














This is the same as saying that the following diagram

commutes.
c

X—F

o l o
G

In this case X is called the basis of F and |X|, the card-
inality of X, is called the rank of F, denoted by r(F).

Thus a group F is called free if it has a subset X
where every element of F can be written uniquely, up to
trivial relations, as the product of elements of X and their
inverses. A trivial relation is one that is equivalent to
the identity element € such as x;x; ', X, 'X;, XX;X; X, %, etc.
Here uniqueness simply means that if any two elements of F
(called words) look different then they are different. A

reduced word is one where no generators (elements of x) are

adjacent to its multiplicative inverse. In other words all

possible cancellations of the form x,x,”'=€ have been done

within the word. A reduced word x;X,~X; is said to be cycli-
cally reduced if x;#x; '.

The following describes some notation regarding free
groups. A group F that is free on a subset X is denoted by
F(X). A free group contains generators and only trivial
relators and is denoted by <x;|>. The existence of the
extended mapping o implies that there are no relations in X

and the uniqueness of o' implies that X generates F. A
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comparable definition for a f£ree abelian group is generated

merely by replacing the word ‘group’ with the words ‘abelian

group' in the definition of a free group. The fundamental

group of the torus is an example of a free abelian group of
rank 2. Other examples of free fundamental groups are a
circle of rank 1 (i.e. one trip of the path where the ini-
tial and terminal point is the same) and any bouquet of n
circles all of which share only one point and are free
groups of rank n. An example of a bougquet of 5 circles

sharing only one peoint is as follows:

In this case rank n is rank 5 meaning that each circular
path of the bouquet is traversed only once and in_each case
the common point is the initial and terminal point of each
traversal. These examples of a free group are consequences
of the Seifert-Van Kampen Theoremn.

The following are some notably important facts for us
regarding free groups. If G is any group, F is an arbitrary
group and Xc<F, then we say that Hom(F,G) is the set of all

homomorphisms from F to G and Map(X,G) is the set of all

mappings from X into G. Now let p be a restriction map from

the set of homomorphisms from F to G tc the set of maps from
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X'into G definéd'by p(e’(x))=e'(x),V xex‘and o'6éHom(F,G) .
Thus, p is surjective if an onlyfif for all eeMap(X,G) there
is an extension map o' as defined in the forgoing definition
of free maps and shown above. The map p ié injective if and
only if o exists.and is unique. Therefore, to say that F
is free on X‘is to say p i$ a bijection for any grouva and
vice versa. A free grﬁup mayihaﬁe many differgnt bases all
of which havg'the same number of elements. This implies
that the rank of a freé éroup is weli defined. th— J
sequently, a free group is determined up to an isomorphism
by its rank. |

The‘abéve comménts_can be summed uplby the following
leﬁma andlfwo propositions:. » - ‘
Lemma: If F is free on X, then X generates F.
Proposition: If F; is free on X, (1=1,2) énd F.,2F,, then

I,X1|=|X2

Proposition: If F;, is free on X;(i=1,2) and:LXA=4Xﬂ,
then F,=F,.

The following propositions, 1emma and theorem provide
us with some more useful facts about free groups.
Proposiﬁion: Every group is isomorphic to a factor group of
some free‘grouP; That is, G=Image of ©2F(X)/Kereo’.

ALemma: Let a,beF(X) such that ab=ba. Then there is a C€F(X)

such that a=c* and b=c" for some k,heZ.
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In other words, this iemma says that free groups are
non-commutative. intuitively, free groups are the most non;
abelian groups there are.

Proposition: (i) Iﬁ a'ffee~group F with n roots when they
exist are unique, that is, if a,b€F satisfying a%df,\neﬁﬁ
then a=b{ (ii) any elemenf (word) w of F ﬂas oﬂl& finitely
many génefétors,jtbét_is, {aEEhf=W,‘for some neN} is fi-
nite. |
Proposition:;Comhutétibhlis;an'equivalence relafion on
F\{e}. That is the centraliéer C(w) :={weF| aw=wa for any
acrF\{e}}is abelian.'® l

From here we venture into some facts about presenta-
tions of free groups. A presentation can be viewed as a
convenient shbrthand for specifying any particular group.
If we let F(X) be a free group on X, R a subset of F, N the
normal closure of R in F, and G the factor group F/N then a
free presentation can be defined as follows:

Definition: A free presentation, denoted by G=<X|R>, is
referred to simply as a presentation of G. The elements of
X are called generators and those of R are called defining
relators. A group G is said to be finitely presented if it
has a presentation with both X and_R-being finite sets.

Precisely, this means that the elements x€X generate G,
the elements reR are equal to the identity element eeG, and
G is the largest group with these properties. Further the

defining relations reR for G are assumed to be equal to e.
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This convention allows normal algebraiﬁdmanipulation. Thus
a defining relation, say uv, when set equal to e, uv=e may
take on the form u=v', for some u,VeF(X). Groups frequent-
ly occur in the form of presentations but it is difficult to
deduce properties of a group frémwa given presentation of
if. There are a nﬁmbér of.techniqués used but none are
clearly definitive in general. For our purpoées we will
derive presentations.of knot groups using the Wiftinger
process. This will be discussed later, in detail.

The following are some helpful facts about groups and
their presentations. Every cyclic éroup is a homomorphic
image of the set of integers, denoted by Z=<x|>, by defini-
tion. From Group Theory we know tﬁat the Kernel 6f a homo-
morphism of a'cyclic group is cyélic, being either the
normal closure of x", neN or trivial. 1In this notation,
Z=<x|>, Z,=<x|x">, neN, we completely list all cyclic
groups.

Proposition: Every group has a presentation, and every
finite group is finitely présented;

The folloWing are soﬁe important facts regarding homo-
morphisms.

Lemma: Let F,G,H be groups and v:F—G, a:F—H be homomorph-

isms such that (i) the image of v is G, denoted Im v=G and

(ii) Ker v < Ker a. Then there is a homomorphism a’:G—H
such that voa=a.
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This lemha is called the induced hohomorphism lemma.
The following proposition by von Dyck is a result of this
lemma.‘ |
Proposition: If G=<X|R> and H=<X|S> where RcScF(X), then
there is an ebimorphism ¢:G~H fixing every xc€X such that
ker¢=S/R. Conversely, every factor group of G=<X|R> has a
presentéfioﬁ <x|s> with RcsS.
The following proposition gives a means by which we may test
a map from the generators of a group G to another group H to
determine if it extends to a homomorphism of all of G. This’
-proposition is key to. the homomorphisms we will look at for
symbolic dynamical systems of knot complements.
. Proposition: If given a group presentation G=<X|R>, a group
H, and a mapping o:X~H, then o extends to a homomorphism
©:G~H 1if and only if the result of substituting xo for x in
r yields the identity in H, V xeX and reR.
When such a ©' exists it must 5e unique since X generates G.
Also note that e’ is an epimoréhism if and only if <xe>=H.'®
Another valuable tooi in the development of an SDS for
a knot is the use of Teitze transformations or Teitze moves.
Teitze moves give us the tools needed to transform a given
presentation of a group to a different presentation of the
same group. The following proposition formélizes this
method for us. | |
Proposition: Lef F<X|>, G=<X|R> and suppose that w,reF Wifh

w arbitrary and réR\R. If y.is a symbol not in X, then both
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the inclusions X~<X|R,r> and X~=<X,y|R,y 'w> extend to iso-
morphisms with domain G.

The above proposition yields four ways to adjust a
given presentation <X|R> to derive another equivalent pre-
sentation for the group. These four ways come directly from
the four isomorphisms of the above proposition and are
called Teitze transformations. These four moves are defined
as follbws where F is a free group on the subset X through-
out.

Definition: i) Adjoining a relator, denoted by R+ is defined
as X=X, R=R U {r}, where reR\R is the normal closure in F.

ii) Removing a relator, denoted by R- is defined as X=X,

R=R\{r}, where reRNR\{r}. 1iii) Adjoining a generator,
denoted by X+ is defined as X=XU{y}, R=RU{y'w}, where yeX
and weF. iV) Removing ‘a generator, denoted by X- is defined
as X'=X\{y}, R'=R\{y'w}, where yeX, we<X\{y}|> and .y'lw is
the only member of R involving y.'® '

For example, by a finite series of Tietze moves we can
show that the group G, presented by

G1=<w,x,y,,z|wx=y, Xy=z, YZ=W, zw=x>

is cyclic by reducing its presentation fo that of a cyclic
group of'order 5.

To begin with consider the first and third relators
y=wx and. w=yz, where‘ by substitufion gives us ‘another r‘e_la—
tor of the group eliminating the generator y, namely w=wxz.

By multiplying both sides on the left by w' we can elimi-
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nate another generator, w and derive'yet another relator,
wlw=w"wxz or e=xz or x'=z. By appiying a comparable series
of Tietze moves to the relatoré Z=XY and'x=zw we derive the
new relator y=w'. By substituting into the original pre-
sentatioﬁ we can rewrite it in terms of the two generators w
and x as follows: G,=<w,x|wx=w!,xw '=x", wixl=w, xlw=x>.
Since wx=w"' can be written as w’=x" and since wlxl=w can be
written as x'=w’ then two of the relators are the same
allowing us to eliminate one in our ppesentation. By a
similar arguement we can eliminate one of the remaininé two
generators since they are also equal. Thus, we have reduced
our presentation to the following:

G=<w, x|w=x", w=x*>.

A close look reveals that yet another substitution can
be made for w’ since w=x’ implies that w?=x’ in thé second
realtor. This substitution ?llows us to eliminate another
generator, w and reduce our presentation to only one relator
as follows: G,=<x|x'=x!> or G =<x|x"> since x'=x implyies
that x°=e. Thus, Gf=<Xhé>‘iS a presentation for an. infinite
cyclic group of order 5. |

The following proposition describes how two presenta;
tions of a given group are related.

Proposition: Given any two finite presentations of the same.
group, one can be obtained‘from the other by a finife-se;

quence of Tietze transformations.

Later we will see that Tietze moves allow us to simplify a
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group presentation to one having fewer generators and
relators.

In order to fully develop an algorithm for the symbolic
dynamical systems for knot groups we will need presentations
of commutator subgroups. The Reidemeister-~Schreier theorem

will allow us to accomplish this task as we shall see later.
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THE FOCUS: The SDS and
" Directed Graph for the Trefoil

The Wirtinger Presentation
Our goal here is to present the algorithm for producing
a Symbolic Dynamical System (SDS) for any non=trivial knot

k. A dynamical system is defined as follows:

Definjtion: A dynamical system is a pair (X,c) consisting of

a topological space X and a homeomorphism oc:X—X. A mapping

f:(X,0) *(X,0) of dynamical systems is a continuous func-

tion f£:X—X for which f°o o= o° f. The dynamical systems

(X,6) and (X,0) are conjugate if there exists a mapping

g:(X,0)—*(X,0) such that ge f and fo g are identity func-

tions.*

The four major steps in the algorithm are developed sequent-

ually as follows:

1) derive a presentation of a given knot group using the
Wirtinger process,

2) develop ‘a presentation for the commutator subgroup
from the Wirtinger presentation using the Reidemester-
Schreier Theorem with a distinguished generator.

3) develop the augmented group system and shifts of
finite type from the presentation of the commutator
subgroup and lastly,

4) produce the graph determined by the shifts of finite

type into what is called the directed graph.
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Here we write the relators from the two crossings
indicated. The relators for the tre'foi'll ‘are ri;3X,;X,=®.¥, énd
r,tXX;=X,X;. Since wé now have both the generators and
relators the pfesentation of the fundamental group of thé

trefoil can be written as,
7, ( trefoil)=<x,,X,, X, | %, X, =%, %, =X, %X;> .

As mentioned earlier the trefoil is a nqn—triviai knot.
~ That is .equivalent to saying that =,(trefoil) is a non-
abelian group, since the only knot with abelian fﬁndamental
grbup<is the unknot. Note'that'nl(unknot)#z, and is gener-
ated by a meridian of the unknot. It is worth remarking
that the abelianization of any knot group ié‘isomorphié to
Z.ZO ' N

etz | 1e Distinguishe ene
Next our goal is to find a presentation for the com-i
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mutator subgroup K of w; (k). We will use Tietze moves in a

process given to us by the Reidemester-Schreier Theorem.?

A key here is that one of the Tietze moves is designed to
introduce a new generator a, such that x;,=x,a for some icZ.

In order to find the commutator subgroup K we must
first bhooseia genérator; x:cailed the distinguished genera-
tor and set all'other‘generators equal to a multiple of the
distinguished generator and another unknown generator. That
is, we will hold that x=x,, and x;=xa for some new element a
and some i€Z. After this then we can rewrite a presenta-
tion eliminating a known generator by replacing it with its
equivalent in terms of the distinguished generqtor.

Now we ﬁant to write a presentation of the commutator
subgroup of our trefoil group using the Reidemester-Schreier
Theorem discussed earlier. Consequently, the commutaﬁor

subgroup‘of T, (trefoil) will also be a nonabelian group as

is needed. A consequence of tﬁe Reidemester—Schfeier Théo-
rem is that the generators of the commutator subgroup are
defined by a;=x"'ax' and the defining relators are found by
conjugating the relation in the last presentation by powers
of x. Notice that we have already done this for the tre;

foil. We need only rewrite our relation in terms of a,,
i€eZ. 1In reviewing a;=x‘ax' by successive values of i€Z
starting with i=0 our generators can be derived and by

substitution our relation can be rewritten. If i=0, then
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a,=x’ax’=a implying a,'=a*'. If i=1, then a,=x‘ax implying
a; '=(x'ax) '=x'a'x, etc. A quick inspection of our only
relation shows that we can stop here.®

For examplé, the fundamentallgroup of the trefoil can
be presehted with one meridian generafor (the distinguished
generator), x and some other generator a as
T, (trefoil)=<x,a|x 'a”'x'ax’a>. By inserting xx '=e in the
relator between the a™’ and the second x! our relator is
transformed into the product of conjugations of the form
a;=x *ax'. Now it can be written as x'a‘xx%ax’a, where

=1

x 'alx=a,?, x?ax’=a, and a=a,. With this we can write the

relator as a presentation of the commutator subgroup K as
K=<a;|a,; 'aj.,a;,1€Z>. Later we will see how this example

plays a part in the complete development of the symbolic

dynamical system for the trefoil.

Augmented Group Systems and Shifts of Finite Type

To this point we have completea roughly half of our
algorithm of symbolic dynamical syétems with the trefoil as
the example. However, before we conﬁinue-some introduction
to augmented group systems and .shifts is necessary here.
Lets begin Qifh a definition. o |
Definition:‘An augmentéd gfbup;sgstem is a triple denoted by
(G,x;x) consisting of a finitély.presented group G, an
epimorphisn x:G-&Z’and‘a>distinguished elément'xeG,‘such

that y(x)=1.
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We have an example of an augmented group system in our

trefoil.?” The augmented group system for the trefoil is

the triple (m,(trefoil),y,x), where y:m(trefoil)—Z and

x(x)=1.

Next lets consider the definition of a representation
shift.
Definjtion: A represéntation shift, denoted by &;, is the
set of representations p:K-Y. together with the shift map
ox: &5, defined by o,o(a)=p(x'ax) for all acK, where K‘is

the commutator subgroup of the fundamental group and X' is
the target group.

Lets now define a shift of finite type. First let x be.
a distinguished generator and o, be a series of mappings,
whére cxr‘(f)=p(x41y xX) Vp€eH only and xéK. By Van Kampen such a
series of mappings would be depicted as oné mapping cycle.
If we first applied our set of representations & and then
our series of mappings o, we would have what is called
shifts of finite type. We will exemplify a shift of finite
type with the trefoil wheﬁ we resume the construction of its

SDS.
Next we will look at permutation representations.

Definition: A permutation representation of a group K is a
homorphism p:K—S,, where S, is the symmetric group operating

on the set {1,2,-,r}.

36



We call p a representation of K, in S,. The following

proposition is well known.??

Proposition: Let K be any group and let r be a positive

integer. The function m:p—*{geK|p(g) (1)=1} maps the set of

representations p:K,S, onto the set of subgroups Hs<K having

index |K:H|sr. The preimage of any subgroup of index r

contains exactly (r-1)! transitive representations.

If p(K) operates transitively on the set {1,2,-,r} then
we say the rebresentation b is transitive.

Recall that a dynamical system is defined as follows:
Definition: A dynamical system is a péir (X,0) consisting of
a topological space X and a homeomorphism oc:X—X. A mapping
f:(X,0) *(X,0) of dynamical systems is a continuous func-
tion f:X—X for which fo o= oo f. The dynamical systems
(X,6) and (X,0) are conjugate if there exists a mapping

g:(X,0)*(X,0) such that ge f and fe g are identity func-
tions.*

The following'proposition follows from the last stated

proposition above.

Proposition: Let r be a positive integer. The function
ﬁuTﬂH={gEKAp(g)(1)=l} induces a mapping from (&,,0,) onto
N A
( ¢rl O-r) *

The following corollary is a consequence of the pre-
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ceding two prop051t10ns.

COrollary Let (G,z;x) be an augmented group system and let
r be a positive integer. Then the assoc1ated representatlon
shift (¢,,0,) is finite if and only if the subgroﬁp system

- . )
®.,0,) 1s finite.

-~

The pair (&y,0,) is a dynamical system where &y is a

space and o, is a homeomorphism which can be nicely repre-
sented by a directed graph. _
The Directed Graph

The fourth part in our algorithm for the ¢onstruction

of a symbolic dyﬁamical system for a given knot complement

is the directed graph, denoted by F=(V,E),'Where

V={p|p:K-X} is the set of vertices and E={pp’|p'=0.p} ie.the_
set of edges. The vertices are representations of the
fundamental group iﬁ Hem(K,Z)vand are connected by an edge
calied the shift map, o,, from p to p’. It turns out that

the entire directed graph is one or more series of perlodlc
points all connectediby‘edges. : Some perlodlc points are of
period eﬂe meanlng a p01nt 1s connected to itself by one
edge.t'And-lt is p0551ble that some. p01nts are non-perlodlc
points that may be pruned” from the dlrected graph.

The directed graph for the trefoil, which we will :

develop in detail later, is as follows'
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(1,0) (2,2)
(0,0) L (1,2) (2,1)
(1,1) ' (2,0)

(0,1)

In the algorithm for symbolic dynamical systems we now
have four major steps. The first two that we discussed
earlier were: 1) to write a simplified Wirtinger presenta-
tion of the fundamental group of the exterior (complement)
of any given knot, k. Recall to simplify a Wirtinger pre-
sentation just solve relators for one or more generators and
substitute into other relators minimizing both generators
and relations, and 2) to develop a presentation for the
commutator subgroup. Recall we first select a generator and
designate it as a distinguished generator, equate each of
the other Wirtinger generators to a multiple of the distin-
guished generator and some other generator. By substituting
and appling Tietze moves we produce still another equivalent
presentation in terms of the distinguished generator and the
unknown group generator. Then by representing the group in
only one relator and inserting a sequence of generator
multiples equivalent to the identity in strategic positions
of that relator, we can rewrite a relator as a multiple

sequence of conjugate generators. The result then is the
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desired presentation of the commutator subgroup.

The third step is the develépment of what is called the
augmented group system and shiffs‘of finite type. In es-
sence, we deyelop a‘set of‘vertices énd a seﬁ of edges as
described above.

The fourth and final step in our algofithm to develop
a symboiic(dyﬂamical éfstem'for a given knot, k is ﬁhe
plottingrof the directéa graﬁh, .. This is done from the
set of vefticés and'edges developed previously. This con-
cludes the algorithm for a dynamical system and its directed
graph which is called a symbolic dynamical system. We are
" now left only fo conclude the construction of the symbolic
" dynamical system for the trefoil. This we will do in the
next section.

As a .side note recall that the Wirtinger presentation
allowed us to disfegard one crossing in our development of
the presentation. We ignored the‘upper crossing and used
the two lower crossings. If we had used the upper and lower
right crossing our above relator would appear as a;,; a;,,'a;?
which is equivalent to a;,;'a;,;, a; since both are assumed to
be equivalent to 1. Alternately, if we had used the upper
and lower left crossings the relator would look like the
inverse of the relator we developed. That is,
aj.itag,a;=a;ag,, ‘'a;,=1 and both agree with the general pre-
sentation since inverses of generators aré assumed. Intu-

itively, these facts seem appropriate once we recognize that
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the standard projection of the trefoil is symmetric about
any of three lines through the center and any one,of the
three créssings, preserVingvorientafion."Since we can
physicaliy replace any crossing with any othéf'by é‘reflec-
tion and sihce the commutator subgroup invariaptly describes
the underlying khot, then it seems totally appropriéte‘that

the three relators discussed above are equivalent.

The Trefoil and Its Directed Graph

We will now conclude the construction of the SDS for
the tréfoil by the development of its directed graph..
'Recall that our shift of finite type & iﬁvolﬁes a finité
group 2. For our work here we will consider only the case
where Y>=Z,. Recall we have }ai+1‘ll a; a;=1 from our general
presentation of the commutgtor subgroup which leads us to
a;,,=a;.a; © and a,=a;a, ', when i=0. Given that p is a homo-

morphism and since a,=a,a, '€K is mapped by p to Z; then
p(az)=p(a;a,’)=p (51)4‘9 (a0 )eZs;.
This equation is then equivalent to p(a;)=p(a;)-p(a;) since
p(a,?)€Z; is equivalent to the additive inverse of. p(ag)€Z;.
Moreover,_as a conseéuence of the relation a;,;? a;,, a;, the
representation.p isndeterminéd by_ité values on a, and a,
through indﬁctiqnf Thus thg representations'p are in
one-to-one correspondence with Z,xZ,. In'other words, the

vertex set for our directed graph I is
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V={(pl{a"0)y',p(a1) )}EZ3XZ3 ’and the edge set comes from the map
‘p'=0,p. More speéifiéélly,'pp‘ is an edge if and only if
p'=0,p. Now since o_'xp(ai)=p(x'1aix)=p»(ai+1) then the edge set’
becomes E={pp’|p'(aj)=p(a,), p(a,)=p’(a;)}- Thus, if p is the
répresentation givén by (1,0), where p(az)=1 and p(ay)=0 thén
the shift o,p is from (1,0) to.the vertex (oﬂxag), o.p(ay))
=(p (xX"ax) ,p(xa1x) )= (p(as), P(as) ) - Sinée p(az)=p(a1)fp(ao) we
h.ave 6,=(1,0)=(0,2) as an example. And since p(a;)-p(a,)=p(a,)
in our case,.then the edge set can be expressed as
B={pp'|p’ (30) =P (1) , P’ (21)=P@)-P (ac) }-

Representation sh;fts p'=o,p are.calculated in the
following manner. |

Since our target group is Z, it follows that we will
have nine glements'in our set of vertices we deéiénate as
p;,i=0,-,8 which are all completely determined by values on
a, and a,. Each p; represents an ordered pair such that .
pi=(pi(ay) ,p; (A1) ), where each.pi(ao) and pi(a15 is an element'
of Zs. From this wevcan list the set of nine vertices tﬁat
are determined by our system as
V={(0,0), (1,0),(2,0),(0,1),(1,1),(2,1),(0,2), (1,2), (2,2) },
where b(;=(0,0),p1=(l,0), etc. In other words the p; is the i

plus first representation in the set of vertices. Finding
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the oriented edges of our edge set for the directed graph we

must select a vertex p; and find another in our set of ver-
tices p;’, such til'at p:'’=0.p;. Recall that there is an edge
p:pi’, if and only if p;'=o,p;, giving p;’(ax)=0.p; (ax)=p: (X
'a,x)=p; (aw) . Let p;=(0,0) be our starting point whefe
po(ag)=po(a,;)=0 €Z,;. Note that o,pp=p,. This shows that thefe

is a loop edge connecting p, to itself and so p, is a vertex
of period one.

Oour next step is to consider a new vertex say p,=(1,0),

where pi(ao)=1, p1(a;)=0 and 0,1 €Z,. Our calculations are

as follows:
Gupr=(P1(a1) 1 (a1) =1 (20) ) =(0,2) =ps.
G.Ps=(Ps (1) , Pe(as) =Ps(as) ) =(2,2)=ps.
GPs=(Ps(ai) , Ps(ai) —ps(ao) )=(2,0)=p,.
Gupo=(P2(a1) , P2(a1)=P2(a0) )=(0,1)=ps.
Cpr= (Pa(a1) s Pa(@r) =Pa(a0) )= (1, 1) =ps-

oxPs=(pPa(ai) , ps(ai)—ps(ao) y=(1,0)=p,.
Notice that a cycle of period 6 has been completed since our

calculations have brought us back to our beginning vertex

namely, p;,. Note that there are only two vertices whose
edges have not yet been determined, they are b5=(2,1) and
" p=(1,2). This time we select ps letting ps(a,)=2 and
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ps(a;)=1. From this we have
C.ps=(Ps(ai) , Ps(ai)=ps(ao))=(1,2)=p;.

o.P=(p7(a1) , pr(ai)-pi(as))=(2,1)=ps.
This completes a third and the last cycle since the edges
have been determined on all of the vertices.
Our directed graph for the trefoil resulted in three
parts, each regarded as a unique bi-infinite path with
different periods. The first is period 1, the second is

period 6, and the third is period 2. We can determine the

affect of o, directly from a directed graph.

The following is the complete directed graph I' for the

trefoil.?
_el0,2)
(1,0) \\%,2)

(1,2) (2,1)

(1,1) (2,0)

(0,1)

From the directed graph we can see that the representation
shift &,,;, for the trefoil contains 1 fixed point, 2 points
of period 2 and 6 points of period 6.

Recall that we denote the augmented group system by

g=(G,X,%x). Representation shifts operating on g with a

target group X are denoted by &r(g). A dynamical system is
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a pair (ox(g),0,) defined to be a topological space plus a

'homeomorphism o, that maps a representation shift to itself,

o,:dy » @y, where &y is a set of ordered pair each in X

called vertices. Finally, a special kind of dynamical

system is one that can be completely described by a finite

graph I'. The bi-infinite paths in I' corresponds to the

representations p. This special kind of dynamical system is
called a symbolic dynamical system and is generally denoted

in the abreviated form by &y(g,), where k represents the

exterior of a given knot.
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CONCI.USTON

Here it seems appropriate to summarize the foregoing
and close with some information on recent research that has
gone beyond this application of symbolic dynamical systems.
First, the algorithm for developing symbolic dynamical
systems will be summarized in a nontechnical narrative in my
own words. The steps in a practical application are then
reviewed as we display the development of a symbolic dynami-
cal system in the section entitled Another Knot? -~ Why Not?
Lastly, we talk briefly about a different kind of knot
invariant called entropy that takes the structure of a
symbolic dynamical system into higher dimensional knot
theory.

The Algorithm in Summary

A known knot is selected then imbedded in R’. This is
followed by selecting a fixed neighborhood of the knot that
envelops the entire knot. We now extract a solid tube

containing the knot with a neighborhood and consider the

complement of the knot. Such an extraction leaves a ‘tunnel

shaped void of the knot in R?. Thus, the fundamental group
is defined in the exterior of the knot and can be presented
in terms of meridian loops.

Here we turn to the Wirtinger process for a presenta-
tion from a projection of the knot. The practice here is to

orient the knot projection, select meridian loops viewed as
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straight lines on the projection orient them from right to
left while facing with the orientation of the knot. These
meridian loops are to be labeled in a manner corresponding
to the arcs of the knot projectioﬁ determined from underpass
to underpass. A presentation of the fundamental group of
the knot is written using meridians as generators while the
relations of the presentation are taken from the relation-
ships among the meridians at all but one of the crossings in
the projection. |

Next with some algebra we solve for and substitute
generators among relators. Then by using Tietze moves we
combine relators, equate them to the identity and eleminate
as many generators and relators as is possible. 1In so doing
we have simplified the presentation to the minimum.

The Reidemester-Schreier Theorem enables us to write a
presentation for the commﬁtator subgroup K of our fundamen-
tal group. The generators of K are denoted by a; where
i=1,2,- . Each a; is equal to the conjugation x*ax'’ from
the prior presentation.‘ We write the presentation of the
commutator subgroup by rewritiﬁg the conjugations of previ-
ous relations in terms of the new generators.

Now we have a presentation of the commutator subgroup,
and let &; denote the set 6f all'representatoré of‘K into X.

Next we define a mapping based on the distinguished genera-
tor x and denoted by'cx. Reéall that the pair (®; ,0,) is
called a dynamic systen, where ¥ is a selected target
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group. For our Trefoil, example_the target group seiected
was thevcyclic group Z,;. This theﬂ allowed -us to define a
representation shift p sﬁéh that.&ﬁkai=p(xﬁéx’. With the
représentatibn shift defined all‘that is left to do is to
cénsiAer each vertex p aﬁd calculate the map o.p to 'some
terminal point p’. This we cali an edge. Once we have
céllected complete sets of all possible vertices and edges
it is then a simple matter to graphically'represent our
dynamical system with what ‘we call ‘a directed graphjand
denote by I. >The directed graph is drawn by plotting all
péssiblé vertices and connecting them‘in accordancé with the
direqtidn détermined»by thé calculations of o;p from ogr_set

of edges. The directed graph will depict one or more bi-
infinite paths consisting of several loops eéch wifh a
_discernibié~period. The dirécted graph.éf a dynamical
system is é symbolic depictién of thaf sysfem we call_é'
‘symbblic‘dynamicalAsystem. The foregoing is a summary of
the approach to an acfive development of a symbolic dynami-

~cal system for any known knot.

. - A
Al

Andther-Knot?lf Why Not?
'ﬁetsltake-a summary 1o§k at-thé'develbpment of the
symbolic QYnamicél systém for another ﬁon-frivial knot,
~ called the figure-eight knof.'~fhe figure-eight knot’is'

classified as a 4, knot, the target group X we will use‘is
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Z, and we can denote the symbolic d}}namiCal system by

®z/3(9) -

" From' the standard projection _df the figure-eight knot
we develop a presentation for the fundamental group of the

knot exterior using the Wirtinger process as follows:

K1 X=X X,

3 X1X,=XX,

A Wir{:ihger -presentatic;;n of the figure-eight knot is
Ty (41) =<X1, Xz, X3, Xy |X4X1=k1¥é ¢ XX TR, K K=XKpXa>
From r; and r; we have X;=X; 'X.X), X,=X, X1X; ,X; =X; ¥, 'X, and
x2‘1=><'4.;1'><'1“1x4. Rewriting r; we have %, '%,'%,X,=€ , then by
substituting we can write our only relatér as follows:
xl'lx{lxlx[_lvxl'lx,;, X x;‘..‘lxlx4=e |
Notice we now have only two generators-and one .relétor, sucb:
that =, (.41)=<x1,x4|x1'1x4“131 xg'ix1'1x4x1x4figllx;>. Next select

as our distinguished generator such that x,=ax, where a is
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another group generator and x=X,.-
Note that x,'=x'a™. Again by substitution we have,
T, (4,)=<x%,a|x 'xa'xx'a 'x 'axxx'a 'xax> or

7, (4,) =<x,a|x’a x*x2a ¥’ x *ax’x ?a " x*x lax>

by strategic insertions of x'x*,i€Z such that oﬁ_r relator

is presented as the product of conjugates. By the
Reidemester-Schreier Theorem we can now write a presentation

for the commutator subgroup, such that the (yenerators are

defined by a;=‘ax", i€Z. Thus, as=a, a,;=x 'ax, -a2=x"éax2, a;=x"
‘ax’ and a,'=a™l, a,; '=x"'a’'x, a,'=x’a’'x’, a;'=x’a'x’. Rewrit-
ing our relator with the above substitutions we now have

a, '-a, ' ra," a2;1~a1, which will be the relator for the presen-
tation of the commutator subgrqpp/, |
K=<a,,a, ',as;|a, 'a, ‘a;a, ‘a;>. . In general, ‘v}e_ have_.
K=<ai|a‘iﬂ'laiﬂ'1ai+2ai+1'1ai>. iay 'settilm‘g:‘(;ur ;rel.ato.r equal to
the identity and solving for a;,» We have : }

ai+1_2ai+2ai+1—?ai=1 gives ai+2=a;_+12‘~ai_1ai+1°

From here we can produce the directed graph. We choose

Y = 7Z, and define our vertex and edge sets to be V={p|p:~Z}

and E={pp'[p’ (a0)=p(a;) , P’ (a1)=3p(a1) =p(ac) } .
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Note that since p is a homomorphism then
p(auz)= p(a’a; as,)
P(aiz)= p(au®)+p(ai ™) +p( ai)
p(ai)= 2p(as)=-p(ai)+p( ain)
p(aiz2)= 3p(ain)-p(a;)
p(aiz)= -p(a;) €,
Since 3p(ai.)-p(a;) is in Z; then we have that 3p(a;,,) will
always equal zero. Thus, p(a;.,)=-p(a;).
Given that pceHom(K,Z;) it then follows that the set of

vertices has nine elements, p;, i=1,-,9 all of which are
completely determined by values on a, and a;. That is, each
p; represents an ordered pair such that p;=(p;(agy),pi(ai)),
where p;(a,),p;i(a;)€Z;. Again, we can now list our set of
nine vertices as follows:
Vo={(0,0),(0,1),(0,2),(1,0),(2,1),(1,2),(2,0),(2,1),(2,2)}
where p;=(0,0),p,=(0,1) and so on.

In order to find the oriented edges of our directed

graph, I' we must select a p; and find a p;'. But first
recall that there is an edge p;p;’, where a,=x fa,x* if and
only if p;'=0,p;. Thus, we have p;’'(ay)=0,p;(a;)=

p; (x'ax)=p¢(ap.1) - Given that p,=(0,0) then let p; be our
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starting-point where pl(a0)=§1(51)=er . Thus,>
o.p1=(p.(ai) ,=-p.(ay) )=(0,0). We have defermined'that Pi ié a
vertex of period one since it maps to itself, o,:p;—p,. Lets
now consider pé='(0,1) , where p,(ao)=0 and p,(a,)=1eZ;. It
follows that

OxP2= (Pz.(al) ¢ —P2(a0) )=(1,0)=p,,

Gpe=(Ps(as) , =ps(0))=(0,2)=p,,

G.ps=(Ps(ai) , —Ps(ac))=(2,0)=p,,

GxP7= (P (A1) 3 -p7(ao) )=(0,1)=p;,
Notice that we have comp}eted a cycle of period four on p,.

We still have four vertices left whose edges are yet to be
determined.

Lets consider, the first 'ver{‘;éx w'ith"an undetermined
edge, ps=(1,1), where p5(a0-)-%-p5(alli) =_’1eZ3'.v" it follows that
0:ps=(P(a1) , =ps(a0) )= (1,2)=pe,
oupe=(Ps(a1) , ~Pe(an))=(2,2)=ps,
GuPs=(Ps (1), =P (@0))=(2,1)=pe,
6.pe= (Do (@2) ; ‘=P (30))=(1,1)=ps,
Again we have c'learly_ complét_ed another cycle bﬁt this time
we have completed the d.eterl;nin.ation of all of the oriented

edges for the nine vertices. This information can now be

graphed as a symbolic repres‘entation' of the fundamental
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group of the figure-eight knot.

Thus, the directed graph for the figure-eight knot is,

(0,1) ~¥»=(1,0)
(0,0) (2,0)s%; (0,2)
(1,1) Dom(1,2)
(2,1 )t (2,2)

Directed graph I' - Figure-eight knot (4,)
Recall that the symbolic dynamical system, ¢,,(g) for

the trefoil had one shift of period 6, another of period 2
and one fixed point. Compare with 9,,;(J) for the figure-

eight having two shifts of period 4 and one fixed point.
Since symbolic dynamical systems are knot invariants then
the difference in the two systems of these knots implies
they are distinct.

The next section is provided to show that the value of
symbolic dynamical systems has not stopped here but has also
revealed knot invariants in higher dimensional knots.

Entropy: A Knot Invariant

The ‘use of symbolic dynamical systems has been carried
generally to higher dimensional knots. As it happens,
entropy is a knot invariant for higher dimensional knots,
denoted by n-knots, as determined from dynamical systems.

By generalizing the definition of an embedded 1-dimen-
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sional knot we can say that an n-knot is a smoothly embedded
n-sphere, also denoted by k, in R™? space. Similarly we
can define the exterior of the knot. That is, let N(k) be a

neighborhood of k that is diffeomorphic to R"xD?, then the

closure of X(k) of R™-N(k) is called the eﬁterior of the
knot.* |

The fundamental group and augmented group systems are
likewise supported by higher dimensioﬁal knot definitions.
Thus representative shifts qah be calculated and directed

graphs produced. It has been determined that the shifts

described by a directed graph has an entropy equal to log A,

‘where A is the Perron eigenvalue of the adjacent matrix of

the directed graph. Not only do conjugate shifts have the
same entropy but so do finitely eﬁuivalent shifts.?

There is a corollary that gives the promise of'tﬁe
discovery of further invariant grdup syétems that apply to

knot theory. That corollary is:

Corollary: Let (G,z,k) be an augmenfed group system and let
r be a positive integer. The entropy, denoted by h(®,) of

the associated represéntation shift (é"ca) is an invariant
of the group systéh ?G,x), i.e. the entropy depends only on

the isomorphism class of the group system.
This corollary is a very powerful tool in that it can be

used to define a sequence of entropy invariants for highef
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dimensionai knots.

This very briéf-and informal discussion on entropy was
included to demonstrate the ekteﬁf of influence symbolic
dynamical systems are cﬁrrénfly ﬁaving:ih Knot Théory. It
was also intended to poiﬁtloﬁt that this fledgling field of
study holas a tremendous»pétential for discovery and further

expansion.
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