug Any CPU

MRPG Debug . s. _

Server Debug i Any CPU

Servercommunication ' Debug Any CPU

ServerDatabase Debug Any CPU

Testcommunication Debug Any CPU

TestOfServer Debug Any CPU

TestSound Debug Any CPU

I Build

0
0
0
0□
0
0
0
0
0
0

[Close,]

Figure 25. Project Build Mode Window

8) Before we build the Setup Deployment project, we

need to configure the project to build in release mode.

This can be done by accessing the Build menu and then

Configuration manager. In Configuration manager window,

change Active configuration from Debug to Release as in

Figure 25. To complete to procedure, right click on Setup

Deployment project name then click Build. Visual Studio

will compile the project in to MRPG.msi file under

Release directory. This file is the end product of this

section.

59

Server Deployment Architecture

Although it's possible to create a portable setup

file for the server using technique described earlier, it

might be uncommon, not necessary or inadequate. The

server consists of a machine running server code and a

remote MySQL database. As shown in Figure 26, the Sever

is 2-tier. It uses an external MySQL database for data

persistence data storing. The server also uses a file

system to retrieve stored map files. These files reside

in the server machine itself.

Figure 26. Server Deployment

The setting up process of the server involves first,

setting up the database. For this project we used the

60

free MySQL distribution from Sun Microsystems. The

database is named MRPG and protected with a username and

password. The username and password are kept in the

App.config configuration file of the server. The server

communicates with the database through port 3306.

The server's executable code needs to be installed

as a service. A service can be configured to start

automatically after server reboot. The server machine

need to open port 10008 for incoming TCP connections.

All clients communicate with each other through the

Internet or Intranet via the server. The sever act as a

medium for all communication during a game session.

The 2-tier design is simple and straight forward. It's

easy to maintain and more importantly, the database can

adapt easily to other application architectures namely

web-application for account creations and updates.

61

CHAPTER SIX
CONCLUSION

Current Progress
The latest iteration of the MRPG project includes

many important features. These features together help

define the backbone of the project. Generally, the game

allows the user to login, to select a character, to see

other users and chat with them, to move the character

across maps through portals and to attack other

characters. The project's internal structure is solid and

well defined. Many sub-features have taken shape and are

functional. First of all, the authentication system was

completed to allow users to login and retrieve their game

profiles that contain previously created characters from

the server's database.

Furthermore, the chat system that gives users the

ability to exchange text messages functions as intended.‘

The character models are rendered correctly when examined

from first-person and third-person views. The character

can move anywhere in the game world and is bounded within

the terrain boundary. The HUD is completed, featuring a

spell book that contains spells such as a fireball attack

and buffs. The HUD also gives the player an action bar of

62

ten available slots, the ability to view the player's

current inventory, and a screen through which the player

can choose equipment. The player can also interact with

the items in the game world such as a treasure box. The

player then can decide whether to keep the items in the

treasure box. Mutually exclusive access to the treasure

box instances is also carefully implemented. Players can

enter portals to transit between maps. Finally, the

ranged attack is also completed in conjunction with

associated animations and 3D sounds. That completes the

list of main features in the latest iteration.

Future Direction

Although most dominant problems in the MRPG are

solved, many details were left out for the sake of

completing the architecture. Furthermore, several lessons

were learned during the implementation of the project.

For instance, one suggestion for future development would

be to rewrite the client program to use the XNA

framework. Although the XNA framework has limited

operating platform support (only MS Windows, XBOX and

Zune), it provides a good deal of solutions to both

graphics and physics problems of the virtual world.

63

Adapting to this framework will definitely improve

programming throughput because developers can concentrate

more on game logic features and less on the problem of

technical barriers.

To make the game livelier, it is recommended to add

animation states to the game characters, so characters

can express through gesturing or facial expressions. For

instance, the character can act out the gesture of

throwing a fireball when using a fireball attack.

Furthermore, a multiple channel chat system also

increases player interactions making the game more

enjoyable. The terrain also needs to be improved to

contain more type of items in the game world, such as

different types of buildings, plants, and animals. These

are some of the small improvements that can make the game

more realistic and enjoyable.

Beside the minor details that help promote game play

experience, the improvements in game logic are important

as well. Future development should develop a collision

detection system that detects entity collision in the

game world. For instance, a character should not be able

to proceed if another entity or a large object is in its

path; the character should step over or walk around the

64

obstacle to continue its path. Furthermore, there should

be a system that handles Al for the non-playable

characters. A non-playable character should behave close

to ones controlled by a human player. It should have

multiple levels of intelligence and aggressiveness.

Finally, a quest system that defines the player's gamming

experience through the use of game levels or point system

in order for the game to quantitatively evaluate the

player’s accomplishment. This feature will give players a

sense of being challenged thus making the game play more

interesting. With these features applied, there is high

probability that the project will gain greater momentum.

Comparing to other software domains, game

programming is one of the more complex. Despite the lack

of seriousness in the domain, game programming has very

high demands. It requires thorough knowledge of the

hardware platform, mathematics, physics and most

importantly, it requires that the developers be always on

top of the technology they are using. Therefore, besides

serving as an entertainment medium, MRPG is a highly

suitable project for future developers who wish to

express their talents into the gaming world.

65

REFERENCES

[1] Microsoft Software Development Network,
<http://msdn.microsoft.com>

[2] Rabin S., Al Game Programming Wisdom 4.
Massachusetts: Charles River Media, 2008.

[3] Rabin S., Introduction to Game Development.
Massachusetts: Charles River Media, 2005.

[4] Shreiner D., Woo M., Neider J., & Davis T.,
OpenGL Programming Guide. Massachusetts: Addison-
Wesley Pub Co, fifth edition, 2006.

66

http://msdn.microsoft.com

	Design and implementation of a multi-player role playing game
	Recommended Citation

