
California State University, San Bernardino California State University, San Bernardino

CSUSB ScholarWorks CSUSB ScholarWorks

Theses Digitization Project John M. Pfau Library

2008

Building web applications using web services Building web applications using web services

Keerthi Nannapaneni

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project

 Part of the Databases and Information Systems Commons, and the Software Engineering Commons

Recommended Citation Recommended Citation
Nannapaneni, Keerthi, "Building web applications using web services" (2008). Theses Digitization Project.
3490.
https://scholarworks.lib.csusb.edu/etd-project/3490

This Project is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has
been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks.
For more information, please contact scholarworks@csusb.edu.

https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd-project
https://scholarworks.lib.csusb.edu/library
https://scholarworks.lib.csusb.edu/etd-project?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F3490&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F3490&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F3490&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd-project/3490?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F3490&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

BUILDING WEB APPLICATION USING WEB SERVICES

A Project

Presented to the

Faculty of
California State University,

San Bernardino

In Partial Fulfillment
of the Requirements for the Degree

Master of Science
in

Computer Science

by
Keerthi Nannapaneni

December 2008

BUILDING WEB APPLICATION USING WEB SERVICES

A Project

Presented to the

Faculty of
California State University,

San Bernardino

by
Keerthi Nannapaneni

December 2008

Approved by:

Computer Science

ABSTRACT

This project was performed to get hands on experience
on the implementation of web services. During this project

execution, significant time was spent researching about

existing web services and various programming environments

that can be used for building the application. The

following technologies were used to build this web
application - AJAX, JavaScript, Java, Java Server Pages,
HTML, and CSS. Existing data content from the following
web service resources were used in this application-

Google API, ArcWebServices, Weather XML data feed. The

purpose of this application is to show the map location

along with the weather of the place selected by a user.
Using this application, the user will also have the
ability to get driving directions and current traffic
information.‘This application can be easily integrated

with university web pages to give easy access to weather
*and place information for students and staff in California

State University at San Bernardino (CSUSB). Through the

course of this project information about how to find and
evaluate existing web services, technologies and methods

of integrating various web services into one application

were gathered. All the important steps that were followed

during the implementation were documented in the order of

iii

execution. This documentation will help programmers find

useful information when building a web services based
application.

iv

ACKNOWLEDGMENTS

This project was carried out with the guidance and

assistance of my project committee. First, I would like to

thank my advisor Ernesto Gomez, for his continuous support

and for .providing me with an opportunity to undertake a

project in web services. I would also like to thank Dr.

Tong Lai Yu for providing valuable suggestions during the

course -of this project and also for assisting me during my
independent study. I also want to express my sincere

gratitude to Dr. Kerstin Voigt for her guidance,

understanding, and for valuable'advice.

Besides my Project committee, I would like to thank

the rest of computer science department faculty and staff,
Dr. Josephine Mendoza, graduate advisor, for guiding me
throughout my masters program. I thank my parents for

supporting me throughout my life and encouraging me to

pursue my interests. I also thank my husband Rama K Atluri
for his great help and support in finishing this project.

v

TABLE OF CONTENTS

ABSTRACT.. ill
ACKNOWLEDGMENTS v
LIST OF TABLES....................................... viii
LIST OF FIGURES....... ix
CHAPTER. ONE: INTRODUCTION........................... 1

1.1 Purpose.................................... 2
1.2 Scope...................................... 3
1.3 Significance..... 4
1.4 Limitations 5
1.5 Definitions of Terms 6

CHAPTER TWO: REVIEW OF RELATED LITERATURE
2.1 Web Services............................... 10
2.2 Initial Research 13

2.2.1 Identify Existing Web Services 14
2.3 Identification of Programming

Environment................................ 19
2.3.1 Java Language....................... 20
2.3.2 Java Web Technologies............... 22
2.3.3 Web Server.......................... 24
2.3.4 Simple Object Access Protocol

Implementation 25
2.3.5 Asynchronous JavaScript Library 27

CHAPTER THREE: METHODOLOGY
3.1 Setting Up the Development Environment 31

3.1.1 Software Environment 31

vi

3.1.2 Hardware Environment 33
3.2 Setting up the Project..................... 33

3.2.1 Configure Java in Eclipse........... 34
3.2.2 Configure Apache Tomcat Web Server

in Eclipse........... 35
3.2.3 Create PlaceFinderProject in

Eclipse............................. 38
3.2.4 Configure Apache Axis to Project 40

3.3 Implementation of the Project.............. 44
3.3.1 Place Finder........................ 44
3.3.2 Google Maps......................... 50
3.3.3 Accessing Weather XML Data Feed..... 53
3.3.4 Directions and-Traffic 60

3.4 Integration................................ 62
3.5 Demonstration and Enhancements............. 65

CHAPTER FOUR: MAINTENANCE
4.0 Application Results 67

CHAPTER FIVE: CONCLUSIONS AND RECOMMENDATIONS
5.1. Conclusions................................ 73
5.2 Recommendations............................ 75

APPENDIX A: JAVA ARCHIVE FILES...................... 77
APPENDIX B: J2EE MODULE DEPENDENCIES 79
REFERENCES 81

vii

LIST OF TABLES

Table 1. List of Java Dependencies.................. 35

Table 2. List of Tomcat Dependencies................ 38
Table 3. List of Apache Axis Dependencies........... 42
Table 4. Current Condition Data from Weather

Extensible Markup Language Data Feed 54
Table 5. Forecast Data from Weather Extensible

Markup Language Data Feed.................. 55
Table 6. Weather Data Parsing Dependencies 59

viii

LIST OF FIGURES

Figure 1. Web Service Components 11
Figure 2. Service Oriented Architecture

Approach................................. 13
Figure 3. Requirements and Design 14
Figure 4. ArcWeb Place Finder Search 16
Figure 5. Identify Development Environment 19
Figure 6. How Java Works........................... 22
Figure 7. How does Java Server Pages Work.......... 23
Figure 8. How does Tomcat Work..................... 25
Figure 9. Axis Architecture........................ 27
Figure 10. Classic and Asynchronous JavaScript

Communication Models 29
Figure 11. Java Dependencies in Eclipse............. 34
Figure 12. Tomcat Configuration 36
Figure 13. Tomcat Dependencies 37
Figure 14. Place Finder Project Folder 40
Figure 15. Apache Axis Jars......................... 41
Figure'16. Setting Environmental Variable for

Apache Axis.............................. 43
Figure 17 Place Finder Classes 45
Figure 18. Place Finder Class Diagram 46
Figure 19. Code Snippet of the Place Finder........... 47
Figure 20. Scriptaculous Libraries 47
Figure 21. Asynchronous JavaScript Auto

Completer................................ 4 9
Figure 22. Place Names Interception 49

ix

Figure 23. Adding Google Maps to Page............... 50
Figure 24. Accessing Google Map Functions 51
Figure 25. Classes for Parsing Weather 57
Figure 26. Class Diagram for Parsing Weather

Data...... 58
Figure 27. Accessing Weather Data 60
Figure 28. Accessing Methods to Get Weather

Data 63
Figure 29. Flow Diagram'of Application 64
Figure 30. Introduction Page........................ 67
Figure 31. Place Finder and Weather Conditions 68
Figure 32. Place Name............................... 69
Figure 33. List of Place Names................... 70
Figure 34. Weather Conditions 71
Figure 35. Directions and Traffic 72

x

CHAPTER ONE

INTRODUCTION

The need for distributed computers to communicate
with each other via a network led Web service to evolve. A
Web service is an application that can communicate with

other applications over a network by using a set of

standardized protocols.
As part of my graduate requirement, I choose to work

on a project concerning Web services. With the help of my
graduate advisor Dr. Ernesto Gomez, identified the

requirements during the project proposal phase. The goal

of this project is to use technologies that have

flexibility to be easily customized and configured to meet
any new requirements.

This project uses services and data content from
various third party Web services. During the initial phase
of the project significant research was conducted to find

suitable web sources. The final phase of the project time

was spent to figure out the best way to integrate these to

create a more meaningful application that can be used by

the university community.

1

1.1 Purpose
By doing this project, an attempt was made to

demonstrate the advantages of using existing web services

to provide useful content by not investing significant

resources to acquire and maintain data, software and
hardware. The development environment and tools used in
this project are available for free of cost from various

organizations.

Various services have been chosen and integrated into
one cohesive application to provide a customized and

valuable solution to the university staff and students.
Users simply enter the place of interest, and will have

the ability to select from a candidate list of matches.

After the place is selected the application will show the

current and forecast weather conditions of that place.

Though there are some individual services which show the
city and weather separately there is no application which
provides these services based on a common place name. In
this project, these services are integrated making it much

easier to a user to just type the common place name, for

example: when a user inputs 'white house', the application

will return the location as well as the weather

information of that location and the ability to look up
directions to this place and traffic information.

2

1.2 Scope
For the sake of timely completion of this project I

have defined the scope of the project to sufficiently

demonstrate the core concepts of web services by using the
software engineering principles that I learned during the

course of my masters program.

The scope of project is to create an easy to use web

application for the university staff and students to

access the following information.

• Current Weather Conditions and Forecast

• Place Name and its Map Location

® Driving Directions

• Traffic Information

This information is assumed to be used frequently by
the university staff and students and is available in few
different portals but not in one web application. Also, to
complete the project in a timely manner it was agreed upon
to include only the above mentioned services. These
services will sufficiently demonstrate the use and

implementation of web services and will serve the purpose

of this project.

3

1.3 Significance
The need to exchange data between distributed

applications written in various programming languages led

web services to evolve. Web services exchange data between

systems with the help of open protocols and standards like
the internet. There are vast amounts of valuable
information that is available both freely and as paid
service throughout the internet. It is up to us to find

the resources and make use of them to select appropriate

content and serve them in a form that makes sense to us.
For example, getting access to imagery and weather
information from a satellite is not possible for a normal

user. There are specialized companies that already do this

work and publish the data as a web service to be accessed

by subscribers. By accessing these web services,
information can be accessed by making a request to the web
service. The web service provider will define the format
for sending a request and reading the response the service
will generate. The client program makes a request for the
web services across the network. The web service performs

action, and sends the response back to the program. The

use of web services in this project is to provide the

functionality which can make a request to a program
running on another server to simplify the project.

4

Through this project I have integrated various unique

web services and content which were complimentary to each

other. Through this integration I was able to create a

rich solution that provides more information than an
individual service would provide when used as is.

1.4 Limitations
As with any application, this project also has some

technology, data and schedule limitations. The whole

concept of web services at its core is to consume a
service that is hosted by some organization out of our
control. This means that the application will only work if

the web services are functional and you are totally

counting on the service to be up and running and the

infrastructure to access 'Internetf is available to access

the web service.
There are also many other limitations like the

richness of the data content. For example, the weather web
service will only provide weather information for about
7,900 places in the world, so you may not be able find the

current weather conditions for some places of your

interest. Unless the service provider adds weather

information for those places there is nothing that this

application can do to show the weather. Similarly, the

5

data coverage and attribute completeness of street data in

Google Maps for many cities of the developing and under

developed countries is not sufficient enough to provide
driving directions.

1.5 Definitions of Terms
This section has a list of terms and its definitions

that are referred in the body of this document.
Asynchronous JavaScript and XML (AJAX), is a group of

interrelated web development techniques used for
creating interactive web applications or content rich
Internet applications. With AJAX, web applications

can retrieve data from the server asynchronously in

the background without interfering with the display

and behavior of the existing page. [24]

Extensible Markup Language (XML) is a standard, simple,
self-describing way of encoding both text and data so
that content can be processed with relatively little
human intervention and exchanged across diverse
hardware, operating systems, and applications. [18]

Cascading Style Sheets (CSS) is a style sheet language

used to describe the presentation of structured

documents written in a markup language like XML and

HTML. [26]

6

Hypertext Markup Language (HTML) is the predominant markup

language for Web pages and provides a means to
describe the structure of text-based information in a
document. [27]

Java Server Pages (JSP) is the Java platform technology
for delivering dynamic content to web clients in a

portable, secure and well-defined way. [15]

Web Service Definition Language (WSDL) is an XML grammar
that defines the functionality offered by a Web
service and the format of messages sent and received
by the Web service" [33]

World Wide Web Consortium (W3C) is the main international

standards organization for the World Wide Web. [28]

Simple Object Access Protocol (SOAP) is an XML-based
messaging protocol that defines a set of rules for
structuring messages that can be used for simple
one-way messaging. [17]

Application Programming Interface (API) is a set of
functions, procedures, methods or classes that an

operating system, library or service provides to

support requests made by computer programs. [29]

Environmental Systems Research Institute (ESRI) is the
world leader in geographic information system
modeling and mapping software and technology. [6]

7

Really Simple Syndication (RSS) is a format for delivering
regularly changing web content by retrieving the

latest content from the sites. [16]

Java Development Kit (JDK) is bundle of software that you

can use to develop Java based software. [11]

Java Runtime Kit (JRE) is an implementation of the Java
Virtual Machine which actually executes Java

programs. [11]
Java Archive (JAR) is a platform-independent file format

that bundles classes, images, and other files into

one compressed file, speeding download time. [9]

Object Oriented Programming (OOPs) is a programming
paradigm that uses "objects" and their interactions

to design applications and computer programs. [30]
Service Oriented Architecture (SOA) is a new architecture

for the development of loosely coupled distributed
applications. [14]

Web services Inspection Language, also known as
WS-Inspection (WSIL) is an XML-based specification

about how to locate Web services. [20]

Universal Description, Discovery, and Integration (UDDI)

is both a client-side API and a SOAP-based server

implementation that can be used to store and retrieve

8

information on service providers and Web services.

[20]

Hypertext Transport Protocol (HTTP) is a communications

protocol used for the transfer of information on the

Internet. [31]

9

CHAPTER TWO

REVIEW OF RELATED LITERATURE

Before identifying the topic for the project,

significant time was spent conducting research reading
various books and materials on the web. Major research

included evaluation and identification of various
technologies and tools that were open source and had good
documentation.

The section below explains what web services are and
how they work.

2.1 Web Services
Web services are self-contained and dynamic

applications that require no additional software to

integrate with other applications. They use XML messages
for communication to send requests and get the responses
which makes it system and platform independent. The basic
platforms for Web services are HTTP and XML.

The architecture of web service consists of three
modules service provider, service broker and service

requester as illustrated in the Figure 1 below.

10

Figure 1. Web Service Components [20]

.The service provider implements and hosts the service
and .publishes the access methods to service broker.

Service broker acts as an interface and provides the

access information to the service requestor. It acts as a

centralized directory of all the services. The service
requestor with the help of the service broker discovers
the various access methods to the service and sends in the
request to the service provider.

This architecture is based on Service Oriented
Architecture which is a collection of services and the
communication between them. The components used in the
communication are Simple Object Access Protocol, Universal

Description, Discovery and Integration and Web services
Description Language.

The Web services Description Language is the basis

for web services. It describes and specifies the location

11

and operations the web service exposes. It uses XML to

define the messages which enclose the data in tags. So

that the consumer locate the data based on the tag ’

information rather than the order. The service provider

describes its service using WSDL and publishes to service
broker who uses Universal Description, Discovery, and
Integration. It acts a directory or registry to which all
the services are published.

. The service consumer looks up the service in the
directory. The WDSL document is passed to the client who
describes the methods and variables needed to access the
service. All the messages are sent by SOAP between the

various components in the architecture.

It is a platform and language independent
communication protocol used for communication between

applications via internet. The consumer builds a request
based on the WDSL and sends it to service provider over
HTTP and receives a response in the format mentioned in
WDSL.

A detailed relationship between the various elements

of web services is provided in the Figure 2 below.

12

Rckircnccs to scjvSm riascdpoora

Refers to \V$DL doctifwm®

'♦•■*■"■ Origin^ cs Irofn

Figure 2. Service Oriented Architecture Approach [20]

2.2 Initial Research
The initial research started out by looking for

appropriate web services delivering the information

identified in section 1.2. The following sections provide
more detailed overview of this process.

The flow diagram in Figure 3 below illustrates the

high level steps during initial phase of the project.

13

Figure 3. Requirements and Design

2.2.1 Identify Existing Web Services
Since one of the primary purposes of this project is

to use existing web services, extensive research was done
on identifying suitable web services that meet the

requirements.
The following sub tasks were performed as part of

this task.

14

Initially research started with the search for

existing web services that provide the capability to

locate millions of places in the world such as a city, a

river, or an airport. Along with the places it should also

determine the x, y coordinates of a place which can be

used to locate the place on a map using a different
service.

The following place finder services were evaluated

for these purposes.

• Place Finder Web Service from Arc Web services

provided by ESRI

• OpenStreetMap Name Finder by Free Wiki World Map
Out of the above mentioned two, Place Finder web

service from ArcWeb services by Environmental Systems
Research Institute (ESRI) has the best features and

availability of the other one. There was also sufficient

information on its website on how to use the service which
made the implementation easy. Figure 4 below shows an
example of the options it gives when a user types London.

15

Figure 4. ArcWeb Place Finder Search

The Arc web services provided from ESRI has a sample

web service place finder which does not require any
authentication steps and can be freely accessed once the
license agreement is accepted. This service takes a‘ place
name as an argument and returns a list of locations for

places that match this argument and also returns the

location co-ordinates (x-coordinate, y-coordinate).
The next important step is the identification of

existing map service that has coverage for the entire
world which can be used to show the map location of a

place selected by the user. The following map services are

evaluated:

• Yahoo

• Google

16

• Map Quest

• Arc Web services

Of the above mentioned map services, Google map service
was selected for the following reasons.

• Most current data up to 1 to 3 years old

• Better coverage for the entire world

• Better performance than others

• Good documentation and reliability of service

• Availability of other useful services like
Traffic and Driving Directions along with the
mapping service.

• Supports most of the browsers

Google maps are a web based mapping service created
by Google to facilitate developers to integrate maps in
their own web site. By requesting an API key and agreeing
to its their terms of use, a map is embedded into the
page. JavaScript functions are available for manipulating
and adding content to the map which can be populated on

the client side and passed in along with the request.

Once the place finder and map services are
identified, the next task was to find a suitable weather

service that can be easily integrated. The following
weather services were evaluated for these purposes.

17

Netweather from Accuweather

• Weatherbug' from Weather

• Weather XML Data Feed from Weather

• XML RSS Feed from National Weather Service

(NOAA)

• Global Weather Web Service from Webservicex

Out of all, weather XML data feed service from
weather.com was the best source for this information for
the following reasons.

• Better documentation

• Provides global weather based on Location ID

• Information available in XML format and free to
use

• Current weather and forecast for the week data
available

This weather service provides current weather
conditions which are updated approximately every hour and

include information such as temperature, humidity, wind,
pressure, and cloud cover. It provides the current
conditions for over 30,000 U.S. and over 7,900

international Location IDs which are updated every hour.

It also provides four day forecast which is updated at

least three times a day as per weather.com.

18

weather.com
weather.com

2.3' Identification of. Programming Environment
After identifying the most suitable web services

providing necessary content the next task was to select
the programming environment.■The flow chart in Figure 5

below identifies the important steps of this process.

t Have the „
application -3 <
Reviewed <

Figure 5. Identify Development Environment

19

There are many programming languages like Java, .Net

and C++ that we can chose from. Out of all Java was
selected for the following reasons.

• Being familiar with Java programming I could

start coding without spending time on research.

• It has extensive libraries like XML data

parsing.

o Most of the web services are written in Java so
integration with my application will be easy.

2.3.1 Java Language
Java programming language is a high-level language

which can be characterized by the following

characteristics. [12]

• Simple: Very easier to learn and understand for
developer.

• Object Oriented: Treats everything as objects
having properties and behavior.

• Distributed: Can access code on a remote machine

by objects.

• Multi Threaded: Executes multiple processes

independently and concurrently.

20

• Dynamic: Loads all the non compiled classes

required for a class to compile by the compiler

at runtime.

• Architecture neutral: Compiler generates object

files based on bytes codes which can run on any

machine.

• Portable: Can be developed for many cross

platform systems.

• High performance: The java file can be compiled

to byte's code on fly.

• Robust: Allocating and freeing the memory for

the objects will be done runtime machine

aut omat i ca1ly.

• Secure: Secures all the files in the system.
To briefly explain how Java works, the source code ,is

written in text•with .Java extension. The compiler

compiles the .Java into .class files which contains bytes
codes. Bytes codes are machine language of Java Virtual
Machine (JVM) which is machine independent. An instance of

JVM runs the .class file which provides the required

results. Figure 6 represents the steps explained above.

21

Figure 6. How Java Works [12]

The following are some of the advantages that Java
offers.

1. Java Programs can be compiled once and run

anywhere irrespective of the operating system
used like Linux, Microsoft Windows etc.

2. There are many integration libraries available

which can be used for Database operations,
manipulation of remote objects and web
application API.

3. Simpler, easier to read programs and more
* efficient reuse of code

2.3.2 Java Web Technologies
Since this is a Java based application, it is

required to use a Java based web technology. Used Java
Server Pages (JSP) because of the following reasons.

1. It is easier to write a JSP page since it

contains HTML tags and Java code thus taking

22

care of presentation and business logic in one

file.

2. Once loaded into the web server it takes less

time to load the page on every request.

Once the server installs the JSP page the request is

sent to the JSP container which translates the HTML and

Java code into a Java file. Then the JVM compiles the file

into .class file known as JSP implementation class. JSP's
are built on servlet API, so all the methods and objects
provided by servlet API can be used implicitly without any
initialization. The request from the client is being

processed by the page object and sends back the response

to the client page. Figure 7 represents the steps

explained above.

23

2.3.3 Web Server
Since this application contains Java Server Pages

which requires a web server to run the pages. After

considering various web servers, Tomcat web server was

used in this project. Apache Tomcat is a Servlet container

that implements the Java Servlet and the Java Server Pages

(JSP) and provides a "pure Java" HTTP web server
environment for Java code to run.[13]

On the startup of the server it creates an instance
of the server and port name the default being 8080 for
tomcat. The service module groups up the connector with

the engine component. The engine component processes the

request from the web browser and maps it to the
corresponding context or host. On parsing the request the
context passes back the response to the web browser with
the help of connectors. Figure 8 represents the steps
explained above.

24

Figure 8. How does Tomcat Work [13]

2.3.4 Simple Object Access Protocol Implementation
To consume a web service we need a SOAP engine which

will construct a client and a server and encode and decode
data in SOAP format.

After performing analysis, decided to use Apache Axis

because of the following reasons.

• Easily integrated with Tomcat web server

• Support for Web Service Description Language

• Integration with Java is easy
Apache Axis is an open source toolkit for creating and

consuming Web services. [1]

25

It accepts the request from the service requester and

sends the response from the service provider, thus

shielding the developer from the logic to decode the

messages between communications. It has two utilities

Java2WSDL and WSDL2Java which are used to generate a WSDL

file from java file and vice versa.
The Axis engine runs when the service consumer

invokes an operation on the service provider, a SOAP

message are built. It traverses through service handler
chains which process the message to the format of

specification. The global handler chains process the

message for the Axis engine runtime. After being processed

it is sent to the service provider through transport
layer. After the SOAP message is decoded data in the

message is converted to java objects which access the

service methods and produce a result. The result or

response is again passed back through the Axis engine to
the service consumer'. The Figure 9 below shows the
architecture of Axis engine.

26

2.3.5 Asynchronous JavaScript Library
Usually a response is sent back from the server when

the user submits the page and the server processes the

information and rebuilds the page. The user has to wait
for the page to load until then thus wasting the time. Due
to a pursuit for more interactive and faster web pages
AJAX programming was born. It is used to create a more

user friendly and interactive web application by

retrieving the data from the server without actually
refreshing or submitting the page. Thus, making the web

application more user friendly and interactive.

With AJAX enabled web applications, all the requests
to the server are handled by the AJAX engine which is

written in JavaScript language. This engine instantiates

27

the XMLHttpRequest object which allows sending, receiving

and processing HTTP requests to and from the server. So

when a request in the form of JavaScript variables is sent

to the engine it makes a call to the server asynchronously

and sends a response in XML format. The AJAX engine
processes the server data and updates that section of the

page without refreshing the entire page.

The Figure 10 below shows how AJAX's calls are sent
to the server.

28

Classic web application communication model
r _____ i\T

HTTP request (all client requests))

Web
Browser

(^Server response: JS+HTML+CSS

HTTP request (firstclientrequest/^

(^Serverresponse:JS+HTML+CSS

“~Web"”’
"SlHWF""'
(+ scripting
language &
database

server)

HTML + CSS (

JavaScript calls
___ \
HTTP request) ““V

(Server data
\l V-

AJAX application communication model

Figure 10. Classic and Asynchronous JavaScript

Communication Models [8]

Use of AJAX libraries reduces creation of browser
specific JavaScript code for sending the request and

handling the response back.

After evaluating some libraries Scriptaculous library

was determined right for this, application because of the

following reasons.

• Support handling results as XML

29

• Distinct separation between client and server

code

• Easier implementation and documentation

• Integrated with several libraries

Scriptaculous library helps to develop visual, cross

browser and easy to use JavaScript libraries which adhere

to Web 2.0 programming. [32] The use of this library is to
reuse code for common functions for AJAX.

After all the necessary services and software
environment was finalized, I initially worked on the place
finder web service to help define or refine requirements,

to prove or demonstrate capability of intended

functionality, and to learn more on the best
implementation approach.

30

CHAPTER THREE

METHODOLOGY

The following sections outline the methodology of the
implementation of the final application that meets the

functional requirements as identified in section 2. The

flexibility of the technology adopted as part of the

proposed solution offers numerous architecture deployment
and configuration options.

3.1 Setting Up the Development Environment
The programming platform has been discussed in the

above sections. To develop with all the above

technologies, an Integrated Development Platform Eclipse

was used.
Eclipse software platform was used for building

integrated web and application development in this

proj ect.

This section provides the details of the software and
hardware environment used in this project.

3.1.1 Software Environment
The following software was installed in the order

listed below.

31

Java 6.0 Installation:

1. Downloaded SDK from http://Java.sun.com/Javase/

downloads/index.jsp under C:\Program Files\Java.

2. It will download 2 files in the folder
C:\Program Files\Java\jrel.6.0_03 and
C:\Program Files\Java\jdkl.6.0_03

Tomcat 5.5 Installation:

1. Downloaded the binary distribution file named

jakarata-tomcat-5.5.0.zip from Jakarta Apache
home http://tomcat.apache.org/
download-55.cgi website.

3. Created a new folder Tomcat 5.5 under
C:\keerthi_software\Tomcat 5.5 and unzip the

downloaded file.

Apache Axis 1.4 Installation:
4. Downloaded the axis-bin-l_4.zip file from

http://ws.apache.org/axis/.
5. Created a new folder axis-l_4 under

C:\keerthi_software\Downloads\axis-l_4 and unzip

the downloaded file.

Scriptaculous Framework 1.6 Installation:
6. - Downloaded the scriptaculous-js-1.8.1.zip file

from http://script.aculo.us/downloads.

32

http://Java.sun.com/Javase/
http://tomcat.apache.org/
http://ws.apache.org/axis/
http://script.aculo.us/downloads

7. Unzipped the file into

C:\keerthi_software\Scriptaculous folder.

Eclipse 3.3 Installation-:

8. Downloaded the .zip file from Eclipse home from
http://download.eclipse.org/eclipse/downloads/

drops/R-3.3.2-200802211800/

9. Created a new folder C:\keerthi_software\eclipse.

3.1.2 Hardware Environment
Performed the development on 32 bit Dell Windows

Vista Business operating system laptop with 3 GB of
memory. The model used is Vostro 1500 with Intel(R)

Core(TM)2 Duo CPU 1.40GHz of processor speed.

3.2 Setting up the Project
This section provides the details of configuring the

project in Eclipse and adding all the dependencies
required.

By clicking on eclipse.exe under
C:\keerthi_software\eclipse, Eclipse is launched.

Initially it shows a welcome screen with tutorials, help,

overview and workbench options. Click on the workbench

options and follow the configuration steps below.

33

http://download.eclipse.org/eclipse/downloads/

3.2.1 Configure Java in Eclipse
This section details the steps used to configure Java

in Eclipse.

1. Go to windows/preferences

2. Expand the Java option on the left window and

click on Installed JREs.
3. Configure JRE by clicking on Add.
4. Attached a screen shot of the configuration of

Java and click OK.

5. Go to Build Path under Java option and configure

the JRE library and click Apply and OK.

The Figure 11 below shows all the Java Dependencies

added in Eclipse.

t> C:\Program Files\Java\jrel.6.0_03\lib\resources,jar
[> C:\Program Files\Java\jrel.6.0_03\lib\rt.jar
[> jaS C:\Program File5\Java\jrel.6.0_03\lib\jsse.jar
> C:\Program Files\Java\jrd,.6.0_03\lib\jce.jar
t> C:\Program Frle5\Java\Jrel.6.0_03\lib\char5etsjar
t> G\Program Files\Java\jrel,6.0_03\lib\ext\dnsn5.jar
t> C:\Program Files\Java\jrel.6.0_03\lib\ext\localedata.jar
> C:\Program File5\Java\jrel,6.0_03\Iib\cxt\sunjce_providc-rJar
[> $ C:\Program Files\Java\jrel,6.0_03\[ib\ext\5unmscapi.jar
[> C:\Program Files\Java\jrel,6.0_03\Iib\ext\sunpkcsll.jar

Figure 11. Java Dependencies in Eclipse

Details of the above dependencies are explained in

Table 1 below:

34

Table 1. List of Java Dependencies

Rt.jar Include all the Java packages used to
run JDK

Resources.jar Support the static web resources

Jsse.jar Enable secure internet communications

Jce.j ar Framework for encryption, key
generation and key agreement.

Charsets.jar Mapping between Unicode characters
and bytes

Dnsns.jar Wrapper for JNDI dns provider

Localedata.jar Used for locale specific messages

Sunjce provider.jar Used for cryptography

Sunmscapi.j ar Cryptography for windows based
applications

Sunpkcsll.jar Standards for encryption

3.2.2 Configure Apache Tomcat Web Server in
Eclipse

This section details the steps used to configure

Tomcat web server in Eclipse.
1. To configure tomcat server in Eclipse go to

windows/preferences.

2. Open Server option and select Installed

Runtimes.

3. Add Tomcat home to installation home and click

Finish.

35

The Figure 12 below shows how to configure Tomcat in

Eclipse.

Figure 12. Tomcat Configuration

The Figure 13 below shows all the Java Dependencies

added in Tomcat.

36

d Apache Tomcat v5.5 [Apache Tomcat v5.5]
Us Access rules: No rules defined

Native library location: (None)
> fl commons-el jar - C:\keerthi_software\Tomcat 5.5\common\lib
0 fl jasper-compiler-jdtJar - C:\keerthhsoftware\Tomcat55\common\lib
> fl jasper-compiler.jar - C:\keerthi_software\Tomcat55\common\lib
f> |fl jasp er- runtimeJar 7 CAkeerthLsoftware\To mcat 5>5\cpm mon\lib j
[> fl jsp-api.jar - C:\keerthi_software\Tomcat 5.5\common\lib
0 fl Iog4j-1.2.14jar - CAkeerthi_software\Tomcat55\common\lib
> fl mysql-connector-java-5.03Jar- CAkeerthi_software\Tomcat5.5\common\lib
b fl n□ ming-factory-dbcpJar- C:\keerthi_software\Tomcat55\common\lib
[> fl namtng-factoryjar- C:\keerthi_software\Tomcat55\common\lib
t> fl naming-resources Jar- C:\keerthi_software\Tomcat5.5\common\lib
0 fl servlet-apijar - C:\keerthr_software\Tomcat55\common\lib

Figure 13. Tomcat Dependencies

Details of the above dependencies are explained in

the Table 2 below:

37

Table 2. List of Tomcat Dependencies

Commons-el.jar Provides an interpreter for
expression language

Jasper-compiler-j dt.j ar Support eclipse to compile JSP
Java source code

Jasper-compiler.j ar Compiles JSP class

Jasper-runtime.j ar Helps to run the JSP class file

Jsp-api.j ar Classes for JSP API

Log4j-1.2.14.j ar Enable logging at runtime for
debugging

Mysql-connector-Java-
5.0.5.j ar

Helps to build database
applications

Naming-factory-dbcp.j ar
Naming-factory.jar Contains factories used by

naming resources

Naming-resources.j ar Manages the naming resources
associated with JNDI context

Servlet-api.jar Contracts between servlet class
and runtime environment

3.2.3 Create PlaceFinderProject in Eclipse
This section details the high level steps followed

for creating the Place Finder application.

• Create a new Java project PlaceFinderProject

under File/New/Other.

• Now a project is created with source and web

Content folders.

38

• Under Open File/New/Other Server, select Tomcat

v5.5 Server and click finish.

• Under Windows/Show View select Servers. A window

is opened with server tomcat configured in it

with start, stop and debugging options.

• Right click on the tomcat server and open Add

and Remove Project. Add the PlaceFinderProject
jar file to tomcat. Now the project is
configured with the server.

• Select Window/Open Perspective/other and select
Java EE Option. The following views are opened
with Project Explorer, Server, Console and

Progress options.

• Right Click on the project PlaceFinderProject

and properties. The structure of the
PlaceFinderProject will have the following
files.

The Java Resources: src folder should have all the
Java class files. The Web Content folder will have all the
JSP files, HTML files, image files and configuration files

like web.xml. The Server folder will have all the server

configuration files like server.xml where the port address

39

is mapped. The Figure 14 below -show the place finder

project folder.

a PlaceFinderProJect|
4 Deployment Descripton PlaceFinderPrqfect

> Filter Mapping
t> ^0 Filters
> Listener
> References
l> Security
t> Servlet Mappings
t> o Servlets

(> Java Resources: src
* £> build

t> & classes
l> WebContent

j Servers
4 (2> Tomcat v5.5 Server at localhost-config

| “ EzP

Q catalina.policy
H’ catalina.properties
[x] server.xml
[ft tomcat-users.xm I
fxj webjcml

Figure 14. Place Finder Project Folder

3.2.4 Configure Apache Axis to Project
To configure Apache Axis, added the following Jar

files to the Java build path of the project. Click on Add

External JARs and browse to C:\keerthi software\Downloads\

axis-l_4\lib and select all the jar files.

Also added activation.jar, mail.jar, xerces.jar from

downloading from internet.

40

Added all the jars listed in the Figure 15 below to

the project.

> activation.jar - C:\keerthLsoftware\Downloads\quickstartJar
fflds.jar-G\keerthLsoftware\Download5\axis-ljl\lit>

> fYI axis-ant,jar - Q\keerthLsoftware\Downloads\axis-l_4\lib

> jS commons-discovery-0.2jar - C:\keertlij_software\Download5\axi5-l_4\tib

> commons-logging-l.04.jar- C:\keerthi_software\Downloads\axis-l_4\lib

> jaxrpc jar - C:\keerthi_software\Downloads\axis-l_4\Iib

> log4j-1.2.8jar-C:\keerthi_software\Downloads\axis-l_4\lib
> mail.jar - G\keerthi_software\Downloads\quickstartlar
> saajjar- C:\keerthi_software\Downloads\axis-l_4\lib

> wsdI4j-1.51 jar - G\keerthi_software\Downloads\axis-l_4\lib
[> xercesjar-G\keerthi_software\Downloads\quickstartJar

Figure 15. Apache Axis Jars

The basic functionality of these jars is shown in
Table 3 below.

41

Table 3. List of Apache Axis Dependencies

Activation.jar Instantiate the appropriate bean for
an arbitrary piece of data in Java

Axis.j ar Compiled Axis

Axis-ant.jar To automate building processes inside
ant

Commons-discovery-
0.2.jar

Locate resources by mapping
service/reference names

Commons-logging-
1.0.4.jar

Wrapper around logging API

Jaxrpc.j ar API for XML based RPC
Log4j-1.2.8.jar Enable logging at runtime for

debugging

Mail.jar Build mail and messaging functionality

Saaj.jar Creates and sends SOAP messages

Wsdl4j-1.5.1.jar Creates, represents and manipulates
WSDL documents

Xerces.jar Java parser

Once the jars are added to the project build path we
need to add them to system path in windows.

To set environment variables, select
Start/Settings/Control Panel, and choose the System

option. Select the Advanced system settings and click the

Environment Variables button.

42

Add %AXIS_HOME% to system variables so that every

user has access to it, click the New button then enter

AXIS_HOME as the variable name, and enter the directory

where Apache Axis was installed as the value.

Figure 16. Setting Environmental Variable for Apache Axis

Also add AXISCLASSPATH as variable and add all the

jar files to the class path.

Variable Name: AXISCLASSPATH

43

Variable Value:

%AXIS_HOME%\axis.jar;%AXIS_HOME%\jaxrpc.jar;

%AXIS_HOME%\saaj.jar;

%AXIS_HOME%\commons-logging-l.0.4.jar;
%AXIS_HOME%\commons-discovery-0.2.jar;

%AXIS_HOME%\wsdl4j-1.5.1.j ar;

C:\keerthi_software\Downloads\quickstartJar\activation.jar;

C:\keerthi_software\Downloads\quickstartJar\mail.jar;
C:\keerthi_software\Downloads\quickstartJar\xerces.jar;

3.3 Implementation of the Project
This section explains the high level steps that were

executed during the implementation of the each individual

component.

3.3.1 Place Finder
To consume the place finder service of ESRI, we need

a WSDL document which describes the web services and the
methods to access it. Below is a link to the document

location.
http://arcweb.esri.com/services/v2/PlaceFinderSample.WSDL.

To access all the methods of the web service we need
to run WSDL2Java tool against the WSDL location in the
command prompt. Include AXISCLASSPATH which contains all

the jars to solve all the dependencies.

44

http://arcweb.esri.com/services/v2/PlaceFinderSample.WSDL

C:> Java -cp %AXISCLASSPATH% org.apache.axis.wsdl.WSDL2Java

http://arcweb.esri.com/services/v2/PlaceFinderSample.WSDL -p

esri.arcwebservices
-v

It creates a new package named esri/arcwebservces/v2

which contains all the methods required to access this

service. Copy these files into eclipse project in a new
package com.placefinder. Given below in Figure 17 is the
list of all the classes generated by WSDL location.

* Java Resources: src
j com.placefinder

|> JjQ CoordinateSystem.java
t> Envelopejava
t> jl] IPIaceFinderSample_PortTypejava
> IPIaceFinderSampIeStub.java
t> J7] KeyValuejava
> J^) Location.java
> Locationinfo java
> JJ] PiaceFinderOptions.java
> [J) PlaceFinderSample.java
> jg] PlaceFinderSampleLocatorjava
> Point .java

Figure 17 Place Finder Classes

By understanding the WSDL file the methods and
parameters needed to access these classes to get the data

is understood.

45

http://arcweb.esri.com/services/v2/PlaceFinderSample.WSDL

Below is the Figure 18 showing UML class diagram of

all the classes, methods and relationship between them.

Figure 18. Place Finder Class Diagram

Created an Implementplace.Java class in com.project

package which takes in the place name and return list of

place names and coordinates. The Figure 19 below shows a

code snippet on how to access the methods of the place
finder web service and retrieve the list of matching place
names and coordinates.

46

public List<String> placeFinder(Srring placeName) throws Remo teException,
ServiceException {

List<String> placeOptions = new ArrayLisc<String>();
PlaceFinderSampleLocator locator = new PlaceFinderSampleLocator () ;
IPlaceFinderSample_PortType pfs = locator.getlPlaceFinderSample();
PlaceFinderOptions placeFinderOptions = new PlaceFinderOptions();
placeFinderOptions.setDataSource("ESRI.Gazetteer.World");
Locationinfo loclnfo = pfs.findPlace(placeName, placeFinderOptions);
if (loclnfo != null) {

Location[] S^ocatxon = loclnfo.getCandidates ();
if (location != null) {

for (Location loc : j^aticm) {
placeOptions.add(loc.getDescriptionl() + ":"

+ loc.getPoint() .getX() +
+ loo.getPoint () . getY()) ;

J
}

J
return placeoptions;

$
r

Figure 19. Code Snippet of the Place Finder

Created a testFinder.jsp in WebContent folder page

added 3 input fields for place name, x-coordinate and

y-coordinate.
Created js folder in WebContent of the project and

add scriptaculous library.
The Figure 20 below shows the Scriptaculous libraries

are added to the jsp page.

<script src="js/prototype.js” type="text/javascript"X/script>
<scripc src="js/scriptaGUlous/effects.js" type="text/javascript”x/script>
^script src—"js/scx|ipraculous/conrrQls . js" type="text/javascript”x/script>.
<sczipt src*="js/scriptaculous/scriptaculous.js" type="text/javascript"X/script>

Figure 20. Scriptaculous Libraries

47

Instead of the user typing in the full place name and

submitting the form for the list I implemented

Ajax.AutoCompleter method for the place name for auto

completing the place name.

The Autocompleter method needs some parameters to be

passed in at the time of request.

• Name of the parameter typed on the

autocompletion field.

• Update element id used to populate the list of
the results.

• Url of the page which converts the XML data to
HTML tags.

• Value of the parameter to be passed in the jsp

page.

• Minimum number of characters that must be
entered in the input field before an AJAX
request can be made.

• While the request is processed by the server

this element can be shown.

Figure 21 below shows the implementation of the

Ajax.Autocompleter with all the parameters defined.

48

<inpac type“',texu" id-"placename" name="placename" sizen"55" autocQ^J^te-naff’' value="<%= placet>B />
<span id«"indicator!" styie=nd.isplay: nene; color: if A52A2A; "Ximg src“,’ircages/ajax:_proces32.gif"
alca"Working............." height=‘’’20pxn />Please Wait..........
<dlv class=nautocomplete'’ id“"sugge5tionsBoxnx/div>
<input type=nsubmit’’ value="SubMt" name="accion"X3cript

type="text/j avascript’’>
var myAutoCompleter = new Ajax.Autocompleter ('placename', 'suggestiansBox','updatelist.jsp',
{parameters: {name : 'placename'},
ninChars : 4,
indicator : 'indicator!.1
}

'); \ ' " '

</script X/td>

Figure 21. Asynchronous JavaScript Auto Completer

The results of AJAX are in XML format so in order to
display to the user we need to convert it into HTML data.
Updatelist.jsp removes the XML tags and displays the
results in the form of a list. Below in Figure 22 is the

code snippet of how the results from the web service are

intercepted to a list.

Imp! rmpnterPl ace implementerPlace “ new ImplementerPlace () ;
placelist = implementerPlace.placeFinder (name);

%>
<%@page import=njava.util. Arrayl*istw%>

<% if(placelist.size() = 0]| placelist = null) { %>
No Results Found
<%} else {
for (String s : placelist) @ %>
■cli
<%

_ '} 1 -T...... .. r ,,T.L . "..... :...................... 1
~ }'™"
%>

Figure 22. Place Names Interception

49

To add color and display to the results included a

css file to the jsp page.
3.3.2 Google Maps

With the place finder web service locating a place

along with coordinates, we need to implement Google maps

which will show the map location of the place in a nice

map.
For accessing Google maps API go to

http://code.google.com/apis/maps/. Sign up for Google Maps
API by agreeing to terms and conditions to their site and
providing the URL of the application.

Login to the website using your Google account login

and password. Once logged in we get access to the key and

the JavaScript methods used to get the map. Add the map to
testFinder.jsp with a <script> tag as shown in Figure 23.

<script
src="http://maps.google.com/maps?file=api&v=2&

;key=ABQIAAAAUviqLvpFV2xOFpymSvHlBBSEwHm_qL4TlW-2-
tntSIcYoqMV7xSJGJihbuIniJnyG_ZTV_Psn7xRBg"

type="text/Javascript"></script>

Figure 23; Adding Google Maps to Page

The parameters passed in to the maps.google are the

version of the API used and the unique key to access the

50

http://code.google.com/apis/maps/
http://maps.google.com/maps?file=api&v=2&

map. The basic function to get the map and manipulating

the coordinates is shown below in Figure 24.

var map;
function load() {

if (GBrowserlsCompatible()) {
map = new GMap2(document.getElementByld("map"));
map.setCenter(new GLatLng(<%= <%— y%>), 13);
map■setMapType (G_NORMAL_1-IA.P) ;
var marker — setMarker();
map.addOverlay(marker);
map.addControl(new GLargeMapControl()) ;
map.addControl(new GScaleControl());
map.addControl(new GMapTypeControl());
map.addControl(new GOverviewMapCohtrol());

}
}

function setMarkerf) {
x = <%= x%>;
y = <%= y%>;
var mar = new GMarker(new GLatLng(x, y));
return mar;
}

Figure 24. Accessing Google Map Functions

The value of x and y in the code are x-coordinate and
y-coordinate from the place finder web service which is

mapped as longitude and latitude.

Create a map object in the map. Create an OnLoad()

event on the body of the page to load the map. In

JavaScript define the load function. Initialize the map by
creating GMap2 object passing in the div id of the map

51

element. A new instance of the map is created. The map

object can be initialized by invoking setCenter() method.

The method takes in GLatLng object which passes in the
longitude, latitudes and zoom level. The mapType() method

takes a map type which are defined below.

• G_NORMAL_MAP- the default view

® G_SATELLITE_MAP - showing Google Earth satellite

images

• G_HYBRID_MAP - showing a mixture of normal and

satellite views

• G_DEFAULT_MAP_TYPES - an array of these three

types, useful for iterative processing

Used NORMAL_MAP parameter in this application as the

default view. A new marker object is created to mark the
result on the map based on the longitude and latitude. The
marker icon can be customized for each map. Also, used the
DEFAULT—ICON to display the marker provided by the Google

API. The marker is added by overlay() method. Now more
control is added to the map that helps in user navigation

and changing the map view.

• GLargeMapControl() is added to the map to

facilitate the zoom level to the map.

52

• GScaleControl() is added to the map to show the
scale control.

• GMapTypeControl() is added to the map to give an

option to the user to select the map type.

• GOverviewMapControl() is added to the map to

give a small overview of the map.

3.3.3 Accessing Weather XML Data Feed
With the map and place finder implemented, the

weather service is accessed using Weather XML Data Feed by

clicking http://www.weather.com/services/xmloap.html.

Registering up for the service can be done by

creating a user profile with providing name, password and
email address. XML partner ID and License key are sent in

email on registration access the data from weather.com we
need sent in the email.

PartnerlD = "1072042464"

LicenceKey = "ea6c74f0fa4072bf"
Also included in the email is a zip file which

consists of terms and conditions surrounding the use of
the Service, graphical icons that are necessary to

represent the sky conditions associated with our current

conditions and forecast data, and weather logo.

In the XML data feed following data in Table 4 can be

intercepted for Current Conditions.

53

http://www.weather.com/services/xmloap.html
weather.com

Table 4. Current Condition Data from Weather Extensible

Markup Language Data Feed

Location Id Wind Gust

City name (mixed case) to be
displayed

Direction Wind is blowing

Time and date of observation Wind Direction Phrase

Observation Station Name Relative humidity

Temperature Visibility

"Feels Like" Temperature UV Index

Weather Description Phrase UV Index Description

Weather Icon Code Dew point

Barometric Pressure Sunrise

Wind Speed Sunset

Moon Phase Description Moon Icon Code

The following data in Table 5 is included for

Five-Day Forecast.

54

Table 5. Forecast Data from Weather Extensible Markup

Language Data Feed

Location Id Daypart Day Code (day or night)

City name (mixed case) to be
displayed

Weather Icon Code

Time and date of last update Weather Description Phrase

Day Number of forecast Weather Description Short

Day of Week Phrase

Date Wind Speed

Forecast High Temperature Wind Gust

Forecast Low Temperature Wind Direction

Sunrise Wind Direction Phrase

Sunset Chance of Precipitation

Humidity

The entire request can be made to access the XML feed

over the internet through invoking this hostname

xoap.weather.com.
With the place finder web service we get the name of

the place we are looking for. But Weather data must be
requested for a specific location by a valid locID. The

XML Feed works with two types of LocIDs, Type 1 locations

are city identifiers and Type 4 locations are 5-digit U.S.

postal codes. Since my application looks for places all

55

xoap.weather.com

over the world the Type 4 locations with postal codes does

not work. So used the Type 1 locations which get the

location ID based on the city name. The location Id can be

looked up using this search function at this URL

-http://xoap.weather.com/search/search.

After the location ID is retrieved, this ID is sent
to weather.com with partner ID and license key to access
the current weather conditions and a five-day forecast.

The XML Feed will appear as follows:

http://xoap.weather.com/weather/local/[locID]?cc

=*&dayf=5&link=xoap&prod=xoap&par=[PartnerlD]&key

=[LicenseKey] where dayf is 5-day forecast,
[PartnerlD] is the unique Partner ID and [LicenseKey]

is the unique License Key.
The weather data gives us back a XML document which we

need' to parse to get the data. It is tedious to parse the
response for every request so used Java classes which were
provided by www.DeveloperLife.com. Add these classes to
PlaceFinderProject in com.weather.convert,

com.weather.convert.locationdatamodel and

com.weather.convert.weatherdatamodel packages

respectively. All the classes used for the weather data

conversion is shown in Figure 25 below.

56

http://xoap.weather.com/search/search
weather.com
http://xoap.weather.com/weather/local/%255blocID%255d?cc
http://www.DeveloperLife.com

a com.weather.convert
b [7| DefaultWeatherConfigurationBeanjava
& [7] Utilsjava
b JJ] Weather_20_XMLParserjava
b [7) WeatherConfigurationIFjava
b [7] WeatherErrorjava
b J~7] WeatherGatewayjava

j com.weathenconvert.locationdatamode!
b (T) Search Location.java
t> [7| SearchLocationsjava

jl jj] c o m.weath er, con vert.weatherd ata model
l> [j) BarometricPressurejava
b [7] CurrentConditions.java
> 0 Day.java
b [J| DayPartjava
j> [jh Error java
b [7] Forecastjava
0 |T| Headerjava
b [7| Locationjava
b [7| UltraVioletjava
b IT] WeatherReport.java
b 171 Windjava

Figure 25. Classes for Parsing Weather

So now the data is transformed into a set of Java
beans which can be easily integrated with my application.

Since I am parsing the XML data into methods there are few
dependencies that the code will require to work. Along

with the zip file are the jar files which need to be added

to the project for compiling the project. Below is the
Figure 26 showing UML class diagram of all the classes,

methods and relationship between them.

57

Figure 26. Class Diagram for Parsing Weather Data

Below in Table 6 is a list of Jar files added to the

project to resolve errors.

58

Table 6. Weather Data Parsing Dependencies

jdom.jar Used as a XML parser to parse
the XML document

commons-codec-1.3.jar Used to encode the request
parameters

commons-httpclient-3.0.1.j ar Used to perform the HTTP
communications

commons-io-1.2.jar Used to provide collection of
I/O utilities

commons-lang-2.2.jar Used to provide extra
functionality for Java
classes

j axen-core.j ar Used to treat JDOM trees as
compiled Java byte code

jaxen-jdom.jar Used to provide navigation
for JDOM trees

saxpath.j ar Used as a event based parser
and handle XPath expressions

taskapi.jar Used to manage multiple tasks

Create a method getWeather() in implementerPlace.Java
class. Below in Figure 27 is the code used to access the
weather data based on the place name.

59

WeatherReport weather = new WeatherReport();
WeatherGateway gateway = WeatherGateway.getDefanltlnstahce() ;
SearchLocations ^Lq^'tidns’ = gateway.searchForLocations(where);
if (Sochti^is.getSearchLocations().size() = 0) {

if (! stateNarae. equals ("")) {
locations! = gateway, searchForLocations (stateName +

+ CountryName);
}

>
if (iLocatidns.getSearchLocations () .size () = 0) <

~ gateway. searchForLocations (Count ryName) ;
}

if (iocatlons. getSearchLocations () . size () 1= 0) {
String locationlD = Ippatlot^-get SearchLocations () .get(Q) .getldQ;
WeatherConfigurationIF config = new DefaultWeatherConfigurationBean(

DefaultWeatherConfigurationBean.defaultFeatherServer,
partnerlD, licenseKey) ;

WeatherGateway gaWeatherGateway = new WeatherGateway(config);
if (gaWeatherGateway 1= null) {

weather = gaWeatherGateway.getFullForecast(locationlD, 5);
}

}
return weather;

Figure 27. Accessing Weather Data

3.3.4 Directions and Traffic
Create a new directions.jsp page for adding

directions and traffic conditions. Follow the steps in
section 3.3.2 to add a map on the page using the same map

key. For the directions add new GDirections() object which

takes in the map and id of the div element that has to be

populated with the directions.

gdir = new GDirections (map, document.getElementByld("directions"));

Load the GDirections method with from and to - addresses.
gdir.load("from: " + fromAddress + " to: " + toAddress);

60

Create a form with two input fields fromAddress and

toAddress which on submit load the GDirectiohs() method

passing these values.
<form action^"#" onsubmit="setDirections(this.from.value,

this.to.value); return false">
<table align="center" border="2" bordercolor="#A52A2A"

width="75%" height="70">

<tr><td colspan="2" align=" center "Xlabel style="font-size:
18px"xb>Enter Directions</bx/label>
<trXtdXspan>From:
<input type="text" size="45" id="fromAddress" name="from"
value="<%= placename%>"/x/td>

<tdXspan>To:

<input type="text" size="45" id="toAddress" name="to" value="<%=
placename%>"/>

</tdx/tr>
<trXtd align=" right">
Cinput name="submit" type="submit" value="Get Directions"

/X/tdXtd>

To add traffic to the map create a GTrafficOverlay()

object and pass in the traffic options with incidents.

addOverlay() method add a new layer to map with the
traffic updates.

var trafficoptions = {incidents:true};

61

var trafficinfo = new GTrafficOverlay(trafficoptions);

var togglestate = 1;

function toggleTraffic() {

if (togglestate == 1) {

map.removeOverlay(trafficinfo) ;

togglestate = 0;

} else {

map.addOverlay(trafficinfo);
togglestate = 1;

}

}

3.4 Integration
This section discusses the integration of the place

finder web service, Google maps API and weather XML data
feed. From section 3.3.1 we get a list of place names from
the web service which is shown on the input field of the

form. Once a place name along with coordinates is selected

from the list and the form is submitted, the request
object in the jsp page intercepts the value of the input

field. Based on the coordinates the place name can be

looked up in the maps.

String place = request.getParameter("placename");

String xcordinate = request.getParameter("xcordinate");

62

String ycordinate = request.getParameter("ycordinate");

String action = request.getParameter("action");

Based on the request the place name is formatted to

three substrings place name, x-coordinate, y-coordinate.

placename = place.substring(0, place.indexOf(':'));

y = place.substring(place.indexOf) + 1,
place.lastlndexOf(':'));
x = place.substring(place.lastlndexOf(':') +

1,place.length());

Once the place name is found out the value is passed

into the weather report to get the report.
weatherReport = implementerPlace.getWeather(placename) ;

Once the weatherReport is populated with weather and
forecast, accessing the data fields on it is easy as shown
in Figure 28.

<tdXb>Direction : </bX%=weatherReport. getCur rent Conditions () . getWind ()
. getDirection()%xbr />

Degrees : </bX%=weatherReport. getCurrentConditions (} . getWind ()
. getDegrees () %xbr />

•CbXSust : </bx%=weatiierReport. get Cur rent Conditions () . getWind ()
. getGust () %Xbr />

Speed : </bx%=weatherReport. getCur rent Conditions J) . getWind ()
. getSpeed () %> <%=weatherReport. getHeader () . getSpeedUnit () %x/td>

<tdXb>De script ion : </bX%=-weatherReport.getCurrentCanditions () . getDvQ
. getDescription()%Xbr />

Index : </bx%=weatherReport. getCurrentConditions () . getUv ()
. getlndexQ %x/td>

Figure 28. Accessing Methods to Get Weather Data

63

For mapping on the map the latitude and longitude are

populated with x coordinate and y coordinate.

function setMarkerQ {

x = <%= x%>;
y = <%= y%>;

var mar = new GMarker(new GLatLng(x, y));

return mar;

}
The flow diagram below in Figure 29 shows how

information is passed from one service to the other.

testHnder.isp ; imptementer Ptacejava < ■Weather^rver

S-

Ajax request sending place
^L, I

fuidPlace^hcename, placcFindcrOptions)

ht tpr//arcwcb.csri.com/v2

List of places and coordinates

9

e-

i
i

i
i

Passing in tl>c map methods with the x-coordinate and y-coordinate
■ - ~~ " "/

ht tp: //maps .google.com? file=ap i&a mp; kcy=

Google map with marked place name
Map)

Passing in the place iiainc-http://xoapIwcathcrcom/Rcarch?wlicre=

LocatiooID of the place name

http://xoap.weather.cam/weathcr/local /

(r
Currentconditions and Forecast

er'

Figure 29. Flow Diagram of Application

64

tpr//arcwcb.csri.com/v2
google.com
http://xoapIwcathcrcom/Rcarch?wlicre=
http://xoap.weather.cam/weathcr/local

To integrate the directions traffic page to the place

finder page, place name is passed in the url to the

directions and traffic page which is intercepted with the

request object on the page.

3.5 Demonstration and Enhancements
In the first demonstration to my advisor Dr. Gomez,

suggested some minor enhancements listed below that were
implemented in the final application.

1. Add a help page to the application to guide the

users on how to use the application.

2. Allow users to input Latitude (X), Longitude (Y)

co-ordinates and find the location on the map.

3. Default the place name that has been looked up
in the map by the user to find directions and
traffic page so as to provide continuity to the

application.
Dr. Yu also suggested the following enhancements that have
been implemented in the final application.

1. When a user types in the place name and as the
matching place names are being fetched by AJAX

request, display a message that the request is

being processed by the application to convey the

65

user to wait until the candidate place names are
retrieved and displayed for selection.

66

CHAPTER FOUR

MAINTENANCE

4.0 Application Results
There are three web pages in this application.
1.
2.

Introduction to the application page
Place finder, weather conditions and forecast

page

3. Directions and traffic conditions page

The first web page briefly explains the purpose,

features and technologies used in the project. It consists
of links to the project proposal and application. Figure
30 below is a screenshot of the introduction page.

Place Finder & Weather Using Web Sendees
Bt Kerrthi Nuuupraeni

ABSTRACT:

The sccjre of the Place Finder and Weather Using Web Services project is to assist people to search for a place name anywhere in the wmM and to show the’

weather of the selected place. This project will integrate both the place finder and weather web services into a single cBeat and build on to a single webpage, t
tins application risers will ako have the ability to get driving directions and current traffic sitaatioa in the current map extent. The following technologies were use

■ to buildthis application- Webservices, AJAX, JavaScript, Java, Java Server Pages, HTML, and CSS. Existing data content from the following sources were.u
in this application-Google API, ArcWebServices, Weather XML feed. " 1 :

■For Application Click Here....
Project Proposal ” ■’

Proposed Ccmmitee

ADVISOR: Dr.Ernesto Gomez

MEMBERS: Dr. Tong Lai Yu

t . t. Dr. Kerstin Voigt -

Figure 30. Introduction Page

67

To go to the application, please click on the For

Application link, this takes the user to the place finder

and weather'conditions page as shown in Figure 31 below.

The default location selected is San Bernardino,

California, United States. On the right hand side are the

coordinates (latitude, longitude) populated for this

place. The current weather conditions, forecast and the

map location are shown bottom of the-page. By clicking on
the 'Get Directions and Traffic' link user will go to
Directions and traffic conditions page.

Place Finder & Weather Conditions Application

'Enter a Place Name:
I jSan Bernardino. California. United States
r........ ■' '
[■■■i-" ■ T" <

it Directions ^. Traffic | Home

jCoScflilohj?1 f<>r, SariTfierriardlnoJ'CAIM^B

j Fair
unrise Time: 6:56 AM
UnsetTime : 6:13 PM:

Temperature: 66 F
FeelsLIke : 66 F
DcwPoiut: 29 F
Visibility: 10.0 mi
Humidity : 25 %

Ireclion: CALM
egrees:0
ust: N/A
peed: calm mph -

Description : Low
Index: 0

rend : rising " {Pressure: 30.02 in

| [_Submrt |

t •• _______ i
Y- Co o rdlnatezM 1 7.2E55^

1
I

X-Coordlnate: .34.141149 ;

I'i) K&U uEsan^d ill .

Hybrid

Figure 31. Place Finder and Weather Conditions

A help icon is located near the search text. When a

user clicks on it a window pops up with instructions on

how to use the application.

68

Enter the first 4 characters of a place name box as

shown in Figure 32 below and wait for AJAX to show a list

of place name that match the first 4 characters.

Figure 32. Place Name

The user can scroll through the list by pressing down

arrow or scroll down as shown in Figure 33 below. Once a

place name is selected hit submit and the weather and map
location will change to the place entered in the place

name box.

69

Enter a Place Name:
X-Coordinate: ‘34.141149 : Y-Coordlnate: M17.2855redial [(Submit)

>i

Red Lane, Virginia, United States:-77.84972:37,54667

Red Lane, Wyoming, United States:-
108.20528:43.67861

Redland, Arkansas, United States:-93.2775:33.80667

Redland, Florida, United States: -80.49056:25.52806

Redland, Georgia, United 5tates;-81.95444:31.63972

n

Map] Satellite | Hybrid |

4 4

j ’.;! ;

■Ut* L

i'lBemardino’pscras czmS

Redland (Evangeline Parish), Louisiana, United States:-
92.39806:30.56778

Redland (Bossier Parish), Louisiana, United States;-
93.615:32.95611

Redland, Maryland, United States:-
77.148726:39.132905

Redland, North Carolina, United States:-
80.47278:35.98778

Redland (Sequoyah County), Oklahoma, United States:- n
94.62417:35.30472 “

■it ‘

■llylR 11 "I fl-
E Inwood Def ^-DeLRosa’S

Figure 33. List of Place Names

For the place name selected, current and forecast

weather conditions will be displayed as shown in Figure 34
below.

70

. Weather Condtiians for San Bernardirio, CA

Cloudy
Sunrise Time : 6:46 AM
Sunset Time: 6:28 PM

Temperature : 68 F l ,
FeelsLike : 68 F
DewPoint: 58 F
Visibility: 6.0.mi
Humidity: 70 %

(jSJHra
Direction : W . :
Degrees : 28D %.
Gust: 18
Speed: 11 mph

Description : Low
Index: 2

Trend : steady ||Pressure : 29.85 in

Figure 34. Weather Conditions

To get driving directions, click on get Directions

and traffic link. Change the destination or origination
accordingly and click on the Directions button. A detailed
textual direction along with a highlighted route is shown
on the map space on the page. To get traffic update click

on Check Traffic button and the current traffic conditions

are shown on the current map extent as shown in Figure 35
below.

71

Directions & Traffic
From: ’{Mne.CA..... : To:. I San Bernardino, CA 1

I Directions L Check Traffic j
--------- 1 ;i

Place Finder & Weather I Home

X. Head northwest on Alton Pkwy toward
comsilk

2. Turn right at Jamboree Rd 2.4 mi I’Puer

3. Continue on CA-261N (signs for State Hwy 6.8 mi
261N/Riverside)

■’ Ton road: ■■

[7] Glendora "S'C
iSSi

53.8 mi (about.56 mins)

2.7 mi

/a&wJ, rn 1
SKAv^C-'ij-j- ■‘da*

BoxSprrgs
’ iSttoirish

ShSt.Rirwwvs: >

* —
Ectyonont^

JjUr«. Vt3

Figure 35. Directions and Traffic

To go back to introduction page or place finder page

click on Home or place finder and weather respectively.

72

CHAPTER FIVE

CONCLUSIONS AND RECOMMENDATIONS

This section describes various conclusions as a

result of completing the project and also provides some

recommendations.

5.1 Conclusions
Through this project I tried to demonstrate how to

research and find appropriate web service and easily make
use of them. With the availability of Internet and rich

data content that is served through Web services, users

can leverage these existing services and tailor them to

meet the needs of any particular user segment.

Through my application I tried to validate the
following main advantages of using web services to provide
valuable information to users by investing minimal
resources.

• Outsourced - There is no need to store and
maintain data, software and hardware
infrastructure. The data used in the project is

hosted by various companies and the software
used to develop this application was minimal and

free of cost.

73

• Built on Industry Standards - Web services are

built using industry standards which makes it

easy to build and create other dependent

applications and find any help to support

development efforts.

• Platform and Language Independent -Can be hosted

or used by users from any OS platform or
programming language making it transparent to

the end user.

• Works of an Internet Connection - With internet
penetration more than 70% in US and fast
increasing around the world, Web services with

rich content are accessible to users around the

world.
With the above mentioned benefits come some risks as

well. Since web services involve entities out of our
control there is a risk of unavailability of service
because of a network outage, server problems or even when

there are minor changes in specifications of the web

service components.

There has to be sufficient notification and
communication mechanism between the service providers and
consumers to quickly react to the changes made to the
components so that the service is not interrupted.

74

Fortunately we have really reliable services that are
available 24/7 and with good help resources to take

advantage of the rich content and functionality. There is

also a need to easily respond to the ever changing needs

by making the Web services easy to configure and use.

5.2 Recommendations
This project is a good start for a novice programmer

interested in Web services on how to start the research
and implement web services. The documentation in this
project can also help developers to choose the right tools

and data resources. This project has been only limited to

demonstrate a few important common tasks (Place Name,
Weather, Driving Directions, etc). This application can be

extended further very easily by adding features that
complement the existing application. For example, the
project can be extended to include fire alerts, flash

flooding, air quality, road closures, etc. The code is

provided with good documentation and is intended to be
understood easily by a programmer with basic understanding

of programming principles.
Based on the experience of implementing this project,

I would like to recommend that the University create a

list of topics or tools that they would like to be

75

supported from the student community. This will allow

students to match their interests and strengths with this

list and to choose a topic of his or her interest. It is

always very motivating to tackle an existing real

requirement than a hypothetical situation.

By building this mechanism it is going to mutually

benefit both the students and the university.

76

APPENDIX A

JAVA ARCHIVE FILES

77

Below is the screen shot of all the Jar Files that were used for setting up of
this application.

jS Properties forPiaceF inderProject

Java Build Path

Source J J riects

type filter text

Resource
Beaninfo Path
Builders
J2EE Module Dependencies

pava Build Path j

Java Code Style
Java Compiler
Java Editor
Javadoc Location
JSP Fragment
Maven
Profile Compliance and Valtr
Project Facets
Project References
Refactoring History
Run/Debug Settings
Server
Targeted Runtimes
Task Repository
Task Tags
Validation
Web Content Settings
Web Project Settings
XDoclet

Libraries] Order and Export!

JARs and class folders on the build path;

& [53 artrvab'onjar - G\keerthi_software\Dawn!oads\r}uickstartJar
axis.Jar - C:\keerthi_software\Downfoads\axis-i_4Vib

t> gj mds-antjar - G\keerthi_software\DownJoads\axrs-l_4\tib
p £J commons-codec-1.3jar- C:\keerthi_softwate\DawiloadAquiekstartJar\weather_service\sourceMib

commons-discovery-0.2,jar - C:\keerthi_sofhvare\Downloads\axis-l_4\lih
5. S commons-httpdient-3J}J.jar - G\keerthi_software\Downtoads\quickstartJar\weather_service\source\lib
!> aj comm o ns - io-12.jss - G\keerthi_software\D cwntoa ds\qulckst a rtl a Aweath er_servfce\source\1 ib
> com mo ns- lang -22Jar * G\keerthLsoftware\Downloads\qulckstartJaAweathet_service\source\lib
t> commons-togging-ljOA.Jar - G\keerthi_software\Dcwnloads\axis-l_4\lib
t> gj jaxen-core.jar- G\keerthi_software\DcwnfoadAquickstartJaAweather_serviceXsource\L'b
p jaxen-jdom.jar - G\keerthi_software\Dovmloads\quickstartJaAwe3ther_service\source\tib
p £3 jaxrpcjar - G\keerthi_software\Downloads\a»s-l_4Mib
P iSJ jdomjar - G\keerthi_software\Dcwntoads\quickstartJaAweatherjervice\source\lib
j> j^i Iog4j-12B Jar - G\keerthr_software\Down!oads\axjs-l_4\lib
p Jai maiLjar-C:\keerlhtjsoftware\DownloadAquickstartJar
p saajjar - C:\keerthi_software\Dovrnioads\axIs-l_4\lib
t> saxpathjar - GXkeerthi_software\Downtoads\qulckstartJaAweBther_service\source\(ib
> taskapljar - G\keerthi_software\Down!oads\qukkstartJar\weather_service\source\llb
> wsd!4j-15.1jar-C:\keerthi_softwa re\0owntoads\axis-l_4\lib
p xercesjar - G\keerthi_software\Dcwnloads\quickstart)ar
P Hit Apache Tomcat v55 [Apache Tomcat v55]
!> EAR Libraries
> EJi JRE System Library [jrel.6D_03]
> Web App Libraries

78

APPENDIX B
J2EE MODULE DEPENDENCIES

79

All the below jars are added to the build path of J2EE module to help the

JAR/Module
[7] ^C:/keerthi_software/Downloads/quickstart)ar/weather_service/soiirce/lib/jaxen-jdomJar
[7] E& C:/keerthi_5oftware/0ownloa ds/axis-l_4/lib/commons-discovery-02Ja r
[7j EA G/keerthi_software/Downloads/quickstartlar/weather_service/source/lib/common5-io-12.jar
j7| S”iC:/keerthi_software/Downloads/axis-l_4/lib/common5-logging-1.0.4,jar

^G/keerthi_software/Download5/quickstartJar/weather_service/source/lib/taskapijar
0 g^C:/keerthL50ftware/Downloads/quick5tart]ar/weather_service/source/lib/comrnons-lang-22.jar
[7] E&G/keerthi_software/Downloads/axis-l_4/lib/log4j-12.8.jar
[71 eA G/keerthi_5cftware/Downloads/axi5-l_4/lib/axi5-ant.jar
[7] EAQ/keerthi_sQftware/Downloads/axis-l_4/Iib/saajjar
[7] E& G/keerthi_software/Downloads/axis-l_4/libAvsd!4j-1.51 .jar
® G/keerthi_software/Downloads/quickstartlar/'xerce5.jar
|7j E&C:/keerthi_5oftware/Downloads/quickstartJar/weather_servicefsource/lib/common5-codec-1.3.jar

Project
PlaceFinderProjei
PlaceFinderProjei
PlaceFinderProjei
PlaceFinderProjei
PlaceFinderProjei

i PlaceFinderProjei
PlaceFinderProjei

| PlaceFinderProjei
PlaceFinderProjei

‘ PlaceFinderProjei
■ PlaceFinderProjei
! PlaceFinderProjei

PlaceFinderProjei
i PlaceFinderProjei

[7] EjA G/keerthi_software/Downloads/quiclc5tartJar/mail.jar
|§] I^G/keerthi-Software/Downloads/quickstartJar/weatherjervice/source/lib/saxpath.jar
[7] G/keerthi_software/DownIoads/quickstartJar/weatheLservice/source/lib/commons-httpclient-3.0J,jar; PlaceFinderProjei
[7] ^G/keerthi_5oftware/Downloads/quickstartlar/weather_service/5OUrce/fib/jdom.jar

M G/keerthLsoftware/Downloads/quicksta rtJar/weather_service/so Lirce/lib/jaxen-core.ja r
[7] EA Q/keerthi_software/Downloads/axis-l_4/lib/aM5.jar
j7| g-A C'/keerthLsoftware/Downloads/axis-ljt/lib/jaxrpc.jar
[7] EA C:/keerthi_software/Downloads/quickstartJar/activation.jar

; PlaceFinderProjei
' PlaceFinderProjei

PlaceFinderProjei
’ PlaceFinderProjei
' PlaceFinderProjei

compiler to locate all the dependencies when running on tomcat server.

80

REFERENCES

[1] Apache Web services (2008, Oct). About Web services -
Axis. Apache, USA. [Online]. Available:
http://ws.apache.org/axis/Java/user-guide.html

[2] Barry Burd, John (2005). Eclipse For Dummies, Wiley &
Sons.

[3] Chris Ullman and Lucinda Dykes (2007). Ajax
Resources—Frameworks and Libraries- Appendix B,
Beginning Ajax, Wrox Press.

[4] CodeHaus (2008, Oct) . Jaxex: Universal Java XPath
Engine. CodeHaus, USA. [Online]. Available:
http://jaxen.codehaus.org/

[5] Eclipse. (2008, Oct). Eclipse Home. Eclipse, USA.
[Online]. Available: http://www.eclipse.org/

[6] ESRI. (2008, Oct). About ESRI- The GIS Software
Leader, USA. [Online]. Available:
http://www.esri.com/

[7] Google Maps. (2008, Oct). About Google Maps API.
Google, USA. [Online]. Available:
http://code.google.com/apis/maps/

[8] Interaktonline (2005, Nov). AJAX: Asynchronously
Moving Forward. Interaktonline, Romania. [Online].
Available:http://www.interaktonline.com/Support/Artic
les/

[9] Java Home (2008, Oct). Glossary of Java Sun home,
USA. [Online]. Available: http://Java.sun.com/
products/jIf/ed2/book/HIG.Glossary.html

[10] Java Home. (2008, Oct). About the Java Technology.
Sun Java Home, USA. [Online]. Available:
https://Java.sun.com/docs/books/tutorial/getStarted/i
ntro/definition.html

[11] Java-Tips (2008, Oct). What is the difference between
JDK and JRE, USA. [Online]. Available:
http://www.Java-tips.org/Java-se-tips/Java.lang/what-
is-the-difference-between-j dk-and-j re.html

81

http://ws.apache.org/axis/Java/user-guide.html
http://jaxen.codehaus.org/
http://www.eclipse.org/
http://www.esri.com/
http://code.google.com/apis/maps/
Available:http://www.interaktonline.com/Support/Artic
http://Java.sun.com/
https://Java.sun.com/docs/books/tutorial/getStarted/i
http://www.Java-tips.org/Java-se-tips/Java.lang/what-is-the-difference-between-j

[12] Kevin Mukhar, Chris Zelenak, James L. Weaver and Jim
Crume. (2005, Oct). Beginning Java EE 5: From Novice
to Professional

[13] Matthew Moodie (2005). Pro Jakarta Tomcat 5, Appress.
[14] Raghavan. ('2008, Sep) . What is Service-Oriented

Architecture?. Roselndia, India. [Online]. Available:
http://www.roseIndia.net/webservices/
what_is_service_oriented_architecture.shtml

[15] Rose India (2008, Jun). Tutorials on Java Server
Pages Tutorial. Roseindia, India. [Online].
Available: http://www.roseindia.net/jsp/
Javaserverpagestutorial.shtml

[16] RSS Feed. (2007, Jul). What is RSS? RSS Explained,
USA. [Online]. Available: http://www.whatisrss.com/

[17] SoapUser. (2001, Mar). SOAP Basics. SoapUser, USA.
[Online]. Available:
http://www.soapuser.com/basicsl.html

[18] Software AG. (2000, Jun). XML Basics. SoftwareAG,
USA. [Online]. Available:
http://www.softwareag.com/xml/about/starters.htm

[19] Tomcat. (2008, Oct). Apache Tomcat Home. Apache, USA.
[Online]. Available: http://tomcat.apache.org/

[20] Ueli Wahli. (2006, Sep). Web Services Handbook For
WebSphere Application Server 6.1, IBM Redbooks.

[21] W3Schools (2008, Oct). CSS Tutorial. W3schools, USA.
[Online]. Available: http://www.w3schools.com/css/

[22] W3Schools (2008, Oct). HTML Tutorial. W3schools, USA.
[Online]. Available:
http://www.w3schools.com/html/default.asp

[23] Weather (2008, Oct). About Weather XML Data Feed.
Weather.com, USA. [Online]. Available:
http://www.weather.com/services/xmloap.html

82

http://www.roseIndia.net/webservices/
http://www.roseindia.net/jsp/
http://www.whatisrss.com/
http://www.soapuser.com/basicsl.html
http://www.softwareag.com/xml/about/starters.htm
http://tomcat.apache.org/
http://www.w3schools.com/css/
http://www.w3schools.com/html/default.asp
Weather.com
http://www.weather.com/services/xmloap.html

[24] Wikipedia. (2008, Oct). About Ajax Programming.
Wikipedia, USA. [Online]. Available:
http://en.wikipedia.org/wiki/AJAX

[25] Wikipedia. (2008, Oct). About Apache Tomcat.
Wikipedia, USA. [Online]. Available:
http://en.wikipedia.org/wiki/Apache_Tomcat

[26] Wikipedia. (2008, Oct). About Cascading Style Sheets.
Wikipedia, USA. [Online]. Available:
http://en.wikipedia.org/wiki/Cascading_Style_Sheets

[27] Wikipedia. (2008, Oct). About HTML. Wikipedia, USA.
[Online]. Available:http://en.wikipedia.org/wiki/HTML

[28] Wikipedia. (2008, Oct). World Wide Web Consortium.
Wikipedia, USA. [Online]. Available:
http://en.wikipedia.org/wiki/World_Wide_Web_Consortiu
m

[29] Wikipedia. (2008, Oct). About Application Programming
Interface. Wikipedia, USA. [Online]. Available:
http://en.wikipedia.org/wiki/API

[30] Wikipedia. (2008, Oct). About Object-oriented
programming. Wikipedia, USA. [Online]. Available: .
http://en.wikipedia.org/wiki/Obj ect_oriented

[31] Wikipedia. (2008, Oct). About HTTP. Wikipedia, USA.
[Online]. Available:
http://en.wikipedia.org/wiki/HTTP

[32] Wikipedia. (2008, Oct). About Script.aculo.us.
Wikipedia, USA. [Online]. Available:
http://en.wikipedia.org/wiki/Script.aculo.us

[33] Windows Live Developer Center (2008, Oct). What is
WSDL?. MSDN, USA. [Online]. Available:
http://msdn.microsoft.com/en-us/library/bbl26207.aspx

83

http://en.wikipedia.org/wiki/AJAX
http://en.wikipedia.org/wiki/Apache_Tomcat
http://en.wikipedia.org/wiki/Cascading_Style_Sheets
Available:http://en.wikipedia.org/wiki/HTML
http://en.wikipedia.org/wiki/World_Wide_Web_Consortiu
http://en.wikipedia.org/wiki/API
http://en.wikipedia.org/wiki/Obj
http://en.wikipedia.org/wiki/HTTP
http://en.wikipedia.org/wiki/Script.aculo.us
http://msdn.microsoft.com/en-us/library/bbl26207.aspx

	Building web applications using web services
	Recommended Citation

