

Edit Table of Contents Page
The headings of the sections can be edited as well as

insertion and deletion of sections is taken place here.

The student customizes the Table of contents to match its

own. The 3 chapters cannot be deleted and no new chapters

can be added. But sections and subsections can be

inserted or deleted.

Depmnent ot C&hiputei 2c sncn - CSUSB

Athena Online Proposal Development System

. [then a
Main Po; r-

' , User-defined Table of Contents
Hoke:
Information Li 1. Intioduclicn
Committee □ I.IPurpose ;

Infoirmtior □ 1.2-Scope

“lhh ot □ 1.3 .^Definitions and Acronyms_______ '

Con:*nU □ 1 intolerances___________________;

AddCatc □ 1.5 Overview !

View Data □ 2. Overall Description
View Pronosal □ 2.1 (Product Perspective J

StitmrfRe.ia.v
Q 2.1.1 [System Interfaces

□ 2.1.2 jUserlnterfaces

Comments ■-
E3 2.1.3 (Hardware Interfaces

Q 2.1.4 (Software Interfaces

Contact □ 2.1.5 (Communication Interfaces
Committee □ 2 1-6 I Memory Constraints

L.Lt.ut □ 2-1-7 (Operations

□ 2-2 (ProductFunctions j

□ 2-3 (User Charactenstics I

□ 2.4(Contreints |

□ 2.5 [Assumptions and Dependencies [

B 3. Specific Requirements
Q 3.1 [External Requirements_____ [

B

Figure 34 . Student - Edit Table of Contents page

76

Add Data Page

On completion of customizing the table of contents

the student then can go on and either write the data in

based on the table of contents or copy it from a text

editor in this page into the Athena database..

© ’ 0 © & Lp ☆ e 1

Department of Computer Science -CSUSB"
Athena Online Proposal Development System

User, hajira

Main Pane

Project
Information

Committee
Information

Table of- '
Contenfs

Add Data

View,Data

View Proposal

Status of Review;

Review -
Comments

Contact
Committee

Logout

Athena 3 Online Proposal Development System
Chapter 1:

I. Introduction

1.1 Purpose

Add Data Page Go to | Select Chapter jv

This graduate project will evaluate the use of the Java Model 2 web
application architecture by creating a hierarchical Wiki. The software product
will serve following users:

a. People working within hierarchically structured organizations.
b. Large-scale user communities.

1.2 Scope
The software product defined in this document is to be known as

Hierarchical Wiki. The project will attempt to Implement as many of the
following requirement as possible in the time available. The number of
completed requirements will indicate the strength of the Model 2 architecture
and the Linux platform on which it will be deployed. It will include the
following capacities:

1. Establish a hierarchical Uiki that supports an arbitrary number of
administrative levels (called domains).

1,3 Definitions and Acronyms
Uiki: a piece of server software that allows users to freely create and edit
Web page content using any Web browser. Uiki supports hyperlinks and has a
simple text syntax for creating new pages and crosslinks between internal
pages on the fly.
Tomcat: Tomcat is the servlet container that is used in the official Reference
Implementation for the Java Servlet and JavaServer Pages technologies. The
Java Servlet and JavaServer Pages specifications are developed by Sun under

Figure 35. Student - Add Data Page

77

View Data and Add Image Page
The student can check the data entered by selecting a

chapter in the proposal. The "add image" buttons can be

seen with each section for the user to browse for images

and add them in the proposal wherever needed. The

limitations with the addition of images are:

a. There can only be one image per section.

b. The images can be of jpeg, gif, bitmap and png.

c. The maximum size of an image is 1 MB.

Di-pmtinvn: of CumnMer Sc - CSUSE

Athena Online Proposal Development System

User, hajira •

Main Pane

Athena 3 Online Proposal Development System

Project
Chapter 1: View Data Page Go to | select chapter [£|

Intcunation
1. Introduction

Committee
Information 1.1 Purpose

Tolile of This graduate project will evaluate the use of the Java Model 2 web application architecture by creating a
Contents hierarchical Wiki. The software product will serve following users:

a. People working within hierarchically structured organizations.
Add Data b. Large-scale user communities.

View Data q _ Add Imaae Here

View Proposal > 1.2 Scope

Status of Review The software product defined in this document is to be known as Hierarchical Wiki. The project will attempt
to implement as many of the following requirement as possible in .the time available. The number of

. Review y . -
Comments

completed requirements will indicate the strength of the Model 2 architecture and the Linux platform on
which it will be deployed. It will include the following capacities:
1. Establish a hierarchical Wiki that supports an arbitrary number of administrative levels (called domains).

■ Contact 2. Each user is associated with two domains. A user exists within the domain of another user (who is at a
Committee

Logout

higher level); this is called the user's existence domain. In the existence domain, a user can add content,
change content he created, but can not modify the content of others. In addition to the existence domain, a
user is also associated with a ’creation domain," in which he is master. A user can modify any content and
add or delete users within his creation domain.
3. Each page has a modifiable attribute that can be set to true or false by the master of the domain or any
user above him. If a user of a lower level visits a page with the modifiable attribute set to false, he can not
modify the page contents in any way.
4. The modifiable attribute does not inherit to all levels. For example, if Alice is master of domain A, and
she sets the modifiable attribute to true, then users of this domain (the users forwhichthis domain ,is an
existence domain) can modify the page contents, but users under these users can not modify the page. The
sub users under Alice must also set the modifiable attribute to true in order for their sub-users to be able to
modify the page.

Figure 36. Student - View Data/Add Image Page

78

View Complete Proposal Page
Once the proposal is complete the student can also

check the data in read only mode as it will appear to the

committee members.

©"J X J 12

Depaithieut of Compu'cr Sci.-’.ce - CaUSB

Athena Online Proposal Development System

User, hajira

Man- Rag-

Project ' ■
Inform-.:: I.

Committee ' i
infpinnqn
Table of - - j
Contents

Add Data .. .

View Data

View Proposal- i

Status-of Review .

Re.ic-.-.
Comments

Contact j
Committee

Logout

Athena 3 Online Proposal Development System
View Complete Proposal

1. Introduction / . •

1.1 Purpose . ■
This graduate project will evaluate the Use of the dava Model 2 web application architecture by creating a
hierarchicalWiki. The software product will serve following users: '
: ejple working within hierarchically structured organizations,
b. Large-scale user communities.

1.2 Scope
The software product defined in this document is to be known as Hierarchical Wiki. The project wi II attempt
to implement as many of the following requirement as possible'in the time available. The number of
completed requirements will indicate the strength of the'Model 2 architecture and the Linux platform on
which itwill be.deployed. Itwill include the following,capacities:
1. Establish a hierarchical Wiki that supports an arbitrary number of administrative levels (called,domains),
2. Each user is associated with two domains. A user exists within the domain of another user (who is at a
higher level): this is called the user's existence domain. In the existence domain, a user can add content,
: :-qe content he created, but can not modify the content of others. In addition to the existence domain, a
user is also associated with a "creation domain," in:which he is master. A user can modify any content and
add or delete users within his creation domain.
3. Each page has a modifiable attribute that can be set to’true or false by the master of the domain or any
.=e- above him. If a user of a lower level visits a page with the.modifiable attribute set to false, he can not
modify the page contents in any way.
4. The modifiable attribute does not inherit to all levels. For example, if Alice'is master of domain A, and
she sets the modifiable attribute to true, then users of this domain (the users for which this domain is an
existence domain) can modify the page contents, but users under these users can not modify the page. The
sub users under Alice must also set the modifiable attribute to true in order for their sub-users to be able to
modifythe page. .as

Figure 37. Student View Complete Proposal Page

79

View Complete Proposal Page
Once the proposal is complete the student can view

comments made by the committee and reply to them if they

want to. This is done in the Student Review Comments

Page.

’ £ X

D« p.ivtme*it of CcniF’UTfci fccie ic.- - CSUSB
Athena Online Proposal Development System

llsor, najira .

Mair.Fc.Je

Project
Information

Committee '
Information

Tableof
Contents

AddData

View Ciata \

.._cA_Picr)c:.jl

. Status of Review

: Review
Commente.

Contact
Committee

Logout

Student Review Comments
Athena 3 Online Proposal Development System

Introduction

1.1 Purpose
This graduate project will evaluate the use of the Java Model 2 web application View
architecture by creating a hierarchical Wiki. The software product will serve following Comments
users:
a. People working within hierarchically structured organizations.
b. Large-scale user communities.

1.2 Scope
The software product defined in this document is to be known as Hierarchical Wiki: The View
project will attempt to implement as many of the.following requirement as possible in the Comments
time available. The number of completed requirements will indicate the strength of the
Model 2 architecture and the Linux platform on which it will be deployed. It will include the
following capacities: ' ■
1. Establish a hierarchical Wiki that supports an arbitrary number of administrative levels
(called domains).
2. Each user is associated with, two domains. A user exists within the domain of another
user (who is at a higher level); this is called the user’s existence domain; In the existence
domain, a user can add content, change content,he created, but can not modify’the content
of others. In addition to the existence domain, a user is also associated with a “creation
domain,” in which he is master. A user can modify any content and add or delete users
within his creation domain.
3. Each page has a modifiable attribute that can be set to true or false by the master of the
domain o r any user above him. If a user of a lower level visits a page with the modifiable
attribute set to false, he can not modify the page contents in any way.
4. The modifiable attribute does not inherit to all levels. Fqr.,example„if Alice is master of

Figure 38 Student Review Comments Page

80

Contact Committee Members Page

The Student can contact the committee members by

email. The System gets the emails' of the committee

members automatically into the "To" field of the message.

Dep.uirr.t-c'. of Co.T.EMtvr - Cj'JSiJ
Athena Online Proposal Development System

USti I<vj

MolpTfla?
Psojeti
Information

i? -j.-r ■nil" ce
Information

IMlMlllllllMlI
Contents

Arid ft.-rtfl

V D..u

V c," F m|2 '".I

Renter.'
ro.r me "7-

r j c/c.
Committee

Da-Hit

Athena 3 Online Proposal Development System

Coquet Coinmitix-u htanlisrs
lwmcir^373«Synhnu<^<nP4»n’,TA76*yhiftnnjKrtVr tn^ml &■£<?.

S.L;;u’ Yo>hawc
ft yauu srijdeucr h»jru.A< h&s ^A»d.cced plc’£$?&1 ior ywu wle-t Kuril? leg" AMier* -ana ?e»W yea,

11 .,%4sfgilPK)i‘,M:t!>1.^lYvj*ri I

J

Figure 39. Student - Contact Committee Page

81

CHAPTER SIX

CONCLUSIONS AND FUTURE DIRECTIONS

6.1 Introduction

Athena - An Online Proposal Development System was a

system developed to help Masters Students' and their

committees in composing, reviewing and annotating

proposals in an efficient, quick and reliable environment.

It was developed using JSP, JavaBeans and MySql Query

Language. The proposal data and project information is
saved in the database and retrieved as needed.

6.2 Conclusions and Benefits

Proposal Development is an important feature of an

educational system. The conclusions that could be drawn
from the system are numerous. It has many benefits over

the related systems like Zeus, Poseidon and Tales. Some of
the conclusions and benefits are:

1. No matter where the student or committee members

are geographically located, they can compose,

review, annotate and communicate easily. All

they need is an Internet connection.
2. There will be not be any repetition of comments

as each member of the committee can see if the

same comment has been made-by some other member.

86

This reduces time and effort both by the student

as well as the committee members.

3. There will not be any wastage of paper during the

review process.
4. There will be no time wasted scheduling meetings,

driving to the campus and making special efforts.

5. The reviews and editing can be done by the

committee members and students respectively in

their own available time. This brings a lot of

flexibility to the procedure of proposal review.
6. Athena is customized for Project Proposals only

whereas Zeus [2] was designed for Thesis.
7. Athena is follows the IEEE std. [5] for Software

Requirement Specifications which will guide

students in writing their Proposals either

strictly based on the standard or a modified
version.

8. Athena is very simple in its implementation.
9. Athena is designed based on the rules and

regulations of the Department of Computer Science

at CSUSB whereas the other related works like

Zeus, Posiedon and Tales are designed for their
own University.

87

10. Athena is for Proposals written in English

whereas Zeus and others have been designed for

Spanish thesis and documents.

11. The main difference between Athena and Zeus [2]

is that in Athena you write or copy and paste the

text written In any editor into the Athena

Interfaces which is then saved in the database.

In Zeus you upload the text in HTML format.

12.In Athena you can always make edits to the

document whenever needed, whereas in Zeus [2] you

have to load the new file again.

13. Zeus [2] has a very well developed annotation
system but Athena has a very simple one.

14. Poseidon [3] is for all kinds of documents but
Athena caters only to Project Proposal of Masters

Students of Computer Science at CSUSB.

15. Tales [1] is a repository of digital theses

whereas this prototype of Athena has not
implemented that yet, but it will very easy to

add it as well.

16. The communication in all the three related works,

Zeus [2], Tales [1], Poseidon [3] is initiated

automatically, whereas in Athena the users create

88

their own emails and send it. The mailing system

has been created customized for Athena.

Athena is the first prototype of a system for

Collaborative proposal development. Hopefully many others

can follow to cover all the scenarios and types of

documents and procedures.

6.3 Future Directions
There are innumerable possibilities and features that

could be added to Athena. This should be treated and used

as a first running prototype of a Proposal Development

System. It could be used widely as well as ideas of

improving it and making it. more generalized could be

gathered and improvised in the next prototypes.
A few suggestions are:
1. Beta Testing has to be done on the project by the

department before implementing Athena.

2. Athena could be a long term fit to the department

web site and help in tracking computer resources.
3. Athena could be made to handle more than 3

chapters. It is not a big programming effort to

do it. It was not done in this version because

certain limitations were applied to maintain

uniformity between proposals.

89

4. The depth of the levels of sub headings could go

to more than 3 levels. Athena utilized it to

maintain uniformity and provide some limitations.
5. There can be a better version control system

implemented. There is always a current version

available in Athena. Old versions are

overwritten. But this could change and old

versions could be saved.

6. Annotation can be done and shown in layers as
implemented in Zeus [2].

7. There could be specific colors for annotations by

each committee members.

8. Athena could be generalized for all departments
of CSUSB.

9. Athena could be generalized to handle any kind of
document, reports, thesis etc.

10. Athena could be upgraded to XML Interfaces or JSP
Servlets.

11.On Advancement to Candidacy the proposal could be
added to a public directory on Athena or

publicized on the department website.
12.Athena could be installed in the Computer Science

Website as well the Graduate Advisory System and

90

utilized for all its worth and made available to

all the students of the department.

6.3 Summary

Athena has the capability of becoming a popular and

widely used system. It was implemented in a logical way

and will be a great asset to the Department of Computer

Science. The Advancement to Candidacy procedure will

become much easier. Athena would surely help students and

faculty work on the proposals with more interest, in a
much more relaxed manner, at their own convenience using

the user-friendly and clear interfaces. It would bring

about a sense of accomplishment and satisfaction as there

could be any number of back and forth reviews and

annotations without the constraints of time, place, and
readability issues. Athena can surely be utilized in the

progress of educational system procedures and development
of efficient and intelligent proposals by Masters Students
of the Department of Computer Science at CSUSB.

91

APPENDIX A

DATABASE SCHEMA

92

The database tables used for Athena are shown below; Refer
Chapter 2 for a detailed description of the .tables and the
relationships between these tables/entities.

The table creation scripts used in Athena can be listed as
follows:

lname VARCHAR(20)
email VARCHAR(50)
phone VARCHAR(12)
user_role VARCHAR(IO)
user_name VARCHAR(30)

CREATE TABLE users (
user_id INT(4) UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
fname VARCHAR(20) NOT NULL,

NOT NULL,
NOT NULL,
NOT NULL,

NOT NULL,
UNIQUE NOT NULL,

password VARCHAR(20) NOT NULL);
CREATE TABLE student_proposal (
prop_id INT(4) UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
stud_id INT(4) UNIQUE NOT NULL REFERENCES users(user_id),
prop_type VARCHAR(4) NULL DEFAULT 'none 1);

CREATE TABLE proposal (
prop_id INT(4) NOT NULL PRIMARY KEY,
prop_title VARCHAR(100) NOT NULL UNIQUE,
start_date DATE NOT NULL,
end_date DATE NOT NULL);
CREATE TABLE committee_members (
cm_id INT(4) UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY
KEY, prop_id INT(4) NOT NULL REFERENCES proposal(prop_id),
faculty_name VARCHAR(30) NOT NULL REFERENCES users(lname),
role VARCHAR(20) NOT NULL,
comm_status VARCHAR(2) DEFAULT "NO",
review_status VARCHAR(2) DEFAULT "NR");
CREATE TABLE sections pid (
sec_id INT(4) UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
sec_parent INT(4) NOT NULL,
sec_num INT(4) NOT NULL,
sec_heading VARCHAR(50) NULL,
sec_data TEXT NULL,
sec_image VARCHAR(100) NULL DEFAULT 'none',
sec_icaption VARCHAR(IOO) NULL DEFAULT 'none');
CREATE TABLE comments pid(
comment_id INT(4) UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
sec_id INT(4) NOT NULL,
cm_id INT(4) NOT NULL,
comment_facuity VARCHAR(255) NULL,
comment_student VARCHAR(255) NULL);

93

APPENDIX B

SOURCE CODE

94

These are the source codes for the JavaBeans and JSP
pages used in Athena:

Database.java
package mpds_modules ;
import j ava.sql.*;
public class database
{
private static String

url="j dbc:MySql://localhost/mpds";
private static String

driver^"com.MySql.j dbc.Driver";
private static String user="humaira";
private static String password="mpds";

public static Connection getConnection() throws
Exception

{
Class.forName(driver).newlnstance();
System.out.println("driver Loaded");

Connection connection =
DriverManager.getConnection(url,user,password);

System.out.printIn("connection established");
return connection;

}
}

Proposal.java
package mpds_modules;
import j ava.lang.*;
import java.util.*;
import j ava.sql.*;
public class Proposal
{

private int pid;
private String ptitle;
private String sdate;
private String edate;

public Proposal() . { }
public int getPidO { return this.pid; }
public String getPtitle() { return this.ptitle;
}
public String getSdate() { return this.sdate; }
public String getEdate() { return this.edate; }
public void setPid(int p) { pid = p; }
public void setPtitle(String tit){ ptitle=tit; }

95

public void setSdate(String sd) { sdate=sd; }
public void setEdate(String ed) { edate=ed; }

}
SectionAdmin.j ava

package mpds_modules;
import j ava.lang.*;
import java.util.*;
import j ava.sql.*;
import java.net.URLEncoder;
import mpds_modules.*;

public class SectionAdmin {
private Connection connect;
private int pid;
private String msg;
public SectionAdmin() {

try {
connect - database.getConnection();
}catch (Exception ex) {

ex.printStackTrace();
}

}
/***************CREATE SECTIONS*******************/

public void createSections(int proposal_id){
pid = proposal_id;
try {
Statement stmt=connect.createStatement();
String temp = "sections_";
String new_table = temp +

Integer.toString(pid);

String update = "create table "+new_table+"
(sec_id INT-(4) UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY
KEY,secjparent INT(4) NOT NULL,sec_num INT(4) NOT
NULL,sec_heading VARCHAR(50));";

stmt.executeUpdate(update);
String insert_sec="insert into

"+new_table+" (sec_parent,sec_num,sec_heading) VALUES
(0,1,'Introduction'), (1,1,'Purpose'), (1,2,'Scope'),
(1,3,'Definitions and Acronyms'), (1,4,'References'),
(1,5,'Overview'), (0,2,'Overall Description'),
(7,1, 'Product Perspective'), (8,1, 'System Interfaces'),
(8,2,'User Interfaces'), (8,3,'Hardware Interfaces'),
(8,4,'Software Interfaces'), (8,5,'Communication
Interfaces'), (8,6,'Memory Constraints'),

96

(8,7,'Operations'), (7,2 , 'Product Functions'), (7,3,'User
Characteristics'), (7,4,'Assumptions and Dependencies'),
(0,3,'Specific Requirements'), (19,1,'Functional
Requirements'), (19,2,'Performance Requirements'),
(19,3,'Logical Database Requirements'), (19,4,'Design
Constraints'), (19,5,'Software System Requirements'),
(24,1,'Relaiblility'), (24,2,'Availability'),
(24,3, 'Security'), (24,4, 'Maintainability'),
(24,5,'Portability');";

stmt.executeUpdate(insert_sec);

1 SQLException;

1 SQLState:

}
catch(SQLException E) {

System.out.println(
E.getMessage());

System.out.println(
E.getSQLState());

System.out.println("VendorError: " +
E.getErrorCode());

} //end catch
}//createSections

/**************END CREATE SECTIONS**********************/
/************DELETE SECTIONS BY id****************/

public String deleteSection(String [] sec_ids, int countl,
String table) {

try {
Statement stmtll = connect.createStatement();
int tl=0;
for (int i=0;iccountl;i++) {
tl = Integer.parselnt(sec_ids[i]) ;
ResultSet RS - stmtll.executeQuery("select

sec parent,sec num from "+table+" where sec_id="+tl+" ");
RS.first();
int parent = RS.getlnt(1);
int num = RS.getlnt(2);
String queryl = ("update "+table+" SET

sec_num=sec_num-l where sec_parent="+parent+" and
sec_num>"+num+" ");

stmtll.executeUpdate(queryl); //updating section
numbers following this.

stmtll.executeUpdate("delete from "+table+" where
sec_parent="+tl+" "); //deleting sub-sections

stmtll.executeUpdate("delete from "+table+" where
sec_id="+tl+" "); //deleting actual section/subsection

} // end for
} // end try

catch (SQLException E) {

97

System.out.printIn("SQLException: " +
E.getMessage());

System.out.println("SQLState: " +
E.getSQLState());

System.out.println("VendorError: " +
E.getErrorCode());

msg=E.getMessage();
} //end catch

return("done");
} // end deleteSection
/*************END DELETE SECTIONS BY id**************/
/************INSERT SECTIONS BY ID *********/

public String insertSection(String [] sec_ids, int
countl, String table) {

try {
Statement stmtl2 = connect.createStatement();
int tl=0;
for (int i=0;i<countl;i++) {
tl = Integer.parselnt(sec_ids[i]);
ResultSet RS = stmtl2.executeQuery("select

sec_parent,sec_num from "+table+" where sec_id="+tl+" ");
RS.first();
int parent = RS.getlnt(1);
int num = RS.getlnt(2);
String queryl =("update "+table+" SET

sec_num=sec_num+l where sec_parent="+parent+" and
sec_num>"+num+" ");

stmtl2.executeUpdate(queryl) ; //updating section
numbers following this.

String temp3 = "<Enter Section Title Here>";
String query2=("insert into "+table+"

(sec parent,sec_num,sec_heading) values
("+parent+","+(num+1)+",\""+temp3+"\") ");

stmt12.executeUpdate(query2); //deleting sub-sections
} // end for

} // end try
catch (SQLException E) {

System.out.println("SQLException: " +
E.getMessage());

System.out.println("SQLState: " +
E.getSQLState());

System.out.println("VendorError: " +
E.getErrorCode());

msg=E.getMessage();
} //end catch
return("done");

98

} // end insertSection
/**********END INSERT SECTIONS BY id********************/
/************IUSERT SUB-SECTIONS BY ID *********/

public String insertSubSection(String [] sec_ids, int
count1, String table) {
try {
Statement stmtl3 = connect.createStatement();
int t2=0;
for (int i=0;iccountl;i++) {
t2 = Integer.parselnt(sec_ids[i]);
ResultSet RS = stmtl3.executeQuery("select
sec_parent,sec_num from "+table+" where sec_id="+t2+"
") ;
RS .first() ;
int parent - RS.getlnt(1);
int num = RS.getlnt(2);
String queryl =("update "+table+" SET
sec_num=sec_num+l where sec parent="+t2+" ");
stmtl3.executeUpdate(queryl);
String temp4 = "Enter Sub-Section Title Here>";
int temp5 = 1;
String query2=("insert into "+table+"
(sec_parent,sec_num,sec_heading) values
("+t2+","+temp5+",\"+temp4+"\") ");
stmt13.executeUpdate(query2);

} // end for
} // end try
catch (SQLException E) {

System.out.println("SQLException: " +
E.getMessage());

System.out.println("SQLState: " +
E.getSQLState());

System, out.println("VendorError: " +
E.getErrorCode()); msg=E.getMessage();

} //end catch
return("done");

} // end insertSubSection
/**********END INSERT SUB-SECTIONS BY ID ************/
} // END SectionAdmin.java

99

StudentAdmin.j ava
package mpds_mOdules;
import j ava.lang.*;
import java.util.*;
import j ava.sql.*;
import java.net.URLEncoder;
import mpds_modules.* ;

public class StudentAdmin {
public Connection connect;
private int u_id;
private int p_id;
private String p_title;
private String p_sdate;
private String p_edate;
private boolean wrongData;
private String msg;
private String ad_name;
private String cml_name;
private String cm2_name;
private String cm3_name;
String ad = "advisor";
String cl - "cml";
String c2 = "cm2";
String c3 = "cm3";
public StudentAdmin(){

try {
connect = database.getConnection();
}catch (Exception ex) {
ex.printStackTrace() ;
}

}/*************+***ADD
PROPOSAL* * ***************************/
public String addProposal(Proposal propl, int uid)

u_id=uid;
p_title=propl.getPtitle() ;
p_sdate=propl.getSdate() ;
p_edate=propl.getEdate() ;
wrongData=false;
msg=null.;
try {

Statement stmtl=connect.createStatement()
Statement stmt2=connect.createStatement()
Statement stmt3=connect.createStatement()

100

ResultSet rsl=stmtl.executeQuery("select
prop_id from student__proposal where stud_id="+u_id+"
") ;

if(!rsl.next()){
String insert = "insert into

student_proposal(stud_id) values ("+u_id+");" ;
stmtl.executeUpdate(insert);
ResultSet rs33=stmt2.executeQuery("select

prop_id from student_proposal where stud_id="+u_id+"
") ;

while(rs33.next()){
p_id = rs33.getlnt(1);
propl.setPid(p_id);
ResultSet rs44=stmt3.executeQuery("select

prop_title from proposal");
if(rs44.next()) {
String t=rs44.getString(l);
if(t.equals(p_title)) {
wrongData=true;
}else {
wrongData=false;
}
}else
{
wrongData=false;
}
if(wrongData){

msg="A proposal already exists with that
title, enter another one";

}else{
String insertl = "INSERT INTO

proposal(prop_id, prop_title, start_date, end_date)
VALUES ("+p_id+", \""+

p_title+"\", \""+p_sdate+"\",
\""+p_edate+"\"); " ;

stmt3.executeUpdate(insertl);
//create the sections table

SectionAdmin sections=new SectionAdmin();
sections.createSections(p_id);
//sent to the SectionsAdmin class
msg="done";
stmt3.close();
}//else wrongdata
}//while

rs33.close();
stmt2.close();
}else{

101

System.out.println("we are in the same proposal
loop");
msg="There cannot be two proposals for the same user■I .
}//else
rsl.close();
stmtl.close();
connect.close();
}catch(SQLException E) {
System.out.println("SQLException: " +
E.getMessage());
System.out.println("SQLState: " +
E.getSQLState());
System.out.println("VendorError: " +
E.getErrorCode());
} //end catch
return(msg);
}//addProposal

/**************END ADD PROPOSAL******************/
/*************MODIFY PROPOSAL********************/
public String modifyProposal(Proposal pi, int pid) {
p_id=pid;
pi.setPid(p_id);
p_title=pi.getPtitle() ;
p_sdate=pi.getSdate() ;
p_edate=pi.getEdate();
msg=null;
try {
System.out.println("I am in modify");
Statement stmt45 = connect.createStatement();
String update = "UPDATE proposal SET prop_title=\""+
p_title +"\", start_date= \"" + p_sdate +"\",
end_date=\""+ p_edate +"\" where prop_id="+p_id+" ";
stmt45.executeUpdate(update);
System.out.println("I am in modify after update");
msg="done";
}catch(SQLException E) {
System.out.println("SQLException:
E.getMessage());
System.out.println("SQLState:
E.getSQLState());
System.out.println("VendorError:
E.getErrorCode());
msg=E.getMessage();
} //end catch
return(msg);

+

+
+

102

}//modifyProposal
/*****************MODIFY
PROPOSAL* * ********************/ .
y****************CREATE COMMITTEE
*********************/
public String createCommittee(String [] com, int
P_id){
ad_name=com[0];
cml_name=com[l];
cm2_name=com[2];
cm3_name=com[3];
msg=null;
wr ongDa ta=false;
try {
if (ad_name.equals(cml_name) ||
ad_name.equals(cm2_name) ||
ad_name.equals(cm3_name)){
msg="Duplicate Entries matching with Advisor. Choose
new again.\n";
wrongData=true;
}else{
if(cml_name.equals(cm2_name)[|
cml_name. equals (cm3_name)) {
msg="Duplicate Entries matching with Committee
Members. Choose new again.\n";
wrongData=true;
}else{
if(cm2_name.equals(cm3_name)){
msg="Duplicate Entries matching with Committee
Members. Choose new again.\n";
wrongData=true;
}else{
wrongData=false ;
}//else cm2-cm3
wrongData=false ;
}//elsecml
wrongData=false ;
}//elseadvisor
Statement stmtlO = connect.createStatement();
if(!wrongData){
String insert_ad="insert into committeejnembers
(prop_id, faculty_name, role) values ("+p_id+",\"
+ad_name+"\", \""+ad+"\");" ;
String insert_cl="insert into committee_members
(prop_id, faculty_name, role) values ("+p_id+",\"
+cml_name+"\", \""+cl+"\");" ;

103

String insert_c2="insert into committee_members
(prop_id, faculty_name, role) values ("+p_id+",\""
+cm2_name+"\, \ " "+c2 +"\") ; " ;
stmtlO.executeUpdate(insert_ad);
stmtlO.executeUpdate(insert_cl);
stmtlO.executeUpdate(insert_c2);
msg="done";
stmtlO.close() ;
connect.close();
} else
{
msg="Duplicate Entries matching with Committee
Members. Choose new again.\n";
}//elsewrongData
}catch (SQLException E) {

System.out.println("SQLException: " +
E.getMessage());
System.out.println("SQLState: " +
E.getSQLState());
System.out.println("VendorError: " +
E.getErrorCode());
msg=E.getMessage() ;

} //end catch
return(msg);
}//createCommittee
/**************CreATE COMMITTEE
**************************/
/*****************UPDATE
COMMITTEE***********************/
public String updateCommittee(String [] com, int
p_id)
{
ad_name=com[0];
cml_name=com[1];
cm2_name=com[2] ;
cm3_name=com[3];
msg=null;
wrongData=false;
try {

i f (ad_name.equa1s(cml_name) | |
ad_name. equals (cm2_name) | |
ad_name.equals(cm3_name)){
wrongData=true;
}else{
if(cml_name.equals(cm2_name)||
cml_name.equals(cm3_name)){
wrongData=true;

104

}else{
if(cm2_name.equals(cm3_name)) {
wrongData=true;
}else{
wrongData=false;
}//else cm2-cm3
} //elsecml
}//elseadvisor
Statement stmtlO = connect.createStatement();
if(IwrongData){
String update_ad="update committee_members set
faculty_name=\""+ad_name+"\" where prop_id="+p_id+"
&& role='"+ad+"' ";
String update_cl="update committee_members set
faculty_name=\""+cml_name+"\" where prop_id="+p_id+"
&& role='"+cl+"' ";
String update_c2="update committee_members set
faculty_name=\""+cm2_name+"\" where prop_id="+p_id+"
Sc& role='"+c2+"'
String update_c3="update committee_members set
faculty_name=\""+cm3_name+"\" where prop_id="+p_id+"
&& role=’"+c3+"'
stmtlO.executeUpdate(update_ad);
stmtlO.executeUpdate(update_cl);
stmtlO.executeUpdate(update_c2);
stmtlO.executeUpdate(update_c3);
msg="done";
stmtlO.close();
connect.close();
}else {
msg="Duplicate Entries matching with Committee
Members. Choose new again.\n";
}//elsewrongData
}catch (SQLException E) {

System.out.println("SQLException: " +
E.getMessage());
System.out.println("SQLState: " +
E.getSQLState());
System.out.println("VendorError: " +
E.getErrorCode());
msg=E.getMessage() ;
} //end catch
return(msg);
}//updateCommittee
/*************END UPDATE COMMITTEE
******************* j
}//class

105

Users.java
package mpds_modules;
import j ava.lang.*;
import java.util.*;
import j ava.sql.*;
public class Users {
private int user_id;
private String fname,lname,email,user_role,user_name;
private String password;
public Users(){ }
public int getUseridO
public String getFname()
public String getLname()
public String getEmailO

{ return this.user_id;
{ return this.fname; }
{ return this.lname; }
{ return this.email; }

};

public String getUserrole() { return this.user_role;}
public String getUsername() { return this.user_name;}
public String getPassword() { return this.password;}
public void setUserid(int userid){

this.user_id=userid;}
public void setFname(String f_name)
(this.fname=f_name;}
public void setLname(String

l_name){this.lname=l_name;}
public void setEmail(String

email_ad){this.email=email_ad;}
public void setUserrole(String userrole){
this.user_role=userrole;}
public void setUsername(String username){
this.user_name=username; }
public void setPassword(String pass){

this.password=pass; }
}//class

UsersAdmin.j ava
package mpds_modules;
import java.lang.*;
import java.util.*;
import j ava.sql.*;
import java.net.URLEncoder;
import mpds_modules.*;
public class UsersAdmin{

public Connection connect;
private String msg;
private String ID;
private String First;
private String Last;

106

private
private
private
private
boolean

String Email;
String Role;
String Name;
String Pass;
wrongData;

public UsersAdmin(){
try {
connect = database.getConnection();
}catch (Exception ex){
ex.printstackTrace() ;
}

}
public String createUser(Users u) {
wrongData = false;
msg=null;
First=u.getFname();
Last=u.getLname();
Email=u.getEmail() ;
Role=u.getUserrole() ;
Name=u. getUsername () ;
Pass=u.getPassword();
try{
Statement stmt=connect.createStatement();
Statement stmt2=connect.createStatement();
ResultSet rs = stmt.executeQuery("select

user_name from users");
while(rs.next()) {
String dbuname = rs.getString(1);
if(dbuname.equals(Name)){
wrongData - true;
}//if userid
else{
wrongData = false;
}//else userid
}//while
rs .close();
if(wrongData){
msg="Enter another username as this one already
exists! ! ";
}//if wrongData
else{
String update="INSERT INTO
users(fname,lname,email,user_role,user_name,pass
word) VALUES (\"" +First + \"" +Last +\ \ +

107

Email + \"" +Role + "\", \"" +Name + "\"
\"" + Pass + "\"); ";
stmt2.executeUpdate(update);
msg="done";
connect.close();
}
}catch(SQLException E) {
System.out.println("SQLException: " +

E.getMessage());
System.out.println("SQLState: " +

E.getSQLState());
System.out.println("VendorError: " +

E.getErrorCode());
} //end catch
return(msg);
}//createUser

public String deleteUser(String uname) {
try {
Statement stmt=connect.createStatement();
String delete - "delete from users where
user_name='"+uname+"';";
stmt.executeUpdate(delete);
msg="done";
stmt.close() ;
connect.close();
}catch(SQLException E) {
System.out.println("SQLException: " +

E.getMessage());
System.out.println("SQLState: " +

E.getSQLState());
System.out.println("VendorError: " +

E.getErrorCode());
} //end catch
return(msg);
}//deleteUser

public String editUser(Users u) {
wrongData = false;
msg=null;
First=u.getFname();
Last=u.getLname();
Email=u.getEmail();
Role=u.getUserrole();
Name=u.getUsername();
Pass=u.getPassword();
try {

108

Statement stmt=connect.createStatement();
String update = "UPDATE users set fname = \"" +

First + "\" , lname = \"" + Last + "\" , email = \""
+ Email + "\" , user_role = \"" + Role + "\" ,
user_name = \"" + Name + "\" , password =
\""+Pass+"\" where user_name='"+Name+"'

stmt.executeUpdate(update);
msg="done";
stmt.close();
connect.close();
}catch(SQLException E) {
System.out.println("SQLException: " +

E.getMessage());
System.out.println("SQLState: " +

E.getSQLState());
System.out.println("VendorError: " +

E.getErrorCode());
} //end catchreturn(msg);
}//editUser

public String loginUser(String user,String
role,String pswd) {

Name=user;
Role=role;pass=pswd;
try {

Statement stmt=connect.createStatement();
ResultSet rs = stmt.executeQuery("select * from

users");
System.out.println("I am here");
while(rs.next()){
String dbuser = rs.getString(6);
if(dbuser.equals(Name)) {
String dbpswd - rs.getString(7);
if(dbpswd.equals(Pass)) {
String rolename = rs.getString(5);
if (rolename.equals(Role)){
System.out.println("I am here inside the loop")
msg="done";
break;
}else{
msg = "Role Name does not match the existing
one. Please try again or Contact the System
Administrator!!";
}//elseRole
}else{
msg = "Password doesn't match. Please try again
or Contact the System Administrator!!";
}//elsePassword

109

}else{
msg = "User Name is not in database.

Account first by contacting the System
Administrator!!";

}//elseUsername
}//while
rs.close();
stmt.close() ;
connect.close();
}catch(SQLException E) {
System.out.println("SQLException: " +

E.getMessage());
System.out.println("SQLState: " +

E.getSQLState());
System.out.println("VendorError: " +

E.getErrorCode());
} //end catch
return(msg);
//loginUser
}//UsersAdmin class

Create User

I

110

REFERENCES

[1] Fernandez L., Sanchez J.A., Community Tales: An
Infrastructure for the collaborative construction of
digital theses repositories. Proceedings of the Sixth
International Conference on Electronic Theses and
Dissertations(ETD 2003, Berlin, Germany, May).

[2] Fernandez L., Sanchez J.A., Flores A., An
environment for the collaborative revision of digital
theses. Proc. Of the 6th Inti. Workshop on Groupware
(CRIWG 2000, Madeira, Portugal), IEEE Computer
Society Press, 150-153, 2000.

[3] Sanchez J.A., Flores A., Provisions for collaborative
revision and annotation of digital documents,
Conference on Computer Supported Cooperative Work,
ACM Press 2002.

[4] Girgensohn A., Lee A., Schluter K., Experience in
developing collaborative applications using the world
wide web "Shell", The Seventh ACM Conference on
Hypertext, Washingtin D.C., March 1996.d

[5] IEEE Std. 830-1998, IEEE Recommended Practice for
Software Reqirement Specification - Annex A.

[6] Flower and Scott, UML Distilled, A Brief Guide to
Standard Object Modelling Language, 1999.

[7] Perry D.E., Porter A., Wade M.W., Votta L.G., Perpich
J., Reducing Inspection Interval in Large-Scale
Software Development, IEEE Transactions on Software
Engineering, Vol 28, No. 7, July 2002.

[8] Naughton P.,Schildt H., Java 2 - The Complete
Reference, Tata McGraw Hill 1999.

[9] Tremblett P., Instant JavaServer Pages, McGraw Hill
2000.

[10] Tulder G.V., PHP and MySql Tutorials, Storing
Heirarchical data in a Database,
http://www.sitepoint.com/articles/heirarchical-data-
database, April 2003.

Ill

http://www.sitepoint.com/articles/heirarchical-data-database
http://www.sitepoint.com/articles/heirarchical-data-database

