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ABSTRACT

Modern dynamical systems theory provides a means of

describing how a system changes over time. On November 7,

1940, during a windstorm, the Tacoma Narrows Bridge broke

apart and collapsed. This suspension bridge was more than

a mile long and was known as "Galloping Gertie" because the

roadbed oscillated with the wind. This thesis will examine

the equation

developed by Lazer and McKenna to model a suspension bridge

in no wind. We will then examine a simple partial

differential equation

utt + uxxxx + ku+ =w (x) + e/(x, t), 
u(0,f) = u(L,f) = 0,

Ujac (0; 0 — ^XX (L’ ~ 0’

to model a suspension bridge.
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CHAPTER ONE

DYNAMICAL SYSTEMS

Modern dynamical systems theory provides a means of

describing how a system changes over time. Continuous

dynamical systems are described with differential

equations. Equations that model "real world" applications

are usually nonlinear and can therefore be complicated.

The majority of nonlinear differential equations do not

have a closed form solution, that is, we cannot come up

with an explicit mathematical expression that solves the

differential equation. However, we can analyze many of

these systems using a geometric-analytic approach. This

allows us to qualitatively view the behavior of the system

and gain insight into how the system will behave when

parameters are varied.

One technique for analyzing the behavior of a system

is to look at its qualitative structure of flow. The

qualitative structure of flow may change as parameters are

varied. By varying the parameters of a system it is

possible to create, destroy, or change the stability of

fixed points. Fixed points correspond to steady states or

equilibria of a system and occur where the time derivatives
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of the dependent variables are simultaneously zero.

Qualitative changes in dynamics are called bifurcations,

and the parameter values at which they occur are called

bifurcation points.

Bifurcations are very important scientifically. For 

instance, a steel beam can support a small weight without

deforming. However if we gradually increase the weight,

the beam will eventually buckle due to the heavy load

placed on it. This buckling point occurs at a bifurcation

point.

Bifurcation points are classified by their effect on a

system. The saddle-node bifurcation is a basic mechanism by

which fixed points are created and destroyed. Consider the

following system:

x - y - 2x
(1.1) 2

y = H + x -y.

The system's qualitative behavior will eventually change as

the parameter jj, is varied. To begin an analysis of such a

system we find the fixed points for the system. Nullclines

are valuable in the analysis of a system. Nullclines are

defined as curves where x or y equal zero. The nullclines

indicate where the flow is parallel to the coordinate axes.
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Fixed points occur at the intersection of nullclines. For

system (1.1) the only nullclines are the line y = 2x and the

parabola y = x2+/n. The vector field is vertical along the 

line y =2x since x=0. The vector field is horizontal

along the parabola y = x2 + jj, since y = 0. Figure 1 shows the 

nullclines when // = 0.5 .

Figure 1. Intersecting Nullclines

We see that the nullclines intersect at two points. These

are the fixed points for system (1.1) when // = 0.5. In

general the fixed points of system (1.1) occur at

x = 1 ± pi .

Thus, for /z = 0.5, fixed points occur at (l + VO.5,2 + 2a/0.5) and 

(1 - Vo?5,2 - 2a/CL5 ) . We will now attempt to classify the fixed
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points by examining the behavior of the system near the

fixed points. In a small neighborhood around a fixed

point, the solutions to a nonlinear system can often be

approximated by solutions of a linear system. Frequently

this will give us the information needed to determine long

term behavior of the system near the fixed points.

Recall that a two-dimensional linear system is a

x = ax + bysystem of the form where a,b,c,d are parameters.
y = ex + dy

(a bThis can be written in matrix form as x - Ax where A = I c d

and x - One way to analyze a two-dimensional linear

system is by looking at its phase portrait. The phase

portrait gives a qualitative view of the trajectories for

the system. Some systems may contain special straight-line

solutions. To find these straight-line solutions we look

for solutions of the form x(f) = e^v f v^O. To find the

conditions on v and 2 we can substitute x(f) = e^v into

x = Ax obtaining Av = Av. A scaler A and a vector v which

satisfy this equation are respectively called an eigenvalue

and eigenvector of the system. Straight-line solutions

exist when v is a real-valued eigenvector of A with
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corresponding real eigenvalue 2. [17] For a 2x2 matrix we

can find the eigenvalues by solving the characteristic

equation det(A-2/) = A2-(trace(A))A + det A = 0 for 2, where trace A

is defined to be a + d and det A = ad - be . Hence we find that

the eigenvalues of the 2x2 system Ax = Ax are given by

trace(A) + 7(trace(A))2 - 4 det(^)
(1. z) /t ------------- ------------- .

Thus the eigenvalues depend only on the trace and

determinant of matrix A .

x = f(x,y) .Let be our given system with fixed point
y = g(x,y)

(x*,y*) such that /(x*,y*) = 0 and g(x*,y*) - 0 . Let us invoke a

small disturbance from the fixed point in our system. We

need to see if this disturbance will grow or decay. If the

disturbance grows we will call the fixed point a source.

If the disturbance decays we will call the fixed point a

sink.

Let u=x-x* and v=y-y* denote a small disturbance

from the fixed point. So we have:

u = x-x*=> —(x-x*) => u 
dt

X By substitution we obtain

u = f(x*+u,y*+v) . Since we are working with a function of two

variables and we want a linear approximation of that

5



function near (x*,y*), we must construct the tangent plane at

that point. The Taylor series expansion of /(x* +u,y* +u)

about (x*,^*) is given by

f(x*,y*) + U‘
dx

+ v

u = f(x*,y*} + u

+ O(u2 ,v2 ,uv).

p-(x*,y*)
dx

+v-

1----
1

*

<r?l
1___

1

+ O(u ,v ,uv)

- u ■ + v
dx

+ O(u ,v ,uv)

since f(x*,y*) = Q. Similarly

v = g(x*,y*)+u- ^(x*,y*) + v- %**,!*)
Lax J dy

+ O(u2 ,v2 ,uv)

u ■
^-(x*,y*) + v-

Lax J dy
+ 0(u ,v ,uv)

since g(x*,y*) - 0 . Thus (u,v) can be expressed by the matrix

equation

df''

(1.3)
(u> dx dy

y) dg dg_ J,
dx dy

+ O(u2 ,v2 ,uv) .

The matrix J(x,y) = dx dy 
dg_ dg_ 

ydx dy j

is called the Jacobian matrix.

The Jacobian can be viewed as a multivariable analog of the
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derivative. When the quadratic terms, O(u2,v2,uv) are close to

zero we may approximate (1.3) with the linearized system

(1.4) dx dy

dg dg_
dx

The Jacobian for example (1.1) is given by J=
(-2 1 
\2x -1 y When

we evaluate J at the fixed points of system (1.1) with

= 0.5 we obtain J(1 + a/0.5,2 + 2a/0.5) =

7(1-Vo?5,2-2Vo7) =
2-2Vo7 -1

-2 1 
2 + 2V05 -1 and

Near (l + VO.5,2 + 2a/0.5 ) our

system should resemble the linearized system

(1.5)
\v2 2 + 2V05 -1 \v;

and near (1 - Vo?5,2 - 2a/0?5 ) our system should resemble the 

linearized system

(1.6)

We will use linear

points. Before we

different types of

(u ( -2 r
^2-2a/o?5 -1,

approximations to classify our fixed

do this, we will briefly review

fixed points. A sink is a fixed point

1

-2 1 Vz?
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where all solutions near (x*,y*) approach (x*,y*) as t-+co. If

no straight line solutions exist, then the system has

complex eigenvalues. Solutions will be of the form

x(Y) = e^v , v 0 , where 2 = a ± ia> . Thus we will have

trajectories of the form x(t) - Cyeat cosat + c2eat sm cot. If a < 0 ,

the trajectories will approximate exponentially decaying

oscillations, thus solutions will spiral toward the fixed

point. We call such a fixed point a spiral sink. A sink

is a stable fixed point. A source is a fixed point where

all solutions with an initial condition near (x*,y*) move

away from (x*,y*) as t->co. If h is complex with a > 0 the

trajectories will approximate exponentially growing

oscillations, thus solutions will spiral out from the fixed

point. We call such a fixed point a spiral source. A

source is an unstable fixed point.

The classification of fixed points depends on the

eigenvalues of the Jacobian matrix evaluated at the given

fixed point. If both eigenvalues are negative, we have a

sink. If the eigenvalues are complex with negative real

parts, then we have a spiral sink. If both eigenvalues are

positive, we have a source. If the eigenvalues are complex 

with positive real parts, then we have a spiral source. If
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the eigenvalues are purely imaginary the fixed point of the

linear system is a center. Trajectories about a center are

closed orbits that neither spiral into a sink nor spiral

out like a source. In this situation, the classification

of fixed points based on the linear system is inconclusive.

The fixed point of the nonlinear system could be a center,

spiral source, or spiral sink. Another possibility is a

system for which one eigenvalue is positive and one

eigenvalue is negative. When this is the case, the fixed

point is called a saddle. A saddle is considered a semi -

stable fixed point since we have one set of straight line

solutions approaching it and one set of straight line

solutions moving away from it. Systems for which one or

both eigenvalues are zero require further analysis. Thus,

in order to classify a fixed point for a system, it would

be helpful to find the eigenvalues of the linearized system

about the fixed point. The eigenvalues of the matrix

A =
1-2

2 + 2a/o7 -1
in system (1.5) are given by

-3±V9 + 8a/o7
Thus, this system has one positive

eigenvalue which is approximately equal to 0.414, and one
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negative eigenvalue which is approximately equal to -3.414 

Hence we have a saddle at (1 + VCh5,2 + 2a/0?5 ) as in figure 2.

</ ? 1 J \ ?, \ \

x

Figure 2. Phase Portrait, Near a Saddle

Similarly we find the eigenvalues of the matrix
( -2 n

5= ,— in system (1.6) are given by2-2^05 -1
-3 ±79-87^5

— Since both eigenvalues are negative we

have a sink at the fixed point (1 -Vo?5,2-2a/o?5) .

10



....... . x^'o.X\ \ \ I ^"-XX X
—.-^^5 W \ \ b=>X.X X

Sfe-x \ X X
"X \ -.XXsX X
x x\'L£-'~'-’x x x xCx.
XX>~«xXXXXX

y —* —— X1^/—•xXNx x x x
ZZ/X-^- -",^z—- —>xxxXXx>X X X

/xxxxxxxxx
/////- \XXXXXXXXX
z/z/zzzz
ZZZZZZ//

ZJ?. \ XXXXXXX X X
1JA. XX XXX X X X X X

//////// <Y\ X X X X X X X X X
/////// / X XXXXX XX X X
/ / / / / Z Z 1 X xxxxxxxxx.
/ / / z / 7 ? 1 \ V\\xx\x x x x x
/////, J \ \ X\X X X X X X X X
/ / / 1 I ] \ \ X \\\ X X X X X X
I If I J > Xxxxxxxxxx

n j \ \ -ijX X X \\ X X X X X

Figure 3. Phase Portrait, Near a Sink
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CHAPTER TWO

THE TACOMA NARROWS BRIDGE

On July 1, 1940 the Tacoma Narrows Bridge was opened 

to traffic. Construction of the bridge took 19 months at a

cost of 6.4 million dollars. The bridge was constructed at

the beginning of World War II as a defense measure. Plans

were to connect Seattle and Tacoma with the Puget Sound

Navy Yard at Bremerton, Washington. This bridge was no

ordinary suspension bridge. The bridge had been given the

nickname "Galloping Gertie" even before being opened for

traffic. The bridge received this nickname because the

roadbed would oscillate dramatically in the wind.

This oscillation of the bridge was disconcerting to many of

the consulting engineers called on to address the problem.

Tacoma Narrows was no small bridge. In fact, at the time

it was constructed, it was the third largest suspension

span bridge in the world. The 2,800 foot center span

stretched between two 425 foot towers, and the side spans

were each 1,100 feet long. The design trend of the time

was to streamline things as much as possible. This may

have been one of the factors that led to the bridge's

demise. The Tacoma Narrows Bridge had a very slender
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roadway which arched between the towers. The roadway was

only 26 feet wide, and the actual deck of the bridge was 39

feet wide with the sidewalks and stiffening girders

included. The problem with Tacoma Narrows occurs in the

relation between the depth of the stiffening girders to the

length of the center span.

Many suspension bridges failed in the eighteenth and

nineteenth centuries. These failures usually exhibited

some kind of twisting or torsional movement before

collapse. The bridges that failed were very narrow in

relation to their width. The Golden Gate Bridge is

considered to be a thin bridge and has a width to length

ratio of 1 to 47, whereas Tacoma Narrows had a width to

length ratio of 1 to 72. This "thinness" makes the bridge

very weak torsionally, meaning it is quite susceptible to

twisting motions, especially when there is not sufficient

stiffening built into the bridge. This caused the bridge

to oscillate even during light winds. Engineers tried

several methods to stabilize the bridge and control the

oscillations. One method was attaching 1.5 inch steel tie

down cables close to each end of .the bridge. These cables

were then anchored to 50-ton concrete blocks as a means to

dampen the oscillations. This attempt to curb the

13



oscillations failed. The steel cables snapped during the

first windstorm following their installation. Engineers 

tried other methods, all to no avail. The bridge failed on

November 7, 1940.

To begin our analysis of the bridge failure we will

look at a one-dimensional model developed by A.C. Lazer and

P.J. McKenna. Lazer and McKenna developed the following

equation to model a suspension bridge in no wind:

(2.1) ™ + + + c(y) =

This equation is based on the following assumption. We

consider the bridge to exhibit an up and down vertical

oscillation. This vertical position of the bridge will be

denoted as y(/j , with y = 0 corresponding to the rest

position of the bridge, y<0 corresponding to stretched

cables, and y>0 corresponding 'to slack cables. See figure

4 .
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Figure 4. Bridge, Cables Tight and Slack

In developing the model, many forces that act on the

bridge must be considered. Gravity provides a constant

downward force. Gravity is acting in the negative y

direction. If the cables are stretched, that is y<0, then

the cables will provide a force that will pull the bridge

back towards its rest position. When y>0 the cables are

slack so they provide no force. The roadbed is a semi

rigid object due to its composition, thus when y^O a

restoring force pulls the roadbed back to its rest

position, y = 0. We should also include a damping term

since the roadbed is being pulled back to its original

position when we have an oscillation. We shall assume the

dydamping term to be proportional to -y- . In order to

15



simplify the model, units are chosen so that the mass of

the bridge is 1. We now examine equation (2.1). Since

this equation models the vertical position y(t), the first

d2y
term —— represents vertical acceleration. The second term 

dt2

dy
a— represents damping. The third term By represents the 

at

restoring force, the force exerted by the material of the

bridge to pull it back into its resting position y = 0 .

The behavior of the stretched cable is similar to the

behavior of a spring. Hence the piecewise function

yy, ify < 0
c(y) - represents the force exerted by the cable

0, if y > 0

when y < 0 where y can be thought of as the spring constant.

The constant g represents the force due to gravity. We can

now convert this second order equation into a first order

, dy d2y dvsystem of equations. Let — = v . Then —— = — and we
dt dt2 dt

obtain the first order system of equations:

(2.2:
dy
dt
dv
dt

= -j3y - c(y) -av-g.

- v

16



We may simplify our system by combining the -f3y term with

the terms in c(y) to obtain the function h(y) where

A(y) = + ify < 0; 

/3y ify > 0.

Thus we obtain the first order system of equations

dy
= v

(2.3) dt
dv
dt

= -h(y) -av-g.

To get an idea of the behavior of this system we look at

its corresponding phase plane. In order to do this we must

choose particular values for the parameters. We shall

follow the example of Lazer and McKenna and choose [3 -13,

7 = 4, and a = 0.01. In our system g represents acceleration

due to gravity, hence we let g = 9.8. Thus our system (2.3)

becomes

(2.4)

dy
dt
dv
dt

v

-/z(y)-0.01v-9.8

where

AO) = (13 + 4)y, ify<0; 

13y, ifj/>0.
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When y<0, system (2.4) has an equilibrium point at

( 49 )
(i>v) = l I ■ Evaluating the Jacobian at this fixed point,

we find J\——,0| = I 85 J
0 1 

-17 -0.01
We shall now attempt to

determine the stability of the equilibrium point. With 

trace(j} = -0.01 and det(7j = 17, (1.2) gives eigenvalues

, -0.01 ±7-67.999 n , , . , . ,
. Thus we have a stable spiral sink at

-49

85
,0 . The corresponding phase portrait for the system is

shown below.

Figure 5. Phase Portrait, Spiral Sink
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The phase portrait confirms our previous analysis that the

solution trajectory spirals in toward the equilibrium

point, that is, that the bridge tends toward its rest

position. However, we note that the portrait indicates

that the amplitude of the oscillations decreases slowly.

We add the effect of wind to the model by including a

nonlinear forcing term. Since wind speed and direction are

not constant, modeling the wind can be very complicated. To

simplify the model we will assume the forcing term Asu\fj.t

with a range of values for A and /z to be determined. Thus

our modified system becomes

dy—— = v
(2.5) dt

dv
— = -h(y) - O.Olv - 9.8 + A sin /zh 
dt

We now analyze our modified system in order to evaluate the

effect of the forcing term on its behavior. Following the

example of Glover, Lazer, and McKenna [7], let A be very

small (A < 0.05) so that we have small forcing in our system

such as a light wind. Let's look at y versus t for the

bridge if we let k( = 0.04 and /z = 4. This gives us a forcing

component of relatively small magnitude. The time series

19



graph for position y with initial conditions X0) = -jy and 

v(0) = l is shown in figure 6:

Here we have an oscillation of a small amplitude. Notice

y<0 for all time. This is due to gravity constantly

pulling downward on the bridge. Thus in a light wind the

cables will remain stretched (y <0) , acting as linear

springs. We conclude that with very small forcing term the

solution never reaches y = 0. Interpreting this result with

regards to the bridge indicates that when there is light

wind the bridge will oscillate with small amplitude.

20



The system behaves quite differently when v(0) is

increased. Suppose v(0)=5 which can be thought of as a

large gust of wind. The time series graph of the vertical

displacement for the bridge is illustrated in figure 7:

Figure 7. Time Series

Notice the bridge rises above y=0. This in turn makes our

linear model inaccurate. When the bridge rises above y = 0

the cables that were acting as linear springs suddenly go

slack. This brings non-linearity into the system. Hence

we need a better model.
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CHAPTER THREE

THE PARTIAL DIFFERENTIAL EQUATION

The one-dimensional model is useful for giving us some

insight into the bridge behavior, but we need a better

model if we are to study the effects of outside forces,

such as wind, on the bridge. We will now examine a simple

partial differential equation model developed by Lazer and

McKenna. In this model we make the following assumptions.

We will treat the cables as non-linear springs under

tension where, if the cables are stretched, then the

restoring force is proportional to the distance the cables

were stretched. If the cables are slack there will be no

restoring force. We will also consider the roadbed as a

one-dimensional vibrating beam of length L with hinged

ends. The movement of the cables will be ignored. The

cables will be used only to transmit force to the roadbed.

According to Lazer and McKenna we have the partial

differential equation model

utt + uxxxx + ku+ =W (x) + ef(x, t),
(3.1) u(O,t) = u(L,t) = 0,

mxx(0/) = mxc(£/) = 0,
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where w+=max{w,O}. Why did Lazer and McKenna choose this

partial differential equation model? This was my question

and the main driving force behind this paper.

Recall the bridge is being modeled as a vibrating

beam, which is hinged at both endpoints. Cables that

stretch, but do not compress are supporting the bridge.

The downward deflection of the beam is given by w(x,/j where

the restoring force of the cables is equal to ku if u is

positive (downward), and zero if u is negative (upward).

The weight per unit length of the beam is given by J^(x)f

where we will assume the beam is length L and constant

density with sf(x,t) acting as an external forcing term.

To analyze the bending of the beam consider the

following figure:
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Figure 8. Beam Diagram

Here we will assume the top surface is horizontal where A

represents the cross-section area, cr represents the mass

per unit volume, and p-uA represents the mass per unit 

length. Let f(x/) = /(x3,^)i be a force given in terms of its

distribution per unit length that acts in the vertical

direction such that it varies only along the length of the

beam. The following figure shows a portion of the beam

taken between two arbitrary points a and b :
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Figure 9. Forces Acting On Bridge

We also have forces that are acting on the ends of the

beam. These forces can be resolved into vertical and

horizontal components.

In figure 9, the shear force Q given by Q(Z?/;+)

represents the total vertical force exerted by the material

on the side x^>b on the material on the side x^<b across

the cross section x3=d . Q(a,G~) represents the total

vertical force exerted by the material on the side x^<a on

the material on the side x3>a across the cross section

x3=u. Since the shear force acts vertically in the Xj -

direction we can represent the shear force as

(3.2) Q(Z>,C+) = g(Z>,f)i and Q(6,f;-) = -g(6/)i.

In equation (3.2),

Q(b,t) = JjY3 j (xj ,x2,b, t)dx^dx2 
A
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represents the magnitude of the net vertical force due to 

the stress. T3j represents the 1st component of the stress

tensor whose exterior normal points in the direction of the

3rd Cartesian base vector k .

The bending moment M given by M(Z>/;+) represents the

total moment exerted by the material on the side x3>Z? on

the material on the side x3 <b across the cross section

x3 =b . M(a,f;-) represents the total moment exerted by the

material on the side x3<tz on the material on the side x3><2

across the cross section x3=<z Thus we can represent the

bending moment as

(3.3) M(Z>J;+) = M(Z>,/)j and M(6,C-) = -M(b,f)\-

In order to derive our model we assume the center line

of the beam moves only vertically with displacement y(xT,,t).

All vertical displacements are equal to the vertical

displacement of the center line, there is no displacement

in the x2-direction, and plane sections that are normal to

the center line before deformation will remain planar and

normal to the deformed center line.
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Let u be a displacement vector with components Uy,U2,

and w3 . In order to analyze the displacement u(<2) of a

point Q on the beam it is helpful to look at the following

figure which represents deformation of a small segment of

the beam.

Figure 10. Beam Deformation

Let wj be displacement in the xj direction. Thus

«l=y(x3,/j since the center line of the beam moves only

vertically with the displacement y(x3>0, and all vertical

displacements are equal to the vertical displacement of the

center line. Let be displacement in the -direction,

thus 2^2=0 since there is no displacement in the -

direction. Let Q be a point on the beam before deformation

occurs. Now we can describe the displacement of u3 by

27



considering point Q. Point Q undergoes both horizontal

and vertical displacement. Since all vertical

displacements are equal to the vertical displacement of the

center line, the vertical displacement, QS , is equal in

magnitude to that of PP' . From figure 10 we see that 

SP’— SP + PP'= SP+ QS = QP . In order to compute the horizontal

displacement given by SQ' we consider triangle SP'Q' . Let

the "displacement angle", /.SP'Q', be denoted by A#. Then

SO’tan(A#) =—Hence SQ' = SP'tan(A^) . Thus w3(xi,x3,f) = -X\ tan(A0) . 
SP

Since plane sections that are normal to the center line

before deformation will remain planar and normal to the

deformed center line, /AP'Q' is a right angle. Hence

Sx3 5x3

Now that we have described the components uy,u^, and w3

of our displacement vector u, we can write down the

equations of motion governing a portion of the beam. Given

an arbitrary portion of the beam between x3 = a and x3 = 6 as

in figure 10 we have

(3.4) = -i JJ?3](x1,x2,fl,0<^ci‘^2
A
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and

:3.5: Q(7?,Z;+) = i ^x^,x2,b,t)dxydx2
A

and Q(b,t',+) can be added to get

(3.6) Q(<V;-) + Q(Z>,f;+) = i JJ[731(xbx2,M - Z3 j (xj, x2, a, Z)] dx-\dx2

From the Fundamental Theorem of Calculus we have

(3.7) 731(xbx2,6,o-73](xbx2,a,r) = f— (r3](xbx2,x3,o)<7x3, 
J 0*3

where we assume is continuous with respect to x3

substitution we obtain

(3.8) Q(n,C-) + Q(Z?J;+) = i
u dJJ J—(T3](xi,x2,x3,t')>)dx3dxldx2

A ,&3

Applying Fubini's Theorem to (3.8) we obtain

(3.9) Q(<V;-) + Q(7U;+) = i
u dJ JJ—• (r3, (x,, x2, x3, t)) dxx dx2dx3
a A &3

The equation

(3.10) Dv; f , dTa
cr—- = crf +—- 

Dt ' dx,

is a standard equation from continuum mechanics which

represents the balance of linear momentum. Here ft and
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represent force per unit volume and mass per unit length

respectively. Since / represents the force per unit volume 

and f (x,/) = /(x3,/ji represents the force per unit length as

previously defined, we have /(x3,/j = fb- Note that the
A

velocity is given by

Du, du, du, du,
(3.11) 1 Dt dt J dxj dt

We shall assume the displacements we are encountering are

small, hence we approximate v(. by

(3.12 du:
dt

In the same manner we obtain

(3.13) Dv, d2ut 
~~Dt~!^'

Substitution of the approximation (3.13) into the balance

of linear momentum equation (3.10) gives us

(3.14) cr—r =
dt2 dx,

In particular
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(3.15)

d u
° cry = <?/,+

dt

d(T3x(xx,x2,x3,f))

dx.

d(T31(x},x2,x3,t)) _ d\

dx-,
= &—ft- 

dt2

Substituting (3.15) into (3.9) we obtain

d2u
(3.16) Q(a,f;-) + Q(6/;+) = i

"///

_o A

We claim that

(3.17)
Z>
>///>=

a A

To establish this result, writing

<j-
dt

a A

■cru
~dP'

components gives us

dxxdx2dx3

b ..a2jII (^X}^X2^Xi ~ i J 2'
a A a A

d u, 
dt2

(3.18) d2u.

a A dt
^dx}dx2dx3

However

(3.19.)

since u2 = 0 . Also

+>41/
a A

^-^-dxydx.dx,. 
dt2 23

r pcd 2-Z 
j —^-dx]dx2dx3 = 0
; v dt
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* o2 =k jjjjr
a A a A

h

dt2
-x,

= k JJH
a A

1 dt2

bcd2
dt1

dy(x3,t)
dx3

dy(x3,t")
dx,

dy(x3,f)
dx,

dx,

dxxdx2dx3

dxxdx2dx3

JJ—xxdxxdx2

Since x,,x2 pass through the centroid of the beam as in

figure 8, we have ^-xxdxxdx2 - 0 . Hence

(3.20)
6 ^2^
{ ff-^r^dx^ = 0
a A

Substituting (3.19) and (3.20) into (3.18) we see that

(3.17) holds. So (3.16) becomes

(3.21) Q(a,t',~)+.Q(b,t;+') -a
b ^2

•O 11JJJ—-dx}dx2dx3 -cri J^//dxxdx2dx. 
a A & _ a A

b -d2u

which implies

b u
(3.22) Q(a,f;-) + Q(Z»,f;+) + criffffidxxdx2dx3 = a J^—^-dxxdx2dx3

a A .a A

We recall that /(x3,Z) = JJjy . We substitute this into (3, 22)

to obtain
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b
(3.23) Q(a,Z;-) + Q(6/;+) + cri J/(x3,f)<^c3 =cr

Note ffd2U , , . rrd2y(x.,,t) , ,that = 1JJ—~—ax}ax2 since w2=0. Therefore we
df

obtain

(3.24) ra2u, , . ffa2y(x3,O^^ _ Ad2y(xi,t).
dt2 dt2

a A

Substitution of (3.24) and (3.2) into (3.23) yields

(3.25) cr J/(x3, f)dx2 + Q(b, t) - Q(a, f) = a A .
de

From the Fundamental Theorem of Calculus we can write

Z> axaz

Q{b,t} — Q{o,t) = f——dx2 where we assume Q is continuous with 
: dx.

respect to x3 . Thus we obtain

I(3.26)
dx. de dx,=Q ,

where we recall that p = (jA. We claim that the integrand of

(3.26) is identically equal to zero.

b
Lemma 1: Suppose J/(x)<ix = 0 for every interval [a,b\ contained

a

in an interval I. If /(x) is continuous on 7,then /(x) = 0on I.

Proof: Suppose /(x,)^0 for some x^el where x, is an

interior point of I . f(x}) can either be positive or
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negative. Without loss of generality we let /(x,)>0.

f is continuous there exists 8 > 0 such that /(x)>0 for 

x e [x,-<5,x, +J] . Then, by the Mean Value Theorem,

Since

JC,+£
J f(x)dx - /(x*)-[(x, + J)-(x,-<5j] for some x* e (x, + 8,x}-8} . This

X,-S

x{+S
implies J f(x)dx = f(x*')-28 > 0 . We have a contradiction. The

x.-S

argument is similar if x, is an endpoint if we replace 

[x,-8,x} +j] with (xj-cbX]] or [x^x, +<5) . □

Recall that the interval [a,b] was an arbitrary interval

contained in [0,Z], where L is the length of the beam.

Hence, it follows from (3.26) and Lemma 1 that

(3.27) 52y(x3,0
Sx, dt1

This is the partial differential equation describing the

balance of linear momentum.

Now we must describe the balance of angular momentum

where the moments are taken about the point x,=x2=0, x3-a .

Let h represent the width in the x2 direction of the top

of the beam where the external load f(x3,/j is applied. We

define torque, r , as a vector quantity relative to a fixed
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point given by r=xxF where F is a force applied to a

particle and x - is a position vector locating the particle

relative to the fixed point. [8] The angular momentum . 1 of a

particle with linear momentum p, mass m, and linear

velocity v is a vector quantity defined relative to a fixed

point as l = /«(rxv). We can take the sum of the angular

momenta of the individual particles and obtain L , the

angular momentum of a system of particles. Thus

n
L = 1, +12 H-- 1- 1Z! = ^1,. . [ 8 ] Newton's second law for a particle

z=i

can be written in angular form as r = — , where is the

net torque acting on the particle, and 1 is the angular

momentum of the particle. Hence the time rate of change of

angular momentum for a system of particles is equal to the

sum of the external torques on the system. Therefore

v-, dL

M(<z, t", —) + M(6, t', +)

material where x3<a

b hlT.
integral J J (x-flk)A

a -h!2

represents the torques

and the material where

exerted by the

x3 > b . The

— \dx2dx3 represents the torque acting on

the beam between a and b , and (Z>k-ak) aQ(&4;+) represents
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the shearing force acting on the beam. The operation

defined by a acts as a cross or vector product for our

situation.

Recall that l = m(rxv) represents the angular momentum

for a particle. Thus z , \ <3ux-flk act—v ’ dt represents the angular

momentum for a particle of the beam relative to point a .

Hence the angular momentum for the beam relative to point a

is given by JJJ ( 1 \ 5ux-aka act — V 7 dt dx,dx2dx3 . Therefore we can equate
a A

the torques acting on the beam to the rate of change of

angular momentum obtaining

b h/2 / £ \
(3.28) M(a,Z-) + M(Z>,f;+)+J J (x-ak)a — Zx2zfe3 +(Z>k-ak)/\Q(b,t;+)

a -h!2 h.

a A

( I \ 9u
(x - ak) a g — v 7' dt

dx,dx2dx3.

We calculate the vector products of the right hand side of

(3.28) to obtain

(x-ak)A —= 
dt

dy(x3,t)

k

dx}dy(x3,t)

x3-a

dt dtdx.

It follows that

0 -
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z . , x du .(x - ak) a — = i
dt

x. x3-a 
vi<3 y^3,x{d2y(x3,t)

dtdx.

x, x3 - a x, x2
j dy(x3,r) x]92y(x3,0 dy(x3,0

dt dtdx. dt

+ k

Hence

f . du 
(x ak) a — = -i

dt

d2y(x3,t)
+ j

r 2aT(x,o+(
-k

x dy(x3,t)
dtdx3 |_ dtdx3 dt J 2 dr J

To simplify notation we will denote y(x3,f) as y . Now taking

the derivative of (x-ak)A-— with respect to t we obtain 
dt

(3.29) d

dt
(x - ak)a

3u
dt

= -i d2y

dt dx,

, d3y
V,“ ----- ------- , , zv,

dt2dx3
+ (x3 - a)

d^y
dt2

-k
r sm
X, - —

_ 2 dr2 _*1*2 ^2 + J

By substituting (3.29) into (3.28) and applying Leibnitz's

Rule we obtain

b h/2
(3.30) M(fl,f;-) + M(6,f;+)+ J j (x-ak)A\[ — \dx3dx2+(bk-ak)/\Q(b,f,+)

a -h/2

= (J UJ X,X-
d3y

1 2 dt2dx,
v2^_ + (x -a)^ 

1 dt2dx, 3 dt2
-k

I----------
1---------

C
M

If*
1_____

. dr2 J

dt2dx.

d^y
dt2

- ffx,x26&Iz&2 + \\x2dx}dx2+ \\(x3-a)^dx}dx.
3 A J L St &3 A A 9t

dx.

a A
b

+ J

-f k|-yJp2^A2
a L A

Since the x, and x2 axes pass through the centroid of the

beam and are directed along the principal axes of inertia, 

we have J*J'xlx26£x]6Zx2 = 0 , JJx2<arxItZr2 = 0 , and ^x2dx1dx2=I where I
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represents

only the j

Since

the moment of inertia. Hence we are left with

component of the right hand side of (3.30).

(3.31)
o3

J |K2<&A+ ff (x3-a)|-£dx,dx, 
J dt dx3 » dt

d^y
dt2

dx, =

d2y _ A. . d2y
dx3,

(3.30) becomes

h A/2
-M(a,t) + M(b,f) + J J (x-czk)A — dx2dx3+(bk-ak)/\Q(b,t;+)

(3.32) a -h!2
u

= <7jJ
dt dx,a L. j

df
dx,.

\hj

We calculate the vector products of the left hand side of

(3.32) to obtain

i j k

(x - nk) a — = 
h

x2 x3-a

0 0

It follows that

(x - ak) a — - i 
h

x3-a
-J fM

x3-a x, x2

f(x3,t)0 0
+ k

h h

Hence
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(x-ak)A —= j 
h

(x3 - a}fM
h

-k x f(x3,t)
L 2 6 J

Calculating (6k-tfk)aQ(6,G+) we obtain

i j

(6k - nk) a Q(b, t; +) = 0 0 b-a

Q o o

It follows that

(6k - ok) a Q(6, Z; +) = - j
0 b-a 
Q o

Hence

(6k - ak) a Q(6, f, +) = )Q(b - a) .

Thus (3.32) becomes

-M(a,f) + M(6,f)+ J J j
b hli r

(x3 - a) -k dx2dx3 + }Q(b-a)

(3.33) a -h/2
u

=CT'J dt dx, dt
dx3.

f(x3,t)
h h

Simplifying the integrals on the left hand side of (3.33)

we obtain

(3.34)

V u
-M(a,f) + M(b,f) + J(*3 -a')f(x3,t)dx3 +{b-a')Q{b,t)~o’ J 4r/+AXj_a)fi

dt dx. dt1
dx3 = 0.

Recall from the Fundamental Theorem of Calculus that

d(x3 -a)Q(x3,t)(b-a)Q<M=j
dx.

dx3 . Therefore it follows from the
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Fundamental Theorem of Calculus and the properties of

integrals that

(3.35)

dM . dr(x3-a)2(x3,0]
—- + (x3 - a)f(x3, t) + -J=----7----- =1 - cr
dx3 dx3

-^-I + A(x3-a)^-
dt dx. 3 dt2

dx3 = 0.
-V

Applying Lemma 1 we obtain

dM . ... . a[(x3-a)0(x3,f)]
(3.36) ——+ (x3-u)/(x3,0 + —--------- ------------ -

dx. dx. dt dx. dt
= 0.

Hence we obtain

dM z v , xdQ(x3,t) , __ _T d3y _ ~z _ „,d2y(3.37)--- 1-(x3 -a)f (x3,t) + (x3 -a)
dx3

■ + Q(x3,t) = crI—I— + p(x3-a)-
dx3 dt dx3 dt

If'we multiply equation (3.27) through by (x3-a) we have

(3.38) (*3 _ fl)jfeO + q = p(X3 _ fl)
dx. dt

Subtracting (3.38) from (3.37) we obtain the result

(3.39) H+e(Xj>f) = CT/l4W).
dx3 3 7 dt2dx3

Since p-crA, (3.39) becomes

(3.40) H+e(Xj>() = £FTfeO
dx3 Adt2dx3

This shows that we can find the shear force j2(x3,Z) from the

bending moment A/and the vertical movement y(x3,Z) . To
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eliminate the shear completely we can differentiate (3.40)

with respect to x3 and obtain

(3.41) 2a.„ 2

d2M dQ(x3,t) _ pld^y(x3,t) 
dx3 dx. Adt dx.

Subtracting (3.27) from (3.41) we have

d2M pd2y(x3,t) pld*y(x3,f)
(3.42)

5x32 dt2 2 a.. 2Adt dx.
= f(x3,t) ,

which is a single partial differential equation in terms of

the bending moment and vertical movement of the beam.

We need to introduce the Euler-Bernoulli rule for the

bending of beams. The Euler-Bernoulli rule states that the

applied moment M is directly proportional to the curvature

R~] , with proportionality constant the flexural rigidity

El . [12] That is, M = EIRd' . Here Young's modulus E 

represents stiffness, and rigidity increases with

stiffness. From the Euler-Bernoulli rule we have

M 1— = —.[15] Since we have assumed small displacement, we 
El R

can impose the linearized Euler-Bernoulli rule developed

for the problem of pure bending [15] obtaining 

92y(x3 J) _ M(3.43)
dx. El
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Hence M = El
d2j(V)

dx32 By substitution of (3.43) into. (3.42)

we obtain

(3.44) EI d4y(x3, t) ! pd2y(x2, t) pld*y(x,, Q

dx. dt Adt2dx2

pld4y(x,,e
The term ——— represents the effect of rotary inertia 

Adt2dx2

In many applications, its effect is small and therefore

negligible.[15] Thus (3.44) becomes

(3.45) EI
d4y(x3J) pd2y(x3,f)

dx. de = /(*3>0 ■- + -

Equation (3.45) provides a model for the bending of

beams that retains many of the essential components for

modeling an oscillating bridge.
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CHAPTER 4

CONCLUSION

What really happened on November 7, 1940? How did the

Tacoma Narrows bridge collapse? There are many theories on

why the bridge collapsed. One theory focused on the idea

of forced resonance. Mechanical structures have at least

one natural frequency. The natural frequency represents

the frequency the mechanical structure would oscillate with

if disturbed and then left to oscillate freely. This idea

can be visualized by striking a tuning fork with a mallet.

The tuning fork vibrates with a certain frequency depending

upon the rigidity of the fork. The general idea of the

collapse is as follows: The bridge being a mechanical

structure had at least one natural frequency. The wind

started to drive the bridge at its natural frequency

causing the oscillations of the bridge to increase without

bound. Being a structure the bridge had mechanical limits,

when these limits were exceeded the bridge broke apart.

For this phenomena to occur we would need the wind to force

the system with some well defined periodicity. Gusts of

wind would not be represented well with defined

periodicity, but instead with erratic forcing behavior that
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would actually cause the oscillations to decrease in

amplitude.

Research done by Glover, Lazer, and McKenna points to

another theory that is gaining popularity in both the

mathematics and engineering communities. This research

shows that there exists two stable solutions, one of small

amplitude and one of large amplitude when (2.5) is solved

numerically. These solutions occur when ,06<A<.60 and // = 4.

As A is increased from .06 to .60 both solutions exist. At

A = .61 the smaller solution disappears and the solution 

exhibits hysterisis or a jump to the large amplitude 

periodic solution. This behavior is suggestive of a Hopf

bifurcation. Thus even if A was decreased the bridge would

be forcing itself and oscillate at the large amplitude

solution. This large amplitude oscillation would then

destroy the bridge. According to Glover, Lazer, and

McKenna more research on this phenomena is needed.
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