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* ABSTRACT

" Starting with the ancient'Greeks,.mathematicians
searched for the answer to the questlon “Which polygons are
constructlble with a straightedge and compass.7 As tlme
passed mathemat1c1ans began to utlllze what is known as
Abstract Algebra and Group Theory to answer this questlon._

As a result Field Theory was born. Using Field
Theory many new questlons soon arose. One of them was
“Which polynomials oveer were and were not solvable by
'radicals." The examination -of thlS questlon led to the
creation of Galois Theory. ' .

' Great ant1c1patlon surrounded whether or not a typlcal
quintic polynomial was solvable. When it was found through
'Ga101s Theory that a typlcal qunth polynomial was not
solvable, many mathemat1c1ans chose to study other toplcs.
Most textbooks these days -spend very llttle time on
solvable qulntlcs, giving very few examples, concentrating
instead on the impossibility of solving a quintic by
radicals. - .'

As a result, I chose to center-my research around
finding specific examples of quintics that were and were )
‘ not solvable. 'Inkorder to do this, I needed to extend myf
. understanding from Galois Theory, and_learn about.solvable
‘groups. This new knowledge led me to a deeper '
understanding of symmetric groups. This in turn, helped
me devise a method‘for‘finding examples of solvable and -

unsolvable quintics.

Cidic



In the end, I have found eleven examples of quintics,
some which are and are not solvable. I have also provided
a method which one ﬁay use as a springboard for finding

even more solvable and unsolvable quintics.
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" CHAPTER. ONE .
INTRODUCTION

Throughout history mathématicians’have sought to,
classify which proceéures can be ca;ried out lelowing
certain rules. . Ihiévbegéh withmthéiegf;y Greeks as they
sought to deterﬁine;which inyg6né Wefe;éﬁd were not
constructible with 6nly a straightedge and éompass. As
time progressed, mathématicians]continued'thié
classification on a variéty'of topics. One such topic,
which began to develop around the 1700’s‘and i800'é was the
solvability of polynomials by radicals. ‘

Many great mathematicians worked to find out how to
decide which polynomials were and were not solvable by
radicals. Among thém we have Cafdéno, Ruffini, Abel, and .
Galois. As a result of their work,‘it waS'disco§ered that
everyKQuadratic, cubic, and quartic are solvable by
radicals, and that in general a typical quintié is not
solvable. Sometimes throughout history when it is’
discovered that something cannot-be'done, interest'in-that
topic ceases to exist and other questions that perhaps |
might be answered in that area are no longer asked. This
is whét‘happened in the case of the unsolvability of the
quintic. '

~Great excitement and anticipation once surrounded the
mystery of whether the quintic was solvabie by radicals or
not. While many great minds set forth to solve that
problem, once it was proven that the general quintic is not

solvable by radicals, the excitement that fueled the



development of a new branch of mathematics called field
theory, deflated and thé topic of solvability by radicals
of the quintic became less important.

As a result, in many textbooks, only the unsolvability
of the quintic is considered, and other questions like:
Are there any quintics that are solvable by radicals? If
so, can we predict whether a quintic will be solvable or
not? What methods can we employ to determine whether a
specific quintic is solvable?, are not discussed. These
are the questions that fueled my research into the topic of

the solvability of quintics.



CHAPTER TWO
FIELDS AND THEIR EXTENSIONS

Before we can tackle such a topic like the solvability

by radicals we need to get acquainted with some basic field

and Galois theory.
Definition 2.1: A field is a set F with two

operations called addition and multiplication such that:
(1) F is an abelian group under addition (with
identity element 0);
(2) F*, the set of nonzero elements of F, is an

abelian group under multiplication;

(3) multiplication is distributive over addition;

that is, for any three elements abcE€EF,
adb+c)=ab+ac and (a+b)c=ac+bc.

Throughout this paper we shall denote the additive
inverse of a€Fby -a. If a€F*, then a has a
multiplicative inverse as well which we will denote as a'.
Lastly, we will always denote the multiplicative identity

element by 1.
Definition 2.2: A subfield of a field E is a subset

F such that:

(1) F is a subgroup of E under addition and

(2) F* is a subgroup of E* under multiplication.
Clearly, a subfield of a field is itself a field.
Definition 2.3: A number field is any subfield of C.



Note that clearly, Q and R are subfields of C, this
means that O and R are also number fields. We shall
denote a subfield F of E by F=<E.

Proposition 2.1l: Every number field contains Q.

Proof: Let F be a number field. Then, F is a
subfield of C. We must show that F contains Q. Note
that our additive and multiplicative identities do not
equal each other, that is 0=1. However, 0 and 1 in this
case are the real rational numbers, and they are in F.
Thus if we can show that 0 and 1 generate all of O we will
be done. However, Q is the field generated by Z, thus if
we can generate any integer, we can then generate Q.
Since we know 1 is in F, we know by closure of addition

that 1+1 is in F, and by our additive inverse we also know

that (-1)+(-1) is in F. Thus by induction, for any n€Z,
n-(xl)==(1+1+..+1)IEF, thus for all n€Z, nEF. However,

this means that Z is contained in F. Now, any field
containing a ring must contain the quotient field of that
ring. Thus, F contains the quotient field of Z. However,

the quotient field of Z is Q. Thus F contains (. Thus
any F<=C contains Q..

Definition 2.4: If F<E, then we say that E 1is an
extension field of F. .

Example 2.1: Since Q is a subfield of R, then R is

an extension field of Q.

There are other extensions of the field Q.



Example 2.2: The set Q(-\ﬁ)={zEC|z=a+b-\/:2-;a,bEQ} is a
number field.

Proof: In order to show Q(-\ﬁ)={zECIz=a+ b—\/f;a,bEQ}
is a number field, there are three things we must show:

(1) Q(\fz_) is a subset of C.

(2) Q(—\ﬁ) is a subgroup of C under addition, and
(3) Q(—\ﬁ)* is a subgroup of C* under multiplication.
Let us begin by showing (1) Q(-\ﬁ) is a subset of C.

Since elements in Q(-\/f) are of the form a+bf2 where a

and b both come from @ which is a subfield of C, clearly

Q(-\ﬁ) is a subset of C.

Next let us show that (2) Q(\/Z) is a subgroup of C

under addition.

To do this we must show that Q(-\ﬁ) has additive
closure, that the associative property holds in .Q(-\/Z), that
there is an additive identity for Q(\ﬁ) , and that inverses

exist for every x in Q(—\/Z_) . The associative property holds

in Q(-\ﬁ) since Q(\ﬁ) is a subset of C.

Now we look to show the other three properties. Let

x and y be in Q(-\ﬁ) such that x=a+b4y2 and y=c+d-\/§.
Then x+y=a+b-\/§-+c+d-\I2-=(a+c)+(b+d)-\/fEQ(-\IZ_). Thus,

x+yEQ(-\ﬁ), and Q(\fZ-) is closed under addition. The



additive identity of Q(-\fz-) Aiﬁs‘;-O since ;'_for all x=a+by2 in
Q(-\/-Z-) , x+0 =a+b1/2_=0+a+b-\ﬁ-=0+x.‘ Lastly, inverses exist
in Q(-\/Z) , since forl all x éa-+ b-§/2; ‘in Q(‘\ﬁ) ; there exists a
—x =—a-bal2, such th;'zlt. x +(—x) ;a+bﬁ+(—a—bﬁ)=0 . Thus,
Q(-\/Z_) is a subg‘roi:np of C Tuﬁdér ‘ a&cjiitiori“. |

Lastly, let us show (3) Q('\E)“"f is a subgroup of C*

under multiplication.

To do this we must show that Q(-\/z-)* has multiplicative
cl‘osui‘e , that the associative property holds 'in Q(-\fz-)*,
that there is a multiplicative identii';y for Q(—\ﬁ)*, and
that inverses exist for every x in Q(-\ﬁ)* The associative

property holds in Q(—\/z-)* since Q(-\ﬁ)* is a subset of C*..
Now we look to show the other three properties'.

.Let x and y be in Q(-\ﬁ)* such that x=a+b42 and
y=c+d1/2_ with a and b not both zero,‘ and‘ c ?.l’id d not both
zei'o. Then xy=(a+b-\I2_)(c+d\l2-)=(ac+2bd)+(adl+bc)-\l2__EQ(1/§:)—v{0},
thus xyEQ(«fZ_)*, hence Q(-\ﬁ)* is closed under a
multiplication. The muiti-plicative identity of Q(-\/Z_) * i;sll
since for all x=a+b-\/2— in Q(-\E)*, |

a_c-1=(a+b-\E)-1=a+b—\/i-=1-(a+b-\ﬁ)=1-x. Lastly, inverses exist



in Q(-\E)*, since for all x= a+b1/2_ in Q(-\ﬁ) ; there‘exi‘St.s""l.

- a b
a x1=a2'_2b2_( 57 )\/2_, such that

=N

. Thus, Q(-\ﬁ)* is a subgroup of C* under

multvip]-.icat_ion( Therefore by (1) (3), the set. _ A
Q(‘\/2_)={Z-E-C|>z=atl-b-\ﬁ:;a,?)EQ} 1‘s ‘a.gUmhe,r f:Leld.- Clearly,
Q(-\/Z_) conta_ins Q. .Thus; Q(-\ﬁ) tis ‘an‘ extension of 'QA’.

' -Exainple 2' 3: A very 51m:|.lar proof w1ll show that the .
set Q(i)={z€Clz= a+bzab€Q} is also a number fleld (malnly
by replacing a2 with i. Thus, Q(z) is an extension of Q.

Proposition 2.2: If F is fJ.eld and the fJ.eld E is
an extension of F, then E is a vector space over F

Proof: In order to show this we must show”th'atk;.

(1) E is an abelian group under addition,'-:"" -

(“2) for all ﬁ and o in F and x 1nE, ﬂ('ax)-=(ﬁc'x)x‘, .

(3) for all'B and o in F, x and y in E_, Vl | :‘

| B(x+y)= ﬁx+/3y and (ﬂ+a)x=‘ﬁx+ax',‘ and =
(4) - for all. ﬁ in F 1/3 = .

Let us start by show1ng (1) E is an abellan group
under addltlon ‘ . o
Since E is a field, then E is an abelian g_roup under -

addition.



Now let’s.._showdt(“;za) “¥or all B and o in F and x in E,
Blex)= (e~

Slnce F 1s a subfleld of the fleld E and

|" Jz,ez

RN

multlpl:Lcat:Lon 1s assoc1at1ve for all /3 and a’ 1n F and x

.Aln E, Box)= (ﬁa)x.._

: Mov:.ng on, let us show (3) for all ﬁ' and a in F x

~

and y in E, 'ﬁ(x+y) ﬁx+ﬁy and (ﬁ+a) =/3x+ocx».

A-:Si‘nce F J.s a subfield of E and E J_tself is a fJ.eld
."the, dlstrlbutlve propertles hold thus for all ﬁ and o in
F, x and y in E ﬁ(x+y) ﬁx+ﬁy and- (ﬁ+a) ﬁx+ax.

Lastly, let us show (4) for all ﬁ 1n F lﬁ B.

Since F. is a subfleld of E and the 1dent1ty ex1sts |
in both E* and F*, and “they are the same J.dentlty, lﬁ B

Thus, any exten51on of a fJ.eld lS a vector space over

'that fleld. ~That is, 1f F is a fJ.eld and the field E is
an extension of F, then E is a vector space over F. .
,ThlS means that any extension over Q is also a vector
~space over Q. Thus, Q(\ﬁ) and Qi) are also vector spaces
,'o\}e;: Q.v
Once you start extending fields’ 'wel can create a tower

of fields like those in Figure 1.
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Figure 1. Field Towers

Now once we have established that there are extensions
of fields, we might ask is there is a way to order the
fields in size. This idea leads us right into our next

chapter.



CHAPTER THREE
ORDERING THE EXTENSIONS

The basic tool for ordering the extensions is called
the degree of the extension and will be denoted [E:F] .
That is, [E:F] will stand for the degree of the extension
E over F. [EF] is defined as the dimension of the vector
space E over F. That is, [E:F|=dimyE. If an extension

field E of a field F is a finite dimensional vector space
over F, then E will be called a finite extension of F.
In our first tower of Figure 1, we looked at three

fields that also happen to be vector spaces over (Q; C,R,
and Q. 1In this example, [RQ] and [C:Q] are infinite since
the number of elements in a basis for R over (O and C over

Q respectively, is infinite. However, [C:R]=2 since a

basis for C over R is {Li}. In our second tower of Figure

1, both [Q(\E)Q] and [Q(i):Q]=2, since the bases for them

over O are {1,-\/2_} and {Li} respectively.

Definition 3.1: Let ﬁ be an element of E, an
extension field of F. We denote F(B) to be the smallest
subfield of E containing both F and f.

F(B) is called the field obtained by adjoining B to

F. We may also characterize F(ﬁ) as the intersection of

10



all the subfields of E fwhich contain B and F. We denote.

F(B).
Example 3.1: Let-*_‘,a}'="’é2"""3"=,—;—+§. Then the set

by F(f,a) the subfield of .E obtained’ by adjoining o to

S={z ECIkz=d+‘_bq_);_a~,b EQ} is énﬂeAxtensic.n'l_ of- Q of'degree 2
and equé’ls Q(w) |

Proof: 1In 6£de:_: to sh:)w thlS, there are 'three things
we must show. | L | |
| (1)' S is. a subset’ of c. B

(2) 'S is a subgroup of C under éddit,io‘n,‘ and

(3) S* is a subgroup of C* under multiplication.

Let us begin with (1) S 'is a subset of C.

-Since elements in S are of the form a+bw where a .and'
b both come from @ which is a subfiéld of C, clearly § is
a subset of C. ,

Now let us show (2) § is a subgroup of C. under
addition. | |

To do this we must show that S has additive closure,
that the asso:ciative pfoperty holds in- S, that there is an
additive identity for S, and that inverses exist for every
x in-S.

The associat_ive property holds in S, since § is a
subset of C. Now we léok to show the other three 4

properties. Let x and y be in § such th-atlx=a+bco and
y=c+dw. Then x+y=a+bw+c+dw=(a+c)+(b+d)wES, thus

Xx+y€S, hence § is closed under addition. The additive '

11



identity of § is 0 since for all X = a+bw ‘in S
x+0—a~+bw—0+a-+ba)—0+x. Lastly, inverses ex1st 1n S

" since for all x= a+waS ‘there exists a =X =-a- ba), such
that x+(-x)=a+bw+(-a-bw)=0. ‘:Thus, S,J.s a subgroup of C B
under addition. : | - | o “

(3) S* 1s a subgroup of C* under multlpllcatlon.<

To. do this- we' must .show that S*. has multlpllcatlve
closure, that the assoc1at1ve property holds ln S*, that
there is a multiplicatiyelidentityffot S*; andfthat>“
inverses exist for every‘x.in's*. 'The‘associatiVe'_:
oropertylholds ih.S* since S§* is a-subset of C*. lNow'We;(
look to show the other three properties.. _

Let x and y be non-zero elements of‘S* such that -
x=a+bw and y=c+dw. F:Lrst note that wz;—%—l—z‘/:—-l.f_w
since w’=1. Then, ‘ " “' 
xy'=(a+-bw)(c+dw) (ac) (ad+bc)w+adw =(a ) (ad+bc)a)+ad(1 w)
thus, xy.=(ac—bd)+(ad+bc bd)wES* hence ,xyE,S*’,,theréfore '
S* is closed under multlpllcatlon. -Thefmultiplloativej :
_1dent1ty of §* is 1 since for all xéﬂz%bm.ih Sﬁ;'ﬂ“'t
x1=(a+bwy1=a%bw=l(a+b¢)¥bx;‘ | ) |

| Lastly,.inverses exist in Q(w)*, sihCe:fotiallﬂ.ﬁ
' a-b

©o - . N . . ) , ,-b .4‘”“ I‘- Lo -
x=a+bwE€0(w)*, there exists a x'= ' —( — )a) '
_ Q( ) o ' T T d-ab+b® \a'-ab+b’)."

‘such that"'

12



az—ab+b2_ a —ab+b* a -ab+b

x-x"=(a+bw)( a-b ( » )w)=(a+bw)(_r__7a‘b"bw)

(& -ab-abw+abw - Bw-bVe*| (@ -ab-b*w-b*-1-w)
a’-ab+b’ a‘—ab+b’

~ a’—ab+b? _1
AaP-ab+b?]

Thus, S§* is a subgroup of C* under multiplication.

(@ -ab-bw+ b +bw
a’-ab+b*

Therefore by (1)-(3), the set § is a number field.
Now since S is a number field, it contains Q. Thus, S is
an extension of (. Also since § is an extension of Q, it

is a vector space over ( and has a basis. One basis for §

over Q is the set {Lw}. Thus [Q(w):Q]=2. Therefore,

S={z€Clz=a+ba);a,b€ Q} is an extension of QO of degree 2.
Now wE€S, so Q(w)CS. On the other hand if a+bw€S, we
have that a+bw€ Qw). Thus, S=0w) M

So we have now seen four examples of finite extensions
over a field, all being of degree 2. Are there any of
higher degree? Can we manufacture some from the ones we
have looked at? Let us look at a very important
proposition.

Proposition 3.1: If D is a finite extension of E

and E is a finite extension of F, then D is a finite

extension of F. Furthermore [D:F]= [D:E][E:F] .

13



Proof: Let A={a1,a2,...,am} be a basis for E over F,

and let B={B,B,...8,} be a basis for D over E. We hope to
show that the set C={aiﬁjllsis m,lsjsn} is a basis for D

over F.
To do this we must show that:
(1) C spans D over F and
(2) C is linearly independent.
Let us begin with showing (1) C spans D over F.
Suppose € D. Using the basis B, we have
d=6p+96,8,+..9,5,,0,€E E.. Each of the elements §EE,

i=12.n, can be written as §,=c,a, +cp,+..c,,,,c, €EF. If we

3 im~—"m?

substitute this expression into the latter expression we

end up with

6=nz}m:c,.]aj/3,.,c,.j€F. Thus C spans D over F, since any
ele;:ejr:llt of D over F can be written as a linear combination
of elements of C.
Now let us show that (2) C 1is linearly independent.
Suppose that there is a linear relation among the
elements of C with coefficients in F such that

iicu(aﬁi)w,cgezﬁ

i=1 j=1
’ We will show that this sum is a linear combination of
basis elements in B. Since it equals zero, the
coefficients must equal zero.
In fact, we can consider this sum as a linear
combination of elements in B with coefficients
6,=cyQ, +Cp0,+..Cp 0 Thus, this means each

im~“m> *

14



»6.—c1a1+c»2a2+ € i =0 but because each of the a,'s are

linearly 1ndependent this implies that each of the c 's are

zero for i=12,.n and j= 1,2 m.' Thus EECU Jﬁ 0=>c =0 for

i=1 j=1
i=12.n and J= 1,2 .m. Hence, C is llnearly J.ndependent

Since we have shown that C is a llnearly 1ndependent'
spannlng set for D over F; thus it is a basis for D over -
F. '

'Sinee C has a finite number of elements, it follows .
that D is a finite extension of F, thus -
[D:F|=[D:E][E:F]=mn .M

Example 3.2: Let us consider Q(JZO over the field
Q; A typical- element of Q(-\ﬁ,l) is x=a+b 2 +ci+di2, abc,
and d in Q. Thus a basis for Q(‘\ﬁ,i) over Q is {l,'\ﬁ:i,i‘\/f} .

Thus

[a(B:i)o]-
In this case we get a partially ordered set of fields

instead of a field tower, which we will call a vax. Now -

let us loqk'at this vax as shown in "‘figure 2 below.

BT e
N

Figure 2. Field Vax

15



In this field vax, we first saw that [Q(-\fz_):Q]=2 and

[Q(i):Q]=2. Next we can verify that [Q(-\E,i):Q(-\[Z_)]=2 using
the basis {i,i-\/f} and that [Q(-\Iz_,i):.Q(i)]=2 using the basis

{ﬁ,i\ﬁ} . Thus utilizing Proposition 3.1 we get that

[Q(ﬁ,i):Q] —4.

16



CHAPTER FOUR
POLYNOMIALS

We now turn our focus to polynomials over a field.

Definition 4.1: A polynomial over a field F in the

indeterminate x is an expression of the form c¢,+cx+..+cx",

where c(,¢,...,.C

n

are elements of F, called the coefficients
of the polynomial.

The largest k for which ¢, =0 is called the degree of
f (denoted degf), and c, is called the leading coefficient
of f. If all coefficients of f are zero, we write f=0
and do not assign a degree fo f.

Example 4.1: f(x)=10+7x+x” is a polynomial over Q,
R, and C of degree two. | |

Example 4.2: g@)=1+2u>+x2 is only a polynomial over
C since the coefficient 2i does not exist in Q or R.

Definition 4.2: A polynomial f over F of positive

degree which can be factored as f=gh where g and A are

polynomials over F of positive degree is called reducible
over F; a polynomial of positive degree which cannot be
factored is called irreducible over F.

Note that any polynomial of degree 1 is irreducible.
Proposition 4.1 on the next page shows that irreducible

polynomials behave like prime numbers.
Example 4.3: f(x)=x"+1 is irreducible over Q and R

yet reducible over C since f(x)=x"+1=(x+i)(x-i).

17



Example 4.4: f(x)=x"-2 is reducible over R and C
since f(x_)=.xI2_—2=(x'-'iQ 1/2_)(x--\lz—), yet irreduéible’ >over 0.
4 be‘finiti_orii '4.3:_ Any polynomial with .le'adj;ng
cbefficieht 1 will be called a monic polynomial.
‘ Propbsj.tion 4.1: Evei;y polynomial over a field can be
‘fa'ctored as a product of irreducible polynomials in a way
which is unique ‘except for the order and multiplication of |

factors by constants. | _

| Example 4.5: TLet f(x) =v;c4+i. - Then f is irreducibie
over O but reducible uniquely over Q(z) as (xi+i)(x2—1), is
reducible over Q(-\ﬁ) as (Jé2+-\/2_x+1)(x2—1ﬁx+1), and is
reducible over Q(1/2',1) as (x+’i-\/i')(x—i1/i-)(x+-\li—)(x—-\li—).

Eisenstein Irreducibility Criterion: Let f be a

polynomial over @ with integral cdefficients, say
f(x)=co+cx+..+c,x". If there is a prime number p such

that p divides every coefficient of f except c,, and r

does not divide ¢,, then f is irreducible over Q.
Proof: Assume f is not irreducible over Q. Then

f=gh, and the coefficients of f can be expressed as

¢ = E ab, and suppose p|c, for i=0l..,n-1 but p does not
Jrk=l

divide ¢, and p° does not divide c¢,. Since p|c,=ap, but p’°
does not divide ¢,, we have that p|a, or p|b, but not both.
Suppose p|a, but p does not divide b,. Since p|c,, we have

r|a, since ¢, =ah+ab, and p|a, but p does not divide b,.
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If we contlnue this way we w1ll find that pla;, for all j.
Thus p|c, for all [/, but this is a contradlctlon since p

does not divide ¢,. Thus f must be irreduéible;.

Example 4.6:  Let j(x)=2k3+9x2+15x+3;4.Then'by the
Eisenstein Criterion with p=3, f is irreducible over Q
since 3 divides all coefficiénts except 2 and 9 does not
divide 3.

Sometimes the Eisenstein Irreducibility Criterion
cannot be applied directly to a polynomial [ but‘whén we
.compose the polynomial with a linear transformation x-h,
we get a polynomlal g to which the Eisenstein criterion’
does apply. Since a factorlzatlon of f will produce a
factorization of g, we have that f is irreducible if g'ié

irreducible. This procedure is illustrated by the

following example.
. . _

Example 4.7: f@j=4x3—3x—§-is irreducible over Q.
First we multiply f(x) by 2 so that it will have integral
coefficients, this yields ﬁx)£8x3—6x41.

Clearly, at this point g(x) can not ‘be proved to be
irreducible u51ng the Eisenstein crlterlon, thus we apply
»the linear transformation x—>x-1 and see if thlS helps.

Applylng this ' llnear transformatlon we obtaln
Ax—l)=8@x—ﬁ'—6@x-D—1=8x - 24x* +18x—3. Now 3 is a prime
that divides all the coefficients except 8, While,:9h

which is our prime squaréd,‘does not'divide'S) thus by the’
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Eisenstein Criterion gx-1) is irreducible over Q which

1
implies that f(x)=4x3—3x—5 is irreducible over Q.M

Example 4.8: Let <I>p(x)=l+x+x2+...+x’"1, where p is
prime, show that <I>p(x)=1+x+x2+...+x”'l is irreducible
over (). |
Let us consider <I)p(1+x)=1+(1+x)+(1+x)2+...+(1+x)p_l. If
we expand and gather terms we will see that
Ly
®,(1+x)=p+..+ pzk(lj()xk +.o+xPT,
=

but this means that p|cyc,....c,., , but does not divide ¢,

p-2
and p’ does not divide p=c,, thus @,(l+x) is irreducible by
the Eisenstein Criterion, which implies that @,(x) is

irreducible over () A

20



_ CHAPTER FIVE
THE ROOTS OF POLYNOMIALS'

Now that we have gotten acqualnted with polynomlals
over a given fleld we may begln to wonder about the
prope-rtles of the roots of .‘t_ihese polynomlals.

‘ DefJ.nJ.tJ.on 5.1:  Let E. be an extension fie‘ld of the
field F. An element a of E is algebralc over F if o is
a root of some polynom::.al w1th coeff1c1ents in F. If
every element of E 1s algebralc over. F then E 1is called

an algebraic extension of F. _

Example 5.1: If we take E to be Q(\/f) and F to be
Q, then 42 is algebraic over Q, since A2 is a root of
x*~2 which is a polynomial over Q. Similarly, i is
algebraic over Q by taking E to be (i), since i is a root

of x*+1 which is a polynomial over Q.

Definition 5.2: Let a be an element of the extension
field E of the field F, and suppose o is algebraic over
F. BAmong all the polynomials over F of which o is a |
root, let f Dbe one with the lowest degree. Then [ is
called a minimal polynomial for a over F.

Proposition 5.1: If f is a minimal polynomial for a
over F then |

(1) f is irreducible over F, and

(2) f divides any polynomial over F havingvai as a

root.
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Proof: Let ué first start w:ith (1) f lS irréducible
over F. |

Let f be a minimal polynomial for « dver F Assuxﬁe
f is not irreducible ‘over - F. - Then f= gh, and since
f(a)=0 then we must have gla)=0 or h(e)=0. If this
factori»zatio-n is noni‘:ri;rial thén we have that the .degg<deg f
and degh<degf but this contradicts that f is minimal, thus
f is irreducible. ' | '

Now let" ué show‘l(2) f divides ény'pdlynbmial over F
having a as a root. - "

Now suppose p(_a)'=OA,’ p‘ a'hlylg‘)olynomial over F having a
as a root. Using the division algorithm then p=gf+r where
either rx) is equivalent to the zero polynomial or rx) is
not equivalent to the .zero polynomial. TIf r(x) 'is not
equivalént to the zero polynomial then since pa)=0 this
means that p(a)=gf(a)+r(a¢)=r(e)=0. But this méans, since
degr<degf that f(x) would not be.a minimal polynoﬁial for o
over F , which con£radicté that f is minifnal, ."1‘lhus, (x)
is equivalent to the zero polynomial in which éasle p=qf , 
which means flp . Thus if .f is a minimal polynomial- for a
over F then (1) f is irreducible over F, and (2) f
divides any poiyn'omial over F having a as a 'roo,t.,.,

Note that one result from the p_recediné proébsitibn is

" that two minimal polynomials for a over F differ only by a
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constant factor. We define the minimal polynomial to be

the unique monic polynomlal among minimal polynomials.

Example 5 2: FJ.nd the minimal polynomial of 11/2_ over

Q0 and over Q(-\/Z_)

In this case the same polynomial will work for both Q
and Q(-\ﬁ) since the minimal polynomial is x*+2.H

The next example shows that the minimal polynomial may

differ depending on over which field we consider it.
‘ Example 5.3: Find the minimal polynomial of ‘\ﬁ_ +'\I-3-
over () and over Q(-\ﬁ)

First for the minimal polynomial over Q(-\ﬁ) The

technique is to take powers of -\I2_+-\I§ and see if there is
‘some combination with a minimal power that will allow

-\'f2_+-\I§- to be a root. In this case a quadratic will

suffice, namely f(x)=x2—-2-\lfx—1, since

f(VZ+B)=({Z+ 1/3)2—2\/5(\/5+_1(3')-1=gv+3'+21/6-4-21/€—1=0.

will have to be x—( +\E), which does not have
coefficients in Q. Since the minimal polynomial over .

Q(\fz-) is of degree two and is not over Q no other monic

23



degree two polynomial g(x) over Q .can ha\.7e -\IZ_ +-\I§ -as a '
. root.. Otherwise, g(x)=f(x) as gx) is also a.polynomial
over Q(-\ﬁ) and g(x) should be a con'sta_lnt,_multip_le of f.(x).
We begin our searoh for the minimal polynoniial one.
-decjree higher. Let gx) be the mlnlmal polynomial for |
1fz'+\I§ over Q, then flg by Propos:.tlon 5 1 (11), because :
gx) is also a polynomlal over Q(-\/-Z-) . Thus we need to have
f( ) x —2-\I2_x 1 as a factor. Hence, a monicg'degree three
polynomial over Q will have the form (x-a)f(x), with a€Q,
which does not have coeffic‘ieots in Q. Therefore we c-an,

conclude that g(x) can not have degree three. _
We find that g(x)= (x ~24Px - 1)(x +2\ﬁx 1) x 2102 +1 1s'

the minimal polynomial for 4R +4f3 over Q, 51nce g(x) is

monic, R S )

dVZ+ AB)=0((VE + AB) +24B(NE + 4B)-1) = (\E + B) " ~10(xE + 4B) +1=0,

and any polynomial with lesser degree cannot have

"coefficients in Q.. | |
Proposition 5.2: If E is an extension field of F

and BEE is algebraic over F,. then F(B) is a finite

extension of F 0‘f‘-de§ree n, where n is the degree of the

minimal polynomlal for B over F. Furthe_rmore', the set

{Lﬁﬁ ﬁ"l} is a basis for F(ﬁ) ov,e-r_,',»F.,.‘ thus [F(ﬁ):F] =‘n.
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Proof: Since F(B) is a field and contains B, F(B)
must also contain the elements 1 8,4°..,8"" . However, since
F(B) is a vector space over F it must contain every linear

' . 2 -1 : s e
combination c¢,+c¢f+c,B +..+¢c, B, with our coefficients

being in F. Let X denote the set of all such linear

combinations. Clearly, X is a vector space over F
spanned by {Lﬁ,ﬁz,...,ﬁ"'l}. Now let us assume that the set
{1,/3,/32,...,/3"'1} is linearly dependent over F. Then

cotcf+c,fi+..+c, 7 =0, thus B would be a root of the
polynomial g over F given by g(x)=c,+c,f+c, 8 +..+c, 8" .
However, degg<n, which means g would be the minimal
polynomia} for B with degree n-1, contradicting that the
minimal degree for f is n. This means that the set
{Lﬁ,ﬁz,...,ﬁ"'l} is linearly independent, hence the

set {1,]3,/)’2,...,/3”“1} is a basis for X over F.

Now all that is left to do is to prove that X is a
field. Since X contains F and B, this would imply that
F(B) is contained in X. Since we already know that X is
contained in F(B), we should have F(B)=X.

We must show that X is an additive subgroup and X*
is a multiplicative subgroup of E and E* respectively.

Since X is the span of a subset of E it clearly is
an additive subgroup of E. Now all we need to show is

that X* is a multiplicative subgroup of E*.
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Let f be a minimal polynomial for ﬁ’ over F. Suppose
that a=a,+af+a,pf +..+a,f"" and that |
S=d,+d f+d,p° +...+‘a’{1_1/).""‘1 are 'cla‘.le_‘n_l.en'i':s of X*. We can then
write a=g(p) anci-‘v 6 =h(ﬁ), for f.ﬂe ;pbily‘.r'lvo;nials ‘g and h over
F given by g(x)=a, +ax+ czz)c"’z+-...‘+<a,,’_1x".'l and .
B(x)=dy+dx+dx*+..+d,_x"". By the division theofem we have
gh=gqf +r where . r,‘='0v or (:i-é'g_r <degf=n Since f(B)=0 we have
0%ar-8 = (26)(18) = (sh).6 = @) B+ r(B) .

Since -r(ﬁ)aéO, we hax;e“ v‘f#&o, a_r;d;tfﬁis degr<n, where

Hx)=co+cx+c,x° +.4c, x" ‘Thus
a-8=rf=ay+c f+c, B +..+c, B

which is in X*. So we have closure.’ Associatively is
inherited, while we can use the same identity as in E*.

Thus all that is left to. do is show that every element
in X* has a multiplicative inverse. ‘

Let a=gﬁ=a0+alja’+cjzzﬁ2+,..+an‘_1~/3""l. By Propoéition 5.1,
f, the minimal polynomial for B over F, is irfeducible.,
Therefore 1 belongs to the greatest common divisor of f

and g. Therefore, we can find polynomials u and v over F
so that the degvdegu<degf=n and uf +vg=1. Since f(B)=0,
we .ha\}e v(B)g(B) =1, thus o' =yB which is in X*. Thus X* is
a subfield of E* | L

As a result, we have that X is Aa field, thus F(/J’)=X.

Therefore, if E is an extension field of F and f is in E
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is .algebraic . over F, then F(B) is a finite extension of F
of degree n, where n is the degree of the mJ_nJ.mal
polynomial for over F Furthermore, the set

{l,ﬁ/} f)’”l} is a basis for F(B). over F, and since the

number of basis elements determJ.ne the degree of an
extension over a field, [F(B) ]=n..

Example 5.4: Sirce 1/2_ is a root of x*-2 which is the
minimal polynomial of 2 over @, then we know that a basie |

for Q(-\ﬁ) lS the set {1,42‘}, and [Q(-\E) -\fl_] 2 Wthh is equal

to the degree of the minimal polynomlal :
Deflnltlon 5.3: ' Let f be a polynomJ.al with

coefficients in F, and E be an extens:.on of F contalnlng

all the roots ﬁl,ﬁz,...svﬁn of f. Then the splitting field of.

f in E, is the smallest subfield of E containing F and

the roots f,f,,...f8, of F. ' |

| Proposition 5.3: A finite extension is an algebraic :

extension. | o |
Proof: Let E be a finite extension of the field F,

and suppose that [E:F]=n. Let BEE. The set of n+l
elements {l, Byers ﬁ"} must be linearly dependent.

Therefore, there are elements CosC1resC, in F not all
zero such that c,+c¢,f+..+¢,f" =0, thus f is a root of a

polynomial over F: and is alge-braic..
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.CHAPTER' SIX' © .
FIXED FIELDS
Now we také'--a'.a‘nothe_r bié' step towards the solvability
of polynomials by radiééls uby ldoking at a very important
topic in Galois theory called fixed fields. _
Definition 6.1: Anv automorphism of a field E is a
bné—to—one onto mapping U:E — E which preserves addition
and multiplication, that is, ﬂ(a+b)=19(d)+19(b) and
Hab) =9 (a)3p) for all abEE. |
Some easy consequences of Definition 6.1 are the'
following. If ¢ and ¢ are automorphisms of the field E,
then so- is thei;: composition ¥y. The inverse of an

automorphism is again an automorphism. As a result of

these facts, the set of automorphisms of a field E is a
group which we will denote Z(E).

Definition 6.2: Let ¥ be an automorphism of the
field E. We say that & leaves fixed an element a € E if

Ha)=a. We say that O leaves fixed a subset X of E if

Ha)=a for all a€E€X. |
The set E"={aEEI1‘}(a)=a} forms.a subfield of E,

which we call the fixed field of ¢. E’ is a field because

¥ fixes 0 and 1, and the set of fixed elements is closed
under addition, multiplica_tion, and additive and
multiplicative inverses. It follows that an automorphism

of a number field always fixes Q since it fixes 1, and we
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have already shown that 1 can generate Q. The fixed field
of 9 is the largest subfield of E left fixed by ©.

If 9,9,,..,9, are automorphisms of E, then the set
{aEEIﬂl(a)=192(a)=...=19n(a)=a} is called the fixed field of
9,0,,...,9, .

Example 6.1: The fixed field of 19:Q(-\I2_)—>Q(—\fz_) given
by ﬁ(a+b-\ﬁ)=a—b1ﬁ, for all abEQ, is just Q.

We may argue this is true since there are no fields
between Q(-\/z) and Q, while Q(-\/-Z') has dimension 2 over Q.

Thus, as ¥ fixes a field, it must leave all of Q(-\ﬁ) fixed

or just fix Q. Since we know it does not leave all of

0(+B) fixed it must just fix all of Q.M
Example 6.2: Let {=¢*# and %:0()— Q() given by
9()=C=t*. Then the fixed field of @ is Q+f5).

Proof: Note that { satisfies {’-1=0. Now
g(x) = x°-1= (x —1)(x4 +xX +x +x+ 1)= (x-1)@4(x), and we
showed in Example 4.8 that ®,x) is irreducible over Q.
Thus (x4 +x+ e x+ 1) =®,(x) is the minimal polynomial of
E=¢" over Q. This means that [Q(C):Q]= 4 and that ¢

generates a basis {LC,CZ,C3}.

‘Thus Q&) ={co+el+c,t”+c,8’ e, €0,j=0123}, and if  is
in Q&), B=co+cf +ct’+ct’, where ¢,€0,j=0123. Now we
apply 9 to B.
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9(B) = ﬁ(c0,+ .+t + c3§3) =co+cCt+c,t’+c,t?. From the
minimal polynomial we get that &*+&°+&*+E&+1=0, and hence
C4=—(§3+Cz+§‘+1). " Thus,

19(00 +cl+c,t’+ C3C3) =co+cCt+c,8’ +c,&* which equals
co—c,(C3 +;’2+C+1)+c2§3+c3§2 and therefore,

ﬁ(co +of+egt + c3C3) =(co—c) =&+ (c; —¢)E% +(c,~ ¢, )57

Hence, if B is in the fixed field of ¥, we must ﬁave

Cot el + 82 +es8 = (co= ) -G+ (cs —¢, )82+ (¢, —¢,)E°

which holds if and only if ¢, =0 and c¢,=c;. Thus the
elements f fixed by & have the form ﬁ=c0+cz(§2+§3).

Now C2 and §3 are complex conjugates of each other so
when we add them their' imaginary parts will cancel. Thus,
2+’ is the real number 2003(47‘5 , which using
trigonometric identities yields that C2+C3=—17(1+ -\/5—)

Therefore an element BE Q) is fixed by ¢ if and
only if ﬁ,=c+d-\/5—. That is, the fixed field of ¥ is

o)

Example 6.3: The group G={id,§ —>CZ,C—>;’3,C—9C4}, where
id denotes the auto;mor'ph‘i‘sm —C, has fixed field Q.
Proof: We determine the fixed field of each

automorphism, and then intersect the fixed fields, in order

to find the fixed field or the group. Let f be in Q(&).

Then ﬂ=c0+clé‘+c2§2+c3§3, where ¢, €0,j=0123.
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Under %:&—E2, B=cotcl+c,t® +c,E —>1c0 + c1§2 ettt

However, = —(C +&%+ T+ 1) Thus we have
Bocereltro ({4 +.1)) ret.
Hence, B—>(co—c )+ (e3¢, )C‘ '+_ (c - cZ)C + czé’ This means that

L

%,(B)=p if and enly if cy=c,~ cz.,cl' ( c2) c2‘ (c‘—"'cz) C3=Cys
Thus 01—02—03-0 Hence the fixed f:Leld of ¥ is Q.

A similar calculatJ.on for C—aC shows that &—¢&® has
fixed field Q as well From the preVJ.ous example we know
that &—¢* flxes Q(-\/—), and the 1dent1ty automorphlsm flxes

all of Q(Z_:) Thus taklng the 1ntersectlon of all the fixed

fields we obtain that the group G {de—>C G — C C—>§,‘} has
fixed field Q. [
We have the fellowing proposition whose proof can be
found in [2, page 108] ' |
Proposition 6.1: If F is the fixed field of a finite
group G of automorphism'sv of E, then [E:F],=0(G) ‘(the‘ order
of G). | f | »
Example 6.4: We can say that the group
G=-{id,(‘;—aé‘2,§ —>-C3,Z:—>C4}; from example 6.3 can be denoted as
ﬁ’(Q(C),Q)={id,HC~iC2,C ——;§3,§—>C4} since this’ group of
automorphisms of Q(§) fixes Q. While applying

Proposition 6.1 to this +example we get that [Q(C):Q]= 4
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since ﬁ'(Q(C), ) has order 4. This follows from

Proposition 6.1 since according to the proposition the

v

order of the! group of -automporshims is equal to the degree

of the extension E over F, that is the order of the group

of automorphisms is equal to the degree Q(C) over Q.
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* ‘CHAPTER SEVEN
GALOIS EXTENSIONS

Definition 7.1: & field E is ;31 Galois exténsibu of
F if F is the flxed field of a finite group of ,
automorphlsm of E, whlch is called the Galo:.s group of E
over F and is denoted by Z(E/F).

Example' 7.1: Q(C), of Example 6 .2, is a Galois.
ektension of Q since by Examples 6.3 and“‘6.4 #here ,e-xi»sts
. a finite group of automorphi‘sm‘s of Q(é‘), which fi#es* 0.
In this example ﬁ‘(Q(@)/Q)={id,§-—>§2,c—->_‘g3,§-—‘>§4}, is our
~ Galois group. o | - -
Exainple 7.2: Q&) is a ‘Ga'llOis extensivo'ﬁ of Q(-\Ig)
| since by Example 6.2 there existsx a_'finite group of B
automo-rphisms of Q(C), w‘hich fixes Q(—\/—) In this ‘>e'xampie

( /Q(—\I—)) de——>C }, is our Ga101s group.

Proposition 7.1 The Fundamental Theorem- of Ga101s
'Theqry‘. Let E be a Galois extension of the field F. - If
B is a field between E and F, then E is a»‘-Galois
ekten_sion of B and Z(E/B) is a subgroup . of FZ(EIF).
,Furthermore, B is a Galois extens:.on of F if and only 1f
| Z(E /'B) is a normal subgroup of ﬁ(E/F),' in th.ch case

‘ﬁ'('B/ _F) is isomorphic to the quotlent group

S(EIF)IZ(EIB).
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The proof of this theorem w1ll not be given here.'
Instead we w1ll 1llustrate all the parts of thls theorem
' using examples 6.2- 7 1. A proof can’ be found 1n

[2, page 112] ‘ . .

| Example'7.'2.ﬂ Let E= Q B= Q(-\/_),_and F -0. Sinoe_
ing) is between %) and Q, and we know that QKC) is a‘:
.Ga101s exten51on of Q, then QKC) is a,GaLOLS.extensionJOf O
Qi\f) _ Furthermore,rgi\[) 1s.a Gaiois extension of'(z ifu"-.

" and only if g?( /Qixrj) 1s a normal subgroup of

g?&l@)/gﬂ. Moreover in this case g?@i1f)/g) is 1somorphlc

to the quotlent group g?( ()/g»/g?( () (\fj), which 1s

1somorphlc to the cycllc group of order 2, *ZQl We also

note- here that the degree of a Ga101s exten51on is equal to
the order of the Galois group, Wthh follows from '
Proposition 6.1. _ : o
Now we are’getting ready'to'anSWer”the questions'that -
motivated my project. .However, in_order‘tOJintroducezthe'
main theorem, Galois':Theorem,vwhichAheips:us determine
when a general polynomial'is soivable by radicals, we must

first;introduoe,solvable;groups(i:,3&
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‘., CHAPTER EIGHT
" SOLVABLE GROUPS
_ In order to define solvable group, we need the
follow1ng six definitions. ' ) -

Deflnltlon 8.1:- A normal series for a flnlte group G

is a sequence of subgroups of G {e} G, CG C.. CG =G, such

that C? .is .a proper normal subgroup. of G, forlz=L2,

Deflnltlon 8. 2  The factors of a normal serles are
the quotlent groups G , [G,,G, /Gl, ,G /Gn pe

Def1n1t10n|8.3 A reflnement of a normal series is a
normal series whichrcontalns all the subgroups of the |
original normal series (aud perhaps more). V |

Definitioh 8.4¢ 'A'refinemeut-which is not identical
‘with the origiﬁal'series is called a proper‘refinemeht;

. Definition 8.5: pA composition series for a”fin;te

group is a normal series whiCh'has no proper refinements.

Definition 8.6: A group is s1mple if its only normal.
subgroups are itself and the trivial group

Let us look at a few examples that 1llustrate the.
concepts just deflned

Example 8.1: Let us look at a. normal serles for Zg.
The subgroups of Z are: Zs,{O 2,46}, {O 4} {O} Thus a
compos1tlon series for .Zg 1s.»h

{e} {O}C{O4}C{0246}C{01234567} Z,.

as



First we note this is a normal series since each subgroup
is a proper normal subgroup of the one above it in the
series since the groups are abelian. .

In addition this is a series which has no proper
refinement. Thus it is also a composition series. The

factors of this serles are

{0123,4,567} {0,24,6} = 2,,{02,4 6} /{0 4} = zz,{o 4}fio}=2z,. Each of
these factors are 31mple since. the only normal subgroup it
has is itself and the tr1v1al group

Note that any . group of order p, where p 1s prime is a

simple group, since the only subgroups a- group of order p
can have is 1tself and the tr1v1al subgroup, each Wthh are
normal subgroups. |

'~ Example 8.2: Now let us consider the Dihedral group
D, ={id,(1234),(1432), (13)(24),(14)(23),(12)(34),(13).(24)} , and create a
composition series for it. A subgroup of D, is
E, = {id,(13)(24),(14)(23),(12)(34)} , the subgroup of all the even
permutations in D, which is a normal subgroup of D,
because it is the intersection of D, with a normal subgroup
of §;, namely A5: Thus ue can then finish the composition
series for D, by letting B={kL04)@3», thus the composition
series for D; is: | |

~ {ifcBC E,C D,

as ut w111 follow from the next prop051tlon The factorS'

of our composition series for D, then are

Dy/Ey=Z, Ey[B=Z, Bf{id}=Z,. Each of them is a simple group.
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Prpposition 8.1 A normal series iS‘a coﬁpositipn
series»if and éhly if each‘facto:vis4a éimple érbup,“

Proof: Assume that G is a finite group and fﬁat
{e}=G,CG,C..CG,=G is a normal series for G. [T
{e} =G, C GIC +CG,=G 1is not a -cbmbosifién ‘se.rti‘eéj tﬁeh we :
can obtéin a proper refi.neme“nli-: of {e}=G,CG,C..C G,=G by
inserting%a new gréup G'. into the series at someipoinﬁ,.say-
G,CG'CG,,. This means that‘G%Gk—is a nontrivial normal -
subgroup of G, /G,. Thus, Chﬂﬁleis not a‘simplehéroup.Jf':
Hence, if a normai sériés iS'nBt'égéémpoéiﬁion seriés theﬁ
some factors are not simple groups. : |

On the other hand,.if G, /G, is not simple for some |
k, then theretis a normai sﬁﬁgréﬁp G'", such that
{e}cG'caG,., /G, . It follows that G'"=G'[fG,, where
G,CG'CG,,, G, is a normal subgroup of G', ‘and G' is a
normal subgroup of G,,. Thus, _
{e} =G, CG‘1 C..CG,CGCG,C..C Gn.= G is a proper refinement.
Therefore the original series is not a composition series.
Hence, if the factors are not simple, then the normal -
serieé”is not a composition series. Therefore; a normal
series is a composition series if and only if each factor
group is a simple groué.. | |

Definition 8.7: A fiﬁite'group is éolvabie if it has
a compésition series in which each factor is a cyciic

group.
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Example 8.3: Z, is a solégble group since it has a
composition se;iesfintwhich gach;fadtof is a cyclic group,
see example 8.1. R o

Example 8.4: D, is a éolvable group since it has a
composition serieé in which‘eaéh factor is a cjclic group
(see Example 8.2). '

Proposition 8.2: Let H be a proper normal subgroup
of a group G. Then G is solvable if and only if H and
G/H are solvable.

Though this proposition is quite important, it ends up
not being useful for our purpbses. A proof is given in |
[2, page 56]. One proposition that will be useful for this
project is the following.

Proposition 8.3: Any subgroup of a solvable group is
solvable. '

' Proof: Assume that ff is a subgroup of a solvable
group G. Since G is'solvgble there exists a composition
series for G, say {e}=GOCG1C...C G,=G . Now consider the
series :

{e}=H,=HNG,CH =HNG,C..CHNG,=H,=H (8.3.1)

We must show that this series is a normal series and
that each of the factors of this series are cyclic. To
show that our series is a normal series we will show that

HNG, is a normal subgroup of HNG,

i+l

by proving that for

all a€EHNG,,, dHNG)a" is contained in HNG,.
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Let a€HNG,,, then qHNG)a" is contained in H,
since a€H. Also, qHNG)a" is contained in G, because G,
is normal in G,,. Hence gHNG)a' is contained in HNG,. -

Thus, HNG,’ is a normal subset of HDG

T
Now we show that each factor is cyclic. To do this we
will need the second isomorphism theorem. “ | |

Proposition 8.4: If H and N are subgroups of"' a
group G, and N is normal in G, then there is an
isomorphism of groups, NH/N zH/(Hﬁ'N).

So if we let G=G,,N=G,,,H=HNG,;, then since we know -
that N G, is normal in G = G, then we have that: ;
G.(HNG)[G,, =~ HﬂG)/((HﬂGi)ﬂG,._’l). However,
(HﬂG,.)/((HﬂG,.)ﬂG,. 1)=(HﬂG.)/(HﬁG,._1). Thus we have that:

G4(HNG)[G., HﬂG)/((HOG,.)DG‘.-_l)_=_(Hﬂ7G,.)/(HﬂG,._1).
~ Now, G,(HNG)[G,, is a subgroup of G,[G, . - However, since -
G.(HNG)[G, = HﬂG)/((HﬂGF)ﬂGi;i)='(Hﬂ G)(HNG,,) we get.
that (HNG)(HNG,,) is isoxnorphJ;._c to a .subgroup of. a cyclic
group, since we know that ‘G,-/G,._ll is cyclic. But, "any
subgroup of a cyclic group 1s .cyclic (this is proven by>
taking the element in the subgroup wh:Lch is the smallest

power of the generator of the group, and checklng that thlS

element is the generator for the subgroup ) Thus
(HNG)MHNG,,) is a cycllc group.

Therefore, (83 1) is a normal series whose factors are-
‘cjzclic. It follows that any subgroup of a- solvable group

is. solvable n
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Proposition 8.5: All groups with order below 60 are

solvable.

'Qne way to prove this theorem is to use the Sylow
Theorems £o prove it for éach group of order one to fifty-
nine. First we will récall the Sylow Theorems, and then
verify the proposition for some gréups with order between
.one.and sixty'relevant to this project. These groups ére

the ones that appear as transitive subgroups of S;. -

First Sylow Theorem: .If p is prime and ph divideé
the order of a finite group G, then-G‘has a subgroup of
order p'.

We recall that a subgroup of G of order p", where p”
is the highest power of p dividing the order of G, is
called a p-Sylow subgroup of G. ,

"Second'Sylow Theorem: All the p-Sylow subgroups of a
finite group are conjugate.

" Third Sylow Theorem: The number of p—Sylow groups of
a finite group is a divisor of their common index and is
congrﬁent to 1 modulo p. ’

ExampleJB.S: A group 6f order p, where p is a prime,
is solvable. ‘

‘ Probf:.”Letngbe a:group of Qrder‘bu Then we“nOte
that the only subgroup of G is the trivial group. Thus
the composition sériesifdf G is {id}C G which is a normal
series, while the only factor ié‘G/hd}=(?=Zp; Since Z, is

cyclic, G is a solvable group if it has order p.1
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Example 8.6: A group'of>order pq, where p and g are
prime, is solvable. |

Proof: Let G be a group of order pg, where p and ¢
are p;ime and p>qg. Then we note that p is the ﬁighest
power of p that divides pg. Thus the First-Syléw Theorem
guarantees us that G haé a p-Sylow subgroup of order p,
vcall it. B. Thus, By'the‘Third‘Sylow>The6rém the number of
p-Sylow groups must be a,divisor of q.and congruent to 1
modulo p, the only sugh number is the number 1. Thus;,
there is only one pfSylow grouﬁ of order p,‘and by the
Second Sylow Theorem this subgroqp»gqualsfeach of its
conjugates, thus it must be nofmél; 0Thus we can creafe»a
composition series were each factor\is cyclic. Hence G is

solvable. (The series is the series idCZB(I(?, and the

factors are G/BzZq,B/idzzp).-

Example 8.7: A group of order 5 is solvable.
Proof: This follows directly from Example g.5.H
Example 8.8: A group of order 10 is solvable.
Proof: This follows directly from Example g.5.H
The fact we just proved, that any group of order 10

has a normal subgroup of order 5, will be important in the
next proof.

Example 8.9: A group of order 20 ié solvable.

Proof: Let G be a group of order 20. Then we note
“that 5 is the highest power of 5 that divides 20. Thus the

First Sylow Theorem guarantees us that G has a 5-Sylow
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subgroup of order 5, call it‘B; Thus by the.Third Sylow
Theorem the number of S;Sylow,groups must be a divisor of 4
and cengruent to 1 modulo 5, the enly such number is thefu
number 1. Thus,. there is oniy’ohe 5fSylewlgroup.of order
5, and by the Second SYlow Theorem 2Ithis subgroup equals
each of its conjugates, thus it must be normal So<we canu
create a normal series zd CBCG Now, G/B will either be
isomorphic to Z, or K, 51nce they are the only two groups
of order four up to 1somorphlsms. For example, Z, xZ' is .
isomorphic to K;,»the Klein group. 1f it.is 1somorph1e toit
Z, then the factors of the,nprmal series“are’cyc;ic,,and we
have the composition series {e}C ZZCZ‘,_ CG '{I‘husv G is
solvable in this case. - = A
1f G/B is not isomorphie'to 2;; then G/B is

isomorphic to K,, which is isqmorphié-td.ZZXZé;‘iThus G/B
has a normal subgroup isomorphic to Z,.. Howeyer,lreCall
the theorem which states that if you have a Quqtient:map

v:G—GfH, H normal, that if K is’'a normal subgroup_of
G/H, theh uf%K) is a hormal Subgreup oer. Thus, since
Z, is a normal subgroup of K,, by our quotrent map
Y.G—>K,, there exists a normal subgroup of G of order 10,J
let’s call it C, such that y( )

/- BAs a result, we could

then begin a-new series which starts w1th.G, contlnues.
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with C, and then by Example 8.8, C is guaranteed to have a

normal subgroup of order 5, call it A. Thus, we have the

series:
{efcacccao
which is a composition series whose factors have all prime

order since G/C=Z,,C|A=Z,, and A/{id} ~Zs, and therefore

are cyclic. Thus any group of order 20 is solvable.l
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CHAPTER NINE
'SYMMETRIC GROUPS
AND SOLVABILITY

The symmetric groups and their subgroups appear as
Galois groups of polyhomials;_ In Chapter 10 we will be
determine the Galois groupé’of qunthS. We study
;symmetrlc groups to prepare the ground for our work

One family of groups that w1ll be 1mportant for our
purpose is the symmetric groups and their subgroups.

Deflnlt;on 9.1: The set S, is the set of all
permutations on n letters. S is called the symmetrlc
groups, and it forms a group under the operatlon of
composition. .' o |

Definitioh 9.2: Let a,..,q he distinct positiue
integers._ The k-cycle (quxy) is the permutatioh which
carries g to a,, a, to a;, ..., and a, to‘al,.

We will use cycle notation throughout this paper.

Example 9.1: S, ={id,(123),(132) (12),(13).(23)} .

Definition 9.3: A cyclic permutation of order 2 (aa,)
which simply interchanges g and g, is called a
transposition.

‘ Definition'9.4:,“An’even permutation,is-oﬁe that can
be written as the produot of ahfeven number éfi |
transpoSitions;: | “ |

Definition 9.5: The subéet of all even permutatione‘
of §, is cailed the alternating group and it is denoted by

A,and is a subgroup of §,.
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Example 9.2: A, = {id,(123),(132)} = {id(12)(23),(13)(23)}

Proposition 9.1: Every permutatidn of n letters is
the product of disjoint cyclic permutat!ioris in exactly one
way,‘ except for the order of the factofs.'

Proof: Let mw€ES,. Definé'the relation x=_y if and
only if y=n:'.(‘x‘). It is easy to check that this is an

equivalence relation. Thus, =_ induces a -decompbsi‘tion of

7

{12,..n} into disjoint subsets. Since = 1is an equivalence

relation, these are equivalence classes. Take an

-equivalence class §, and s€S. Then there is a.
smallest positive integer m such that #"(s)=s. It follows
that 7 restricted to '§ is the m-cycle (sn(s)...:r”"l.(s)) .

Let ‘aj..,0, be the cyc'les that =# inducés in the
equivalence cl»asses. These cycles are disjoint_,» as the_
equivalence classes ére disjoint. We claim that T =00 .
In fact, if a€{12,.,n}, say alis in tﬁe i equivalence
class, on which m is the cycle ~a,., ‘then xn(a)=c,(a). On the
other hand, «.a.(a)=a/a), as the cycles are disjoint.
Thus, Jr-=a1...ak. The cycleslare unique; as the équ-i'valence
classes are also unique..

' Prdposit}ion 9.2: S, is generated by thé
transpositions' (15),(23) s ((n —I)n) P
Outline 6f prpof: 'Firstﬁ\ we will note that using the

transpositions (12),(23),..., ((n —1)?1) we can get any

transposition of .the form (1k) for k=23,..n, or example we
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can get (14)=(12)(23)(34)(32)(21)'-and say (35) (34)(45)(43) . Once |
we have that, we can use the fact that any cycle can be
written as the product of transpos1t10ns :Ln the follow:Lng
way: (alazas...ak_lak)‘ -(alak)(alak_l),..(alaa)(‘alaz). Thus any element of
S, could be obta:.ned as a product of transpos:.tlons, as, any '
element of S is a product of d1$]01nt cycles .

Propos1t:1.on 9 3. - S, is generated by the transposltlon
(12) and _the n-cycle (12 n)i

_Outline of proof: We can generate all: the

transpos1t:|.ons of the’ form ((k 1)k) for k=2,..,n by taking

(123..n)(12)(~... 1) (23), and then obtaan.ng

. (123»...n)(23)(n...321)=(34) until - you have all the transpos:.tlons
(12),(23), ,((n —l)n) Then by Prop051tlon 9.2, all of S, |

will be generated by (12) and (12.n).H

Proposition 9. 4 ) Every even permutatlon on n'
letters, n=3, is the product of cycl:.c permutatlons of
order 3. »

 First note that there are no cycl:Lc permutatlons of
order 3 in S, for n= 1 or n=2, but there is always an even' ‘
permutation, namely the identity. . Therefore the
P.roposfition is false for n<3. ' o o
Proof: We will now prove the proposition: for n=3 -

using induction.
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‘The even.pemutations fo‘r‘n'=34 are the ‘identity,
(123) = (12)(23) , ana (132)=(13)(23) . since (123) and (132) are of
order 3, and (123)(132) = id the prop051tlon holds for n=3.

. Now suppose that the propos:.tlon holds true for every '

k<n, and suppose we have an element of A ’ call At w.
Let Jr(k),=nk .. The permutatlon o =(x, nz) 7, where.n.=.n\, |
satisfies' o(n)=(7r m)n( n)= (n m)yt =n, and is even Si"nce o

leaves n fixed and is an’ even permutatlon, the :Lnductlon '

hypothes:.s yields that o is the product of 3- cycles, say

o= ozpz2 o, . Settlng a, = (JL' m) ‘we have
aoalaz..a,,=‘aoo (75 zn)(:t )T = 7 and thus we have expressed T as
a product of ,3-cyc;es‘;!

Proposition 9.5: .‘ The-alternating‘ group A, is simple
except when n=4. o

Proof: In the case of nl=4 we know that A, is not
simple because it has a normal sub,.g‘;rOup of order 4,
{id,(13)(24),(14)(23)(12)(34)} . In the case that n<4 the order of
A, is either 1 or 3, thus 4, rnust _b'é_'simpie. Now consider
the case in which n>4.‘~ | | ‘

Let N be a nontrivial norrhal subgroup -ofA A, for n>4.
We must show that N=A,. The first step is to see that N
contains a 3-cycle. ILet a <id be an element of N which
leaves fixed as’jmany elements of‘{LZ,...,n}v as possible. As
guaranteed by PropositionQ.l ' .'let oé=a1a1..:as where o, are .

disjoint cycles, which we can assume are in order of
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decreasing length;.' Renmhbering if necessary, we may assume
‘that o =(12..k) and, when s>1, that o, =((k+1)(k+2)..J). There
are several cases to cons:Lder. |

Case 1: a moves each of the numbers 1,2,3,4,5. (This
occurs when s>2, when s=2 andAa=(12...k)((k+1)(k+1)...l) with
>4, or when s=1 and: a=a,=(12.k) for k>4.) Setting
/3—(345) the element B'a'p belongs to the normal subgroup
we called N, and thus Ba'Ba EN. However, the

permutation B7aBo: leaves

the number 1 fixed in addition to leaving fixed all the
elements fixed by a. This is a contradiction of the
choice of a, thus Case 1 is impossible.

Case 2: o moves each of the numbers 12,3,4 and no

others. (This occurs when a=(12)(34), since (1234) is an odd
permutation.) Setting f=(345) again allows the element
B'a’'B to belong to the normal subgroup we called N, and
thus B'a'Ba EN. However, if we eompute Bla'Ba,
B'a'Ba=(345)=p. Thus, BEN and ﬁ__moves fewer elements

than «. This contradiction makes Case 2 impossible.

Case 3: o moves each of the numbers 12,3 and no

others. (This occurs when a=(123)) There are no other

cases to consider now that cases 1 and 2 have been

eliminated. Thus, we have shown that N contains a 3—cycle,.

which without loss of generality we can assume is (1’23) .
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We can see that N contains all 3-cycles by letting an
1 2 3

tJ_'k

even permutation by denoted as o=(
o(123)0”" = (ijk) belongs to the normal subgroup N. If we vary

")._‘Then,
i,j, and k, we will obtain all the 3- C);cles. . Thus since'
every even permutation of n letters, n=3, is the product
.of cyclic permutation of order 3, N=A, .0 »

Proposition 9.6 A, is not a‘be_-‘lian for n>3. ,

Proof: This is true since for example (123)(234) = (12)(34)
but (234)(123)=(13)24) and (13)(24)=(13)24), and these
permutations are in all ‘A, for n>3, 1 | B

It follows from Propoéifcio;i 9.5 tﬁat the only propér
normal subgroups of S, are A, and {id}. ‘Thﬁs the normal
seriés for §, given .in, the following propos_it’i’on is 'the
ohiy'possible‘normal'series for §,. It also follows from
‘Proposition 9.5 that ‘An ié.n_ot solvable.

Proposition 9.7: Fo:r» n>4, the symmei:ric .group S, is
not solvable. | ‘ _ _ |

‘Proof: For n$4':we know that A, is simple, thus the
only possible normal seriel's -fér, S';’-_ {id}C'AnCSn, is a
c;'omposition series for §,. Howe\ie;'} ‘-'A,, is not abelian for |
n>3 as shown above iri-~'Prop.osi”tv»i(‘n}1 9.6. Also, there is not
one generator for A, qu n>3;-, fhué CA, ié not cyciid. Thus
our factor groupsrl -Which::are A, ‘“and.Z,_ ‘are not both cyciiic. |

Thus, S,,'is not solvable for ns4 .M
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. Definition 9.6: A subgroup H of S, is transitive if
for ever& pair of elements ng{L2qu} there is an element
o-r permutation 7 € H such that (i) -j.

Proposition 9.8: Let H be a transitive subgroup of
S, where p is a prime number. If H contains a
transposition, then H=S,.

Proof: Snppose.without loss'of generality that @2) is..
the transposition that H contains. Define an equivalence
relation on the set {Llqu} as iej.iannd only if the
transposition;(U)EjJ. Since H is transitive each
equivalence class has the same number of elements. ,In.
fact, if there is an element in H, call it ¢, such that
¢ =¢(l)=i, then ¢ yields a one to one correspondence from ﬁ
the'equivalence‘class of 1 to that of i since'@k)Eli if
and only if (i¢k)=(¢i¢k)=¢-(1.k)-"¢'? €H. That is any element
equivalent to i must also-be equivalent to k. The humber
of elements in any equivalence class, call lt-s, must
divide the prime p, and thus s=1 or §=p.

On the other hand, the equlvalence class of 1 contains

- at least 2 elements 1 and 2. Therefore there can only be

one equlvalence class Wthh has p elements. Therefore, H

contains all the transpos1tlons of S . Slnge every
permutation is a product of'transpositions, we have that

H=s,.1
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. CHAPTER TEN-
MOVING TOWARDS
QUINTIC EXAMPLES

As we consider which quintics are solvable by
radicals, we will begin to see the importance of
Proposition 9.8. Before we can actually get to our
examples we will need six propositions.

In this, and in the following chapters, we will
consider only irreducible polynomials as some of our
theorems only work with irreducible polynomials.

Definition 10.1: Let f be a polynomial over a number
field F. The equation jK ) 0 is sald to be solvable by

radicals if all the roots of J can be obtalned from
elements of F by a finite sequence of rational operatlons
(addition, subtraction, multlpllcatlon, and division) and
extractions of n” roots.

Proposition 10.1 (Galois’ Theorem): Let f be a
polynomial over a number field F and let E be its

splitting field. The equation j{x)=0 is solvable by
radicals if and only 'if the Galois group g?(E/F) is

solvable.

This proposition is essential in determining whether
or not a quintic polynomial is solvable by radicals, but
due to the length of the proof we will not give it hére.
The proof is given in [2, page 135].
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This proposition telis us that if we have a polynomial
over Q whose Galois group is solvable, then the polynomial
is solvable by radicals. Thus, this proposition ‘is very
important to us as it implies’that_what-we must do to find .
a quintic polynomial which is solvable by radicals'is,to
-flnd a qunth whose Ga101s group is solvable. _

- Once we know what has to be accompllshed we may begin
to search for some. qunth polynomlals that are solvable by
radicals. We will need five other very ;mportaht ‘

propositions.

- The first proposition is related to the faetrthat_the
Galois group g?(E/Q»‘for-any»quihtic~_f over (Qkis‘a .
permutatlon group- of the roots a'l,az,a:*,a‘t,a5 of f and is”
1somorph1c to a subgroup of S - ThlS is so, because eaeh
ngﬁ(E/Q) leaves Q flxed and ¢(fa) f(¢a.)=0..‘ Hence ¢a,.'
islagain‘a root of f. Furthermore we also have |

Proposition 10.2: If f 1s an 1rreduc1ble polynomlal
over‘Q, c&(ElQﬂimust be a transitive permutatron,group of
the roots of f. o | | |

Broof: We must show'that given two rootS'(4 and Q.
there is some ngf(E/Q); such that ¢(ai)'=.a,j.‘.'.If this were -
not the case, then the poiyhomial | g():c)‘=l(x_—'al')(x ‘-l;x.;)‘-__.(x—all).
in which apdhuﬁa” are distinct images of.cg under'g?@E/Q)
would be'fixed byvg?(E/QD and have coeff1c1ents 1n 0.

This means that Ax) would be a proper diVisor of f, ‘ '
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contradicting the fact that f ié‘irreducible. Thus given
two roots @, and «;, thete 4.-is__ _gome pe Z(E/Q), such that
‘(p(a,s)’=a ;r that is Z(E/Q) must bé a transitive penngtat‘ion'
group -of the_,j"roots_‘ of f.H .

‘ This.féct leads us to wonder:whét“are the transitive
subgroups of Ss{lv

Proposition 10.3: ’fhé only transitive subgroups of &
are Z;,D,W,A;, and all of -§; itself.

Here W is a group of order 20 known as the Frobenius
group, generated by (12345) and (2354),, and D, is the set of
'rotations and reflections of avregular pentagon.

Since Z, has order 5, D, has order 10, and Wf has
order 20, each are solvéble by.Proposition 8.5. On the
other hand we have seen that A, and S; are not solvable by.
Prépositions 9.5 and 9.7 respectively.

Corollary 10.1: A quintic with Galois group
isomorphic’tb Z,, D, , or W, is solvable by radicals.

Corollary 10.2: A-quintic with Galois Qroup
isomorphic to A; or to §; is not solvable by radicals. -

In order tb help us look at the subgroups of the
Galoislgroups of quintics, we will need the following three

" results. We will not provide the proof of the first one.
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Proposition 10.4: Suppose that f is a monic
polynomial over Z and that p is a prime. Let f be the
corresponding polynomial over Z,. If f has distinct roots
in a splitting field extension L of @, then the cyclic
group f(B/Zp) of the roots of f is isomorphic to a
subgroup of Z(L/Q).

What this proposition does, is that it allows us to

mod our quintic into a prime finite field, and then look at

the cyclic group of the polynomial over Z, formed by the

roots of 7. That group is isomorphic to a subgroup of the

Galois group of the original equation by Proposition 10.4.
This will help us determine which one of the transitive
subgroups of §; is the Galois group.

In order to determine the prime numbers which are
useful to mod out by, we use the discriminant.

Definition 10.2: The discriminant, A, of a

polynomial f over (@ is the quantity

s [ 1 (o, - a,.)jz,

I<i< jsn

where o,a,,..,0;, are the roots of the polynomial f.

The discriminant is easy to find when you know the
roots. However, when we are trying to obtain examples of
quintics, we usually do .not know the roots, and usually can
not find them explicitely. Thus, determining the
discriminant can be quite a task when the roots cannot be

found.
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However, one of the goals of thlS pro:]ect lS to try
'and fJ.nd examples of quintics that are solvable by.
radlcals. The follow:.ng propos:LtJ.on determines the
discrini‘inant for a family of polynomlal's that we will use.
to generate examples of solvable ‘quinties; ‘ _

Proposition 10.5: Suppose flx) =2 +-pr+q‘.l" Then the
discriminant of f, A, is equal to 5°¢*+4%p ‘

. Proof: - Let o,0,,05,0,, and o5 be .the rc‘)ont_s of the '
quintic f(x)=x"+px+q. We know that the discriminant is
defined to be: |

' : >
. 2 N
A=0o =( I1 (.aj—a,.)]

l=i<j<n ;

To derlve the discriminant for any qulntlc polynom:Lal .'Lt is
helpful to observe that -\IA_ can be expressed as -

Vandermonde s determinant:

i ’ 1 [ 2 3 4
1’ I 1 .1 1 1 o o, a7 a
2" 3 4
‘ a a, o o, O 1 a a7 a7 a,
2 2 2 2 2 _ 2 3 4 ) .
-\IK=det a o ay a] o5|=detll a a, o a, (10.1)
3 3 3 3 3 2 3 4
o o, o q a e o of a
4 4 4 4 4 2 3. 4
o a, o a, o5 1. a a) a7 o

this means that A can be expres'sed as the determinant of

the product of the two matrices. This, means that:
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A=detlmw, m, =m, ®ms 7, (10.2)

where =,=a, +a, +a;, +a, +a; . . In order to find this

determinant we must first find expressions for each =z, in
terms of our coefficients.

Since a,a,,0,,0,, and o5 are the roots of the gquintic

f(x)=x5+px+q, we can assume that there exists some

splitting field E, in which f(x) factors as:

f(x) (x- al)(x O‘z)(x as)(x a4)(.x—a5)
expanding this yields:

5
X

+o, +a,+ oy +a, +og)x
+ao,+ 0400, + U0l + L0 + Cy0ly + OO, + L0l + 0lyOl, + QL0+ 040t )X
o 0+ a0, + 100 + 0400, + 0400 )
\+a Oy Ol + OL,OL 0L, + Q0L 0L+ OL,0L 0 s + QlyOl O s *
+(01i0,0501 + 010,000+ 0400015 + OG0 05 + 0,050, 05 ) X
X050, 05
Recall that in general, the elementary symmetrlc

functions denoted ok(xl,xz,..v.,x,,_) are the sum of all the
monomials x,x,..x, , where j <i<..<j. For our purposes we

need only to note that:

o(@,0,,05,0,,05) =0, +a,+ a; +a, +os,

\
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7y =30,-07 +20mw,=0
T, =07, ~ O, +07, —40,=-4p
s =505— 0T, + 037, — 0,7, + O, =-5q
Ty = —OgTT, + O 5, = Ogfly + Oy, — 015 =0

Ty = Ol ~ O 4T3+ O3, = 0,5+ 07T =0

Once we have derived these we can then see that
2
g = 05Ty — 04T, + O35 — O, + O, =4p~ .

Using this we now know that matrix for which we need

to calculate the determinant is

5 0 0 0 -4p
0 0 0 -4p -5q
0 0 -4p -5 O
0 -4p -5 O 0
-4p -5¢ 0 0 4p’]

We can check that the determinant of a matrix B of the

form
50 0 0 a
0 0 0 a b
0 0 a b O
0 a b 0O
a b 0 0 ¢

has determinant -5a4°c+5b"+a’, thus substituting in a=-4p,
b=-5q, and ¢=4p’ yields that

detA=5(4'p%)+5°" - 4(4" p°)= 4°p°+5°¢* .
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Thus, if j(x);x5+px+q then‘the.discriminant’of~f,
isequalt05q+445. |

A Similar but more lengthy proof w1ll show that lf
f(x)=x"+nx*+ px+q then the discriminant of f, , is- egdal
.to .

35110 p - 2% 3°n’q+2% 5 13np’ +2° -32-52n2pqé £2°-3p°-2"5mp* 4 5%¢" .

: PropOSition 10.5 is helpful because modding out by one" '

of the prime factors of the discriminant w1ll give us a '~.'
polynomial with zero discriminant in the prime field, 2;;
and therefore no information on the Galois group of the-
original polynomial.. Thus, we shouid mod out by a_prime
which is not a factor of. the discriminant in order to be
able to cbtain information about the Galois group‘cf the
polynomial. '

- Proposition 10.7: Assume-jfx)‘is:a pclynomial over QO
and let A be the discriminant of f(x), and let E be the
splitting field for f() - then

(i) If A=0, fx) has a repeated root in E‘
. (ii) If A=0 and A has a square root. in Q, then
Z(EIQ)CA,. |
(iii) AIf'Avhas no squareyroot'ian,'then
Z(EIQ)¢ A, . , o
Proof: - (l) holds 51nce lf A 0, then two of our roots‘

are equal, which means f() has a repeated root in E-.



(1ii) Assume A=0 and A has a square root in Q. Then, .

p=Ah =[] (@,-a)€Q. Take o€ Z(E/Q), then o(p)=p as p

lsi<j=n

belongs to the fixed field. However, the only way to fix
p would be for o to be an even product of transpositions,
otherwise ¢ would switch an odd number of signs, of(p)=-p,
and p would not be fixed. Thus, o€A,. Thus F(E/Q)CA,.
(iii) Follows directly from the fact that (ii) is

true.

Propositions 9.8 and 10.1-10.7 will now allow us to
give a plethora of examples of quintic polynomials that are
and are not solvable by radicals. These examples are given

in the next chapter.
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CHAPTER ELEVEN
QUINTIC EXAMPLES
AND THE METHOD

To determine whether a quintic is solvable or not, we
have devised the following method. Please note that this
method will not always allow you to determine whether a
quintic is solvable by radicals, but in many of the
polynomials we found it has been useful. ‘

This method only appligs.thirredgcible quintics.

Step One: Given’a quintic p(x), we first make sure
that it is irreducible over Q. Then we determine the
types of roots of the quintic, using-calculus and
elementary Algebra. lIf 1{x) has 3 real rpots and 2 complex
roots, then you'céﬁ ¢6hé£ﬁdeifhaé'thé'quihtiq is not
solvable by radicals, as follows. In this casé, since the
Galois group G, must ‘be transitive by Proposition 10.2 and
it also contains a transpositioﬁ, G is isomorphic to S§; by
Proposition 9.8, which is not a solvable group by
Proposition 9.7. Thus, p(x) is not solvable by radicals by
Proposition 10.1. -

If p(x) has all real roots, this rgséarch project ﬁas
not been able to determine a process for whether this

quintic is solvable by radicals. - If p(x) has 1 real root

and 4 complex roots, then move onto step two.
Step Two: Using the discriminant we mod out p(x) into

an appropriate prime field, in order to determine the
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cyclic subgroups of G. These subgroups w1ll allow us to
determine whether G is solvable using Proposition 10.7.

. This two step method works for a sufficiently 1arge
set of quintic polYnomials, aud it has allowed us here to
find examples of quintics that are sblvable.by radicals.
Of course, there are other means, different from our J
method, of analyz1ng a quintic polynomlal - Examples 11 10
- and 11. 11 1llustrate two other such poss1b111t1es

Example 11.1:4.j(xy=x ~4x-2 is not solvable by
radicals. | | - | |
First we'determiue that ij)=x5—4qh-2 is irreducible .

using the‘Eiseustein criterion with p=2, since 2 divides
all the.coefficients except‘the.leading dne while 2? does
not divide 2, the'constant term. Now we use calculus to
try and determlne the number of real roots, since we. cannot “
find out the five roots by.hand. Taking the first
derivative yields - _ B -
f(x)= 5x -4, thus f'(x ) has roots at :Qﬁf?.'This means, that
f(x) has relative extrema at . +A<U5, which meanslthere could
be real roots on either side of both :4495. Now we check
by plu@ging‘in numbers.on botﬁ sides of :ﬂﬁ?? as

shown in Figure 3.
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x| 2 |15] 1| -5] 0] 5] 1]15] 2

800 | 26 | -359] 1 |-031| 2 |-396| -5 |-406] 22

+/- - -]+ - - - - - +

Figure 3. Roots For Example 11.1

Usiné ﬁhe~ab6vé‘fi§ufe Qé cantsee'thét f(x) has real
roots between -1.5 and -1, -1 ;and -.5, and 1.5 and 2. Thus'
f(x) ﬁas three real roots.- “This means that f(x) has 2
.éomplex fdots. Let the‘threelreal roots be o,,a,, and as,
and the two complex roots be o and a,. Then; the
aﬁtomorphism y which will carry the complex number a+bi to
.its'cémplex conjugate-will interchanée py.and a,, while
fixing our thrée ‘'real roots ‘a3,a'4 ’ .‘and as. Thus, y will bé
in the Galois group F(E/Q), where E;Q(al,az,aS,d4,a5);
However, we know that:g?(EYgD.is isomofphic to'a'transitive
subgroup of S;, and that it contains the transpdsition (LZ),
our first tw6 roots are permuted, thus by“Propositién 9.8,
Z(EIQ) is isomorphic to all of S;, which is a 'non—sol\fable
gréup. Thus by Proposition 10.1; the quintic pélynomial
F(x)=x"-4x-2 is not solvable by vradicals»... |

‘“'The'procedufe in Ekample 11.1 can be used to analyze
each of the Exémples 11.2 to 11.5.- In.each case we can j
verify that éach polynomial is irreducible using the

EisenStein Cfiterion, and then apply calculus like in
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Example 11.1 to get that'each'polynomial has three. real
roots and two complex ones, thus giving us quintics that

are not solvable by radicals.

Example 11.2: j(x)=2x5410x+5 is not solvable by
radicals. _

Exéﬁple 11.3: “ﬂx)=x5—4x2+2x52 is not solvable by
radicals. | H

| Example 11.4: f@0=x5+9x4—6x3¥3x2+3x—3.is not

solvable by.radicals.‘ |

Example 11.5: j(x)=2x5—7x§—7x437 is not solvable by

radicals.
The past examples were quite easy to characterize

because each one had 3_real'roots and 2 complex roots. We

ask what can be done in the case in which f(x) has 1 real

and 4 complex roots. Here. is what this research has found.
| Example 11.6: f(i);x5+20x+16 is not sql&able by

radicals.

First we need to.détermine whether or not

f(x)=x"+20x+16 is irreducible. We will do this by
considering f(x-1)=(x- 1)5 +20(x-1)+16=x" ~5x* +10x° -10x* +25x -5 .

By the Eisenstein criterion with p=5, f(x-1) is"
irreducible, since 5 diﬁides all the coefficients exéept

the leading’One,;whileHSZ\doés.nqt;divide -5, the constant
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term. Now since f(x-1) is irreducible then f(x)=x5+20ch+16
is irreducible since f(x—l) is just a linear tfansformation
of f(x). | | |

Now we use calculus to try and determine the nmnbér Qf

real roots, since we cannot determine our five roots

explicitly. Taking the first derivative yields
f{(x)=5x*+20, thus f(x) haé roots at‘ +44, this means that
f(x) has no real roots, thus f(x) has no relative éxtfema.
But f(x)>0, so f(x)'is always increasing, and thus f(x) has

a real root as shown below in Figure 4.

x | 2 115] 1] 5] 0] 51 1157 2

fx) | -56 | 216 -5 | 59 | 16 |26.03| 37 | n/a | n/a

+/- - - - + + + + + +
Figure 4. Roots For Example 11.6 |

Using the above figure we can see specifically that

f(x) has a real root between -1 and -.5. Thus f(x) has one
real root. This means that f(x) has 4 ‘compﬂlex roots;

Now we find the discriminant of f(x) using .
Proposition 10.5. Since f(x)=x" +20x +16 we get
A=5q"+4*p*=5%6" + 4%20° = 5526 4 215" =5%2"(1+2%) =_2‘656 . Thus

A =2%°, Since A=2°° is a perfect square we know that by

- 65"



Pfoposition 10.7 the Galois group of f(x) must be a
subgroup of A;. We will determine whether it is a proper
subgroup or all of A,. To do this we mod out
f(x)=x°+20x+16 into a prime finite field other than 2 or

5’, else the polynomial would become unuseful. The lowest

prime we have left is 3.

so f(x)=x"+20x+16 mod 3 is f(x ) X -x¥l. Checking
all the numbers in Z,, f( )=x"-x+1 is irreducible over Z,.
Thus it does not factor over, Q, and we. do not get any more
information about the Ga101s group, since this implies .that
the Galois group has a subgroup of order 5, and all the

transitive subgroups" of Sy have subgroups of order .five.
The next prime finite field we look at is Z,. We see
that f(x)=x"+20x+16 mod 7 is f(x)=x"+6x+2. Using

synthetic division we can check that in Z,,  f(x) factors as
(x+2)(x+3)(x3 +2x° —2x—2) . UsSing synthetic division and
checking all the numbers in Z,, it can be shown that the

cubic (x3+2x2—2x—2) is irreducible in Z,. This means the

roots of f(x) form a cyclic group of order three. Using

Proposition 10.4 we obtain that the Galois group generated

by the roots of f(x)=x’+20x+16 has a subgroup isomorphic

to a cyclic group of order 3. However, since we know that
the Galois group of f(x) must be a transitive subgroup of

A; we have A;, D,, and Z; to choose from. But the Galois
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group of f(x) must also -'haye a subgroup of 6rdet':,3_.'_ :Ti';us
the Galois group of f(x) m1_1s£ be .iéomo;phic ﬁp:'i.Asﬁ_ls,ipc-é ‘Du’,: ;
and Z; can‘not have Subgroups'o'f. order 3. "I-‘he»r'efvo_re; ‘s"inée
A, is not a solvable group, the ‘Ga'lois"gré,up lS not. |
solvable and by Propositiorllw 10.1, f(x')=x5.'+20x+1_6.'.is not
solvable by radical"s.- |

The following two examples show quintiés which are not
solvable by radicals. Th'e._ firs; one having a disér‘irﬁinént |
that is not a pélffect _éguaré, fhe s”econd one haviﬁg é
perfect square discriminaﬁf;.” ' "

Example 11.7: '-];.(‘x)=x5+15x+é is not sblvéble,by'.
radicals. 1In this case f(x)=x"+15x+6 ié cleafiy |
irreducible b}} thé' Eisenstein Criterion. . Using calculus we
see that there is one real root and,4 -compiex roots. The
discriminant is 2%3%5°7%,. and thus .is' not a perfect square.
Thus by Pfopo'sition 10.7 it mﬁ'st have a Galois Qroup which
is not a subgroup of A;. Hence the Galois group must_be Ss
or W. Now our next step is to mod f(x) j.;nto an
: appropria‘.te‘ prime finite field. The .p,ri.me_ ‘finite field we |

look at next is Z,. We see that f(x)=x"+15x+6 mod 11 i%
7(-)'3=x5+4x+6. Using éynthetic division we ;:an “checl:k' that
in Z7,, f(x) factors as '(x+.10)(x+4)(x"f—3x2+2x+4). Using
syni;.hetic division and checking all the numbers in le, it

can be shown that the cubic (x3;3x?+2x+4) is irreducible"
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in Z,. That means that the roots of f(x) generated a
cyclic subgroup‘qf.: order three. Using ,Propositidn 10.4 we
have that the Galois group generéted by the roots of
j{x)=x5+15x+6 has a subdfoup‘isomorphic to a cyclic group
of order 3. However, since we know that the Galois group
has to be either S; or W and W_canho't have a subgroup of
order three, the éaiois éroup must - be S5 Thus, f(x) is
not solvable by radicals by Prpix)‘sition 10.1. N

| Example 11.8‘:" f(x)=x5+11x+44 is not s;olvable by
radicals. In this case f(x)=x5+11x+44 i; clearly
irreducible using the Eisenstein Crite;ion with p=11.
After determining that there is one real. root and 4 complex
roots we find the discriminant is 21472114, and thus is a

perfect square. Thus by Propo’sition 10.7 it must have a

Galois group which is a subgroup of A, thus the Galois
group must be A;, D,, or Z Now our next step is to mod
f(¥) into an appropriate prime finite 'field. Thé next
lowest prime finite field we can look at is Z,, but this’

results in an irreducible polynomiail which woﬁld be of very

little use to us. We then mod out into Z;. We see that

f(x)=x"+11x+44 mod 5 is f(x)=x"+x+4. Using synthetic
division we can check that in Z;, f(x) factors as

(x - 3)(x4 —2x° - xP 4+ 2%+ 2)‘ . Using synthetic division and

checking all the numbers in Z, we can check that the
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guartic (x“—Zx3 —x2+2x+2)-.is irréducible’in Zs. . Thus the
roots of f(x) generate a cyclic subgroup of order four.
Using Proposition 10.4 we obtain that the Galois 'group:
'generated by the roots of f(x)=x°+11x+44 has a subgroup

isomorphic to a cyclic group of order 4. However, since we

know the Galois - group has to be either A, D,, or Z, and

D, and Z; cannot have a subgroup of order four, the Galois -

group must be ‘As\. Thus f(x)=x"+11x+44 is not solyable by

radicals, .Iby Proposition 10.1. H h

| Now we move onto an ekample of a solvable'quintic.

‘Example. 11.9: f(x)=x5—5x+12 is solvable bj} radicals.
First we need to check whether or not f(x)=x5‘—5x+1v2

is irreducible. We will do this by‘ considering

flx+2) = (x ;-3)5 -5(x+3)+12=x"+ 15x4 +90x° —270x%+ 390x - 78 which |

uS1ng the Eisenstein criterion with p=3, is irreduciblel,“

since 3 d:LVJ.des all the coefflcn_ents except the leadlng

one, whlle 3? does not lelde -78, the constant ‘term. Now
since  f(x+3) is irreducible, we also have that.
flx) = x5 -5x+12 is irréducible .

We use calculus -to find out the number of real roots,

since we cannot determine our fJ.ve roots. Taklng the first

derlvatlve ylelds f(x)=5x*-5, thus f'( ) has, roots 'at +1,

) thlS means that f’( ) -has two real roots, thus f( ) has two
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relative extrema which means f(x) will have the potential

for roots on both sides of x1. Now we check by plugging in

numbers as shown in Figure 5.

x| 2 15] 1 ]-5] 0 15 2
f(x) | -10 11191 16 |1447} 12 | 953 12.09 34
+/-1 - - -+ + 1 + P B

Figure 5. Roots For Example 11.9

'Using the figure above, we can see that j(x) has a

real root between -2 and -1.5. Thus f(x) has one real

root. This means that f(x) has 4 complex roots.

Next we find the discriminant of f(x) using

Proposition 10.5. We have f(x)=x"-5x+12, so

A=5"" +4%p° =5712% 4 4%(-5) =523 -2%° = 52°(3" - 1) = 2%5°.

Thus

A=275°;, Now since this discriminant is a perfect square

we know that the Galois group is.a,subgroup of'As. Now we

must determine whether it is all of A; or a proper subgroup '

of A;. To do this we mod out‘j(x)¥x5—5x+12 by a prime

finite field other than 2 or 5, eise the'polYnomial would

become trivial. So the lowest prime we have left is 3.
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So f(x)=x"-5x+12 mod 3 is f(x)=1"+x which in Z,,
factors as x(x2+x—l)(x2—x—1) . 'i‘hus we know that Galois
group has a subgroup isomorphic to Z,. This fact right
away eliminates Z. from the picture. So the Galois group
must be either A; or D,.

The proof of the fact that in this case the Galois
group is D, requires the use of a computer. An outline of
the proof can be found in [7, page 162]. Since the Galois
group is D, and wé know that by Proposition 8.5, D, is a

solvable group, Proposition 10.1 yields that f(x)_= x° -5x+12

is solvable by radicals.l

The last two examples Edci) not use the method that
Example 11.1 through Example 11.9 used and will be handled
differently. -

x-4x’ =3x%+ 3x+1 is solvable

Example 11.10: fx) =2
by radicals. |
First we check that fx)=x2"¥x* 45" -3x*+ 3x+1 is
irreducible by using the Ei'sen'stein Criterion (p=11) and
the
substitﬁtion x+2, whiéh yields

Fr+2)=(x+2) +(x+2)' —4(x+2)° - 3(x+2)" +3(x+2) +1

=x +11x* + 44x>+ 77 + TTx +11.

This example was not created like the ones before it.

In previous examples we started with the polynomial and
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tested it in various ways to see whether it was solvable by
radicals. This one we will show is solvable by working
backwards.

Consider an 1lth root of unity, say a ="M,
Reasoning like in Example 6.3 we get that a minimal
polynomial for a is ®,(x)=l+x+x*+..+x", which is
irreducible over Q by Example 4.8, and has the cyclic
Galois group Z,. This has a subgroup of order 2 and the

fixed field of this has Galois group Z; by the Fundamental

Theorem of Galois Theory. (The Galois group of a fixed

field B, between our splitting field £ and Q is
FB1Q)~Z(EIQ)[Z(EIB)=2,/Z,~Z;.) This fixed field is

generated by a+a', while the minimal polynomial for this
is f(x)=x"+x*-4x’-3x+3x+1 (this can be checked by
plugging a+a” into f(x)=x"+x"-4x’-3x*+3x+1 which yields
zero), thus the Galois 'group for f(x)=x" +x* =45 -3x"+ 3x+1
is Z,, which by Example 8.7 is a solvable group, thus
fx)=x°+x*~4x’ -3x*+3x+1 is solvable by radicals.M

Example 10.11: f(x)=x"-2 is solvable by radicals.

First we note that f(x)=x"-2 is irreducible by

the Eisenstein Criterion. For this example, we show that

the dimension of the splitting field of f(x) over ( is

twenty. Thus the Galois group must have order twenty and
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thus must be solvable by Example 8.9.. If the Galois group |
is solvable, then by Proposition 10.1, f(x)=x"-2 is
solvable by radicals.

Proposition 11.1: Let f(x)=x"-2 and let the
splitting field of the roots of flx)=+° ~2 be E, then
[E:Q]=20

‘Proof:" -.C'lear.lyf;' we -have ‘one positive real root for
f(x)=x"-2, :nameli;.zus, and 'f(x) -y -2 is a minimal
polynqmial for 2"5',_ ‘thus [Q(2”5)Q]=

Now let us consider any‘ other .root of f(x)=x5 -2 in C.
Then (a 2”5) 5/2 1, so a=w2"? where w is a complex root
of x5—1=(x—1)(x4+x3+22+x+1). Since .(J'c4.+x3+x2+)'c+1) is
ifreducible by Example 4.8, we get that [Q(w):Q]=4. Now
notice that the roots of f(x)=x’-2 are , |
.2”5,a12”5,w22”5,w32”5,w42”5 , so the splitting field of f(x) is
E‘=Q(2”5,co). Since f(x)=x"-2 is irreducibie over Q(w), we
also have that [Q(Z“s) )];5 |

Now, [Q(Z”Sw) ] [ 0(2"°}o(w)[0(@):Q]=5-4=20 by
Proposition 3.1. Hence [E:Q]=20. Thus by Proposition 6.1

the Galois group must be group of order twenty and thus an

order twenty subgroup of S;. Therefore it must be solvable

by Example 8.9 since it has order 20. 1
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CHAPTER TWELVE
CONCLUSIONS AND
" RECOMMENDATIONS

If we look‘back on the questions that motivated my
research: Are there any quintics that are solvable by
radicals? If so, can we predict whether a quintic will be
solvable or not? What methods can we empldy-to-detérmine
whether a specific quintic is solvable? We can draw the
following conclusions based on the work done in this
thesis. Predicting whethef a quintic is solvable or not
‘can be easy if it has 3 real roots and 2 complex rooEs, but
much more difficult if it has one real root and 4 complex
roots, or all real roots. In the first two cases, after

. some calculations, we were able to find a method to decide
whether a quintic of the form f(x)=x"+px+q is solvable or

not. :

- A topic that can be further investigated, is trying to
come up with a reasonable equation for the. discriminant of.
a quintic of any form. This might ﬁot'necessarily
guarantee the.genefation_of a plethoré of quintiés;that are
‘ solvable, as we have found it quite difficult to actually

find a discriminant which is a perfect square even for a
simple quintic of the form f(x)=x+px+q.

In fact, finding quintics which have discriminants
with prime factorizations which are not perfect squares
proved to be difficult as well. This means finding the

discriminant in terms of the coefficients will not even
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guarantee generating unsolvable examples. Employing a
computer program to help iﬂ thé search for discriminants
that have prime factorization and that are perfect squares
may also prove to be useful in fufthering the topic of
quintics that are solvable by radicals.

In conclusion, maybe as the excitement grew over
whether the typical quintic was solvable by radicals, many
people discovered just how hard it was to find reasonable
examples. Hence, when it was proven that the typical
quintic was unsolvable by radicals, quesfions like those
that fueled my research, though important, Qere considered
not worth the time nor hassle they required when there were
still other topics waiting to be further developed and

discovered.
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	/tJ2 + VT) = o((a£ + A^")2 + 2>/2(a/2 + a/3) -l) = (a/2 +	-1()(a/2 + ‘xfif +1 = 0,

	a1a2a3 + a2a2a4 + ava2a5 + a1ct3a4 + a}a3a5 \+aja4ce5 + a2a3a4 + a2a3a5 + a2a4a5 + a3a4a5?

	oj(a1,c£2,a3,a4,a5) =0^ +a2 + a3 +a4 +a5,

	[F:(2] = 20.	,	.



