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ABSTRACT

The Riemann zeta function has a deep connection with

the .distribution of primes. This expository thesis will

explain the techniques used in proving the properties of

the Riemann zeta function, its analytic continuation to the

complex plane, and'the functional equation that the Riemann .'

zeta function satisfies. Furthermore, we will describe the

connection between the Riemann zeta function and the Prime

Number theorem, and state the most famous unsolved

mathematical problem, the Riemann Hypothesis. One of the

most important generalizations of the Riemann zeta function

are Dirichlet's L-functions. Also, we will explain the

techniques used in proving the properties of Dirichlet's L-

functions and the functional equation that Dirichlet's L-

functions satisfy.
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CHAPTER ONE

INTRODUCTION

In the study of the distribution of the prime numbers,

Bernhard Riemann, in 1859, wrote an eight-page paper

entitled, "On the Number of Primes Less Than a Given

Magnitude" that impacted the mathematical world. In his

paper, Riemann stated several unproved conjectures that

were settled by Hadamard, de la Vallee Poussin, and von

Mangoldt more that 50 years later. However, one of the

conjectures in Riemann's paper still remains without a

proof. This conjecture is now known as the famous Riemann

Hypothesis, and it was listed as one of the millennium most 

important unsolved mathematical problem for the 21st

century.

In his eight-page paper, Riemann introduced the zeta 

function, £(s), s E C and over the years, the study of the £(s)

function has contributed immensely to mathematics.

Moreover, the essence of many theorems depends on the

understanding of the Riemann Zeta function. The objective

of this thesis is to provide a survey on the proven

properties of the £(s) function, its particular application

to the Prime Number Theorem, and the functional eguations
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that Dirichlet's L-functions satisfy.

In chapter 2, I will briefly go through the historical

background of the Riemann Zeta function. A detailed proof 

will be provided for the analytic continuation of the £(s) 

function, and its functional equation. Chapter 3 will

provide important facts of the product formula for the 

related £(s) function. Chapter 4 will explain the 

application of £(s) function in proving the Prime Number

theorem. Finally, in chapter 5, we will generalize the

Riemann Zeta function to Dirichlet's L-functions and

outline the proof for the functional equation that

Dirichlet's L-functions satisfy.

The three major source of information used in this

thesis are the following references: Edwards[6],

Davenport[2], and E.C.[4]. See references for detail on

these sources.
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CHAPTER TWO

HISTORICAL BACKGROUND OF THE RIEMANN 
ZETA FUNCTION

Introduction

The study of prime numbers dates back as far as

Euclid's time (300 B.C.). Moreover, Euler also provided

important results about prime numbers (1737). In fact,

Euler proved a famous identity,

oo -

n=l p 1- P~
for a fixed 5 >1. (2.1)

This identity became an important tool and a starting point

in Riemann's paper. During 1792, independent works from

the great Gauss and Legendre contributed major results in

regard to the asymptotic density of the prime numbers which 

led to the statement 7r(x) ~ x/logx, x —> oo , where 7r(:r) counts

the number of primes less than given x . This statement

became known as the Prime Number Theorem (PNT). However,

the PNT remained unproved for almost fifty years, from 1850

to 1894.

Properties of the Riemann 
Zeta Function

As was mentioned above, Riemann's ingenious idea was

3



to treat Euler's identity (2.1) as function of complex 

variable s . So, <7(5), s E C was adopted as the Riemann Zeta

function and it became the key point in the study of the

distribution of prime numbers. In fact, Riemann defined 

the zeta function, £(s), with the following formula

?•/ \ n(—s) r +°° ( X}S dx
^ = 4—? SGC,

Z7T t J +00 e — 1 x
(2.2]

and showed that this formula is analytic throughout the

whole complex s-plane except for a simple pole at s = 1 .

(Note: II(s) is the factorial function notation used in

Edward[6], r(s) = II(s — 1) and it is used throughout this

thesis). We will explain this formula (2.2) in the

following section. Moreover, another fascinating result 

was that the zeta function, £(s) satisfies the functional

equation,

£(s) = n(—s) (27r)s_12 sin(s7r / 2)£(1 — s) . (2.3)

This result follows from (2.2) and it is used to

calculate the trivial zeros of the £(s) function. An

important result that Riemann found was

n(j - _ i)%-d-» )/=C(i _ , ■ ,2.4)

which is another functional equation that remains unaltered

4



with the substitution of s = l —s. Its full proof will be

provided in the last section of this chapter. The zeros of 

the zeta function £(s), for Re(s) < .0 are known as the trivial

g
zeros and they are precisely at the poles of II(--1) i.e.,

s = —2,—4,—6,... Riemann went on to state that the non-trivial

zeros of the' zeta function, £(s) lie in the critical strip 

0 < a < 1 . In fact, he conjectured that the £(s) has

infinitely many zeros in 0 < a < 1 that are symmetrical with

1respect to the real axis and to the critical line cr = -,
Al

which is now known as the famous Riemann Hypothesis.

Furthermore, Riemann also stated that the number of zeros

p = + it where 0<t<T is approximately
A

£logK+0<logr>- l2-5>

Von Mangoldt gave a complete proof of this statement in

1905. Riemann went a step further and defined an integral

function as follows:

CO) = n(j)o-i>-"‘c(s) . (2.6)

This is an analytic function of s, is defined for all

values of s , and it has the product representation

5



(2.7)«») = «o)II(i- —), where £(0) = .
p ?

This product formula was proved by Hadamard in 1893 and

became a very important tool for the proof of the Prime

Number Theorem as we will see in chapter 4.

In Riemann's paper, he gave a difficult explicit 

formula for 7r(a;) ~ li(x) for x > 1, namely,

■J(x) = li(rc) — li(a;p) — log 2 
p

00
+ £li(x-’)-log2 + J > 1) . (2.8)

P X

X
. . c dtHere h(a;) = I ---  is known as logarithmic integral. There areJ2 log /

various important components that Riemann used to derive 

the above formula. For Re(s) > 1, he showed that we can

LXJ -i
rewrite log<j(s) =

p n=l
as

CO 1
logC(s) = sJ J(x)—^dx ,

J(x) is

a prime

a step function that

1 2 1 
P, - for p*, - for

Re(s) > 1. (2.9)

jumps 1 when it encounters

p3 and so on. He then obtained

6



a+ioo
1 f , ./ x c ds± c dsJ(x^ = —— J log((s)xs—, (a > 1) by applying the Fourier

inversion formula to (2.9). From both formulas, (2.6) and 

(2.7) for £(s), we get n(^)(s - l)?r ^(s) =. |f]\l -. So, log£(s)
2 2 n P

is expressed in terms of the non-trivial roots, p of the

zeta function and other logarithmic terms. However, von

Mangoldt provided a much simpler formula that has replaced

Riemann's original formula, namely,

„-2n £/(Q)

*’ = I-?7 + p2„ C(O) (z > 1) , (2.10), X

where ^2— consists of a sum over the non-trivial roots p 
p P

of the zeta function, £(s) . (2.8) was derived by using

oo

log£(s) — sjJ(x) s+1 dx , however, (2.10) is derived from the 
o x

f OO 00

— -J^log(x)J(x)dx = f^ip{x)dx . Here, is
p <x

also a step function, but Tp(x) behaves better than J(x)

C'(s)because ,: / is analytic everywhere, except at 5 = 1, theC(s)

roots p, and the zeros of II(-)

7



In 1914, Hardy succeeded in proving the existence of

infinitely many zeros on the critical line. However, no

one has been able to prove that all of non-trivial zeros

are on the critical line.

Analytic Continuation

The goal of this section is to show the analytic

continuation of the Riemann zeta function using Riemann's

original technigues (See E.C.[4] and Edwards[6]). The zeta

OO 1

function is defined by C(s) —and it converges for
n=l

Re(s) = a > 1, and converges uniformly for cr > 1 + e , where

e > 0 .

Remark: Let s = cr + ti, so Re(s) — a . We will sometimes use 

Re(s) instead of cr for convenience.

Proof: The proof is not difficult to show. Let m and n be

positive integers, m < k for cr > 1 + £ , we get

A i A 1 f 1
P.e -_D,V-Jvdx = (i^)

n=m+ln=TO+l

m1 a

Note that the last term can be as

£

small as we desire for a

fixed £ > 0 and large enough m . □

8



Once the convergence has been proved, we can prove the

identity,

oo
(2.11)

for seC, Re(s) > 1, where p runs through all primes.

Proof:

1 OO-i
Note that _s = 1 + + p~2s + p~*s + p~^a + p~bs... = — .

1 P n=0P

So, each term of the product can be expressed as _ns .
n=o P

Thus, the right-hand side of (2.11) is

“1 A 1
n1,n2,...,nr=0 nW . nrs / n, n2 ... nr \s

=QPl Pi Pr nbn2,...,nr=olPl Pi. Pr )
where

Pi,Pi,■ • •,Pn are distinct primes and n1,n2,...nrare natural numbers,

By the Fundamental Theorem of Arithmetic, we can conclude

1that
=o(p? -P? ■■■P? Y n=0

We will show that ((s) has no zeros for Re(s) > 1.

Lemma 2.1 The ((s) function has no zeros for Re(.s) > 1.

Proof:

For Re(s) > 1, we can see that (1 — 2“s )(1 — 3“s )• • -(1 — P~s)((s) =

1 + rafs + + ... where are integers whose factor are

E E

□

E

9



greater than P . This implies that |(1 — 2 s)---(l —P ’S)^’(s)| > 

1 — (P + I)-0" — (P + 2)_cr — ... > 0 for a large enough P. Thus,

l<0)l > o.
□

OO 1

So far, we seen have that £(s) = —- holds for__ 1 Tbn=l

Re(s) > 1. However, Riemann showed £(s) has an analytic 

continuation which holds for all s£C\{l}. The formula by

which Riemann extended the zeta function is

n(—s) f+°° (—x)s dx
C(s) = I \ . — s e C.J 2iri J+co e -1 x' (2.12)

The derivation of this formula will be not discussed

in depth, but we are going to mention important techniques

that Riemann used to derive his formula. One important key

to understand is Cauchy's Integral Theorem: If /(z) is 

analytic in a simply connected domain D and 7 is any loop

(closed contour) in D , then

Let us examine the following

(—x)s dx 
+00 ex — 1 xJ»+oo
+00 , s 6 C .

We note that (—r)s is defined 

and log(—x) is not defined on

f f(z)dz = 0 .
7

contour integral,

(2.13)

as (—x)s = eslog(-a:) — g^iogizi+vM-z)) ,

the positive real-axis since

10



log(^) is not defined on the negative axis. The limit of

this integration refers to a path of integration that

starts at +oo above the real-axis and goes around the

origin counterclockwise (positive direction) and heads back

to +oo below the real-axis,

+ 00

+oo

Let
+OO
+OO
W
-1 be the contour path, and let

7l 72 73

the argument, Arg(—x) = — % for 7X. going from +oo to <5>0, and 

Arg(—x') = 7r for 73 going back to +oo . The integral (2.13)

converges for all s, which implies that (2.13) does not

depend on the choice S by Cauchy's Theorem. Again, (2.13)

is function of s only. Thus, Cauchy's Theorem can be

applied to evaluate the integral on each of the paths,

71,72,73 such that (2.13) becomes,

P+oo (—a;)5 dx _ 
J+oo e1-!?

+ OO

= / (—x)s dx 
(ex — 1) x + (—x)s dx + r azJ (ex

(—x)s dx
(ex —1) x ' J (ex - 1) x 

lxt=6 v 7 +oo ' 7

11



It is not difficult to show that the middle term goes to

zero as 5 —> 0 for s > 1 on the circle I a; I = 6 , because we can

write x = de1,9 and — = = idd and note that x(ex — I)-1 has
x fie19

a removable singularity. The remainder terms can expressed

as

+00 +oo „s—1lim P exp(slog(x + +)& = e,„
J (e - l)a; J ex -15->0

and

V /j. j exp(slogx — iir)dx _ +oo

5->0
+CO

(ex -1> (2.14)= — e

w 5-1

—-- -dx = n(5 — l)C(s) which

can be obtained from the definition of the factorial

function II(s) — J'e ttsdt, (s > —1) by replacing t for nx and 
o

summing over n . Adding both terms in (2.14) and the 

nf—5) p+00 f—'g\sformula we stated, we get = —7—- I —----- , as we
v 7 2ttz . J+oo e - 1 x

desired.

□

12



The Functional Equation of 
the Zeta Function

Riemann himself gave two proofs of the functional 

equation for the zeta function, £(s). Mathematicians have

found different ways of proving the functional equation for

the zeta function; however, this section will be devoted in

the discussion of the techniques used by Riemann in his 

original paper which is found in E.C.[4]. It is

interesting to note that historical accounts point out that

the Poisson summation formula was an extremely important

tool used in Riemann's original proof. The Poisson

summation formula,

OO oo 00
52 f(.n)= 53 where f(f)= f f(x)e ~r,rxdx (2.15)

n=—00 n=—oo —co

tells us that existence of the relationship between the sum

over the integers of a function / and its Fourier

transform. The function must be differentiable "smooth"

and vanishing at 00. The argument for the proof of the

functional equation goes as follows:

By definition,

OO
II(s) = J* e^t^dt, .

0

which implies that

13



x-iII(| — 1) = J'e lt2 dt, for a > 1. 
o

(2.16)

Now, let t = n27rx in (2.16) and note that dt — n2ixdx, which

s „S f* 2 — £ _gives the following result: TI(—— 1) = I e~n (u2ttx)2 dx(n27r) = 
2 J

e n 7TXinsTv2x2dx . This implies that m 2I1(^ — l)n 5 = J e n~^xx2dx , 
2 Jo

for cr > 1. Let us now take the summation over n and get

n “ = > | x e nnxdx', and note that the right hand
n=l n=l o

side converges absolutely, which allows us to bring the

summation inside as follows:

TV

5 O I

X-i)E»-=Me^"!
0 kn=ln=l

If we let 'Q(x) = e n7VX f then we get the following 
n=l

expression,

TV

OO £

n(j - = f x Tp{x)dx .
71=1 n

(2.17)

This can be solved for £(s), 5 = TV

n=l n^-no

KZ-V gJ' X 2 T/>(x)dx

f
s s
2 2

dx .

Riemann then applies the Poisson summation formula, (2.15)

14



2
to the function, f(x) — &~n ^x , X > 0 and obtains its Fourier

1x 2 /transform to be, f(r) — —-j=&~n X which gives us the 
-V t

following identity:

■dx
e-n-^!x

Since -0(x) = n“7ra: it is clear that, 
n=l

clty(x) + 1 = e

— V e-^<x = J-f2V,(-) + l
Vx Jx\ 'x1 (2.18)

The interchanging of the summation and integration in the

following argument is justifiable by absolute convergence 

of the integrands in the integrals for Re(s) > 1. We now

apply (2.18) to the right-hand side of the following

s OO °° 1 1 1g - p _£_ 1 p — g_ 1
formula, 7r "II(- — l)Jj n-,s = J x2 ^(x)dx + J x2 ^(x)dx . We get 

n=l i n

+ P’"1 + TV -

00 1 
“5-1

-dx \xj 2dx T

i i= fx2S Vj)(x)dx + fz2S 1 —-0 f — eirr + fx2S dx f(£2 )dx
{ oJ \xl o 2Vx 20

E

15



1 11 1 303 1 i / I \ 1 1 i _3 1 1 io_I= Jn;2s i/>(x)dx + Ja;2S -- -i/H - Ida; + - Ja;2S 2dx - - $x2 dx
Ax \ xl

CO !— —1 i i / I \ 1 1= Ja;2 ip(x)dx + Ja;2 2^y —jda;H--- - —

Changing the limits of integration for the integral

1 1 3 1
a;2 i'ip(—')dx, we obtain the desired result,

7T
71=1

°° 1 _1 _1 . 
J (a;2s + x 2)i/j(x)dx +
l

(2.19)(s - 1) s

_S -i
Thus, 7T 2n(^ — l)C(s) = 7T 2 2n(-^ --)((1 - s) is the functional 

Z z z

equation which remains unchanged with the substitution of

5=1—5.

□

We note that 11(5) = 5ll(s — 1) , and II(^) = II(^ — 1) which implies 
z z z

S 2 5that n(-- 1) =-II(-) . Riemann then multiplies (2.19) by
2 s 2

S(5 - 1) and defines

£0) = % 2n(-)(s - l)C(s) , (cr > 0) . (2.20)

We will discuss formula (2.20) in the following chapter.

16



CHAPTER THREE

THE PRODUCT FORMULA FOR £(s)

Introduction

In Chapter two, we stated Riemann's definition for'

^) = ^n(|)(5-W), (3.1)

which is an entire function and by the symmetry of the

functional equation, we get

£0) = C(i - s) •

We state some of the interesting remarks for the £(s) 

function. In Chapter two, we showed that £(s) has no zeros 

for Res > 1 . The zero of s —1 and the pole of £(s) cancel so 

that s = l is neither a pole nor a zero. So, £(s) has no

roots p for the half-plane Res >1. Similarly, by the

functional equation, if p is root of the £(s), it implies

that 1 — p is also a root, and so is its conjugate 1 — p.

This shows that £(s) has no roots for the half-plane Res < 0 

because the trivial zeros of £(s) are canceled by the poles

g
of n(-) . Thus, all roots p of £(s) must be the nontrivial

roots of the zeta function in the strip 0 < Rep <1.

17



Riemann stated that the £(s) can expanded into an

infinite product,

ew = MR1 £) <3-2>
p p

where p are precisely the roots of the Riemann zeta

function where the factor p and 1 — p are paired. However,

it was Hadamard who showed the validity of (3.2).

In following sections, we will follow Hadamard's line

of argument. We will discuss the estimate of the

distribution of the roots of £(s), show the convergence of

the product representation, and conclude with the validity 

of product formula for £(s) .

Estimate of £(s)

It is not difficult to show that for sufficiently 

large values of R the estimate |£(s)| < RR is valid in the

disk s — < R, since the largest value of £(s) takes place

at 5 = —\-R, (See Edwards [4]). For sufficiently large 2

enough R , we choose N such that i + R < 2N < 2 4- R + 2 . By

Nusing (3.1) and noting that N\ < N we obtain the following

result;

18



£(j + R) < (m = (N (2N - 1)C(27V)

< Nn(2N)((2N) = CNn+1

< C(|/2 + 2)^2^3 < Rr .

Where C is some constant and the result is true for a

large enough R .

□

Another interesting question that we may ponder is, 

how many zeros does ((s') have? Before we answer this

question, let us appeal to the well-known Jensen's formula

which is stated as the follow theorem.

Theorem 3.1 (Jensen's formula)

Suppose that f(z) is an analytic function defined in a

disk \z\ < R . Suppose also that f(z) has no zeros on Izl = R

but it has zeros inside, the, disk, namely, Zx,Z2,z$,...,zn with

their multiplicities and /(0) 0 , then

log |/(0) | + log
J? R
zx z2

(The proof follows from

and the Cauchy integral 

Theorem 3.2 Let n(R) be

R

^3
R

2tt
= bf log|/(Re'»)|rf9 .

0

properties of analytic functions

formula).

the number of zeros (with their

19



multiplicities) of £(s) which are located in the disk

< R . Then n^R) < 3PlogP for all large enough R.

Proof:

We Apply Jensen's formula to f(s) on a disk < 2R and

get log£(j) + IoS i / WT lo6 (&R)2R) • We see that ,
2 |p-i/2|<2R \P i/2l

2R52 loS| _ 1 /Q| = 52 (log 2 + log P — log
|p- 1/2|<2R \P 1 / zl |p-l/2|<2#

summation indicates that the terms corresponding to roots p

in the disk <R are all at least log2. This implies

that n(P)log2 < 2Plog2P — log£(-) and hence

n(P) <
2R log 2R

log£(w)

log 2 log 2
< 3PlogP , for all large enough R. Thus,

1
S 2

1
S 2

). The

we have completed the proof.

□

Convergence of £(s)

This section is devoted to show that the above rough

estimate is sufficient for the convergence of the product

CO

formula in (3.2) . We know that if the infinite series 52
71=1

20



is alsoconverges absolutely, then product na-Ki) 
n=0

convergent. It is easy to see that we can pair the roots

of the 4(5) by the noting that log£(s) = ]T\og(l — —) and by 
p P

absolute convergence of the sum, we get

E
Imp>0

log'l-E
P)

+ log 1-p

where p ranges over all roots of £(s) . Now,

E
Im p>Q

log
1 - -] + log = E logfi-^Ki-^l

I p) 1-p)\ Im p>0 i pji i-p)\

= E lo§
Im p>Q

1- *(1 ~ S)
P(1 - P)

This implies that 1-- = J^[
Imp>ol P Imp>0

' s(l - s) 
p(l - p)

To prove the convergence of the product formula in (3.2),

name ly n / \ 
1-*

p)
, it suffices to show the convergence of

p(l - p)

1

In fact, the technique here is to write

1 1
|P(1 — P)| i <

1
4 p~2

by completing the square. So,

E

it suffices to show the convergence of ---- -—t-t— for
^\p- 1/2|1+
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II

£ > 0 . By knowing the estimate of the p of £(s) in

|s-l/2| = 72„ and noting that |p - 1 /21 > 74 , we can Jshow that

2 _ 2 i53|^_i/2|1+g < (7 + 53ni/2+£ and the right-hand side is

convergent for e > 0.

□

Validity of the Product 
Formula £(s)

We now state Theorem 3.3 that will show the validity

of the product formula (3.2). The proof for Theorem 3.3

-requires three very important results which we state as

lemmas. We are merely going to sketch the important steps

in the' proofs of the lemmas.

£00 is an evenTheorem 3.3 The function F(s) = n
analytic function of s — -, which is defined in the entire s

Li
s

plane. Moreover, F(s) does not have zeros, thus logF(0) is 

determined up to multiples of 2rni. Hence, logF(s) = constant.

□
l+£

Lemma 3.1 Given £ > 0 , then Relog 1
S 2 for<£00
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Proof: The idea is to write f(s) = u(s) + v(s) as the sum of

its real and imaginary parts, and consider

Xs) Xs)
s[2M — f(s)}'

Substitute u(s) + v(s) for f(s) and observe that |2M — «($)]>

(3.4)

M > u(s) on the circle isl = r ; it shows that < — in the

disk {isi < r} . We express (3.4) as /(s) = which gives

, ,z x | . 2Mr1r 1 2Mr\ ,. , r ir(s) < —---- r =----  for isl = n and holds in a disk {Isl < n } .1 - rxr 1 r -t\

□

Lemma 3.3 Let f(s) be an even analytic function which is 

defined in the entire s plane. Suppose f(s) has a rate of

growth less than I s I2, that is; for every- £>0 there exists 

R such that Ref(s) < £ l<sl2 for all points s , \s\> R . Then f

is a constant.

Proof: (sketch of the proof)

We must conclude that f(s) = constant . The idea here is to 

express f(s') — a0+aiS + a2s2+aiss+... + ansn and assume that

f(s)ao=’O. The coefficients of f(s), If ds by the
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Cauchy Integral formula. Let D be the disk then

On ---

1 AfRe*>) 
2m-J0 1 \n idd

2n+1s 
- Rn-2 for e>0 by Lemma 3.2. The

result shows that an = 0 for n > 2 since £ can be chosen as

small as we desire to. We also note that <20 = 0 = 0! follows

from the fact /(s) is an even function and the rate of 

growth of f(s) . Thus, /(s) = 0 which implies that f(s) is a

constant

□

We recall the function,

from Theorem 3.1 and by the three lemmas, we can see that

log-F/s) = c where c is constant. Thus we obtain,

f 1 r i ]
£00 = cfl 1 S 2

1 , which implies that £(0) = cJJ i 2
i

p P~2. p [ P ~ 2)

Dividing £00/£00, we get
f 1
1 S 2

1 .c-n
1 '

p [ P ~ 2) p P - Kk 2)
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n
f 11
1 1 n

1 '
1 _2

1
p [ "-2J p [ "-2J

-1

The right-hand side equals

0 or 1 if s — p or s = 0

function of s , we get

respectively.

ew=«o>n f i - -
p \ p)

Since it is a

to be the desired

expression.

□
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CHAPTER FOUR

THE PRIME NUMBER THEOREM

Introduction

The Riemann Zeta function has many applications, and

this chapter will be devoted to showing how the Riemann 

zeta function, ((s'), play a key role in proving the Prime

Number Theorem (PNT). Before we discuss what each section

contains, it will be important to state the PNT.

The Prime Number Theorem:

, . x
7r(x) ~ i--- as x —> oo.logs

We take a moment to explain what the theorem is 

actually telling us. 7r(s) is a function that counts the

number of primes less than or equal to x . In fact, if we 

were to graph 7r(s), we can see that this is a step function

that jumps by one unit every time it encounters a prime.

For a large value of x, 7r(s) starts to look like the

function of s/logs. In fact, as x —> oo , 7r(s) ~ x/logx . This 

implies that 7r(s) is an asymptotic function; which simply

7T( 2?)means, lim—A-A— = 1. However, s/logs does not really give z->oo x I logs

a good approximation to 7r(s), and it was great Gauss who
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X

provided the logarithmic integral,

approximates 7r(a;) . Comparing Table 

that li(r) is a better approximation

1 and Table 2) .

li(x) = f dt which better 2 lo§*

1 and Table 2 we can see

than rc/loga;, (see Table

Table 1. Approximation of 7r(x) to a;/log2;

X 7r(a;) X / log X n(x) / (x / log

103 168 144.8 1.16

104 1,229 1,086 1.13

105 9,592 8,686 1.10

106 78,498 72,382 1.08

107 664,579 620,420 1.07

108 5,761,455 5,428,681 1.06

109 50,847,534 48,254,942 1.05

IO10 455,052,511 434,294,482 1.04
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Table 2. Approximation of tt(x) to li(a;)

X 7r(a;) li(z) 7t(:e) / li(ic)

103 168 178 0.94...

104 1,229 1,246 0.98...

105 9,592 9,630 0.993...

106 78,498 78,628 . 0.996...

107 664,579 664,918 ' 0.9994...

108 5,761,455 5,762,209 0.99986...

109 50,847,534 50,849,235 0.99996...

IO10 455,052,511 455,055,614 0.999993.

The Prime Number theorem, can either refer to 

7r(rc) ~ x/logx , x —> oo or ir(x) ~ li(a;), x —> oo , because we are

interested in the value of their limits.

Riemann himself outlined the proof (with no details)

of it in his eight-page paper, but it was Hadamard and de

la Vallee Poussin who provided the missing details,

independently. Nonetheless, this chapter will primarily

focus and follow Hadarmard's line of argument, but it will

include de la Vallee Poussin's argument. We will discuss

the proof that Rep <1 for the roots, p. Moreover, we will

prove that f(x) ~ x and conclude with the proof of the

PNT.
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The Riemann Zeta Function Has No 
Zeros on the Line Re(s) = 1

We are going to show that for all the non-trivial zero 

of ((s), their real parts are less than one. This is going

to be de la Vallee .Poussin's proof found in Edwards[6].

Py (2.1), CO) has no roots for Re(s) > 1 and from von 

Mangoldt's formula, this reduces to showing that £(s) has no 

roots p on line Re(s) = 1 .

Theorem 4.1 (de la Vallee Poussin) CO) has no roots p on 

line Re(s) = 1 .

Proof:

From (2.1) (Euler product) and for cr > 1 we get

log C(s) = EE -mu Er + EE-P
p m=2

—rno-g—iirologp

oo
where EE — p mae ltm^P is bounded. We see that,

p m=2

oo -

log CO) = can be rewritten as CO)=
„ _ . TTlp m=l

exp -itm log p It follows that,
p m=l

Re CO) = exP
OO w

EE~P””'’oos(iIosp™) (4.1)
p m=l

JC
m P

g—iimlogp

Now, de la Vallee Poussin established a relationship
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between ((a + it) and £(cr + 2it) by using Merten's identity;

3 + 4 cos 6 + cos 2d = 2(1 + cos 9)2 > 0 , 

for all values of 9 . We are- going to prove that £(1

remains bounded away from zero for all t by (4.2).

identities (4.1), and (4.2), we see that 

3 log ((cr) + 4 Re log £(<7 + it) + Re log + 2it) > 0 for Re(s) > 1.

implies that

<3(01C40 + «/)|K(o- + 2z/)| =
3 + 4cos(m£logp) + cos (2 mt log p)EE

, p 771=1

exp
mp

The right-hand side of (4.3) is either 1 or greater

(4.2)

+ it)

By the

This

(4.3)

than 1,

which implies that

CMICV + > !> (^ > V

If we fix t and let <7 —> 1, £(cr) = £(1) has a simple pole. If 

1 + it were a zero of the zeta function, £(s), the inequality

tells us that the left-hand side goes to zero as <7 —> 1 . 

However, £(a + 2it) is bounded as <7 —> 1, contradiction. Thus

there exist no zeros of the zeta function on the line

Re(s) = 1 .

□
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Proof that ip(x) ~ x

In this section, we outline the main steps of the

proof for ,ip(x') ~ x, x —> oo . We recall the formula (2.10),

namely,

^(x) = x Sy + E 2n ' C(0)’
(z > 1) (4.4)+

As it was mentioned in Chapter 2, the formula was obtained

OO

by applying Fourier inversion to —('(.s')/((s) — sj‘i^(x)x~s~1dx

(where ift(x) = logp ) , and from using the identity
pm<%

II(^)(s — 1)% 7 £(s) = aTTQ-— • The result from applying the2 2A A z?

Fourier inversion is the following equation,

a+it

2ivi

a+tt or 
cm

ds (4.5)x°

which is the key in evaluating (4.4). Next, Riemann found

the anti-derivative of (4.4) and showed the validity of its

term-wise integration to obtain another formula, namely;

r/’+ir^tidt- —-V + v 2w+1 + + for all
J ~ 2 o(o + 1) + ^2n(2n + 1) + X + F(-l) £°r a±±pOq + 1) -4—' 2n(2n +1) C(0) <(-l)

x >1. It is not difficult to argue that the last four
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terms,
p+i -2n+l + £gL + £Ei)

p{p + l) ^2»(2n + l) C(0) C(-l)
converge to zero,

as x —> oo by dividing every term by — .
A

Thus, we obtain

the desired result x2 
~2 '

x + E X

X

□

To show that ip(x) ~ x, we are going to require a

preliminary result that we state as Theorem 4.2 which is

found in Apostol[l].

Theorem 4.2 Let A(s) = a(l) + a(2) + ... + a(n) = a(n) and let
n<x

px
4l(x) — J A(t)dt . Suppose that a(n) > 0 for n = 1,2,3... If 

Ai/s) ~ Lxc as x —> oo is an asymptotic formula, for a 

positive constant c and L > 0 , then A(s) ~ c£sc_1 .

Proof: We are only going to provide an outline of the

proof for Theorem 4.2. We first need to consider the fact 

that A(s) is an increasing function and a(n) > 0 . We let 

(3 > 1 and observe the difference of Affix') — . We get,

/3x (3x

A1((3x) - 4(s) = J A(u)du > J A(x)du

= A(x)(J3x — s)
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= x(J3 — l)A(a:) .

This gives us

44
c—1 /3-1

404 Pc 40)' 
. W P<

x

It is not difficult to show that if we keep /3 fixed and let

x —> oo , we find

r A(x)^rJ3c~lhm sup <L_^.
X —>O0 dj /J X

Now, as (3-^1, we obtain

t 44 / rhm sup—M- < cL . 
x—>00 XC

Consider 40) “ 40x) f°r anY a with 0 < a < 1, we clearly

see that

lim inf > L-——
x—kx xc 1 1 — a

1 — ac
L------- > cZ, as a —> 11 — a

j4(x)This shows that y? —> cL, x —> oo 
xc 1

□

xLet us denote = 52440 — n) and 4 0) ~ 4“ (from the
n<x

previous result) . By letting a(ri) = A(n), 40) = 40)) and

AO) = 44 as Theorem 4.2 indicates, we can easily conclude
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that ~ x .

□

The Prime Number Theorem

The Prime Number Theorem says that 

7v(x) ~ x / log x as x —> oo.

Proof: To prove the PNT, the key idea to understand is the

chain of connections among ^(x) = 52 ^°?>P ' d(%) = 52 < and
pm<x

7r(a;) for x > 0 , such that 7r(x)/(x/loga;) , 6(x)/x , and i(r(x)/x

have the same limits x —> oo. We first find the relation

between ^(x) and 6(x), and the relation of 3(x) to 7r(a;). This 

series of connections will lead to r(x') ~ x / Yog x .

We note that jj(x) = 0(x) + Ofa1/2) + dfa1/3) + ... by grouping 

together the terms of f°r which the power m is the

same. Moreover, by grouping the terms for which p are the

same, we obtain if)(x) — 52 log a;
logp logp . We get the following

inequality,

0(a;) < ip(x) < 52 !°gX 1°S P = 7r(£)log2; .
P<X ° T

(4.6)

Divide (4.6) by x, and recall that ^(x) ~ x, as x oo from
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, . , , , 7r(s)logsthe previous section. Thus, 1 < —^---- as x —> oo . Next, if
x

0 < a < 1, x > 1, 0(x) > logp > (X®) — 7r(xa)}logxa . We
xa<p<x

, / a\ „ Q(x) (Tv(x)].ogx logsobserve that 7r(s ) < x , so -Y2. > qJ v 7 let a be1—ax x x

, i 6(x) . 7r(s)logsfixed and x —> oo , we get > 1 > —---- since a can be as
x x

7V\Xi loff Xclose to 1 as we desire, which implies that 1 > ——---- as
x

s —> oo . Thus 7r(s)
logs

□
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CHAPTER'FIVE

DIRICHLET L-FUNCTIONS

Introduction

The Riemann zeta function, C(s) is not an isolated

object but, rather comes from a family of functions called

Dirichlet series, E/-« where f(n) is an arithmetical
n=l

function. In fact, there exist other functions that are

generalizations of the Riemann zeta function which are used

in the study of algebraic number fields. Examples of such

functions are the Dedekind zeta function, the Hurwitz zeta

function, and the Epstein zeta function. This chapter will

be focusing on the properties of Dirichlet L-functions. 

Moreover, just as we proved the functional equation for C(5)

function, we will also provide the proof of functional

equation that Dirichlet L-functions satisfy. Dirichlet L-

functions are extremely important tool in the study of

prime numbers in arithmetic progression, and their

properties are somewhat related to the properties of £(s).

In order to have a better understanding of Dirichlet L-

functions, this chapter will provide definitions and

properties of Dirichlet characters, primitive characters,
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and conclude with the proof for the functional equation.

Most of the material in this chapter comes from Apostol[l]

and Davenport[2].

Dirichlet's Character

Definition 5.1 (Dirichlet Characters)

Let G be the group of reduced residue classes modq and q

be a fixed positive integer. Let : (Z / gZ) C* be a 

homomorphism. Corresponding to each character xf of G , we

define an arithmetical function x : Z —> C* as follow:

XZ(n + qZ) if (rc,g) = l.
, s (5.10 if (n,q) > 1.

Moreover, we denote the Principal Dirichlet character modq

to be

1
0

XoH = •
if (n,q) = 1. 
if (n,<f) > !•

The functions x with the above definition are known as

Dirichlet characters.

We can clearly see from our Definition 5.1 that

Dirichlet characters are completely multiplicative, that 

is; x(nm) = for all m and n since x' is a

homomorphism map.
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Lemma 5.2 and Lemma 5.3 follow from Lemma 5.3

Lemma 5.2 Let Xi,X2,...,X<p(q) be the <^(q) Dirichlet

Lemma 5.1 There exists tp(q) distinct characters modq , where 

(p(q) is the Euler -function which gives the number of

positive integers less than or equal to q and relatively

prime to q .

Proof: The proof follows from the fact that </?(</) forms a set

of reduced residue system modq. This implies that there

exists 93(g) characters x' for the group G of reduced 

residue classes mod# . Thus, there exists 'p(q) characters x

mod q .

characters

modq. Then, the first sum is given by,

S x (n) =
nmodj

¥>(?) if x = Xo 
0 otherwise:

where the sum is over any representative set

modg. The second sum is of the form,

12 X(n) =Xmodg

<p(q) if n = l(modg)

0 otherwise;

where the sum is over all the 9?(g) characters 

Lemma 5.3 Let Xi,X2,...,Xv(q) be the </>(</) Dirichlet

mod# , and let a, n G Z with (a,g) = 1 . If y is

of residues

characters

; the conjugate
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xfaMn) =
Xmodq

character to xr then

<p(q) if n = a(mod<7)

0 otherwise.

This sum represents the orthogonality relation of the 

characters. We note that x(a)x(n) = x(n') where n’ = l(mod§) if 

and only if n = a(mod.5) .

Note that if the order of a group G is n , |U|= n and

for qcG then qn = 1 (1 is the identity of G) . Similarly,

let X C G where G = {x \ X'■ G C*} forms a group of order

<p(q), then we get = 1 = Xo • So the values of x are

precisely the roots of unity. Moreover, we denote x

to be the complex conjugate of x-

We now provide the following examples to show the

different Dirichlet characters mod</ for each value

q £ {1,2,3,4,5,6,7,8} . For q = 1 and q = 2, (p(g) — 1 , there exists

only the principal character Xo ■ For q = 3, ip(q) = 2, and

5 = 4, (p(q) — 2 , we obtain two Dirichlet characters, Xo, Xi for

each modulus
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n 1 2 3 n 1 2 3 4

XoH 1 1 0 Xofa) 1 0 1 0

Xi(n) 1 -1 0 XiW 1 0-1 0

For q = 5, ip(q) = 4 ,

Xo, Xi, Xi, Xs ■

we

5

obtain four Dirichlet characters,

n 1 2 3 4
Xo(n) 1 1 1 l 0
Xi(™) 1 -1 -1 l 0
Xi(n) 1 i — i --l 0
xM. 1 — i i ■-l 0

For q = 6, p(q) = 2, we get two Dirichlet characters, Xo, Xi

n l 2 3 4 5 6
Xo(n) l 0 0 0 1 0
Xi(n) l 0 0 0 -1 0

With q == 7, p(q) --= 6 we obtain 6 Dirichlet characters,

Xo, Xi, Xi, X3 Xa, X5 ■
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n 1 2 3 4 5 6 7

Xo(n) 1 1 1 1 1 1 0
Xifa) 1 1 -1 1 -1 -1 0
Xz(n) 1 ca2 ca — ca — ca2 -1 0
xM 1 ca2 — ca — ca. ca2 1 0
XiW 1 — ca ca2 ca2 — ca 1 0
X5(n) 1 — ca -ca2 ca2 ca -1 0

Here LU ■
27T

= ey . When q = 8, ^(9) = 4

characters, Xo, Xi, X2, Xi ■

n 1 2 3 4 5 6 7 8
Xo(n) 1 0 1 0 1 0 1 0
Xl(™) 1 0 1 0-1 0-1 0
X2W 1 0 -1 0 1 01 -1 0
XsW 1 0 -1 0-101 0

we obtain four Dirichlet

However, the functional equation for L(s,x) will be * 

valid only for primitive characters, so we will define

primitive characters.

Definition 5.2 Let x(n) be any character modg other than 

the principal character. The character x{n} is said to be 

primitive mod$ if it has no induced modulus qx < q . That 

is, x(n) is primitive mode/ if and only if for every qx that 

divides q, 0 < q± < q , there exists an integer a = lmod^),

42



(a,q) = 1 such that x(a) 1 •

We state Lemma 5.4 without proving it.

Lemma 5.4 Every non-principal character x modp where p is

prime is a primitive character modp .

Here is an example of a character that is not primitive.

Example: Let x be the character mod 9 given by

n 1 2 3 4 5.6 7 8. 9
x(p) 1 -1 0 1 --1 O' 1 -1 ■ 0

This particular character is not primitive for the

following reason: By the above definition, that divides

9 such that 0 < < 9 are 1 and 3. The principal character,

Xo is not primitive because 1 is an induced modulus. Now,

A = 3 is an induced modulus for mod9 so let

a — 4 = l(mod3), (4,9) = 1 but x(4)=l . Thus it fails our

definition 5.2 so %mod9 is not

primitive.

Dirichlet L-Functions

After the previous lemmas, we are in the position to

officially state the definition of Dirichlet's L-functions.

In this section, we are going to prove their convergence
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and hence the Euler product formula. The proof follows a

similar argument to the case of the Riemann zeta function.

Definition 5.3 Let x be a Dirichlet character mod# . We

define the function L(s,y) as

£(5,x) = E^ET' for seG, Re(s) = a > 1 (5.2
n=l

Theorem 5.1 (Davenport[2]) For a > 1,

i) L(s,x) converges absolutely.

ID

Proof: To prove absolute convergence, let Re(s) = 1 + e ,

e > 0; then

M
E

n=JV+l

X(n) M
s E

n=2V+l

M

X(n) <E —
n=N+'[.

< (TV + l)-(1+£) f -yrgdx <(TV + l)^1+e) + £~\N + l)~e. 
J . x +M+l

M

n n

We can take s to be as small as we desire, and by Cauchy's

oo / \
criterion of convergence, E-« converges absolutely for

n=l

Re(s) > 1 and uniformly for Re(s) > 1 + £ . In Part ii) , the

argument is the same as in the case for the Riemann zeta

function by using part i) and taking the fact that x is
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z
completely multiplicative. Thus, L(s,x) = 1 —

p

□

Up to this moment, we have not acquired sufficient 

tools to prove the functional equation for L(s,x), so in the

following section we start by providing the tools that will

be needed.

Functional Equation of L(s,x)

In this section, we are going to prove the functional 

equation for L(s,x) which is valid only for primitive

characters. Once we have understood the Gauss summation in

relation to the characters, the proof follows similarly as 

the proof for the functional equation for the £(s) . 

Definition 5.4 Let y(n) be any Dirichlet character mod#,

we define the Gauss sum related with x as follow;

x(x) = X(l>g(l) + X(2)eg(2) + ...x(m)eq(m)

9
= 52 . (5.3)

This is a linear combination of imaginary exponentials, 

where eq(m) is defined by eq(m) = e2mm/q .

Lemma 5.5 For any primitive character, y(n),
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9
X&Mx) = ^X(fyeq(nh) •

h=l

Proof: If (n,q) = l, by (5.3), we multiply x(n) T(x) which

9
gives us x(jl)T(x) = 52 x(m)x(n)eg(m) ■ Let m = n/t(modq), and we 

m=l

note that x(n)x(n) = 1 ■ This implies that x(n)'7"(x) =

9 9 9
X&Mx) = ^X{^h)x{n)eq(nh) = ^Jx(n)x(n)x(b)eq(nh) = ^x(h)eq(nh) .

TO=1 /l=l /l=l

Thus, we get the desired result. It is not difficult to 

show that it holds whether (n, <?) = 1 or (n,q) > 1.

(5.4)

□

Now, (5.4) can be rewritten as

1 9 _x(4 = (5.5:

by replacing h for m, and with (n,q) = 1 and assuming 

r(x) 0 .

Another result we would like to prove is the following

proposition.

Proposition 5.1 Let y(n) be a primitive character modg ,

then

T'(x)l = dq (5.6)

Proof: To prove this, we use (5.3) to get the following
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expression, noteIxHI2 I Ax)|2 = J2 S xfaWgW1! - ^)) • We 
=1/12=1

that each character has |x(n)I = 1 and there exist </?(</) in a 

complete residue class mod# which shows that |x(^)|2 = </((/) . 

Furthermore, the sum for eqn(hy — h^) is zero unless = ty . 

Thus, we get <p(q)|t(x)|2 = <7<p(?) which gives (5.6) .

□

We now state our goal for this chapter as a theorem,

which will require the previous tools to prove it.

Theorem 5.2 The Functional Equation for an L-function:

Let x(n) be a primitive character modq . If

&,X) = (-) 2(S+O)n j(s + a - 1) L(s,x) where a = 
q 4

0 if x(-l) = 1

1 if x(-l) = -1

iaq2then £(1 — 5,x) = z /fox)- Here, r(x) is defined as in (5.3;

We note that x(~ 1) — ±1 and consider the two cases.

CASE 1: x(~l) = 1 •

The technique here is similar as the one used in proving

the functional equation for the Riemann zeta function, £(s)

We recall the result (2.16) from' Chapter two, namely,

-- °° 9 --1 t dt% 2n(- — l)n_,s ■ f e~n"™x1 dx . Let x = — then dx = — , and2
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substitute into the equation then,

v 2n(j-i> 5 = ft o
t

\q)
dt °C ’"Ml’1 4dt — = I e qt2 q 2q — = 
a J a

_ 2 5

q2Tv 2n(|-l)n"5 = J e qt2 ^dt . 
o

S «

Replacing t by x we get

°O 9 X s
_ ~z o p —nit—_ 1

q2Tv "II(— — l)n_s = e qx2 dx . 
2 Jo

5 _s 

y2, (5.7:

We multiply both sides of (5.7) by %(n) and sum over n to

get

S _£ s ( oo
927T 2n(| - l)L(s,x) = f X2

, n=l

0 ' X
—rrir- 

9 dx which holds for a > 1.

We note that x(—1) = 1 tells us that it is an even function.

OO 1 00

Since f(x,x) = ^/x(,n)e~n''7rx/q so -f(x,x) = r we obtain
71=1

q27T 2n(|-l)I(s,x) = | JX2 \iKx,x)dx 
z 0

(5.s:

Lemma 5.6

Ax)f(,x, x) = (? / xfiKx-1, x) (5.9)

Proof: This follows from the three elements;I

°° 2 1 9:VV,x) = 53xWe_?rra/9 r x(n) =-^^x(yn)eq(mn) and the general 
-oo T\X) TO=1

48



form of the Theta function,

oo 1 oo
(n+a)27r/a:   n~7rx+2irinaE (5.10)

(As in Chapter two. the proof of (5.10) follows from

Poisson Summation formula. Moreover, note that when a = 0

oo 1
in (5.8), we get -ig(s) = = s which was used in

— 00

proving the functional equation for the zeta-function).

□

(q/ x) _
We can express (5.9) as V’fex) = k 'ip(x~1,x) and by 

T(X)

^(x,x) = ^x(n)e-n2mlq , we obtain. ^#r,x) + j^^#E_1,x) =

n=l

x(ra)e n“7ra:/? . This allows us to split the integral in (5.8)

as

s 1
g2?r 2n(^-l)£(s,x) = | Js2 1-0(s,x)da; + |J'x 2 2jj(x X,x)\dx

s 11 q200 s z
= ^fx2 ^^X)dx + 2 2ip(x,x)dx.

The second line is obtained by expressing V’(a;-1jX) in terms 

of ^(x^x) • Furthermore, the second expression remains

unchanged when s and x are replaced by 1 — s and x,
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respectively. The term II(— — 1) is never zero, which tells

us that the last expression is regular. We

functional equation which is the analytic c 

L(s,x) r namely;

achieve the

ontinuation for

l(—1)Z2 7T I(i-S,x) = ^-V -nfl l)L(s,x). (5.11)n

□

We now consider.

CASE 2: x(-l) = “I

Proof:

Since x(~ 1) — ~ 1 implies that x is an odd function, in which

case, ifi(x,x) — ^2x(n)e n”7ra:/? vanishes. The main technique here

s 1
is to replace - —lby-(s + l) in (5.7). Once the replacement

ve, so we are

replacing

is done, the argument is similar to the abo

just going to mention important, steps. By

5 1
2 -1 by 2^s + 1^ we get;

□

i(5+l) -i(s+i) s52 7T n(-
°° „2_a; 5 1

J
- n 7T—--

ne qx2 2dx .

o
(5.12)

In a similar way as- in case 1) , we mul :iply both sides
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of (5.12) by x(,n) r sum over n
f) X 

nriv-

and let = 52nx(^> g to

s 1

obtain the following expression,,

OO

)n(j)L(£x) = /ViO,X>2 2dxi(s+l) -5(s+1>
(5.13)

Lemma 5.7

(xM(i,x) = «(?/s)3/2^(s \x)T‘

Proof: The important technique here is to take the

derivative of the generalized Theta function (5.10),
. o

1 00 oo

(5.14)

y 252< -(n+a)~7i/y _ 52e ”'7ry+2™1“ with respect to a and note that

the derivatives of its series converge uniformly. We use 

'ifii(x,x') and r(x) as in Lemma 5.6 and it will not be too 

difficult to see that we can get x(jx)'ip3{x,x) = i(q/x)3 ! 2 j\(x~\x)

□

Similarly as in case 1), the integral in (5.13) can be

separated as

|(s+l) -£+1> s
«2 " nt'-—’ 2

Ip $ 1 1 °°
n(jW,x) = 2dx + 2dx

l

$ 1
= jj*^i(x,X)x2 2dxi + ^^=rJ‘^1(x,x)x 2dx

2 J 7'1V’,ZW~ ' 2t(x).
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Thus, the last expression remains unchanged with the

substitution of s for 1 — s . So, we obtain the other 

functional equation for the case y(—1) = —1 , that is;

(2 s') 2(2 7 1 \\r/i — \ "V
7 2 TV n(-(1 - s))L(l - s, x) = q

iq2 ~j(s+l) 4(s+1)
TV (5.15)n(5)L(«).

We recall the functional equation for the case 1), (5.11)

q2 tv n ;H-1) LQ-s,x) = 2g2n(|-l)A(s,x) • So, we 
MX) 2

join both (5.11) and (5.15) by a =
0 if x(-l) = 1

1 if x(-l) = -1
As a

result, the functional equation for Dirichlet L-function is

obtained; namely, if £($,x) = (~) 2^ + E -s + a-!) Z(s,x) then

£(i-s,x) = •

□

I
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