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ABSTRACT

The tools used in survival analysis are the Kaplan-

Meier Estimator, a non-parametric statistic, and the Cox

Proportional Hazard method. The Kaplan-Meier method

estimates the survival curve taking into account censored

data. Cox Proportional Hazard results include total

values/censored values, covariate non-parametric estimate,

standard error, chi-square statistic, P-value, and hazard

ratio. We used the Mayo Clinic study of 418 Primary

Biliary Cirrhosis patients during a ten-year period. In

using these methods we found that the Kaplan-Meier

survival curves were significantly different between the

groups. Kaplan-Meier results include total values/censored

values.

The results indicate that drugs did not have a major

difference on the outcome of the tests. Gender was the

substantial determining factor.
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CHAPTER ONE

INTRODUCTION TO SURVIVAL ANALYSIS

The term "survival analysis" pertains to a

statistical approach designed to take into account the

amount of time an experimental unit contributes to a

study. That is, it is the study of time between entry into

observation and a subsequent event. In survival analysis

we observe the length of time from a starting point (such

as the date of a hospital admission) until the occurrence

of an endpoint event (such as death), often referred to as

a "failure." A key characteristic of survival analysis is

the inclusion of partially missing (so-called "censored")

data. For example, if a woman is alive at study's end we

do not know how long she is going to live; however if her

start point occurred 180 days earlier, we do know that her

survival time is at least 180 days. Loss to follow-up, and

"closing the files" when a study ends are common censoring

events.

There are two aspects of survival analysis that make

it interesting from a data analysis perspective which are:

1. The response variable, time to failure, is

usually not normally distributed.
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2. Survival analysis often involves censored data.

Originally the event of interest was death, hence the

term, "survival analysis." The analysis consisted of

following the subject until death. The uses in the

survival analysis of today vary quite a bit. Applications

now include time until onset of disease, employment,

equipment failure, earthquake, and so on. The best way to

define such events is simply to realize that these events

are a transition from one discrete state to another at an

instantaneous moment in time. Of course, the term

"instantaneous", which may be years, months, days,

minutes, or seconds, is relative and has only the

boundaries set by the researcher.

The origin of survival analysis goes back to

mortality tables from centuries ago. However, it was not

until World War II that a new era of survival analysis

emerged (See,[8]). This new era was stimulated by interest

in reliability (or failure time) of military equipment. At

the end of the war these newly developed statistical

methods emerging from strict mortality data research were

applied to failure time research, and quickly spread

through private industry as customers became more

demanding of safer, more reliable products. As the uses of
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survival analysis grew, parametric models gave way to

nonparametric and semi parametric approaches because of

their appeal in dealing with the ever-growing field of

clinical trials in medical research. Survival analysis was

well suited for such work because medical intervention

follow-up studies could start without all experimental

units enrolled at the start of the observation time and

could end before all experimental units had experienced an

event. This is extremely important because even in the

best-developed studies there will be subjects who choose

to quit participating, who move too far away to follow, or

who will die from some unrelated event. The researcher was

no longer forced to withdraw the experimental unit and all

associating data from the study; instead techniques called

censoring enable researchers to analyze incomplete data

due to delayed entry or withdrawal from the study. This

was important in allowing each experimental unit to

contribute all of the information possible to the model

for the amount of time the researcher was able to observe

the unit.

Current software packages and high performance

computers now make applying survival analysis techniques

3



easier to solve because of their computationally intensive

algorithms.

Some of the tools used in survival analysis are the

cumulative distribution function F(t) , the probability

density function f(t), the survival function S(t) , and the

hazard function, h(f) . The survival function data is

generally described and modeled in terms of two related

functions, the survivor function and hazard function. The

survivor function, S(t) , represents the probability that an

individual survives from the time origin to some time

beyond t, it is positive and ranges from 0 to 1. It is

defined as 5(0) = 1 and as / approaches °o , 5(/) approaches 0.

The survivor function can be estimated non-parametrically

from observed data, both censored and uncensored, using

the Kaplan-Meier method. This method is also called the

product-limit method and is based on maximum likelihood

estimation. Suppose deaths occur at times tx < t2... < tn .

The Kaplan-Meier estimator is the estimator used by most

software packages because of the simplistic step idea. The

Kaplan-Meier estimator incorporates information from all

of the observations available, by considering any point in
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time as a series of steps defined by the observed survival

and censored times.
t

S(t) = p(T >0 = 1 -F(/) = l- \f(u)du
K=0

The above survival curve describes the relationship

between the probability of survival- and time.

The cumulative distribution function is very useful

in describing the continuous probability distribution of a

random variable, such as time, in a survival analysis. The

cumulative distribution function of a random variable T ,

denoted by Ft(t), is defined by Ft (t) = Pt(T < t). This is

interpreted as a function that will give the probability

that the variable T will be less than or equal to any value

t that we choose. Several properties of a distribution

function F(t) can be listed as a consequence of the

knowledge of probabilities. Note that F(t) has the

probability 0 < F(t) < 1, and F(t) is a non-decreasing

function of t, and as / approaches °o , F(t) approaches 1.

The resulting function is also called the survivorship or

survival function. The hazard function A(/)is given by the

following:

h(i) = P{t < T < (/ + A) | T > t} = /(/) /(I - F(/)) = f(t) / S(t)

5



The hazard function describes the concept of the risk of

an outcome (e.g., death, failure, hospitalization) in an

interval after time t, conditional on the subject having

survived to time t . It is the probability that an

individual dies at somewhere between t and t + A, divided by

the probability that the individual survived beyond time t .

The hazard function seems to be more intuitive to use in

survival analysis than the probability density function

because it attempts to quantify the instantaneous risk

that an event will take place at time t given that the

subject survived to time t (See, [8], [9]).

The survivor function and hazard function can be

estimated from observed data. If the form of F(t) is not

specified then non-parametric procedures can be used,

otherwise parametric models can be fitted to the data.

The probability density function is also very useful in

describing the continuous probability distribution of a

random variable. Every continuous random variable has its

own density function, the probability P(a<T<b) is the area

under the curve between times a and b.

Censoring or incomplete data in survival analysis

experiments are designed for a shorter period of time
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only, and, have to account for the lost observations. If

we observe a sample only for a short period of time, we

only know that some individuals were alive at the end of

the survey and no information on their exact time of death

is available. Similarly if observations are lost during

the experiment, all we know is that these individuals were

still alive at some stage and no information on their

exact time of death is available.

Data are called right-censored if the current survey

ends at a fixed date known in advance. If the event of

interest happens after this date, the observation is

censored. All we know in this case is that the event might

have happened after the end of the survey. Data are called

left-censored if no information on the date at which the

event of interest occurred is available. All we know in

this case is that a certain disease occurred before the

examination. Survival in two or more groups of patients

can be compared using a non-parametric test such as the

log-rank test, also called the Mantel-Cox test. This is

the most widely used method of comparing survival curves.

There are several reasons Cox's proportional hazards

modeling was chosen to explain the effect of covariates on

time until event. They are the relative risk non
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parametric assumptions, the use of the partial likelihood

function, and the creation of survivor function estimates.

The non-parametric tests for comparing survival in

the Mantel-Cox method essentially calculate at each death

time, for each treatment group, the expected number of

deaths under the null hypothesis of no difference between

groups. These are then summed to give the total expected

number of deaths in each treatment group, say E, for

treatment group i . The log-rank test for data compares the

observed number of deaths in each treatment group, say 0,

for treatment group i, to the expected number by

calculating the test statistic

2 S(0._Ei)2
x2=Z

i=i Ei

and comparing it to a chi-square distribution with g-1

degrees of freedom, where g is the number of treatment

groups.

Nonparametric methods provide an alternative series

of statistical methods that require no or very limited

assumptions to be made about different circumstances. Some

of the more commonly used are the nonparametric

alternatives to the /-tests, and it is these that are

covered in the present review.
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EPI-Info™ version 3.3.2 is the software package used

in Chapters 3 and 4, especially for Cox Proportional

Hazard. EPI-Info is a public domain software package

designed for the global community of public health

practitioners and researchers. It provides for easy form

and database construction, data entry, and analysis with

epidemiologic statistics, maps, and graphs. Minitab 14 was

used in Chapter 1 and 2 for Kaplan-Meier Estimator

(See,[14]).
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CHAPTER TWO

KAPLAN-MEIER ESTIMATOR

The Kaplan-Meier estimate is a simple way to compute

the survival curve. It involves computing the number of

people who died at a certain time point, divided by the

number of people who were still in the study at that time.

These probabilities are multiplied by any earlier computed

probabilities, which is one reason this is called a

"product limit estimate." The Kaplan-Meier survival curve

is often illustrated graphically. It looks like a poorly

designed staircase, with vertical steps downward at the

time of death of each individual subject (See Appendix D).

Often we will compare curves for two different groups

of subjects. For example, the survival pattern for

subjects on a standard therapy may be compared to a newer

therapy. We can look for gaps in these curves in a

horizontal or vertical direction. A vertical gap means

that at a specific time point, one group had a greater

fraction of subjects surviving. A horizontal gap means

that it took longer for one group to experience a certain

fraction of deaths.
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To compute a survival curve, we need to note the time

of occurrence of events (e.g., failures, deaths) and letI
/,,/2,/3,... represent the times when a death or failure occurs.

It is possible for two or more events to occur at the same

time, in which case the number of distinct times is less

than the number of deaths or failures. We need to place

the t's in order from smallest to largest, that is,

tx<t2<t2< ....

We also need to define the starting point of the study,

Zo = 0 . The basic computations for the Kaplan-Meier survival

curve rely on the computation of conditional survival 

probabilities. In particular, the probability P[Y>/(.|7’>/_t]

which can be interpreted as the probability of a subject

survival to a specific time, given that the subject

survived to the previous time. This probability is easy to

calculate if we know the number of deaths or failures at a

specific time and if we also know the number of patients

at risk at that time.

A more difficult (but more important) probability is

the unconditional probability of survival, P[Y>/.] which

represents the simple probability of survival to a

11



Armed with this information we can now compute a Kaplan-

Meier survival curve. First we need to calculate the

number of patients at risk, ni =ni_A-- c(._j . In other words,

the number at risk at any specific time point is just the

number at risk at the previous time point, minus the

number of deaths/failures and the number of censored

observations. For convenience, we define n0 to be the total

number of patients in the study, c0 to be the number of

censored observations prior to the first death or failure,

and d0 = 0 . Next we compute the estimate of the conditional

probability of survival: (See, [1], [9]).

p[r>r; raz,..,]-!-!-

Finally, the unconditional probability of survival is

simply the cumulative product of the conditional

probabilities.

p[r>

Censoring

Censoring is a key concept for survival analysis.

Censoring is a form of missing data. In an experiment in

13



which subjects are followed over time until an event of

interest (such as death or other type of failure) occurs,

it is not always possible to follow every subject until

the event is observed. An event is usually death (but

other events used in the literature include hospital

discharge, development of a disease, and relapse of a

malignancy). The event is also referred to as a failure.

Subjects may drop out of the study and be lost to follow

up, or be deliberately withdrawn, or the end of the data

collection period may arrive before the event is observed

to happen. For such a subject, all that is known is that

the time to the event was at least as long as the time to

when the subject was last observed. The observed time to

the event under such circumstances is censored. Survival

analysis methods generally allow for censored data.

Censoring may occur from the right (observation stops

before the event is observed) as in censorship for

survival analysis, or from the left (observation does not

begin until after the event has occurred).

Suppose that the following Primary Biliary Cirrhosis

data are observed from 15 («=15) with Platelets. Seven

14



patients relapse at 9.7, 10.3, 10.6, 11, 12, 12.2, 13.6,

months.

The Kaplan-Meier estimates can be calculated by

constructing a table with five columns following the

outline below.

1. Column 1 contains all the survival time, both

censored and uncensored in order from largest to

smallest.

2. The second column, labeled i, consists of the

corresponding rank of each observation in

column 1.

3. The third column, labeled r, pertains to

uncensored observations only. Let r=i.

4. Compute («-r)/(n-r + l), or p(., for every uncensored

observation Z(;) in column 4 to give the

proportion of patients surviving up to and then

through .

5. In column 5, S(t) is the product of all values of

(n-r)/(n-r + Y) up to and including t . If some

uncensored observations are ties, the smallest

S(t) should be used.

15



To summarize this procedure, let n be the total number of

patients whose survival times, censored or not, are

available. Re-label the n survival times in order of

increasing magnitude such that /(1) </(2) <... </(n) . Then

<S(O = T"r---------- where r runs through those positive integers
jln-r+l

for which /(r) <t and t(r) is uncensored. The values of r are

consecutive integers 1,2,...,n if there are no censored

observations; if there are censored observations, they are

not counted. The estimated median survival time is 50

percentile, which is the value of t at S(t) = 0.50. See

Appendix B for an example of the calculation of a Kaplan-

Meier estimate. For calculations by Minitab (see Appendix

C) and for graph of Kaplan-Meier regarding survival curves

of genders, (see Appendix D).

Log - Rank Test

Often it is of interest to determine whether two or

more samples could have arisen from identical survivor

functions. One approach would involve the use of the

asymptotic results for F(t) mentioned above to devise a

test for equality of the survivor functions at some pre

16



specified time t. Such a procedure, however, would not

usually make efficient use of the available data, and

attention in recent years has turned instead to test

statistics that attempt to summarize differences between

survivor function estimators over the whole of the study

period. The log-rank test is particularly good when the

ratio of hazard functions in the populations being

compared is approximately constant. It can also be

advocated on the basis of ease of presentation to non-

statistical personnel since the test statistic is the

difference between the observed number of failures in each

group. It is a quantity that, for most purposes, can be

thought of as the corresponding expected number of

failures under the null hypothesis (See, [2], [4]).

Suppose one wishes to test the equality of the

survivor functions Fx(t),...,Fr(t) on the basis of samples from

each of r populations. Let /, < t2 tk denote the failure

times for the sample formed by pooling the rindividual 

samples. Suppose d- failures occur at tjand the n,j study

subjects are at risk just prior to /.(y =1,...,&) and let d-and

7JI?.be the corresponding numbers in sample i (i = l,...,r) . The

17



data at f are in the form of a 2xr contingency table with 

dy failures and ny-dy survivors in the i th row (z' = l,..,r).

Conditional on the failure and censoring experience up to 

time /.the distribution of dxj,...,drj is simply the product of

binomial distributions

n
1=1

y |V,.(1-2,.)"^ (2.1)

where 2.is the conditional failure probability at f which

is common for each of the r samples under the null

hypothesis. The conditional distribution for dXj,...,drj given

dj is then the hyper-geometric distribution

n
Au

The mean and variance of dt~ from (2.1) are, respectively,

= nydjnf' and (F.)ff = -tiyjdfnj-d^nf2^. -I)’1

The covariance of dy and dy is (Vj)a =-nynydfn -djffij 2(rij-V)

Thus the statistic v j = (dy-Wy,...,drj. -wry.)has (conditional) 

mean zero and variance matrix Vj, where the prime denotes

18



vector transpose. See Appendix E for an example of the

log-rank test.
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CHAPTER THREE

COX PROPORTIONAL HAZARD REGRESSION MODEL

The Cox proportional Hazard model is probably the

most widely used method for modeling survival data. For

data with one explanatory variable, i.e. one covariate,

non-parametric methods like plotting Kaplan-Meier survival

probabilities may be adequate if the groups being compared

are reasonably similar. Frequently however, the groups

being compared differ in many respects. They may have

different age distributions, different proportions of men

and women, different smoking habits etc. These differences

come in addition to the covariates we are really

interested in, and the analysis must be adjusted to

compensate for these other differences, which may

otherwise confound the analysis. The Cox proportional

hazards model is a semi-parametric model for fitting

survival data. The basic model is as follows:

A(z|Z) = /z0(f)-exp(^Z)

where h0(t) is the baseline hazard which may vary

arbitrarily over time, and z is the covariate vector. The

covariates may be time-dependent but are fixed at the

20



start of the study. The vector ft - {/3x,...,Pn) is a vector of

covariate coefficients. The baseline hazard is treated

non-parametrically, but the individual covariate effects 

(J3p) are assumed to be constant throughout the study. The

model is often called the proportional hazards model

because of this constant covariate effect throughout the

study. If two individuals are compared that have covariate

values Z and Z* the ratio of their hazard rates at any

time point simplifies to

/i,/z)exp[y/3Z,] ,
-----------a------ = exp[2A(Z« -4')]
A,(()exp[£>?z;] *■'

k=l

This ratio is constant or "proportional" throughout the

study. This assumption greatly facilitates the

interpretation of covariate effects, as the effect of a

given covariate compared to the absence of that covariate

is expressed as a single constant. This does not however

imply that the absolute difference between the two

individuals discussed above is constant; the exponentiated

covariates act multiplicatively on a baseline hazard which

may vary freely (See, [3]).
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Cox Model with Several Covariates

Fitting of the multivariate Cox proportional hazards

model would be conducted by starting with a model with all

variables listed above. One by one, the least significant

variable would be removed until only significant variables

remained in the model. Data for overall survival was

modeled in the same way. (See,[5]).

The Assumption of Proportional Hazards

Since the Cox proportional hazards model relies on

the hazards to be proportional, i.e. that the effect of

given covariate does not change over time, it is very

important to verify that the covariates satisfy the

assumption of proportionality. If the assumption is

violated, the simple Cox model is invalid, and more

sophisticated analyses are required. If the interest

centers upon a binary covariate, Z, whose relative risk

changes over time, one approach is to introduce a time-

dependent covariate as follows. Let

Z, if the covariate Zj takes on the value 1

a

22(0 =
if the covariate Zj takes on the value 0,0

22



where g(i) is a known function of time. In such cases, it

may be preferable to use a procedure that would allow the

function g(f) to be estimated from the data. One approach

to this problem is to fit a model with an indicator

function for gif) . In the simplest approach, define a time-

dependent covariate Z2(/) =
if t>r 
if t<r

To determine the optimal value of t , the model

including the new covariate zfit) is fitted for a set of

values for t , and the value of the maximized log partial

likelihood is the optimal value to use. Proportional

hazards can, then, be tested for each region and if it

fails, for t on either side of r then this process can be

repeated in that region.

The assessment of the proportional hazards assumption

can be done numerically or graphically. A great number of

procedures have been proposed over the years. Some of the

procedures require partitioning of failure time, some

require categorization of covariates, some include a

spline function, and some can be applied to the

untransformed dataset. None of the methods, either

numerical or graphical, are today known to be better than

23



the others in finding out whether - the hazards are

proportional or not. Some authors recommend using

numerical tests and others recommend graphical procedures

since they believe that the proportional hazards

assumption only approximates the correct model for a

covariate and that any formal test, based on a large

enough sample, will reject the null hypothesis of

proportionality.

Maximum Likelihood

The likelihood and log-likelihood functions are the

basis for deriving estimators for parameters, given data.

While the shapes of these two functions are different,

they have their maximum point at the same value. In fact,

the value of 0 that corresponds to this maximum point is

defined as the Maximum Likelihood Estimate and that value

is denoted as 0 . This is the value that is "most likely"

relative to the other values. This is a simple, concept

and it has a host of good statistical properties. Thus, in

general, we seek 0 such that this value maximizes the log-

likelihood function (See, [4], [7]).
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Generally, the calculus is used to find the maximum

point of the log-likelihood function and obtain Maximum

Likelihood Estimations in closed form. This is tedious and

often not useful in real problems (where closed form

estimator may often not even exist). The log-likelihood

functions we will see have a single mode or maximum point

and no local optima. These conditions make the use of

numerical methods appealing and efficient. (See,[6]).

Consider first, the binomial model with a single

unknown parameter,#. Using calculus one could take the

first partial derivative of the log-likelihood function

with respect to the 0, set it to zero and solve for 0.

This solution will give 0, the Maximum Likelihood

Estimation. This value of 0, is the one that maximizes the

likelihood function. It is the value of the parameter that

is most likely, given the data.

The likelihood function provides information on the

relative likelihood of various parameter values, given the

data and the model (here, a binomial). Think of 10 of your 

friends, 9 of which have one raffle ticket, while the 10th

friend who has 4 tickets, has a higher likelihood of

winning relative to the other 9 friends. If you were to
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try to select the most likely winner of the raffle, which

person would you pick? Most would select the person with 4

tickets. Now, what if 8 people had a single ticket, one

had 4 tickets, but the last had 80 tickets. Surely the

person with 80 tickets is most likely to win (but not with

certainty). In this simple example you have a feeling

about the "strength of evidence" about the likely winner.

In the first case, one person has an edge, but not much

more. In the second case, the person with the 80 tickets

is relatively very likely to win.

The shape of the log-likelihood function is important

in a conceptual way to the raffle ticket example. If the

log-likelihood function is relatively flat, one can make

the interpretation that several (perhaps many) values of p

are nearly equally likely. They are somewhat alike; this

is quantified as the sampling variance or standard error.

If the log-likelihood function is fairly flat, this

implies considerable uncertainty and this is reflected in

large sampling variances and standard errors, and wide

confidence intervals. On the other hand, if the log-

likelihood function is fairly peaked near its maximum

point, this indicates some values of p are relatively very

26



likely compared to others (like the person with 80 raffle

tickets). There is some considerable degree of certainty

implied and this is reflected in small sampling variances

and standard errors, and narrow confidence intervals. So,

the log-likelihood function at its maximum point is

important as well as the shape of the function near this

maximum point.

The shape of the likelihood function near the maximum

point can be measured by the analytical second partial

derivatives and these can be closely approximated

numerically by a computer. Such numerical derivatives are

important in complicated problems where the log-likelihood

exists in 20-60 dimensions. This method's advantage is

that

maximum likelihood provides a consistent approach to

parameter estimation problems. This means that maximum

likelihood estimates can be developed for a large variety

of estimation situations. For example, they can be applied

in reliability analysis to censored data under various

censoring models (See, [10], [11]).

Maximum likelihood methods have desirable

mathematical and optimality properties. Specifically,
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1. They become minimum variance unbiased estimators

as the sample size increases. By unbiased, we

mean that if we take (infinitely many number of)

random samples with replacement from a

population, the average value of the parameter

estimates will be theoretically exactly equal to

the population, the average value of the

parameter estimates will be theoretically

exactly equal to the population value. By

minimum variance, we mean that the estimator has

a smallest variance, and thus the narrowest

confidence interval, of all estimators of that

type.

2. They have approximate normal distributions and

approximate sample variances that can be used to

generate confidence bounds and hypothesis tests

for the parameters.

Several popular statistical software packages provide

excellent algorithms for maximum likelihood estimates for

many of the commonly used distributions. This helps

mitigate the computational complexity of maximum

likelihood estimation. This method's disadvantage is that,

the likelihood equations need to be specifically worked
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out for a given distribution and estimation problem. The

mathematics is often non-trivial, particularly if

confidence intervals for the parameters are desired.

The numerical estimation is usually non-trivial.

Except for a few cases where the maximum likelihood

formulas are in fact simple, it is generally best to rely

on high quality statistical software to obtain maximum

likelihood estimates. Fortunately, high quality maximum

likelihood software is becoming increasingly common.

Maximum likelihood estimates can be heavily biased

for small samples. The optimality properties may not apply

for small samples. Maximum likelihood can be sensitive to

the choice of starting values.

Partial Likelihood

To obtain estimates of the covariate parameters, Cox

developed a nonparametric method he called partial

likelihood. Estimation of the parameter values is then

obtained by use of maximum partial likelihood estimation.

The partial likelihood method based on this assumption is

related to /z0 being undetermined. The intervals between

successive duration times (or failure times) contribute no
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information regarding the relationship between the

covariates and the hazard rate.

This is in contrast to the parametric methods, where the

actual survival times are used in the construction of the

likelihood function. Because the Cox model only uses

"part" of the available data (/z0(/)is not estimated), the

likelihood function for the Cox model is a "partial"

likelihood function, hence the name. To get a sense for

how this works, look at the logic underlying the partial

likelihood method. Consider the data in Appendix F. Here

are the survival times for fifteen cases. Of these fifteen

cases four of them are right-censored and coded 1. All the

tables in the Appendix, 0 represents male, 1 represents

female.

In the Appendix F table, the first case for /, occurs

at 51 follow up days, t2 occurs at 2 64 follow up days, t3

occurs at 611 follow up days, t4 occurs at 7 62, t6 occurs

at 1012 follow up days, /7 occurs at 1217 follow up days,

/8 occurs at 1427 follow up days, /9 occurs at 2466 follow

up days, tn occurs at 2689 follow up days, /14 occurs at
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4079 follow up days, /]5 occurs at 4191 follow up days,

/5,/10,/12, and /13 are censored (See Appendix G) .

• Events can be ordered.

• At /„ all cases are at risk of failing.

• After the first failure, the risk set decreases

by 1.

• The risk set successively dwindles as events

occur.

To motivate the partial likelihood estimator, let

= exp(/?'x;) . The partial likelihood function for these data

would be equivalent to:

LP =

( \
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7 \
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For a similar illustrative calculation see Appendix G. In

words, this tells us that each of the fifteen cases is at

risk of experiencing an event up to the first failure

time, t5 . After the first failure in the data set, the risk
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set decreases in size by 1; thus, the risk set up to the

second failure time, /10, includes all cases. By the fourth

failure time in the data, t13, the risk set includes only

cases 5, 10, 12, and 13. By the last failure time, only

case 13 remains in the risk set. This exercise shows that

the partial likelihood function is solely based on the

ordered duration times, and not on the length of the

interval between duration times. Also, censored

observations contribute information to the "risk set,"

that is, cases that are surviving to time , but

contribute no information regarding failure times. To be

more formal, suppose we have a data set with n

observations and k distinct failure (event) times. Cox

estimation first proceeds by sorting the ordered failure

times, such that

tx <t2 < ... <tk,

where denotes the failure time for the i th individual.

For censored cases, we define 8. to be 1 if the case is

right-censored, and 0 if the case is uncensored. Finally,

the ordered event times are modeled as a function of

covariates,x .
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The partial likelihood function is derived by taking

the product of the conditional probability of a failure at

time /, given the number of cases that are at risk of

failing at time . That is to say, given that some event

has occurred, what is the probability the event occurred

to the ith individual from a risk set of size «? More

formally, if we define /?(/.) to denote the number of cases

that are at risk of experiencing an event as time t., that

is, the "risk set," then the probability that the j th case

will fail at time f is given by

L e
(3.1)

MO

where the summation operator in the denominator is summing

over all individuals in the risk set. Taking the product

of the conditional probabilities in (3.1) yields the

partial likelihood function (a similar example can be

found in [5], [6]),

RR(ii)

with corresponding log-likelihood function,
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/=!
-tog 2 ep' (3.2)

By maximizing the log-likelihood in (3.2), estimates of 

the f3 may be obtained. What is the importance of this

result?

• Specifying the baseline hazard, Zz0(/) is

unnecessary.

• The interval between events does not inform the

partial likelihood function.

• Censored cases contribute information only

pertinent to the risk set (i.e. the denominator,

not the numerator)

The critical thing here is to note that no assumptions

about the shape of the baseline hazard need to be made.

Another way to see this is to think about the heuristic

partial likelihood function above. All we need to know to

compute a probability is ys (orexp(/?'*,)) .

Cox demonstrated that maximum partial likelihood

estimation produces parameter estimates that have the same

properties as maximum likelihood estimates. This is

convenient because under the same set of regularity

conditions as maximum likelihood estimation the parameter
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estimates from partial likelihood are asymptotically

normal, asymptotically efficient, consistent, and

invariant. So the usual kinds of hypothesis tests

discussed in the context of parametric models are directly

extended to the Cox model. The first step in applying the

results of the Application to the primary biliary

cirrhosis data is to order the survival times from

smallest to largest. Appendix G shows an example of this

data. The partial likelihood for ft is now formed by taking

the product over all failure points to give

( \
£W=fl

(=1

exp(z([)/7)
S exP(zz^)

k/eZ!(r,.) ,

The partial likelihood is not a likelihood in the

usual sense in that the general construction does not give

a result that is proportional to the conditional of

marginal probability of any observed event. This is an

example of a partial likelihood to be found in Appendix G.

pp ■- __________________ ______________________
(6ep + 9) • (5ep + 9) ■ (4ep + 9)-(4ep + 8) • (V + 6) 
________________ 1________________
(4ep + 5) • (4ep + 4) • (3ep + 4) • (lep + 4) • (Oe^ + 2)
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d
d(PL)"

________________ 2ef_________________
(6ep +9) (5^ +9)(4^ +9) (4^ +8)(4e/’ +6)

_____________ 1______________
(4ep +5) (4^ +4)(3e/' +4)(e/> +4)

_______________ 3?V________________
(6ep + 9)2 (5ep + 9) (4ep + 9) (4^ + 8)(4</ + 6) 

_____________ 1_______________
(4ep + 5) (4ep + 4) (3^ + 4) (ep + 4) 

________________ SApep________________
2{6ep +9)(5^ + 9)2 (4ep +9)(4e/J +8)(4^ +6) 

_____________ 1__________
(4ep +5) (4ep + 4)(3ep + 4)(ep +4) 

_______________ 2e'pep________________
(6ep +9)(5e^ +9)(4e/' +9)2(4ez' +8) (4^ +6) 

_____________ I_______________
(4ep +5)(4ep+4)(3ep + 4)(ep +4) 

_______________ 2AW_______________
(W + 9) (5ep + 9) (4ep + 9) (4ep + 8)2 (4ep + 6) 

_____________ 1_______________
(4ep +5)(4ep + 4)(3ep +4)(ep +4) 

_______________ 2AW_________________
(6ep+ 9)(5ep+ 9)(4ep+ 9)(4ep+ 8)(4ep+ 6)2 

_____________ 1_______________
(4ep +5)(4ep +4~)(3ep +4)(ep +4) 

_______________ 2AW________________
(6ep + 9) (5ep + 9) (4ep + 9) (4ep + 8) (4ep + 6) 

______________1_______________
(4ep + 5)2 (4ep +4)(3ep +4)(ep +4)

_______________ 2AW________________
(W + 9) (5ep + 9) (4ep + 9) (4ep + 8) (4ep + 6) 

______________1_______________
(4ep + 5) (4ep + 4)2 (3ep + 4) (ep + 4) 

________________3e'W________________
2 (fep + 9) (5ep + 9) (4ep + 9) (4ep + 8) (4ep + 6) 

______________1_______________
(4ep + 5) (4ep + 4) (3ep + 4)2 (ep + 4)

_______________ Apep________________
(6ep + 9) (Sep + 9) (4ep + 9) (4ep + 8) (4ep + 6) ’

______________]_______________  g 2875
(4ep + 5) (4ep + 4) (3ep + 4) (ep + 4)2

(3.3)
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PA = 0.2875 if f3 = 0 The first step in applying the results of

the data is to order the survival times from smallest to

largest with the additional convention that failure times

precede censored times. An efficient computer solution to

the problem would require essentially the same

organization of the data set. In general, there is

advantage to begin the calculation at the last failure

time since the risk set can then be formed by adding the

labels of items failing or censored.

Information Matrix-

Fisher information is a key concept in the theory of

statistical inference and is defined in the following 

manner: Let X - (Xx,..., Xf) be a random sample, and let f(X\ff) 

denote the probability density function for some model of

the data, which has parameter vector 0 = (01,...,0k) . Then the

Fisher information matrix I„(0) of sample size n is given by

the kxk symmetric matrix whose ij — th element is given by

the covariance between first partial derivatives of the

log-likelihood,

In^\j = Cov
d^f(X\0) dln/(W|fl) 

d0x ’ d0j
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An alternative, but equivalent, definition for the Fisher

information matrix is based on the expected values of the

second partial derivatives, and is given by

d2\nf\X\0)
dBfidj

Strictly, this definition corresponds to the expected

Fisher information. If no expectation is taken we obtain a

data-dependent quantity that is called the observed Fisher

information. As a simple example, consider a normal

distribution with mean // and variance a2 , where 3 = (ju,cr2)..

The Fisher information matrix for this situation is given

by: ,/„(0) =
0 n_4

It is worth noting two useful properties of the

Fisher information matrix. Firstly, In(0) = nlfd), meaning that

the expected Fisher information for a sample of n

independent observations is equivalent to n times the

Fisher information for a single observation. Secondly, it

is dependent on the choice of parameterization. Suppose

the parameter 6 is changed into another parameter

■q = {rix,...,rik) with iji = gf3) where gt is one-to-one so its
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inverse g^fj/ = di exists. The Fisher information /*(/7) for 

the new parameterization is obtained using the chain rule

= J(rj)TIn(0(r}y)J(ff) , where 7(7) is the Jacobian matrix with 

elements J(rj)y = dg^ff)/dTj^iJ = .

Let T(X) be any statistic and let be its

expectation such that = £[77(Y)] . Under some regularity

conditions, it follows that for all 0,

var(T(Y)) > I d& -4- (3.4)
W

The value of the right hand side of (3.4) is known as the

Information inequality lower bound. In particular, if T(X)

is an unbiased estimator for 0, then the numerator becomes

1, and the lower bound is simply —-—. Note that this
w

explains why In(0) is called the "information" matrix: The

larger the value of In(0} is, the smaller the variance

becomes, and therefore, we would be more certain about the

location of the unknown parameter value. The information

inequality generalizes to the multi-parameter case, where

0 = (0[,...,0k). Let the statistic W(X) be an estimator for some

function g(0) . Then the inequality states that
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Var(JV(X))>y(O)TIn(6yxy(6) where y(ff) is a kxl column vector with 

elements y(0); = dg(0)/30(.. The Asymptotic Theory involves the

maximum likelihood estimator that has many useful

properties, including re-parametrization-invariance,

consistency, and sufficiency. Further, it follows under

some regularity conditions that the sampling distribution

of a maximum likelihood estimator 3^ is asymptotically

unbiased and also asymptotically normal with its variance-

covariance matrix obtained from the inverse Fisher

information matrix of sample size 1, that is

-»TV/#,///?) /«) as n goes to infinity. The Fisher

information matrix also arises in Bayesian inference.

The log partial likelihood ratio test is not only the

easiest test to compute, but is also the best of the three

tests for assessing the significance of the fitted model.

The computation of information matrix tests for the

multiple proportional hazards regression model requires

matrix calculations. Specifically, we denote the vector of

first partial derivatives whose elements are given as u(JT) .

Under the hypothesis that all coefficients are equal to

zero, and under the mathematical conditions needed for the

partial likelihood ratio test, the vector of scores
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«(O) = k(M,o will be distributed as multivariate normal with

mean vector equal to zero and covariance matrix given by

the information matrix evaluated at the coefficient vector 

equal to zero, 1(0) =/(/?)|^_o . The elements in this matrix are

obtained by evaluating the expressions with the

coefficient vector equal to zero. The score test statistic

is

aWCO)]"1^),

which is distributed asymptotically as chi-square with n

degrees-of-freedom. This statistic can be used to test the

null hypothesis f3 - 0 by using a chi-square test.
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CHAPTER FOUR

PRIMARY BILIARY CIRRHOSIS DATA

Primary biliary cirrhosis is a disease characterized

by inflammatory destruction of the small bile ducts within

the liver. Primary biliary cirrhosis eventually leads to

cirrhosis of the liver. The cause of primary biliary

cirrhosis is unknown, but because of the presence of auto-.

antibodies, it is generally thought to be an auto-immune

disease. Other etiologies, such as infectious agents, have

not been completely excluded. Primary biliary cirrhosis

has a worldwide prevalence of approximately 5/100,000 and

an annual incidence of approximately 6/1,000,000. The

prevalence and incidence appear to be similar in different

regions of the world. About 90% of patients with primary

biliary cirrhosis are women. Most commonly, the disease is

diagnosed in patients between the ages of 40 and 60 years.

(See, [13]).

This data set is a follow-up to the original primary

biliary cirrhosis data set. "Primary biliary cirrhosis:

prediction of short-term survival based on repeated

patient visits." The data from the Mayo Clinic trial in

primary biliary cirrhosis of the liver conducted between
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1974 and 1984 contains a description of the clinical

background for the trial and the covariates. A total of

418 primary biliary cirrhosis patients, referred to Mayo

Clinic during that ten-year interval, met eligibility

criteria for the randomized placebo controlled trial of

the drug D-penicillamine. The first 310 cases in the data

set participated in the randomized trial and contain

largely complete data. The additional 108 cases did not

participate in the clinical trial, but consented to have

basic measurements recorded and to be followed for

survival. Six of those cases were lost to follow-up

shortly after•diagnosis, so the data here are on an

additional 102 cases as well as the 310 randomized

participants.

The data contains only baseline measurements of the

laboratory parameters. This data contains multiple

laboratory results, but only on the first 310 patients.

Some baseline data values in this file differ from the

original primary biliary cirrhosis file, for instance, the

data errors in prothrombin time and age which were

discovered after the original analysis, during research

work on dfbeta residuals. Another major difference is that
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there was significantly more follow-up for many of the

patients at the time this data was assembled.

One "feature" of the data deserves special comment.

The last observation before death or liver transplant

often has many more missing covariates than other data

rows. The original clinical protocol for these patients

specified visits at 6 months, 1 year, and annually

thereafter. At these protocol visits lab values were

obtained for a large pre-specified battery of tests.

"Extra" visits, often undertaken because of worsening

medical condition, did not necessarily have all this lab

work. The missing values are thus potentially informative,

and violate the usual "missing at random" assumptions that

are assumed in analyses. Because of the earlier published

results on the Mayo primary biliary cirrhosis risk score,

however, the 5 variables involved in that computation were

usually obtained, i.e. age, bilirubin, albumin,

prothrombin time, and edema score. The variables used

were: Case number; Number of days between registration and

the earlier of death, trans-plantation, or study analysis

time; Status: 0=alive, l=transplanted, 2=dead; Drug: 1= D-

penicillamine, 0=placebo; Age in days, at registration;

Sex: 0=male, l=female; Day: number of days between
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enrollment and this visit date, remaining values on the

line of data refer to this visit; Serum bilirubin n mg/dl;

Serum cholesterol in mg/dl; Albumin in gm/dl; Alkaline

phosphates in u/liter; SGOT in u/ml (serum glutamic-

oxaloacetic transaminase, the enzyme name has subsequently

changed to "ALT" in the medial literature); Platelets per

cubic ml / 1000; Prothrombin time in seconds; Histologic
J

stage of disease. We used EPI-Info to calculate Kaplan-

Meier for 312 patients Primary Biliary Cirrhosis by Gender

for Age, Albumin, Alkaline, Bili, Platelets, and Spiders

(See Appendix J). The smaller the p-value is, more changes

can be seen affecting the outcomes. The larger the p-value

is, covariates are not significant. In the outcome for 312

patients by Gender there was a noticeable change. In the

outcome for 312 patients by Drug in there was not a

noticeable change (See Appendix L). The smallest p-value

was shown for Age, Albumin, Alkaline, and Bili. The

Coefficient (/?) for Gender was //=-.0804, based on

h(t) = h0(t)e^x indicating that the hazard function for female

is smaller (sex=l), and the male (sex=0) hazard ratio

could be lower with 95 percent confidence (See Appendix

H). The nonparametric survival plot for follow up days by
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Placebo and Penicillamine for 312 patients is illustrated

in Appendix K on the Kaplan-Meier curve for all patients

n = 312 .

We used the nonparametric survival plot for follow up days

by gender for 312 patients. The plot shows the survival

curves for all categories for Primary Biliary Cirrhosis

(See Appendix H). The result of Minitab calculations are

in Appendix I.

We used EPI-Info to calculate Primary Biliary

Cirrhosis by drug for Age, Albumin, Alkaline, Bili,

Platelets, and Spiders for 312 patients (See Appendix L).

In the outcome for 312 patients by Drug there was no

noticeable change. The result in Appendix L show that the

hazard ratio for drugs is not noticeably different. The

hazard rate for the drug was 0.9775. This difference could

be due to the non-linear effect of the drug itself.
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APPENDIX A

DATA OF PRIMARY BILIARY CIRRHOSIS I
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ID
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

FU Days
321

Status
2

Censor
0

Age
15116

Sex
1

Asictes
0

Trig
158

Platelets
124

552 2 0 18799 0 0 122 119
691 0 1 21185 1 * ★ 269
769 2 0 19060 1 0 128 224
877 1 1 12912 0 0 194 306
890 2 0 24622 0 0 91 360
939 0 1 22767 1 0 100 234
1487 2 0 22977 1 0 188 178
1746 2 0 19724 0 * ★ 325
2033 1 1 12839 0 0 210 344
2386 2 0 18460 0 0 93 362
2400 2 0 15526 1 0 88 251
2576 0 1 17323 1 0 71 356
2689 2 0 12227 0 0 155 337
2812 2 0 18628 1 * * *

3069 0 1 19318 0 0 107 182
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APPENDIX B

CALCULATION OF THE 
KAPLAN-MEIER ESTIMATE
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Time (/) Rank i r (n -r}/(n-r +1) 5(/)
321 1 1 15/16 0.938
552 2 2 14/15 (0.938)(0.933) = 0.875
691 3 - -
769 4 4 12/13 (0.875)(0.923) = 0.808
877 5 - -
890 6 6 10/11 (0.808)(0.909) = 0.734
939 7 - -
1487 8 8 8/9 (0.734)(0.889) = 0.653
1746 9 9 7/8 (0.653)(0.875) = 0.571
2033 10 - -
2386 11 11 5/6 (0.571 )(0.833) = 0.476
2400 12 12 4/5 (0.476)(0.800) = 0.381
2576 13 - -
2689 14 14 2/3 (0.381 )(0.667) = 0.254
2812 15 15 1/2 (0.254)(0.500) = 0.127
3069 16 - 0 0
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APPENDIX C

CALCULATION OF THE MINITAB 
FOR 15 PATIENTS
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Kaplan-Meier Estimates

Number
at Number Survival Standard 95.0% Normal CI

Time Risk Failed Probability
Upper

Error Lower

321 8 1 0.875000 
1.00000

0.116927 0.645828

769 6 1 0.729167
1.00000

0.164976 0.405819

1487 4 1 0.546875
0.94000

0.200580 0.153745

2400 3 1 0.364583 
0.75675

0.200086 0.000000

2812 1 1 0.000000
0.00000

0.000000 0.000000
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APPENDIX D

GRAPH OF NONPARAMETRIC SURVIVAL 
PLOT FOR FOLLOW UP DAYS 

FOR 15 PATIENTS
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APPENDIX E

CALCULATION OF THE 
LOG-RANK TEST 

FOR 16 PATIENTS
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ti

321
552
691
769
877
890
939

1487
1746
2033
2386
2400
2576
2689
2812
3069

mi ri zn(,.)/r(,.) <*(,))

1 16 0.625 0.625 0.3751 15 0.067 0.692 0.308- - - - -1 13 0.077 0.769 0.231- - - - -1 11 0.909 1.678 - 0.678- - - - -1 9 0.111 1.789 - 0.7891 8 0.125 1.914 - 0.914- - - - -1 6 0.167 2.081 - 1.0811 5 0.200 2.281 - 1.281- - - - -1 3 0.333 2.614 - 0.6141 - - - -
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APPENDIX F

PRIMARY BILIARY CIRRHOSIS 
FOR 15 PATIENTS
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Patient ID FU Days Status Censor Drug Age Sex Asictes Platelets
1 10 51 2 0 2 25772 1 1 302
2 23 264 2 0 2 20442 1 1 214
3 97 611 2 0 2 26259 0 0 344
4 149 762 2 0 1 22574 0 0 140
5 295 877 1 1 1 12912 0 0 306
6 3 1012 2 0 1 25594 0 0 151
7 14 1217 2 0 2 20535 0 1 156
8 148 1427 2 0 2 11273 1 0 330
9 8 2466 2 0 2 19379 1 0 373
10 190 2504 0 1 1 19916 1 0 327
11 90 2689 2 0 1 12227 0 0 337
12 21 3445 0 1 2 23445 0 0 336
13 16 3672 0 1 2 14772 1 0 198
14 24 4079 2 0 1 16261 0 0 70
15 66 4191 2 0 1 16967 0 0 123
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APPENDIX G

PROPORTIONAL HAZARDS MODEL 
APPLIED TO PRIMARY 
BILIARY CIRRHOSIS
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Contribution to
Patient FU Days Sex Censored Likelihood

1 51 1 6e^+9
ep

2 264 1 5^+9
1

3 611 0 4^+9
1

4 762 0 0(877) 4^+8
1

6 1012 0 4^+6
1

7 1217 0 4^+5
ep

8 1427 1 4ep + 4

ep

9 2466 1 1(2504) 3^+4
1

11 2689 0 0(3445), 1(3672) le^+4
1

14 4079 0 Oe^+2
I

15 4191 0 0e^+l
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APPENDIX H

NONPARAMETRIC SURVIVAL PLOT 
FOR FOLLOW UP DAYS BY GENDER 

FOR 312 PATIENTS
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Nonparametric Survival Plot for Follow Up Days
Kaplan-Meier Method 

Censoring Column in Censor

Sex
---------- Male

--------- Female

Table of Statistics 
Mean Median IQR 

2404,23 2386 3179
2773.30 3428 *
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APPENDIX I

MINITAB CALCULATIONS:
PRIMARY BILIARY CIRRHOSIS BY GENDER

FOR 312 PATIENTS
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Kaplan-Meier Estimates

Number

Time
41
51
71
77

110
130
131
179
186
198
207
216
223
264
304
321
326
334
348
388
400
460
515
549
597
673
694
708
733
750
769
786
790
797
824
850
853
859
904
930
943
971
974
980

1000
1037
1080
1083
1165
1170
1191
1212
1235
1350
1356

at Number Survival Standard 95.0% Normal CI
Risk Failed Probability Error Lower Upper
275 1 0.996364 0.0036297 0.989249 1.00000
274 1 0.992727 0.0051239 0.982685 1.00000
273 1 0.989091 0.0062639 0.976814 1.00000
272 1 0.985455 0.0072196 0.971304 0.99960
271 1 0.981818 0.0080569 0.966027 0.99761
270 1 0.978182 0.0088095 0.960915 0.99545
269 1 0.974545 0.0094977 0.955930 0.99316
268 1 0.970909 0.0101345 0.951046 0.99077
267 1 0.967273 0.0107291 0.946244 0.98830
266 1 0.963636 0.0112882 0.941512 0.98576
265 1 0.960000 0.0118168 0.936840 0.98316
264 1 0.956364 0.0123188 0.932219 0.98051
263 1 , 0.952727 0.0127974 0.927645 0.97781
262 2 0.945455 0.0136941 0.918615 0.97229
260 1 0.941818 0.0141160 0.914151 0.96948
259 1 0.938182 0.0145223 0.909719 0.96664
258 1 0.934545 0.0149143 0.905314 0.96378
257 1 0.930909 0.0152932 0.900935 0.96088
256 1 0.927273 0.0156598 0.896580 0.95797
255 1 0.923636 0.0160150 0.892248 0.95503
254 1 0.920000 0.0163596 0.887936 0.95206
253 1 0.916364 0.0166942 0.883644 0.94908
252 1 0.912727 0.0170194 0.879370 0.94608
251 1 0.909091 0.0173357 0.875114 0.94307
250 1 0.905455 0.0176436 0.870874 0.94004
249 1 0.901818 0.0179436 0.866649 0.93699
248 1 0.898182 0.0182360 0.862440 0.93392
247 1 0.894545 0.0185211 0.858245 0.93085
245 1 0.890894 0.0188020 0.854043 0.92775
243 1 0.887228 0.0190787 0.849834 0.92462
242 1 0.883562 0.0193489 0.845639 0.92148
241 1 0.879896 0.0196129 0.841455 0.91834
240 1 0.876229 0.0198709 0.837283 0.91518
239 1 0.872563 0.0201231 0.833123 0.91200
238 1 0.868897 0.0203698 0.828973 0.90882
235 1 0.865199 0.0206160 0.824793 0.90561
234 1 0.861502 0.0208568 0.820623 0.90238
233 1 0.857805 0.0210925 0.816464 0.89915
231 1 0.854091 0.0213255 0.812294 0.89589
230 1 0.850378 0.0215537 0.808133 0.89262
228 1 0.846648 0.0217795 0.803961 0.88933
227 1 0.842918 0.0220006 0.799798 0.88604
226 1 0.839189 0.0222171 0.795644 0.88273
225 1 0.835459 0.0224293 0.791498 0.87942
223 1 0.831712 0.0226394 0.787340 0.87608
221 1 0.827949 0.0228476 0.783168 0.87273
219 1 0.824168 0.0230540 0.778983 0.86935
218 1 0.820388 0.0232561 0.774807 0.86597
214 1 0.816554 0.0234613 0.770571 0.86254
213 1 0.812721 0.0236623 0.766343 0.85910
212 2 0.805053 0.0240521 0.757912 0.85219
210 1 0.801220 0.0242412 0.753708 0.84873
205 1 0.797311 0.0244360 0.749418 0.84521
195 1 0.793223 0.0246504 0.744909 0.84154
194 1 0.789134 0.0248601 0.740409 0.83786
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1413
1427
1434
1444
1487
1492
1576
1657
1690
1741
1786
1827
1847
1925
2055
2081
2090
2105
2224
2256
2288
2297
2400
2419
2466
2503
2540
2583
2598
2769
2847
3086
3090
3170
3222
3244
3282
3358
3428
3445
3574
3584
3762
3839
3853

188 1 0.784936 0.0250797 0.735781 0.83409
185 1 0.780693 0.0253005 0.731105 0.83028
183 1 0.776427 0.0255194 0.726410 0.82644
180 1 0.772114 0.0257396 0.721665 0.82256
175 1 0.767702 0.0259679 0.716806 0.81860
174 1 0.763290 0.0261908 0.711957 0.81462
167 1 0.758719 0.0264298 0.706918 0.81052
162 1 0.754036 0.0266783 0.701747 0.80632
159 2 0.744551 0.0271727 0.691293 0.79781
154 1 0.739716 0.0274230 0.685968 0.79346
148 1 0.734718 0.0276894 0.680448 0.78899
145 1 0.729651 0.0279582 0.674854 0.78445
142 1 0.724513 0.0282296 0.669184 0.77984
137 1 0.719224 0.0285146 0.663337 0.77511
128 1 0.713605 0.0288401 0.657080 0.77013
127 1 0.707986 0.0291553 0.650843 0.76513
126 1 0.702367 0.0294604 0.644626 0.76011
125 1 0.696749 0.0297557 0.638428 0.75507
114 1 0.690637 0.0301158 0.631611 0.74966
111 1 0.684415 0.0304805 0.624674 0.74416
109 1 0.678136 0.0308408 0.617689 0.73858
107 1 0.671798 0.0311970 0.610653 0.73294

98 1 0.664943 0.0316228 0.602963 0.72692
97 1 0.658088 0.0320312 0.595308 0.72087
92 1 0.650935 0.0324719 0.587291 0.71458
89 1 0.643621 0.0329204 0.579098 0.70814
85 1 0.636049 0.0333926 0.570601 0.70150
77 1 0.627788 0.0339653 0.561218 0.69436
76 1 0.619528 0.0345082 0.551893 0.68716
66 1 0.610141 0.0352389 0.541074 0.67921
62 1 0.600300 0.0360185 0.529705 0.67090
52 1 0.588756 0.0371298 0.515983 0.66153
51 1 0.577212 0.0381542 0.502431 0.65199
45 1 0.564385 0.0394035 0.487155 0.64161
44 1 0.551558 0.0405420 0.472097 0.63102
42 1 0.538426 0.0416493 0.456794 0.62006
40 1 0.524965 0.0427279 0.441220 0.60871
37 1 0.510777 0.0438656 0.424802 0.59675
34 1 0.495754 0.0450746 0.407409 0.58410
33 1 0.480731 0.0461443 0.390290 0.57117
31 1 0.465224 0.0471896 0.372734 0.55771
28 1 0.448608 0.0483409 0.353862 0.54335
24 1 0.429916 0.0498096 0.332291 0.52754
22 1 0.410375 0.0512357 0.309955 0.51079
20 1 0.389856 0.0526224 0.286718 0.49299
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APPENDIX j

EPI-INFO CALCULATIONS: 
PRIMARY BILIARY CIRRHOSIS BY GENDER 

FOR 312 PATIENTS
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Term Hazard Ratio

Sex(Yes/No) 0.9228

Age 1.0001

Albumin 0.3024

Alkaline 1.0051

Bili 1.4099

Platelets 0.9982

Spiders 1.4712

95%

0.4903

CJ.

1.7367

Coefficien

-0.0804

1.0001 1.0002 0.0001 .

0.1798 0.5086 -1.196

1.002 1.0081 0.0051

1.3181 1.508 0.3435

0.9963 1.0001 -0:0018

0.9356 2.3135 0.3861 o.:

S.E. Z-Statistic P-Value

0.3227 -0.2492 0.8032

0.0 4.2321 Oh

0.2653 -4.5083 Oh

0.0016 3.2592 0.0011

0.0343 10.0035 Oh

0.001 -1.8612 ’ 0.0627

1.6717 0.0946

Convergence: Diverged
Iterations: 2
-2 * Log-Likelihood: 1357.5497

Test Statistic D.F. P-Value

Score 261.9749 7 0.0

Likelihood Ratio -104.5501 7 1.0
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APPENDIX K

NONPARAMETRIC SURVIVAL PLOT 
FOR FOLLOW UP DAYS BY DRUG 

FOR 312 PATIENTS
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Noriparametric Survival Plot for Follow U0 Days
Kaplan-Meier Method 

Censoring Column in Censor

Drug
---------- Placebo

--------- Penicillamine

Table of Statistics 
Mean Median IQR 

2746.18 3428 *
2833.04 3282 *
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APPENDIX L

EPI-INFO CALCULATIONS: 
PRIMARY BILIARY CIRRHOSIS BY DRUG 

FOR 312 PATIENTS
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Term Hazard Ratio 95% C.I. Coefficient S. E. Z-Statistic P-Value

Drug(Y es/No) 0.9775 0.683 1.3991 -0.0227 0.1829 -0.1242 0.9011

Age 1.0001 1.0001 1.0002 0.0001 0.0 4.2723 09

Albumin 0.3059 0.1831 0.5111 -1.1844 0.2619 -4.5231 09

Alkaline 1.0052 1.0024 1.0081 0.0052 0.0014 3.6178 0.0003

Bili 1.4092 1.3176 1.5073 0.343 0.0343 9.9969 CKO

Platelets 0.9981 0.9963 1.0 -0.0019 0.001 -1.9534 0.0508

Spiders 1.4579 0.9318 2.2813 0.377 0.2284 1.6505 0.0988

Convergence: Diverged
Iterations: 2

■2 * Log-Likelihood: 1358.8139

Test Statistic D.F. P-Value

Score 261.9283 7 0.0

Likelihood Ratio -105.8143 7 1.0
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