
California State University, San Bernardino California State University, San Bernardino

CSUSB ScholarWorks CSUSB ScholarWorks

Theses Digitization Project John M. Pfau Library

2007

Multi-user game development Multi-user game development

Cheng-Yu Hung

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project

 Part of the Software Engineering Commons

Recommended Citation Recommended Citation
Hung, Cheng-Yu, "Multi-user game development" (2007). Theses Digitization Project. 3122.
https://scholarworks.lib.csusb.edu/etd-project/3122

This Project is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has
been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks.
For more information, please contact scholarworks@csusb.edu.

https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd-project
https://scholarworks.lib.csusb.edu/library
https://scholarworks.lib.csusb.edu/etd-project?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F3122&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F3122&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd-project/3122?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F3122&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

' MULTI ;,..USER iGAME DEVELOPMENT

'.,A,.'rr:OJ~c-;t.··.

PJ:es·~nted · t•o '.the··

Fa.8lllty· of.

Calif0rr1i~ :Siat~:, lJniiV~r~s'ity; .•,
'!'

San. Bernardinti

. - '

.Th P~rt±al Fu1fillrnent:

6f the ~~q11l~~fuents' for the ;pe'gree
···•.:,·.',,_ .. ·... ··.,

Master. o.f.·_s:tience•·

. . . . ' .

¢ornput~r •· ~6i~n¢e

by
,•, ' ' .-

/ch~ng~Yu Hung'
' '

Jutie .2001.

MULTI-USER GAME DEVELOPMENT

A Project

Presented to the

Faculty of

California State University,

San Bernardino

by

Cheng-Yu Hung

June 2007

Approved by:

Dr. David Turner, Chair, Computer Science ate
{/4~2

ABSTRACT

In the Current game market; the 3D multi-user game is the

most popular game. To develop a successful .3D multi-llger game,

we need 2D artists, 3D artists and programme.rs to work together

and use tools to author the game artd a: game engine to perform

\ the game. Most of this.project; is about the 3D model developmept

using too.ls such as Blender, and integration of the 3D models

with a .level editor arid game engine.

This project inc:luded the development of a multi""'user

game that ta,kes place in a 3D. world of the computer science

department. Basically, the game allows prospective students

to meet existing students and faculty in a virtualopen house

that takes place within the ~hird floor of Jack Brown Hall.

Users can walk around Jack Brown H~ll and type text messages

to chat with each other.

iii

https://programme.rs

'A.CKNOWLEDGMENTS ... ·

.Ff~st; Iwoul~ '1tke to ~cknowle'd9e my ,advi:or,· Dr .. David

Turner fdr all. the efforts that he had ,devot.~d to ,ma_ke thi~

·. ·.. proj.ect possible. I would also like to tl1.ahk Dr .. Voigt a.nci: Dr~.

Gomez .for serving cm my cmrunitte~and for,givin'g me g-uidanc~

·..·al~ng · the .way .. ···., · · · ·· ·

· I. also thank my cla:ssmate Fad.i Shiha~~h, who gave me a·

' lot of help oh :30 modeling> .and James Finley, who taught. me

everyt~Jpg aboU~ Ble~der~ I w6d1ct also like to t~ank William .·.

Herrera, who developed the world$_tudi6+e;ei ed,:itor and ~ame
. . . , .. ,. . . -.. ,.· '. . ' . ,, . . . '

. e~gine. 'AlsO; I, th~nk. a:11 ·the. other students working. on game .
' . ,, . . ••,. '. . , ' ...

. developmhnt project~. for the cl.dV1c~ they gave tp m~ ~- Finally, ... ·

I .would li_ke to thank my .family fot ~uppq{ti_nµ me1and giiing.

· me courage to study abro~d~ · · ,

: / .';

.·

. ·1·

iv . .

I

TABLE OF CONTENTS

ABSTRACT iii

ACKNOWLEDGMENTS ·. . . iv

LIST OF TABLES ~ .•............................... viii

LIST OF FIGURES . ix

CHAPTER ONE: INTRODUCTION

1.1 Purpose .. 1

1. 2 Scope . 2

1.3 History of Game Engines...................... 3

1.4 Definition and Abbreviations 6

CHAPTER TWO: SOFTWARE TOOLS AND GAME PRODUCTION

2. 1 Overview·. 8

2.2 Game Production Tools........................ 8

2.2.1 Blender 8

2. 2. 2 Graphic Editor . 9

2. 2. 3 3D Model Conversion Tool 10

2.2.4 Procedural Terrain Texture Generator 11

2.2.5 Level Editor............................ 12

2. 3 Game Production Process . 14

2. 3 .1 Create Art Assets . 14

2.3.2 Preprocess Art Assets 17

2.3.3 Produce Level File 21

CHAPTER THREE: USER PROGRAMS

V

. 3 .1 Overview •..•......••......... :•....... ~ 22

3.2 Game Client and Game Server Communication 25

3.3 Architecture of the Project Game Engine• 27

3 . 3 • 1 Game toop ...•...••..................... ~ 2 7

3 . 3 • 2 Camera ;; ·· ·... '...., . • 2H

3. 3. 3 Collision Detection • 33

3.3.4._3D Rendering•.................... 38

CHAPTER FOUR: 3b MODELING

. .4.1 Overview • '. • • • .. • • • •·, • e • • •..• • . e • • • ,e. • • ~ • ~ • • •. • e • e • C • 39

4 . 2 Blender• ... ·................•.......•.•. ~ 41

4.3 Construction of the Project World Model 42

4 . .3 .1 Jack Brown Hall• • 42

4. 3. 2 Ceiling and Floor . 47

4 • 3 • 3 Doors ..• 48

4 . 3 . 4 sky. • • . . . ·• ·. • 51

4.3.5 .Ground <·-~.· ·.•·.... 53 ·

4. 3. 6 Texture.s: •..•...............•.•.• •.·• ·•. 55

4.4 Construction of the Character Model ~ ... ~. 59

4 .. 4 .1 Character Model ·• • 5 9

4.4.2 Armature.................................... 63

CHAPTER FIVE: CONCLUSION AND FUTURE DIRECTIONS

5.1 Conclusion . .•. • 69

5.2 Future Directions •............ 69~ ,.

vi

REFERENCES • • • • . . • • • • • • • • . • . • • • • • . • • . • . • • • • • • • • • • • • • • . • 71

vii

LIST OF TABLES

Table 1. Input and Output 3D Model Files 18

Table 2. Texture Information Files 19

I
Table 3. Camera Movement Hotkeys • 28

(

viii

LIST OF FIGURES

Figure 1. Using Graphic Editor to Create Textures 10

Figure 2. Set Col1idable Objects . 13

figure 3. Game Production Process and Tools•..... 14

Figure 4 . Terrain Height Map . • . 15

Figure 5. Player Models • . 16

Figure 6. Game Engine/Server Communication 2 6

Figure 7. Camera View in the Game Mode 29

Figure 8. Camera Coordinate•........ ~ 33

Figure 9. Plane Equation . 35

Figure 10. Dete6t Collision with Triangles·~·········· 36

Figure 11. Wireframe of a Cube and a Cylinder 39

Figure 12. Unwrap 3D Objects with. Blender 4 0

Figure 13. Blender's User Interface ... ~.~ ~ 41

Figure 14. Top-view with a Background Image ~ .. 43

Figure 15. Select Vertices 44

Figure 16. Duplicate Vertices......................... 45

Figure 17. Extrude Object . • 4 6 i

Figure 18. Main Jack Brown Hall Model ~. 46

Figure 19. The 3D Model of the Floor 47

Figure 20. Closed Door•........•..•............ 48

Figure 21. Opened Door . . • . 4 9

Figure 22. Door .Animation Setting 50

ix

Figure '23. Icosphere . 51

Figure 24. Flip Normals . 52

Figure 25. Subdivide a Plane 53

Figure 26. Proportional Edit Falloff 54

Figure 27. Ground Model 55

Figure 28. Face Select Mode . 5 6

Figure 29. Image Edi tor • 5 7

Figure 30. Sky Model • . . • . 58

Figure 31. Subdivided Plane . 59

Figure 32. Face Model . 60

Figure 33. Complete Face Model . 61

Figure 34. Character Model 62

Figure 35. Character Model Textures 63 ,

Figure 36. Assigning Names to the Bones 65

Figure 37. The Complete Armature 66

Figure 38. Assigning Vertices to a Bone 67

Figure 39. Walking Pose ... ; . ~. 68

X

CHAPTER ONE

INTRODUCTION

1.1 Purpose

The project is proposed with three purposes in mind. First,

the purpose is to get experience in a 30 game development

project. In this part, I needed to do research on how a game

is developed and what game engines are generally used now.

Ultimately, I decided with my advisor to collaborate with other

students working on game development under the guidance of Dr.

Turner, especially William Herrera, who was the principal

architect of the level editor and game engine that I used to

develop the virtual open house game. The level editor and game

engine was developed using C++, and Blender was used to develOJ?

the 30 model of Jack Brown Hall, the players and other 30 objects

placed into the virtual world using the level editor.

Collaborating with other game developers enabled me to gain

experience working with other people on a development project.

Because Blender is a well established, free, open source

30 modeling program, I chose to use this to develop the world

model (third floor of Jack Brown Hall) . I also experimented

with Blender's internal game engine to see whether this could

be used to implement the entire game. I discovered .that

1

Blertder's game engine is limited in what it can do, so that

ultimately, I decided to collaborate with other game

developers, who were trying to build a first-person shooter

game engine ~sing the C++ language.

With Blender, I was .able to build a 3D virtual world of

Jack Brown Hall, which is loaded by the game engine, so that

users can walk around the area that comprises the computer

science department. I coordinated my development of the 3D
I

model with William Herrera, who developed the level editor and

game engine code to allow users see avatars of each other in

Jack Brown Hall, and send text messages to each other.

1.2 Scope

The scope of this proj ec::t includes understanding what a

game development environment is, and developing an interactive

multi-,-user game through collaboration with other developers.

The 3D models are exported to the 3DS file £ormat, which is

the most popular; 3D model format now. The .models can also be

used for developing other games, such as first-person-shooter

(FPS) games. The models are comprised of several .objects, and

it is possibl~ to add new objects into the models for further

uses.

2

1.3 History of Game Engines

A long time ago, game developers only cared about how fast

they could develop games for the m.arket. Even if these games

· were still very easy and low quality, it took 8 to 10 months

to develop a game on: average. One of the reasons was because

of technology. Anothe.r <reason was because they needed to do

a lot of low-level coding. With time and experience, developers \

found out that they could reuse some code of previous games

and make them into frameworks, so that they could speed up the

development time and reduce costs. This was the first concept

of game engines.

Every game has its own game engine, but not every game

engine can be a standard game engine. The most popular game

engines are JD games, especially first person shooter games.

Even the most f.amous 2D game engine, the Infinity Engine, which

produced Baldur's Gate (1998) andicewind Dale (2000), is

limited to develop Advanced Dungeons & Dragons (ADnD) games.

This is also a major reason that the game engines of sports

games, simulation games, ·and strategy games are rarely

licensed in the game market ..

Game engines started in the 1990s. In 1992, the first 3D

first-person shooter game, Wolfenstein 3D, was published by

Apogee Software. The game engine of Wolfenstein .3D was

3

developed by John Carmack, who is generally acknowledged as

the most important game programmer in 3D
.

game engines. One
.

year

later, he developed the Doom engine, which is the first game

engine for licensing. Doom was published by id Software, the

first company succeeded in making money on licensing their game

engine to other company. Later on, many famous games used the

Doom engine, such as Heretic (1994) and Hexen (1995). At that

time, id Software became the lead of the 3D game engine.

At the same time, another game programmer of 3D Realm,

Ken Silverman., developed a game engine, the Build engine. Like

the Doom engine, the Build.engine is a game engine for

first-person shooter game. However, it included more motions

than the Doom engine. Jump, 360:-degree view, squat, and swim

were included in the Build engine. By licensing the Build

engine, 3D Realms got over one million dollars.benefit.

One year later, the Quake engine was created for Quake

in 1996~ The Quake engine is written by id Software and John

Carmack did most o;f the code. Soon, he developed an advanced

version engine, the Quake II engine, for Quake II. The Quake

II engine suppo~ted for hardware:_accelerated graphics and

OpenGL technique. With these techniques, the Quake II engine

enhanced the quality of images. For this reason, more and more

'
games used the Quake TI engine, such as Heretic II (1998), SiN

4

I

(1998), Kingpin: Life of Crime (1999), Soldier of Fortune

(2000), and Anachronox (2001). With the success of the Quake

II engine, id Software seemed to become the largest company

of developing game engines.

However, it is good to have some competition. Another

company, Epic Games, developed the Unreal Engine for their

first-person shooter game, Unreal, in 1998. The Unreal engine

could be the most wide-used game engine so far. Not only used

by many famous games, the Unreal engine also used for education,

architecture, and other fields.

At that time, the graphic performance was hardly to get

. any progress. Programmers knew that they needed to develop

other functions to enhance their games engines. For this reason,

the Ha.lf-Life 1 Engine was developed. The Half-Life 1 Engine

was the heavily modi£ied Quake Engine for their science fiction

FPS game, Half-Life (1998). The big evolution of this engine

was its scripted sequence technique. The scripted sequence

could make the player experience and watch a cut scene when

the player triggered it. With the scripted sequence, a

first-person shooter game would not be a hollow shooting

contest any more.

Another big evolution of game engines in 1998 was

Artificial Intelligence. Looking Glass Studios using the Dark

5

\

I .

Engine developed a single play~r stealth-based computer game,

Thief: The Dark Project (1998}. Th~ Dark Engine had a great

1 '

achievement on Artificial Intelligence. For' example, the NPCs

in the game could detect the player's location by the footsteps,

and they wou1d have poor eyesiJht in the dark area. The player

had to hide in the dark and keep quiet to prevent that NPCs
I

i
I

noticed. These ideas inspired 9ther game programmers to focus . . . !

on Artificial Intelligence.
:
I

After 2000, developing ~ame engines had two different

subjects. First one was adding more scripted sequences and

enhancing Artificial. Intellige\nce. The other one still focused
I

I

on the multi-player game mode:. No ma,ter what subject it is,
. I

the objective is the same: to IQ.ake the game more interesting.

i
1.4 Definition' and Abbreviations

I

Texture - A texture is a bitma1p image used to apply a design

i . . '

onto the surface of a 30] computer model.
I

BSP - A Binary Space Partitiop (BSP) is a technique for

determining polygon ordejr and therefore visibility by
i

cutting a world space· intb convex regions. Because each

cut splits the world intd two sub-regions, they use the

word "binary".
1 •

!

6

CSG - Constructive Solid Geometry (CSG) is a technique for

defining a detailed space by building it up gradually with

simple shapes.

UV Mapping - This is the most flexible way of mapping a 20

texture over a 30 object~ It takes a three-dimensional

mesh in (x, y, z) coordinates, and maps it to a flat

two-dimensional image in (u, v) coordinates.

MMOG - Massively-multiplayer online games

ADnD ~ ADnD (Advanced Dungeons & Dragons) is a kind of

role-playing game.

Level Edi tor - A level editor is a program that is used to create

game worlds for a specific game engine.

OpenGL - OpenGL (Open Graphics Library) is an application

programming interface for programming graphics

components of software programs.

NPC - A NPC (Non-player character) is a character in a computer

game that is controlled by the computer.

7

CHAPTER TWO

SOFTWARE TOOLS AND GAME PRODUCTION

2.1 Overview

Developing a game is a team work. Basically, there are

at least three roles in the developing team: programmers, game

designers, and 3D modelers. Developers need to use different

tools for different purposes. In this project, some tools were

used by 3D modelers, and some tools were developed by

programmers to pr.oduce games.

2 •· 2 Game Production Tools

Thete are several different types of tools used in this

project. Some of the tool.s are available for free; other tools

were built specifically for this project. The already

.available tools include Blender and GIMP. The tools that were

built specifically for this projedt include the WorldStudio

level editor, the 3D model conversion tool, and the terrain

generator.

2.2.1 Blender

Blender is the 3D modeling software used in this project.

It is free open source software. It is able to run on several

different operation systems, including Microsoft Windows,

8

[6J. The.r~· are .. mOre detailed

descriptions in Chapter:-

. ':I'he GNU Image. Mariipu1i:iti¢n Program (GIMP) is a free
"2_ '

,·,. ·.- ,. '

graphic editor, whic.h can run on GNU/Linux systems, .Windows
;__ · " '' . - ·,:-_ ·; ,', ' t!J· ·:.·

• • , .' ' ·, < •

systems, and Mac systems. GIMP has rnany capabilities~ It,can

. be. used for digj_ta.1 painting, photo retouching., and image
' ' ,.·· ··.· ',.· . '.·_.,::.·_' •, .'· ,' ' .. , . _:'",, .. , ..'

format converting. [9]. Ifr this project, GTMJ? is mostly used

ford.igit:al painting a.nd creating textures. 'I'he picture below.·
. . .

:j_s the screenshot of using GTMP. to create a texture .for a.

Figure 1~ Using Graphic Editor to Create Textures

. ' \

2.2.3 3D Model Conversion rool

The 3D model conversion tool is a program that converts

3D models that are built with 3D modeling tools (such as Blender)

into a file format that is loaded bythe level editor. Currently,

the conversion tool is used to convert 3D St.udio Max (3DS) files

into the format loaded by the game.
1.

To run the 3D8 conversion tool; start the executable

3ds 2 worldstudio. exe. The program\displays a file selection

10

window. In the file selection window, the user selects the 3DS
< • C ' • •, ' •

.file to convert .. The program reads the se],ected file, and saves

the converted data into a. filewith narn:e equal to the file name

of the input file (mi11us its extension) appended

with .3dsactor.dat. For example, if the selected input file

is named sky.3ds, the generated output file• will be named

sky. 3dsactor..dat !

2.2.4 Procedural Terrain Texture Generator

The procedural terr.ain textu.re generator is a command

line program. th.at reads three. input files and outputs a

·procedural terrain texture that can be loaded by t:he

W.orldStudio. level editor. The outputted file is a raw 2D image

(24 bit color pixels) that is used to define the position and

color of the terrain.

The generator takes three files as input, and outputs a

single file. Th~ three input files include the following:

■ Definition of a rock texture (an array of raw RGB pixel

data, 256 by 256)

■ · Definition of adirt texture (an array of raw RGB pixel

data, 256 by 256)

■ Array of height value~, called a height texture (an

array of single-byte grey scale values, 256 by 256)

11

https://textu.re

..·.· .· ·:. . <· ...> . . •'.• ·.•'. :•.. :. : ···••~..·• .<.
·•·. The a(ray dimeii.s:ion;~ are 2$~ ':py 256. ::,'I'he ···c:::ci.lor. va~ues. ·.

. . . .

represe}1f tn~ f1.1tr:extent:·9f fhe gani~·worlq.~.·...·Be:·tauset:he.;ame

or contracted qS needed to cover the world·exactly.
, .·•,' } '

.. The height te'~{ure i·s ¢reated :i.ri, a 2p image ec:iitor .(such ·..·.

::as Ph.:oto-s'hop):~ -13Jack repFe~ehts (jromid level,,· and :whitei ·

. r~presents;maxirn·um helght~ Tl1eref~re,>wh~n,ci. iet~:i stlt;Eace ·is
desired; the game d~si'gner colot,s. the;area, as: blac~; and wh~h - . ·.. ; . :., . ' .,, . . '· ,·. ,, ·· .. ' . :

..... : ., '

.••·.• Th~· ter:ra1rl,getler:,citor> 6orr1bines .·th~. th:iee' i~puts, .and ..
' . . .

outputs· an array 6f. ·raw F.GB Pl}{,el data:.· Qaiculation Of an· .
. ' ..

element iri'the o.u~put array.i~·as foi}.owi:

· t1j =· dijJt ~;. tLr + •~ijhif . · ·

.. vJh~re ,t~j :is :the:.re:suiting t:eit:ure cqlor vcilue for the te~~~in,, ..

.. dij j_e, the dirt cbior Value; hij is the heightyc:ib1e riormaiizec:i ·..
•' .

. , · ..··.·• t<Y,fa,11 wd}thiri (o, i]~ .· and /r'ij is .the .J;ock coior vilue. < ..

.. · .. ', ·· ...

·.•, '1'.he le\7~1 .editor µsed .fr1 this. proj.ect is called.

······.. ·wotldStudio.> r,t'rea.c:is tti~/JD models,aridthen' a.119ws the game

.. designer: to ·per·for:r:n. th,e· fo11owir1g, actiotis·: · ·
' '

· ·•·· ■• > .s~lect the : cbi1'1'.dable qbj ects

. .

■ Select the. itivis:Lbie objects (see-through. windows)

The game design~~ sayei the world definition in a file ·

that the g~m~ client loads.·

The picture below shciw.s the screenshot of setting Jack

Brown Hill ~odel as a collidable o~ject.

Figure 2~ Set Collidable_Objects

13

'2.3 Game Production Process

The game production process in this project h~s three

steps. This section describes the process used by the game

development team to create a game. The following picture shows

the diagram of ~ame production ptocess and tools.

• Blender Conversion
tool

GIMP Terrain
/Photoshop generator

Level
editor.

Create Art Assets~ Preprocess Art Assets Produce Level File

Figure 3. Game Production Process and Tools .

. 2.3.1 Create Art Assets

In the first step, an artist

■ A 3D model of a building

■ A terrain height map

creates the following:

14

1■ Acollection of 3D models that represent the animation

frames to render~ player

■ Textures to apply to 3D models

■ Rock texture·and dirt texture

A 3D model of a building is created in Blender and exported

in 3D Studio Max (3DS) file format. The c:urrent 3D building

model file is jb_full.30S.

A terrain height map is a grey scale image file created

in Photoshop and saved as RAW file format. The following

picture is the current map file, map. raw. The black pixels

represent a height of O, which is level ground. The. more white

a pixel has, the higher. that point is vertically.

Figure 4. Terrain Height Map

A collection of 3D models that represent the animation
. .

frames to render a player are also created in Blender. The

15

' ' '- ' '

details of creating player models will be described in Chapter

Four. There are four q.ifferent poses 9f player models which

are used to present a walking animation. These files are

avatarl.3DS, ~vatar2~3DS, avatar3.3DS, and avatar4.3DS.

figure 5 shows .the complete models of eac::h pose.

Figu:re 5. Player Models

16

Te~tur~~ arE:!>·\mage fi).es, .which ..are d:reated iil' GlMP or
_-.' .·. : __ .. ,'

Photoshop. Currept:ly, w_e ate. s~o:r;e textures· in the fqllowing.

,formats:

. Iii TGA -··

. . '

■ RAW .

■ BMP
.· / .

2. 3. 2 .Preprocess Art Assets ..
. . . . ' ·' .

.I~ 't.he secon~ ste~, the game designer uses conversion

tools to cori~ertte}{tUres and 3D models into a>file format :~sect·. . ,'' :_ . . :, : . · .. : :

.. by 'the level e,ciii~r and game erigine .•.The_ 9ame. designer

preproce~ses .the.. a~t asset~ as. fol1ows:
.. -~'- -, : ' ',

··. ■ .Apply the proceduraLt~xture terrain gener~t:or ·to the .. ' •' ·. : :

. rock texture., Ji;t t:ext~re and h~ighf ~ap to produce

a procedural texture· for the terrain·~ ·..·
. . _ _.. . . ; .• ' . ,.

. ' . .
. ..

• . · Apply the 3DS~to-world$tugio conunand tb. the pl~yer
·. ' ; .' . '.·· '·

. models._ and the- building Inodel to proctuCe th_e actor

file§ th~t represe~t objects.in the virtual ~orld.

·. We use.the don~eniion.tools t~ convert 1os files into the

.·.·file format.· used ~y the.. leV.er. editor and' game engine~ The .
. ·.. . : ' ; . ·.·.. ·.

followi_n9. tal::>le $hows the li~t,of exported files in this

. project:

\

17

https://objects.in

Table 1. Input and Output 3D Model Files

Model Type Input File Output File Name
3D building model Jb fu.11.3D8 jb full.3dsactor.dat
Sky model sky. 3DS sky.3dsactor.dat
Player models avatarl.3DS

avatar2;3DS
avatar3.3DS
avatar4.3DS

avatarl.3dsactor.dat
avatar2.3dsactor.dat
avatar3.3dsactor.dat
avatar4.3dsactor.dat

The 3D model conversion tool also exports a text file that

contains the name and location of the images that are used to

texture the 3D objects. We need to manually edit the text file

so that it can be r,ead by the level editor and associated with

the correct UV coordinates. For example, after running the 30,S

conversion tool with selected file sky. 3ds, there wi'll be an

output text file named materials.txt. The file content is

"jpg_texture None-'--sky.jpg", where "jpg_texturelf means that

the texture is in JPEG file format, "None " means tnat the 3D

model is not using any material name, and "sky.jpg" is the

texture file name .• Since we d.on' t use any material name in this

3D model, we have to delete "None_". Also, becau$e we put the

texture file in the DATA/SKY folder, we neec:i to change

"sky. jpg" to ''data/sky .jpg". Finally, the file contents will

. .

be "jpg_texture data/sky/sky. jpg". The following table is the

texture information in this project. Note that the order of

18

._.:-, ...-·.;.·_. . ·. _._·.,

texture file names is important. Ifa texture in ·thi$:list

is 1.n position n, then th.e nth surfa¢e in the corresporiding

· wire-frame mo:del should ·be color~d with.. this te~ture. .·.

Tabie 2. Texture <tnformation Files

File Name· I File Content
materials.txt _.jpg texture data/jackbrownhalJ;/gate.jpg
(3D Building

'Model) ,
. jp.g---::texture data/jackb.townhall/door2.jpg

· jpg~texture data/jackbrownhall/wa,111 .jpg ·
jpg-texture data/j ackbrownhall/wal11 ..jpg
jpg-texture data/jackbrownhall/ceiling.jpg
jpg~texto.re.data/jackbrownhall/math.jpg ·
jpg-:texture- data/j ackhrownhal.{/r360 ~- jpg). >·
jpg=texture. data/jac::kbrownhall/r359 .jpg ..
jpg texture data/jackbrownhali/r358. jpg •

l jpg-texture data/j ackbrownhall/r356. jpg
jpg--texture data/jackhrownhall/doqr3.jpg

.. jpg~t;exture. data/jackbrownhal1/r349. jpg ·

.· l jpg-texture'. data/j ackbrownhall/r347. jpg
1 jpg-texture data/j.ackbrownhall/r345 ..jpg

jpg-textu:re data/jackbrownhaLL/r3:43. jpg
, jpg--,texture · data/j.~ckbrownhall/r341. jpg ._.·

j:pg.,...texture data/jackl:,:townhalt/.t339. jpg
jpg:--texture data/j ackbrownhall/r337. j.pg
jpg...,..texture data/j ackbrownhall/r335. jpg ..

'jpg--texture data/jackbrownhall/.t33J.jpg
,1 jp9-:texture data/jackbrownhall/r331. jpg

.jpg--texture·•· d9-ta/jackbrownhall/r3.2 9. jpg •.
,jpg~texturedata/jackbrownhall/r327.jpg
jpg=\exture -data/j ackbrownhall/r325 .jpg
jpgtexture·ctata/jackb:townhall/r323.jpg
j,pg-texture data/jackbrovynhall/r32t. jpg

. ! jpg-:-tex.ture data/jackbrownha11/r319~jpg
jpg-texture data/jac;:kbrownhall/.r:317.jpg
jpg-texture data/jackbrownhall/r315. jpg ·

. ·. jpg-texture data/j ackbrownha1I/r313. jpg ·.
jpge-texture'data/jackh:rownhall/r311.jpg
jpg-t~xture. data/jacl5:brownhall/r310. jpg ·.
jpg_,,..textufe data/jc3.ckb±:o\>Jnhall/r312 .jpg

19

jpg_texture data/jackbrownhall/r314. jpg
jpg_texture data/jackbrownhall/r316.jpg
jpg_texture data/jackbrownhall/r318.jpg
jpg:_texture data/jackbrownhall/r320.jpg
jpg:_texture data/jackbrownhall/r322.jpg
jpg_texture data/jackbrownhall/r324.jpg
jpg_texture data/jackbrownhall/r326.jpg

· jpg_:texture data/j ackbrownhall/r328 .jpg
jpg_texture data/iackbfownhall/r330.j~g
jpg__texture data/j.ackbro"'1nhall/r332. jpg
jpg_texture data/jackbrownhall/r334.jpg
jpg_texture data/jackbrownhall/r336.jpg
jpg_texture data/jackbrownhall/r338.jpg
jpg_texture data/jaCkbrownhall/r348.jpg
jpg_;;text:ure data/jackbrownhall/r346.jpg
jpg.:_texture data/jackbrownhall/r344. jpg
jpg_texture data/jackbrowrtha11/r342.jpg
jpg_texture data/jackbrowhhall/r340.jpg
jpg_texture data/jackbrowhhall/black.jpg
jpg_texture data/jackbrownhall/floor.jpg
jpg_texture data/j ackbrowhhall/alumi. jpg

· jpg_texture data/jackbrownhall/eve r. jpg
jpg_texture data/jackbrownhall/eve=m.jpg
jpg:......texture data/jackbrownhall/evel.jpg
jpg..:..texture data/jackbrownhall/eve_l.jpg
jpg-'-texture <;iata/jackbrownhall/door:1. jpg
jpg_texture data/jackbrownhall/board.jpg
jpg-~texture data/jackbrownhall/CS. jp9
jpg_texture data/jackbrownhall/door5.. j'pg
jpg_texture data/jackbrownhall/door4.jpg
jpg:......texture data/jackbrOwnhall/eve_2.jpg
jpg_.:_texture data/jackbrownhall/eve2.jpg
jpg_te.xture data/j ackbrownhall/board2 .j pg
jpg texture data/jackbrov-1nhall/alumi.jpg

Sky.txt
(Sky model)

jpg_texture data/sky/sky.jpg

avatars.txt
(Player model)

jpg_texture data/player .jpg
jpg te~ture data/shirt.jpg

20

2.3.3 P~oduce L~vel File
. ~ .

The third and final step in game production is to use

WorldStudio to produce a lev~l file. The level file contains

the definition of the game, including the art, and is loaded
. . '

by the engine when the user runsthe game engine to play a game.

1nside WorldStudio, the designet does the following:

■ Load io objects

■ Define•collision boundaries

■ · Selec::t a. brush and. add its objects to the game world

■ Set objects· to visible or invisi.ble

Currently, there are 3 brushes, which are used to create boxes,
. . . ,, '

doors, walls, floors, ceilings and a variety of useful generic

shapes.

21

.

I
i
I

i
CHAPTER.THREE

l

USER PRoGru1s
I

i

3.1 Overview
!

I

An engine in a car determines i±he performance, the speed

and the stability of the car. Similarly, a game engine controls

I
the plot, stages, art rendering, ~usic, and operation of a

compcuter game. Game engines are thel lea.ders of games and bind
I

al.l the elements to work together. :No matter what game genre

it is, there is a game engine insdde the code of a garne.

After continuously developin~ fo~ many years, a game

engine becomes a complex system that(includesmany components,
I

such as lighting, 3D modelingi ani~ation, a render engine, a
. . . ! .

physics engine or collision detectjion, sound, scripting,

animation, artificial intelligence!, networking, and a scene

graph.

Lighting is a very important pJrt in rendering, standing

equal to modeling, materials and t~xtures. All the lighting

effects are controlled by game engines. A simple model could

become very realistic if· the 3D aritist skillfully uses the
i

lighting effects. However, lighting! is a very difficult topic,
i

in 3D modeling~ In the real world, even
I

if there is only a single

light source, such as a lamp or th;e sun, the light will be
I
I

I
I

22

I
I

Ire-irradiated all pyer the scene and make shadows soft.
1

Thereforet the shadowed regions a!e
I

not totally black, but
I

partially light.

I

Animation is also an important part in game engines. In
i

. I

the current game engines, there·. a.ire two different types of

animation. The first one is a static animation in which the
i •

game engine renders a sequenc;e of pre"""recorded snapshots of
I

the object in different forms. The s~cond one is called ragdoll

physics in. whic,h the 9ame engine renders the object in

progressively different forms in a!ccordance with an

approximation to physical laws. The game in this project

utilizes static animation procedur~. · However, a :bone

skeleton was created for the player; model; which was used to

. generate snapshots of the model in 1, different positions.
! .

A physics engine performs a rule for the movement of
I . .

objects. For example, when an object Jumps, the gravity in this

· physics engine will determine how h$ight it can jump and. how
i

fast when it falls down. Also, a physics engine can dete.rmine
1

the trajectory of a bullet~

Collision detection is th.e maJor functionality •Of a
·,

physics engine. It can detect all edg~s of o:bj ects in the game.
!

When two objects hit each other, thi~ technique will prevent
!

one object from passing though anoth;er object. It means that

23

when a player in the game collides a wall, he won't pass

though the wall or knock down the wa.11 because collision

detection will base the result· on 'bhe property of the player
I

i
and the wall to determine their location and action after

!

collision.
I
i

Rendering is also one of the ,most important

functionalities-in game engines. After building a 3D model,

artists put different textures on ctlfferent faces of objects,
!

i
like skins on bones .. Rendering engines calculate a11 3Dmode1s,

I • .

animation, lighting, and other efftcts and then display the
I

result on the monitor. Rendering en;gines is the most complex
i· '

. .

component in game engines. The perfo¾mance of rendering engine

I

directly determines t_he quality ofi the game.
! .

Game engines also have one imJortant function which is

'

communication between users and coTTlputers. For example,
• I

keyboards, mouse, or joysticks are generally used as input

tools and game engines will handle ~ignals from these. tools.
. .

Game engines of MMOG (rn.assively-mu1Ltiplayer online games)

could also adrn.iriiste.t the communica\ti6n between clients and

servers.

' I

Artificial Intelligence techniques are also used in some
! . .
I

game engines for some purposes, such ais path finding, steering,
. ·.. •··. . I ·.· ...

. I
and finite state machines. Alexander I Nareyek, director of the-

. I

!

24
I
1

Interactive Intel1igence Labs at tjhe National University of

Singapore, believes that a.rtificiaf intelligence is t:he _next

. I . . .

big thing .of game er1gir1es. He also !indicates that Artificial

Intelligence .in games makes games more interesting and
I

interactive. For example, automated storytelling is one idea.!

. . I .

to make games interestJng. Most garnes have a main storyline
. i .

and some limited bran.ch stories. T!f the player can choose a
I .

good orevil path and the sto:ryJ.ine ~ill also be changed after

. I
the player chose the path, it makes ithe game more interest_ing

and interactive. . i
i

3. 2 Game Client and Game Ser;ver Communication
. '

To play a game, an instance ofi the qarne server needs to
I

l
be run, and an instance of. the game_ 9lient {game engine) needs

j

to run for each player in the/game. W0,en the game clients start

running, they will try to load the lE5!vel file that defines the . . i .

g_ame world, which Jas developed in thk WorldStudio level editor. . . . !

·!

The game engine is the program that rµns oh the user's machine,
. ; '

and allows the user to play the gafue.
- I

i

Each instance of the Virtual 9pen Hou~e game sends

position data for its player. The game engine sends the
i

position data it·rece.ives from a gi.ven player to all other
I
. .

. . . ; . . .

players. This a.llows each game inst4nce to render each player

25

(

in the virtual world. Also, the ga~e engine is in charge of
. . I

sending text messages between pla}ers.
I'

I
I

Game Engine Game Server

Figure 6. Game Engine/Server Commqnication

All communication between engine instances is done

I
through U~e game server. The comm~nication process is as

I

follows:

■ A user executes the game Epngine.

. . . . !
■ The engine makes a TCP conne',ction to the s~rver, which . . I

it maintains until the user terminates the engine.

■ The server assigns an int,ger identifier to each

player.

26 I

i

I

I

I.

• ' I. ' ' d h .Th~ engine s~nds player pqsition ata tote server
l

continuously, which the srrver broadcasts to ~11

other players .. I
I

■ The engine sends text mes~ages to the server as the
i

user executes this fun~tibn.
I

·.·· . l
Position data packets inc1ud~. the following:

I
• World coordinates of play~r {x,y,z)

I

• I

Rotation of player (rx,ryjrz)

I
Speed of player in the dir~ction he or she is facing• . I

, ·., ., - ·I . . . ·,., ,

Text chat data packets inclu9ethe following:

■ A string representing the text message

3.3 Architecture of the· Prbject Game Engine
I

i
3.3.1 Game Loop

i
The game loop is an infinite ~oop that. performs the

following functions:
i

• ·. ·. I

Render the visual element~ to the screen

Update the position of opp~nents when position data• I

is received from the serv~r

I

■ Enforce collision .constrairits, so that players do not
I

pass through walls}

■ Process keyboard input to
I
jcontrol the user's
i

.char~cter and to send texd mes~ages

i

i27

3. 3•. 2 Camera
, I

', ·,. .'. , , . . . I . , .· . ·.

The camera is a viewpoint from the player to the 3D,world.
I '

In this game engine, the. camera repriesents the location of the
I

player in (;x, y, z) coordinates, ar{d also angles of view. It
I

means that a player can rotate thelcamera around the y-axis
·' ' I

to simulate thE:'! action of turning the head and also change the
. , . I

' ' ' ' ' ' i
camera angle between the x-y plane iand the line of vision to

I

simulate the action of raising or flowering the head.
, I , , . . . , .•. . , I

We use keyboard and mouse to cqmtrol the movement of the
I

camera (player) . The following tabl~ shows the hotkey setting

of this game engine.

T~ble 3. Camera Movem~nt Hotkeys

Mode . Hotkey Function
3D View Mode Arrow Key lJp (t)

Arrow Key Down (t)
Move forward
Move backward

Arrow Key Left (-) Move left

Arrow Key Right (--- Move right
Mouse Left+ Right Butlton Move forward
Mouse Cursor Rotate ,

Game Mode W Move forward
S Move backward
A Move left
D Move right
Mouse Cursor Rotate

28

I

When a user presses ,these hot~eys, the game. engine will

calculate the hew position ofthe pllyer based on the direction. . . . I

and the Velocity. • [.

I
First, we define the screen siz 1eas 640x480, so the center

1

.maintains these angles with variables rx and ry, where rx is

of the screen
.

is (120,240}. By m6iing
. I

the cursor, the user

rotates the camera around the x·a4d y axes. The program
I

. . ·. . .·.·. . . . ·. . ·. I

the vertical angle that simulates the action of raising or

lowering the head, and ry is the Jorizontal'angle which . . . I
simulates the action of turning tije he.ad and the body.

I

X

Figure 7. Camera View in the Game ~ode

29

. . . .
• ••. • I • • •

.·• ' .

Fig-ur1:: T shows the camett'.a ·..•i; 'the garrt~ mode(. ·rf the, ·
. !

. : .
·, '

. following pseudo, code :sh.ows how we< Otate the angle by the ,x-y
• • • • • •• • • • • • ':_ •• • > • •• • • • '• ' ••

coordinate of the:. cursor. ·

ff (tnouse~'x :~ 326.or rn9;se.y ¥=· .2,4.0) ...

f

LE .{(mbus~~x-320)°. > .0)

· · ·:ry f; 2~·0;. ·

••• '. •• • • •• • •• ,<

'i.·. if · ((mouse~x-.320} <_Ol

·... . ·.·. r;, ~;.

.2.0,;'

· if ((~oµse ·Y-:-240) >

rx +~ 1 ~s> /
.if··· U+nou~e.)'-240) < 0),:

,·

. ·. ·.• ' .

if Cr~ >'4s. o}

rx = 45. 0; ··
. .·· ·. .·: : ·,· ..

if (rx~-45.0) ·•·•.•··
rx=-:-'45.b·,...•.. , '.

.l

\After 9.ett.±ng<th~ angle~r of r
I

to ;et the v¢1°."ity of t:~t!)layer, then. theuser .p~esses ;ne
.of th;e hotkeys in the Tab.le 3, the. y: loc.1ty of the player .w:i.).l

. \ . .

·. 30.

increase 0.05, and the maximum of the velocity is 0.3. Also,

different hotkeys have different firections. The following

code shows how we define the hotkbys.
I

//keyboard input I

switch(windows msgs->wParam)I
- i

{ I

case

case

'a':

'A':

I
I

i

sy = -90.0; //move left

if(velocity< 0.3

velocity+=0.05;

break;

case 'd':

case 'D':

sy = 90.0; II move rightl

if(velocity< 0.3

velocity+;,,,0.05;

break;

case 'w':

case 'W':

if(velocity< 0.3) I
I

velocity+=0.05;

break;

31

https://velocity+=0.05
https://velocity+;,,,0.05
https://velocity+=0.05

case 's':

case 'S':

if(velocity>O
• I

I
velocity==O; // stop

velocity+=-0.05; VI ~ove backward

break;

}

i

With the velocity and the angles, rx, ry and sy, the engine

can calculate the next position of)the player. The equations

are:

x = x0 + v ·cos(rx) ·cos(ry + sy)

z = z0 + v-cos(rx) •sin(ry + sy)

i
Where (x, z) is the new position coordinate, (x0 , z 0) is

the original position coordinate, !v is the velocity, rx and

ry are camera angles, and sy is tfue direction angle. The

following picture shows how these two equations come out.

32

https://velocity+=-0.05

, l\'f ,t:e±:. g~i:f'tn<J th,: new pos i tioj of ~h~ player, . the .;,~9'i tie

will-rtih.: ch ck l:f th~ playe:r: can -1n~;e·

:■:_·> tl;~ia qLtap t,ree t;o ~e.l~cE.tf?f.e <?,pj eq'~s _th~t- ar;~ _ci,6se

I :•.•'.

.t:o- the :hew
· 3 .3 .. 3 b;11·±si6h

·.·._t,9_ trie.

I
■ For those triangles selecred in the previous step,

check if the path of the player passes through the

triangle.

The first step .is to use the[quad tree to check which
·. ' \

objects are possible to collide wit~ the player. If the object

I

is too far away to collide, there if no need to do next step.

i
If the object is inside the radius of the player, we will

I . /
j

go to the second step. First, we kn4w that the plane equation

I .
is: ax+by+cz+d=O, where a, b, c and dare real numbers,

I

ij=(~~c) is the normal vector to t~e plane, and a, b, care
I

not all zero. If there is a point Q f (x,y,z), outside the plane,

. j
it means ax+by+cz+d:;t:O. If ax+by+cf+d>O, Q is on the front

I . . ,

side of the plane. Otherwise, if r+by+cz+d<O, it means Q

is on the other side of the planeJ

I
I

!

I

I

))

34

(

• QI = (X1, Yi, Z1)

ax1 +by1 +cz1+d > 0 ii =(a,b,c)

•02 =(x2,Y2,zi)

ax2 + by2 + cz 2 + d < 0

Figure 9. PlanE:: Equation

Each object is comprised of many triangles, and so the

algorithm needs to consider many planes. Suppose that Qi is

the original position of the player, and Q2 is the new position

of the player. If Q1 and Q2 are on different sides of the plane,

it means that it is possible that the player hits the. object

when he o~ she moves from the original position to the new

position. The follbwing pseudo code shows the logj.c to check

if the positions are on different sides of the plane:.

bool check_position(Q1, Q2)

{

check= false;

. 35

before ,:;: ax1-fby1+cz1+d;

after = ax2+by2+cz2+d;

if ((before<0 and after>0Y or (before>O and after<0))

check= true;

return check;

}

The third step is to check whether the player will hit

the candidate triangles selected in.the previous step.

A A

C

Figure 10. Detect Collision with Triangles

Let pl and P2 be collision points on the plane containing

triangle ABC. Figure 10 shows. that if the collision poiht on

36

the plane is P1 , and P1 is inside a triangle, which is formed

by three vertices of the object, then LAPiB+LBPi_C+LCPi_A=21r.

Otherwise, if the point is outside the triangle,

LAP2B + LBP2C + LCP2A < 21r . It can be proved as fallowing:

·: LAP2 B + LCP2 A =LBP2C

:. LAP2 B + LBP2C + LCP2 A =2LBP2C

·: LBP2C + LP2BC + LBCP2 =1r

:. LBP2 C < 1r

:. LAP2B + LBP2C+ LCP2A< 21r

However, we don't actually calculate the collision point;

we approximate it by the new position of the player, and we

check to see if the sum of angles is almost equal to 2n

(6.28318531). It means the new position of the player is very

close to the object and will hit inside the triangle. The

following pseudo code shows how we detect whether. the point

is inside the triangle M.BC.

bool mathVertexinTriangle(P, A, B, C)

{

#define epsilon= 0.1;

(P-A)
vector0 = --==--;//normalized vector AP

PA

if-m -vectorl = --==--; // normalized vector BP
PB

37

vector2 = (P-C}; // normalized vector CP
PC

'·

angle= arccos(vector0 •vectorl) + arccos{vectorl•

vector2) + arccos(vector2 • vector0) ;

if(abs(angle~ 6.28318531} <epsilon)

return true;

else

return false;

If the collision detection returns false, the player will

move to the new pq,sition. Otherwise, the player will stay at

the original position.

3.3.4 3D Rendering

The game engine uses OpenGL to perform 3D graphics

rendering.

38

CHAPTER FOUR

3D MODELING

.4.1 Overview

A 3D model is an object presented by a 3 dimension polygon o

It is mostly created by 3D model software, such as 3D Studio

Max, Maya, AutoCAD, and Blender. Basically, a 3D model is

rendered by a wireframe andit could be coloreciwith a 2Dtexture

image.

Figure 11. Wireframe of a Cube and a Cylinder

39

. A texture .. i:s'a normal :digita1. image wh:Lch can be easily·

created by any graphi;~· s;ftwa.re, suph as Adobe Photoshop or

GIMP. However, by mapping a· 2D texture can make the 3..D model

·. more real.istic. The mapping process i~ c;alleo UV mapping, ·which
. ' . . . ' ' . ·. ', '··, , . . .

is u·sing a 2.D image to express a 3D .model. ln contrast to (X,

Y, Z). is the c6ordinateso/a3D object, (U, V) .is.the.

coordinates of the 2D texture image.

P.igut:e 12.. Unwrap • 3D Objects with I3lender

40

https://s;ftwa.re

\ .. ·

.·,/; 4,_2/alender·•······

Bl:ender js ,ft·ee··qpe,n. :'ss>ii~ce 'Software: foi, 3D mod~l. Tt

tak~s les~ inStaTlatiC>~ size than other' 3D modeiing· softw~re

and i-uns. on several different' bperat:i.o~ systems~ such ·as ,..

·~u;bros6:Et' Windows1 GNU/Linux·,'
_·,.

'M~c· ()$ x, ahd' Fre~BSD~ .•·

·.. .:· :·· :' . '

13. Bleh.der's User Int~rfac:e

·. ·... · Blender Provides many t001S for 3D modelih:9•, Therefore,.
. . .' : '

Blende.r has a_ complex 11ser •iilte,rface. 'Basic:ai~y, J3lender' s

41,

user -interface' ,ha§ !.t~hb°ei;f featu.r-~:$'.: edit:i.rig- mOdE;l:s, hot:key .
·_ utilization, and work~pa:c~: rnanageritertt. ·Ed:Lt:Lng mode :is one of

' ._· ' .. ' ,: ' . .' : ·- ; ' '• '. - . ' :' - -, ·., ·' . ' ~ ..' . '

the primary rciod.es· to mod{fy ~- 3-D· model .---Another p:r:Jrnaiy mo4e _-_
• .-: - • • • • ••• < • • • ••• • • ',.. • • • • • • ; • • •• ··:

·_ is .obj 1ect mode. You· c~n sw±tch tletw~en the,se two '.m9des/ with ·
·. . . : . . . ' .,..,:: -. " .' ~. : .: . : : ':' ...

the. ~ab_ .key~- Not orily, switching: rrt6cf~s \i~e.~ the. Tab ~+y, most-. ·.

commands in Blender,u~e hotkeys. Wi1;:h. workspace rriapagememt,' '
·, . : ,, ·.'' '.-·'.- ·- . , .. • ... ·. .- .. '· .- . .

. · Blenqer has more. fl~xible w6~kspace. Figure· 3, shows tbat: the
: • • ' • • < • .' • • • • • ' • •• • • •. • ,• :: • • • • ~ : •• ·, ' '. • • •

Bi'end~.r1 user 'in1:~r-face Cc:ih be' split '·up irito four different '
' . ·. ' . ·.·- •. : ..· . '.·. ·•..·. ' ·. ' ' ·.

views:. top view, -front view/ $:lde view/ and camera. vie\\7. Users _ . ..:- , •. ,' ', '. ' ., ' . .
·,' ;; ·... ',. ·. .·- .. ' ·. . .' ' '·. .-.: · ... ·. ';· . . _. ·<

_can easily cha.nge the size Qf,eacflwiridow o:(merge twowinei9ws
. ', . ' ;

into-~ large-pn~.-

·- ·. rhe newe~i versicm _of -~lender, is_ Blerid¢r 2 ~43~ re1leased .

6n ;February ia,-•· 2007. 'H<;rweveii, ·.the project-ls still using, iast ._·

,'' y~rsion; Bl~ndet '2. 42a,. to. preyent ~ny cohfliqt bet;een two

ctif;Ee.rerrt -versi'ons. •-

. . . :, .

-•: 4 • 3 . C_onst.i;~c\ ion co~: the Project World Model·

4 . 3,. 1 ' JaGk ·B;ow~ : Ha1i.' ,'' ..
I

To construc:t the projectWe>rld moqel~ the fi.t'st thing is •

-· to get the biuep£int of Jack Brown Hall; and then use the iritage -

as th,e ba~kgrbu~d with Blender. iigure -14:showsthe top~view _·
. ' . ..

of ,Blender after :reading the l)aqkgrou~d imag-e .

. 42··

https://Bi'end~.r1
https://rciod.es

Figure 14. Top-view with a Background Image

After that,<we have a .rough sketch of Jack Brown Hall.

The next thing we. need i.s to make the walls hP.ve thickness.

In Edit Mode, press BKEY to select the vertices of the wall

which n~eds to be modified. Figure 15 shows that the selected

vertices are yellow, and the others are pink.

43

Figure 15. Select Vertices

Then, press SHIFT+ OKEY to duplicate the selected

vertices, and move these duplicated vertices by the side of

the wall. The distance between the selected vertices and the

duplicated vertices will be the thickness of the wall.

44

Figure 16. Duplicate Vertices

After modifying each wall, the next step is to make the

height of the wall. In Edit Mode, press AKEY to select all

vertices, and press NumPad 1 to change the view to front-view.

Then, press EKEY to extrude the wall. After that, we have a

basic 3D. model of Jack Brown Hall.

45

Figure 17. Extrude Object

Figure 18~ Ma~n .Jack Brown,Hali ~odel

.i-

46···

)

,\

4.3.2 Ceiling and Floor

The 3D models of the ceiling a.nd the floor of Jack Brown

Hall. are very easy to build. All I need to do is to a.dd a plane

in. Blender and go to. Edit Mode to modify the shape exactly as

same as Jack Brown Hall model. The following picture shows the

30 model of the floor.

· Figure 19. · The ··3D Model of. the Floor

47

' .

4.3.3 Doors

· Blender has a bt1fict-In game engine. With this engine; we

can make a simple animation: to open: and close. a door. First,

press space to add a cube a.nd build a door at frame 1. Figure

20' show$ that the door is closed at frame 1 ..

Figure 20. Closed Door

Next, change the frame to 51.and press IKEY.to choose

"Insert Keyfrarri.eH as "Rot" (rotation). Then, press RKEY to

48

https://Keyfrarri.eH

'rotate the dbor to'lbf ?,Be~,:eq f'b,si,:_ti~m~ :Ti:i:e follow;Lng ;pic~,tire,

shows·· the ope~ed do~,i ~t 'ir~In~·

Figure
','

\

.•··.·. After.Jmil.qingthe.door;odel/ wenee:dfouse the qui1d~in

erigiiie .in ~lender to pe:tform .the arii!nat.idn .. First,··. p,ress. F4 . ' . •. '' :, ,: ·. · ... - ' .. . ·.

' ' '

I sef: i,s the .~pace b?r~ ancl:thesecor1cisensor, :Ls the dist:~n~e

. bet~een the ·playE)r. and ·~he Q:bbr,r. whic:h. j_g O~ 5 .. 'Tfien; add an

).

,49

actuator1 to play the animation which is started at frame 1 and

ended at fra.me: 51., Figure 22 shows the whole setting of the

door animation.

Figure 22. Door Animation Setting

With this logic setting, the door will be open when the
. .

player clo$es to fhe door and press the space bar. ·

50

4.3.4 Sky

·'·There are mahyways to build a skybox in Blender. This

project is using a half. sphere to build a skybox. First, press

',• ',

Numpad 7 to switch to top view. Then, press space bar to add

'Mesh> IcoSphere'.

Figure 23. Icosphere

After that, we need to cut the sphere in half. First, press

Numpad 1 to sw.i tch to front view. Next, press BKEY and select

51

all the bottom vertices ..Then, pres~ XKEY to erase these

selected vertices. Now,. we have a half sphere.

However, the face of this half sphere is facing outward,

which is the wrong way. To fix this, we need to flip over this

half sphere to make it face inward. First, press AKEY to select

all faces, and then press WKEY to select 'Flip Normals'. Now,

we fix the problem and have a basic skybox model. Chapter 4. 3. 6

will.show how to add a texture to the skybox.

Figure.24. Flip Normals

52

https://Figure.24

4 . 3 '. 5 Ground,

After building the sky m.odel,, we need to build the ground

model as well, or other mode.ls will .look like flying in the

sky.

It is simple to make a ground model. First, press Numpad

7 to switch to top view and press space bar to add a plane.

Next, press WKEY to select 'Subdivide' and cut the plane into

several pieces. Now, :we have a flat ground.

Figure 25~ Subdivide a Plane

53

in this plane. Fitst,,, rig~t clic~ to select a vertex as the

top of a mountain ahd then, press Numpad 1 to switch to f.ront
,. ' - •• , I, :._.

view. Next, press C)KEY to enable 'Proportional Edit Falloff'
. .. (

. . .

and select one falloff type'. Then, left click on the z-axis

of the vertex to move t;:he vertex, and use the mouse wheel to

change the falloff range.

A Linear Falloff

A Sharp Falloff

" Root Falloff
I""\ Sphere Falloff

Figure 26. Proportional Edit Falloff

54

By r~peating)·t:l)$s~>:~~ep$,''.,we Gad bt;ild ;~~y mountains' in

··the. grou~d inod.el. F±.gur~'2Tl_'shdws the. grouhd .. model I inade in

thi.s .project.

Figure 27. Ground Model

. ' . .

4. 3. 6 Textures·, > ... · : .·· ...·.· ,' ,·:.
. . . '

.·. •· After Ji~ishin9 these 30 models, the next step is to ad,d

textures.·.·· Since< UV mapping isi•mappin9 a: two~dirnensional
., , :'<" . . .' .. ,· ',., :· ·.

·····.texture.over a th;ee,dimerisicmal. object,. the first ;thing we

55

need to do is to unwrap a 3I)object into a flat 20 object. Here

is an example of UV mappin,g.

This example ,is .how I apply a .texture on the sky model.

First~ select the sky model and switch to the. 'UV Face Select'

m'ode.

Figij_re 28. Face Select.Mode

Then, press AKEY to select all faces, and press UKEY to
.· ' .

select 'Cylinder from Viewf. Usually, from now on, T would like

56

-:::.".-<\:.-- ·':-".-':::.\:, .' _,;·

to split the wind9;; Intd two di;fft9re11.t: views. One is 3D view

,in 'UV Face Select' modE;, artd ano"¢her one is 'UV/Image Editor' .
, , ,

The .following picture is the sc;:iE;enshot of the UV editor in

Blender.. 1•

. .,

Now, the 3D model :Ls already unwrapped into a2D object.

Next step is to apply an image on it. First, in the 'UV/Image

Editor' window, select 'Image' and open. the image file. However,

57

the image file a~d the 2D object are not perfectly matched,

so we need to ~odify the size and scare of the 2D object in

order to get the better result. Figure 30 shows the result of

the sky model after UV mapping.

Figure 30. Sky Model

58

.. 4-.•4·.c.6.!.TT:~pl\ft.ti:cit{.bt. tp.e{' 9,f:1(9:ct,:er. Ma<:iel
:.; .. ,

:4<ti\:i: ·cha~act:~~:::':~c:;cte$\..
..... The -ch~r:~s,#.7r:\~?-~fi :'±ti• t.h~i:pro:f¢Ct· :Fs alsp built. by

1:3:J;~n,cie,:r:< •Th,,e '_fii~t; ;~,:,t{~·B(i's_ ·b1.ril;d:i.ng •a, bead; modet. i started ,··,

•·

·wit:hadd'±rig_a pla11:Ef:Lr_theb:·o:~t:v1ew~.- '.I'hen, .. sl.lbdivicle,the.plane
··.. . . :·.;...... '.

ft.oht vi,ew

.i·•... ·,,: :;i: ·. _.,
'1/

https://b1.ril;d:i.ng
https://4-.�4�.c.6.!.TT:~pl\ft.ti:cit{.bt

. .

·This plane ·.wi11 be use.d for th~ face. model. I. will use

the top three squl~e:3 as a forehead, n~kt. three squ'ares as eyes,
·,· ,· . · ... •_., (-, . '. ·:,. . '" ' ,' ' "

next three squares aSa. nc>s~· and.cheeks, arid the last three

squares as a chin. After moctifying the position of these

verti'ces, the plan will lbok like- the picture ~elow.

60

!

- After that,· sY'!'} tch to g}de v\iew and move vertices along
I ,

Y-Axis to perform a,rrnse a.nd eyes. jf:igure 33 shows the complete

face model.

By repeatihgth.ese steps, I fihished thewhole head model.
' '

' . .. ', '·:' .· _·-''' ' ', ' ... '. '' ':_. ,'-_., ' _., '; -:, ·, i· ' .:·.. -_, . . ·._,., ' '
Nextyl need to l::,uild a body model.: A body model is much easier

•' ::- • ' ',' ! .. , ', ... '

than the head model. I started wi ~h a box m.odeL and. extruded
I

. I
I

I

each side to be hands Figure ·34 is. the complete

character model.

Figure 34. Character Model

Like other 3D models, the character model also needs
' . ✓

textures. Therefore, th!:l last step is using UV mapping to apply
i

the image. Figure 35 shows the s6reenshot of UV mapping~

62
I

. I

I

Figure 35. Ch~racter Model Textutes

4.4.2 Armature.

Armatures are like skeletons inside the human body. We

cah use armatures to pose and defotr-m 3D models. Armatures are

usually used in character animation, but they are also·very

useful ih building models, such as a winding pipe.

Like oth~r objects, an armatur-e ha.s a center, a rotation,

and a scale factor. It also has Object Mode and EditMode. Unlike

otherobj ects, an armature haS a sp~cial mode called Pose Mode.

63

. . . .
.. : :, : . ·.: ..

~caled, ··◊~ +btated to

pe,:fonn .a p,u:tic~/-~i; J';'""· .· ·. I'
. After k;)uilding the; tharact~r rrtbdel, · we .need to ·c;tdd an

. ·.·· .·· ' . : : : ,: ·. •··· :l .·.·· . . .•·
armature for the chai~cter soth~t-we caneasi.1y modify the

... · .·· •· • > \ • . ·.. •...·. • r..···· ·..·.··..·.... ·· . ·.
pose· of the characfe:r. fi~re is an ~xampJ;e of using an armature.

,. :·

·, • ...• ·.. '·. . · .. :. . . .i ' .· ,· •. ; . . .
First, press space bartq add .an armature 1.n ObJ ectMode. Then,·

: . ., . . ~ ' . . . ' .- i . .. ' : . ', . . .

modify the position/angfe, a~d sdale of the first bprie. Next,'
. . ·: . . .· ·. .. .·. _. ".' .. ·.. -; ·. . . ' . . .

press space bar to add othe±:-· boneis and also name 'every botj.e.
; ' ' . .' . '.- . _. ~.. . ~ '.. '. : : ,. . j '-

·.· . . .·. .- ' . : ._:. . .·.. . _.-:,:,· ... :· . ·: ··. :· .

Assigning 'names to the bones is vetY important becaus.e: it ,will

. make everything easier wher1 editi\n9 actions. Figure 36 shows
I ·.. •.

the. names of bones used in 'this ~rrn~tUre ..
·[..

-!'·
I

i
i
I
!
I
l

. I·-

' .1

,.
. · ·I

'

https://caneasi.1y

Figure 36. AssighingNames to Bones

i

. After assigning names to each boner adjust the position

and the scale of each bone to fcilt. i1the charactermodel~ Figure
i

37 is the compl~tearmature.

65

l;'l,.;fter finishing the armature, the next step is to connect

the)r::ha:tacter model and the armature. First, select both t.be
I

·•. i .charcJ.cter model and the arma:tllre ~ Then, press Ctrl + PKEY and

sele.ct 'Make Parent to Armat:ure(. Now, we have to assign

ver;tices of the character model to the particular bone. For

example, the vertices of the. right arm should assign to the

.
bQne o:E :i::-:Lgltt arm. Figure 38 shows that the vertices of the

i
I

front right armare assigned to the bone called 'Bone armR2'.

66

. .
Fiq-u.re 38. Assigning Vertices to·a Bone-

There are 11 bones in this armature. After assigning

vertices to a pa17ticular bone/ the character model is able to
. . .

ch,3.:rt~fe at1y pose \,re want. First, selE-:;ct the armature and switch

'to Pose Mode. By moving r rota ting or scalinq these bones, we

can make the character model to do any action. Figure 39 shows

the walking pose of the char,;3,cter model.

67

https://Fiq-u.re

·'rose

68

IONS

Basically.

developing team: programmers,

least three

Game deve :different fi~lds of

studies. roles in the

designers, and 3D modelers.

In this p.roj ect, developers need to work together and use

different tools .to develop a game. Some of the tools are

. .,. - blava1.1aj e for free; other tools /were built spec::i:f i<.:ally for
!

this project. 'I'he already avai1a~le tools include Blender and
r

GIMP~ The tools t.hat were bullt sbecifically for this project

incli:1de the. WorldStudio level editor, the 3D model conversion
' .

tool.1 and the terrain gener~tor.
I
I

I
The game production proces$ in this project has three

i
I

,,,.. . .. , I

steps. First, 3D mod~lers create art assets. Second, 3D
i

modelers use the tools developed by programmers to preprocess

thes.e art assets. :Finally, game➔ desigriers use the lever: edtt-..rr,

WorldSj:udio,. to perform the gam~ I ..
!

i

5.2 Future D~rections

This project is a very good start for anyone who interests

ir1 game developtnent. e Sc) ·t,·ar this proj ec·t. on.l:t a·llo~!'fs users

•walking around the hall.ways and sending each other text

69

,, ':' ,' ., -'

be ext'~J~,ecfbs-- adding m<::ire art assets,
I

s1,1c;h as tables, a.ckboar<Js and windows

c···:,rnct aJs,., be i·nproired by: ad,'1 ina,
V ~ l , i ·. ... · ...·.. U . _,:ff \ .,.
•1<£iq~ever, it will need a better

3D gra,phic card to game) Also, adding some plots in
!

the game mode is a good idea. A good story is always arr impo;i,:-tant

element in a successful game.

70

REF'ER$N\'.::'.E S

[1] 3DSttidio F:i1~ j::o•t1n~It, httf;l:i':J/1;l\lrt1. the~ .labs. com/
Blet1der/JDS--d~':(1(3~ffhlk .}1ttn1 cl .·•· · ·

·. ·.. ·.· ·.· ..·.)! >j ' ...· {2] P,.lexander Na:r:eyel<, 1'Artifid(L;:.;l Intelligence .in Compute:r:
G.a.tnes"---State oftr1/c; Art and E\h:u.r.·~ birectidns", AC:M Queue,

·' •.' i .. '·.• ·. I .
vol. 10, pp. ,58;...65, Febi'titity ;2004.

. i .
!

[3]. A.Jexander Nareyek, "Game AI ji.s Dead. Long Live Game AI!",
JEE::E Intelligent Systems, yol. 22, no. l, pp. 9-llr
Jan/Feb 2007. !

[4] Ble.nder 3D: Noob to Pro, h~tp: //en. wikibooks .orq/
wiki/Biender 3D/Noob to PrG- :

[5] Blender Artists Forums, httip://blenderartists.org/
, I

I •

[6.l]31ender Home Page, http://,ww.blender.org/

[7] Blender Nation, http://www.lblendernation. cont/ ·,

[8 J EJ,3;ni.el Sanchez-Crespo, '~Corf-~ Techniques and Algorithms
Jn (Same Programming·", New Riders· Garnes, first edition,

1~E:"~f.H~ember· 2003.
i

' I[9J . GIMP ~.. the GNU Ima<Je Manipulation Program,
http;J/www.qimp.org/

. i

!

[10] OpenCiL, http: //www. 6pE;frgl. olrg /

[11] rtJJkiped.ia, Game Engine,
http: { I en. wik:Lpedia. org/wikdJGame__,engine

[12] Wikipedia, Plane (mathemati~s),
http://en.wikipedia.org/wiki/Plane (mathematics)

I --

-11,.~

http://en.wikipedia.org/wiki/Plane
https://rtJJkiped.ia
https://http;J/www.qimp.org
https://EJ,3;ni.el
http://www.lblendernation
http://,ww.blender.org
https://httip://blenderartists.org

	Multi-user game development
	Recommended Citation

