California State University, San Bernardino

CSUSB ScholarWorks

Theses Digitization Project John M. Pfau Library

2004

JAVA synchronized collaborative multimedia toolkit: A
collaborative communication tool

Rohit Chavan

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project

6‘ Part of the Databases and Information Systems Commons

Recommended Citation

Chavan, Rohit, "JAVA synchronized collaborative multimedia toolkit: A collaborative communication tool"
(2004). Theses Digitization Project. 2549.

https://scholarworks.lib.csusb.edu/etd-project/2549

This Project is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has
been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks.
For more information, please contact scholarworks@csusb.edu.

https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd-project
https://scholarworks.lib.csusb.edu/library
https://scholarworks.lib.csusb.edu/etd-project?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2549&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2549&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd-project/2549?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2549&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

JAVA SYNCHRONIZED COLLABORATIVE MULTIMEDIA TOOLKIT,

COLLABORATIVE COMMUNICATION TOOL

A Project
Presented to the
Faculty of
California State University,

San Bernardino

In Partial Fulfillment
of the Requirements for the Degree
Master of Science
in

Computer Science

by
Rohit Chavan

March 2004

JAVA SYNCHRONIZED COLLABORATIVE MULTIMEDIA TOOLKIT, A

COLLABORATIVE COMMUNICATION TOOL

A Project
Presented to the
Faculty of
California State University,

San Bernardino

by
Rohit Chavan

March. 2004

Approved by:

YA {Zé /7y
Dr. Ernesto Gom Date
Associlate Professor, Computer Science

Dr. Richard Botting
Professor, Computer Science

Dr. George Georgiou
Professor, Computer Science

ABSTRACT

Since the advent of the Internet, the Computing and
Communication industry has progressed very rapidly. It
seems certain that in the near future every person no
matter where located geographically, will be eéuipped with
gsome sort of network computing capability, either by means
of conventional desktop computing or through information
appliances.

Collaborative computing and real—time conferencing is
a great way to make developers more effective, increase
productivity and teamwork, improve decision making,
enabling technical and creative professionals to
collaborate.

In this project a collaboration multimedia toolkit,
JSCMT (Java Synchronized Collaborative Multimedia Toolkit)
was developed which is intended to connect a group of
people located in different geographical locations. JSCMT
integrates different communication tools like, text based
chat, real-time audio-video conferencing and audio chat
into one collaborative.application. JSCMT is designed as an
Java Application and uses JMF API (Java Media Framework API)

and JSDT (Java Shared Data Toolkit).

iii

TABLE OF CONTENTS
N 5 iii
LIST OF FIGURES .. i ittt ittt ittt et siananseeennas ix

CHAPTER ONE: SOFTWARE REQUIREMENT SPECIFICATIONS

Introductionttt e e e e 1
Purpose of the Projecto, 2
Scope of the Project 3
Limitations of the Project 6
Definitions, Acronyms, and Abbreviations 6
SUMMALY o v it ittt it ts et as et et ot o snnsosesnseasnsas 11

CHAPTER TWO: ARCHITECTURE

O T 12
Architecturettt ettt e e 12
JSCMT Packages ...ttt ittt e ettt aeenenn 14
Package Client ittt inienennennnn 20
08 1=l 13 T i 1 o 20
ClientApplicationc.oi i nnenn.. 21
JscmtClientttt 24
JscmtDebugFlagsttt itnnnnnan- 24
JscmtMessageConsSuUmer v vt vt e eeeeenesnns 25
JscmtSessionlListener¢cciiii... 26
JscmtChannellistenercccciice... 27
PrivateMessageHandler 28

iv

PrivateMessageConsumero.uoueuen.-

ReceiverClosedEvent ...ttt it ittt tenenas

JocmtReceiverListener .. v it it it

ReceiverClosedLlistener v et tneennees

JscmtReceiverMessenger v iv it et aennenns

Package Server
ServerClient

JscmtServer

JscmtSessionManager ... v e vttt nnt o

JecmtChannelManager ... v e v iecrenrarneenns

Package Constants
JscmtConstants ..
Package User
UserTree
UserNode
UserInfo
Package Audiovideo ...

AudioReceiver ...

PrivateAUudioProCEeS S0 v v vt it ittt e

AVRecelver

29

30

31

31

32

33

33

33

34

35

36

36

37

38

39

40

41

41

42

43

44

45

47

Detailed Design

WebcamRequestHandlerc.....

JSCMT Client Construction
Add New USET .t ittt it ttnnrteeeenoneennnsns
Remove Userttt i ie st tneean
Text Message Broadcast e e e e
Sending AV BroadcasStttt
Receiving AV Broadcastuiiiueennnannn
Sending Audio Broadcast0...

Receiving Audio Broadcast

Inviting User for Private AV Conference

Process Resgsponse to Private

7 NAV 20 15 0 Ve I = ik I o A

Inviting User for Private

AUudio CoOnferenCe v i ittt ittt et s ettt i eee e

Process Response to Private

Audio Invitation i
Sending View Web Cam Request
Viewing User’s Web Camc.ccccu...

Inviting User to View Web Cam

Process Response to View

Web Cam Invitation & . ittt et eieenenenan

Inviting Usexr for Private

- Text Messaging ...ttt

Process Private Text

Messaging Invitation

vi

48

49

50

52

52

53

54

56

58

59

60

62

64

66

67

69

70

71

73

74

L 111107 B 76

CHAPTER THREE: USER MANUAL

OVEeE VLW ittt it ittt ettt et ettt e e 77
Logging IM cv ittt it ittt st to e e nan et 78
Broadcast TexXt MeSSage .. v et it o neeeeneanas 80
Broadcast Audio-Video it 82
Stop Audio-Video Broadcastiiiiiena.. 83
Broadcast AUdiottt i it e e e 84
Stop Audio Broadcast ...ttt 86

Inviting User for Private

Audio-Video Conferencec.c.iiiiiiiieennnnn. 86
Close Audio-Video Sessionciiiiieuen.. 90
Inviting User for Private Audio Conference 91
Close Audio Sessionttt ittt nneennns 95
Viewing Client’s Web Camuiiinnnnnnn. 96
Inviting Client to View One’s Web Cam 98
Private Text Messagingttt ienineinnneeens 100
SUMMATY v ot it e e et ettt e ittt st sttt s oeaeasnsassneaas 102

CHAPTER FOUR: CONCLUSIONS AND FUTURE DIRECTIONS

CONCLUSLOMS &t vttt ettt et e et e e i e e 103
Future Directionsiiiiiiiiiiininnnnnnnn. 104
Refining Authentication Process 104
Support for Multiple Sessions 104

vii

Support for File Transfer

Support for Multiple
Audio-Video SesSSionsS it ittt e

Summary

REFERENCES

viii

105

105

105

106

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

.10

11

.12

.13

.14

.15

.16

.17

.18

.19

.20

.21

LIST OF FIGURES
JSCMT Use Case Diagramc.eeeeeeeens
JSCMT State Diagramc.eiciieiennn.
JSCMT Component Diagramouvivaens
JSCMT Packages v i ottt it e s iee e
Package Client Class Diagram
Package Server Class Diagram
Package User Class Diagram
Package Constants Class Diagram
Package audiovideo Class Diagram
JscmtLiogin ... i i i i ii e e e e e
ClientApplication 0.,
JscmtClient ittt e e e
JecmtDebugFlags ... ittt it et et
JscmtMessageConsumer v v e vt e st esennn.
JscmtSessionListenerc0iiea..
JscmtChannellistener e e e
PrivateMessageHandler e e e e
PrivateMessageConsumereeeen..
ReceiverClosedEventiiiiinnennn.
JscmtReceiverListenercuiuieen...
ReceiverClosedListener

JscmtReceiverMessengeric..eeeeennna.

ix

13

14

16

17

18

18

19

19

21

23

24

25

26

27

28

29

30

31

31

32

32

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

:22
.23
.24
.25
.26
.27
.28
.29
.30
.31
.32
.33
.34
.35
.36
.37
.38
.39
.40
.41
.42
.43

.44

ServerClient
JdscmtServer ..., .
JscmtSessionManager
JscmtChannelManager
JscmtConstants
UserTreec000..
UserNode

UserInfoccc.i...

WebcamRequestHandler ...
JSCMT Client Construction
Add New User
Remove User

Text Message Broadcast .

Sending AV Broadcasti.iiiii..

Receiving AV Broadcast .
Sending Audio Broadcast

Receiving Audio Broadcast

X

33

34

35

36

37

39

40

40

42

43

44

45

47

48

49

51

52

53

54

56

57

59

60

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

Figure

Figure

Figure

.45 Private AV Invitation
.46 Process Private AV Invitation
.47 Private Audio Invitation
.48 Process Private Audio Invitation ...
.49 Sending Request to View Web Cam
.50 Viewing User’s Web Cam
.51 Inviting User to View Web Cam
.52 Process View Web Cam Invitation
.58 Inviting for Private Text Messaging

.54 Process Private Text Messaging
.1 JSCMT Login Window
.2 JSCMT Client Graphical User Interface
.3 Broadcast Text Messageccoev...
.4 Broadcast Audio-Video
.5 Stop Audio-Video Broadcast
.6 Broadcast Audioc.0.c0iiiee...
.7 Stop Audio Broadcast
.8 Invite for Private AV Conference ...

.9 Receive Private AV

Conference Invitation

.10 Participating in Private

AV Conferenceu.uiee ettt ennnn.

.11 Close Audio Video Session

.12 Invite for Private Audio Conference

xi

62

64

65

67

68

70

71

73

74

76

79

80

81

83

84

85

86

88

89

90

91

93

Figure 3.13 Receive Private Audio
Conference Invitationc.0.... 94

Figure 3.14 Participating in Private

Audio Conference¢iiiiiieiinnnn. 95
Figure 3.15‘Close Audio S8SeSSion ... 96
Figure 3.16 Request to View Client’s Web Cam 97
Figure 3.17 Receiver View Web Cam Request 98
Figure 3.18 Invite to View One’s Web Cam 99
Figure 3.19 View Inviting Client’s Web Cam 100
Figure 3.20 Invite for Private Text Messaging 101
Figure 3.21 Participate In Private Text Messaging ... 102

xii

CHAPTER ONE

SOFTWARE REQUIREMENT SPECIFICATIONS

Introduction

As networks become ubiquitous and more users have a
permanent connection, there is an increasing demand for
other network services, such as real-time data feeds, group
communication, and teleconferencing. Since the advent of
the Internet, the Computing and Communication industry has
progressed very rapidly. It seems certain that in the near
future every person; no matter where located geographically,
will be equipped with some sort of network'computing
capability, either by means of conventional desktop
computing or through information appliances. This not only
means that geographically distributed people will be able
to easily communicate but also‘collabéraﬁe. Coilaborative
computing and real-time conferencing is a great way to make
developers more effective, increase productivity and
teamwork, improve decision making, enabling technical and
creative professionals to collaborate.

Collaborative application provides platform to widely

distributed users to work concurrently on a one big project.

Purpose of the Project

Multimedia applications are beginning to.play.an
important role in various aspects of gur_lives,_including
education, business, healthcare, publishing and
entertainment. The recent advance in computing and
networking technologies has fueled the emergence of these
applications requiring real-time processing and high
bandwidth. In érder for these applications to be truly
useful and effective, they must be able to operate in a
distributed fashion, covering users possibly located in
geographically distant locations. Availability of framework
like Java Media Framework (JMF) API has made it easier to
achieve streaming of audio and video over the network in
the real-time.

Java Synchronized Collaborative Multimedia Toolkit
(JSCMT) is a Java Application, intended to collaborate a
group of people not located in the same geographical
location but working on the same project. JSCMT allows
users to collaborate by using communications tools like,
text based chat, real-time audio-video conferencing and
audio chat. JSCMT is developed using a platform independent
programming language, Java (SDK 1.4), Java Media Framework

(JMF) API and Java Shared Data Toolkit (JSDT). Java was

chosen as programming language to implement this project
with the assumption that users might be using different

operating systems on their computers.

Scope of the Project
JSCMT will aid group or team members from different
geographical locations to interact and collaborate using
the tools like, Text Chat, Live Voice Chat and Audio-Video
Conferencing.

The intended audiences are:

. Software Developers: A typical software company
is involved in several different types of
projects at the same time. Any software
development project is executed in a group of
people. Team members who prefer to work from home,
which is in fact encouraged these days will use
JSCMT to interact with team members.

° Research groups: Usually more than one person
collaborates on a research project. Team members
of these research groups from distantly located
universities will use JSCMT as a virtual meeting

place for their peers in other universities.

] Other groups of people from different
geographical locations but working on anything of
common interest will find JSCMT very useful.

JSCMT has the following functionality for its users:

° Text Based Chat: The following operations related

to text based chat are supported

o Broadcast text messages to all the users
o} Send private text messages
° Audio Chat: The following operations related to

audio chat are supported

o Start audio broadcast to all the users
o} Stop audio broadcast
o Start private audio session with a user
o Stop private audio session
. Audio-Video: The following operations related to

audio-video are supported

o Start audio-video broadcast to all the users

o} Stop audio-video broadcast

o Start private audio-video session with a
user

o} Stop private audio-video session

o View other user’s web cam

o Invite user to view your web cam
Supporting the above functionality, the Use Case

Diagram is shown in Figure 1

i .
K Privaté Text Messaging
7

7 - Start Audio Broacast

y .
Broadcast '!'e)d Messages

L (D

\d Start Private Audio Session
JSC se K__,/
Stop Private Mmﬁ%
> OO

Start Audio-Video Broadcast
View Other User's Web éam

-

Invite User to View One's Webcam

jo-Video Broadcast

Start Private Audio-Video Session

-

Stop Private Audio-Video Session

Figure 1.1 JSCMT Use Case Diagram

V)

Limitations of the Project

JSCMT has following limitations:

° User can participate in only one audio-video
session at any given time. If the user is
broadcasting audio-video to all the users, he/she
can start private audio-video session only after
audio-video broadcast is stopped.

° User can participate in only one audio session at
any given time.

o JSCMT does not provide any support for

transferring files between group members.

Definitions, Acronyms, and Abbreviations

The definitions, acronyms, and abbreviations used in

the document are described in this section.

° API: A set of routine that an application uses
to request and carry out lower-level services
performed by a computer’s operating system. Also
a set of calling conventions in programming that
define how a service is invoked through the
application.

e Channel: A Channel is specific instance of a

potentially multi-party communications path

between two or more Clients within a given
Session. All Client objects which register an
interest in receiving from a given Channel will

be given Data sent on that Channel.

Client: A Client is an obﬁect which is part of a
JSDT application or applet and is a participant
in an instance of multiparty communication.

Data: Data is a discrete unit of data(array of
bytes) that is sent by a Client over a Channel to
all of the Clients which have currently
registered an interest in receiving data on the
given Channel.

GUI: Graphical User Interfacee, the graphical
representation of physical or pseudo physical
objects (such as buttons, labels, textfields)
that allow the user to direct the flow of the
program through the use of mouse or other
pointing dévice.

Internet: Internet is a computer network
consisting of a worldwide network of computers
that use the TCP/IP network protocol to

facilitate data transition and exchange.

Java: Java 1s object-oriented, cross-platform

programming language from Sun Microsystems.

JMF: Java Media Framework, high level Java API
to extend Java support for multimedia development.
JMF enables audio, video and other time-based
media to be added to application and applets
built on Java technology. This optional package,
which can capture, playback, stream, and
transcode multiple media formats, extends Java 2
Platform, Standard Edition (J2SE) for multimedia
developers by providing a powerful toolkit to
develop scalable, cross-platform technology

JSDT: Java Shared Data Toolkit is a toolkit
defined to support highly interactive,
collaborative applications written in the Java
programming language. It provides the basic
abstraction of a session (i.e., a group of
objects associated with some common
communications pattern), and supports full-duplex
multipoint communication among an arbitrary
number of connected applications entities all

over a variety of different types of networks.

JVM: Java Virtual Machine, it provides run time

environment for Java programs.

Mbone: Internet Multicast Backbone. With Mbone a
single packet is sent to an arbitrary number of
receivers by replicating the packet within the
network at fan-out points along a distribution

tree rooted at the packet’s source.

Registry: The information for each Session needs
to be kept somewhere that is easily accessable to
application. This is where Registry fits in. The
Registry can be started either in its own Java
runtime environment, or as a thread within the
server, on the host that is the server for each
JSDT Session or Client.

RTP: Real-Time Transport Protocol provides end-
to-end network delivery services for the
transmission of real-time data. RTP is network
and transport-protocol independent, though it is
often used over UDP. RTP can be used over both
unicast and multicast network services.

Session: A Session is a collection of related

Clients which can exchange data via defined

communications paths. The Session maintains the
state associated with the collection of clients
and theilr associated communications paths, and
may interact with an object which encapsulates a

defined session management policy.

Socket: Socket is an end-point for communication

between two machines.

Swing: Swing is the part of Java Foundation
Classes (JFC) that implements a set of GUI
components with a pluggable look and feel. The
pluggable look and feel lets us design a single
set of GUI component that can automatically have
the look and feel of any Operating System
Platform.

TCP/IP: Transmission Control Protocol on top of
the Intermet Protocol provides a reliable, point-
to-point communication channel that client-server
applications on the in;ernet use to communicate
with each other. To communicate over TCP, a
client program and a server program establish a
connection to one another. Each program binds a

socket to its end of the connection. To

10

communicate, the client and the server each reads

from and writes to socket bound to the connection.

° UML: The Unified Modeling Language is the
industry-standard language for specifying,
visualizing, constructing, and documenting the
artifacts of software systems. It simplifies the
complex process of software design, making a

“blueprint” for construction.

Summary
This Chapter describes the software requirements for
the JSCMT. It covered the purpose of JSCMT, scope and
limitation of JSCMT, various technical terms and other
basic requirement for the project.
In the next chapter JSCMT architecture is explained in

detail and the implementation details are discussed.

11

CHAPTER TWO

ARCHITECTURE

Overview
This chapter explains JSCMT architecture, JSCMT
package structure, and use case realization with the help

of sequence diagrams.

Architecture

JSCMT is implemented as a 2-tier server/client
application that does not require extra server resources
for running the client. JSCMT is a ffamework for shared
interactive multimedia applications developed using the
support of JSDT API and various services that promote
interactivity among online users. JSCMT design is based on
the replicated architecture in Which-an instance of each
application runs locally at each participant’s site and the
activity of each user is distributed to all the
participants in a conference. The State diagram explaining
the complete cycle of request and response processing is
shown in Figure 2.1. Component diagram in Figure 2.2 give a

brief idea about the JSCMT architecture.

12

[Message Type Request]

. JscmiMessageConsumer

Message Received

Synchronize
——— Data Received

[Message Type Response]

/ IS_IBEGSS \

Process \
Request /

\V)

<>
[if Private N@

Display Text
] Message

[If Text Message

__Message /

[Message [Type Broadcast]
\
Process
Broadcast

/" Process
_ Response
</>[If Audio-Video |
[i*Audio] /" Construct AV

<5
\ Receiver

I3
i/

/

[If Audj

?-Vldeo]

g\ Construct Audio
:’ PM Processor > Receiver

< AV Processor \
4

A\

/

~>/ IgendOk \/ R

\ esponse /

[If Private Mggsaging Ok]
PM Processor

[if Audio-yideo OK]

Ny
7~ / AV Processor
@

Figure 2.1 JSCMT State Diagram

13

\

ClientApplication

e T A N
I I
| | |
| | |
\/ V
Session ’l Channel!
N
Message { e
———————— Consumer (———————— —
|]
| |
V! v Vi

—L— Private Message —-— Private Audio Private Audio
""""" : "™ Handler :“E] Processor Video Processor

Figure 2.2 JSCMT Component Diagram

JSCMT Packages
All the classes developed for JSCMT are properly
organized in the packages. This helps the maintenance and
future development of the project. Different packages used
are shown in Figure 2.3. Various classes used in the
project are packaged as follows:

° client: This package céntains classes used by
JSCMT client, which includes classes that are
used to handle and process most of the client
request and the classes that form the backbone of
this collaborative application. These classes are

shown in Figure 2.4.

14

server: This package contains classes used by
JSCMT server which includes classes that are
responsible for creating Sessions and Channels
which afe then joined by the distributed cliénts.

These classes are shown in Figure 2.5.

user: This package contains classes, which are
responsible for storing important information of
all the clients and are very useful for most of
collaborative activities between clients. These

classes are shown in Figure 2.6.

constants: This package contains the class which
caters to all the constants used by other classes
of the application. This class is shown in Figure

2.7.

audiovideo: This package contains classes used
by JSCMT clients to handle and process audio-
video requests. These classes are shown in Figure

2.8.

15

JscmtDebugFlags JscmtReceiveressenger
A 7
~ - ReceiverClgsedListaner
. o
~ 7
Jscmtlogin ClientApplication | . JscmtClient
. - T T T= el
JscmtReceiverListener
y
JscmtSessionlisterer JscmiMessageConsumer JscmtChannellistenar ReceiverClosedEvent
s AN
v N
yrd 3
Private MessageConsumer PrivateMessageHandler

Figure 2.4 Package Client Class Diagram

17

JsermtSever SeiverClient-

JsemtChannelManager

g{..,.._;..._;.-

JsemtSessionMahager |

Figure 2.5 Package Server Class Diagram

Uselode. » .| UserTree | . Userinfo"

Figure 2.6 Package User Class Diagram

18

| JscmtConstants

Figure 2.7 Package Constants Class Diagram

AudioRecelver | AudioTransmitter -
¥ i -
A K
., e
’i“; . ’v’

%

| PrivateAudioProcessor

PrivateAVProcessor.

' WebcamRequestHandler |

Figure 2.8 Package audiovideo Class Diagram

19

Package Client

This package contains classes used by JSCMT client.
Classes of this package form the backbone of the
collaborative application by supporting various
functionalities of the project like, text message broadcast,
private text messaging. Classes from this package are
responisible for directing client request to it’s
appropriate request processor.

JscmtLogin

To use the services provided by any collaborative
application all the users must be identified by unique
username. JscmtlLogin class lets JSCMT client to log into
the system by accepting the information that is further
used to authentic the user. JscmtLogin class takes IP
address of the machine where JSCMT server is running and
connects the JSCMT client to the server by creating the
instance of ClientApplication. JscmtlLogin also lets the
users to check which collaboration tools they will be using
like, web cam, and microphone. JscmtLogin class is shown in

Figure 2.9.

20

client.JscmtLogin

&ypanel : JPanel

&ylb1 : JLabel

&Ib2 : JLabel

&1b3 : JLabel

&lb4 : JLabel

&51b5 : JLabel

&yIb6 : JLabel

&yckbox1 : JCheckBox
&sckbox2 : JCheckBox
&xloginBtn : JButton

&y cancelBtn : JButton
&1 : JTextField

&2 : JTextField
EIP_Address : String
&shasWebcam : boolean
&vhasMicrophone : boolean

&clientApp : ClientApplication

%cancel_actionPerformed()
®clearAll()
“main(args : Strings[*)

—SJsemttoging—m—m—— e
¥login_actionPerformed(e : ActionEvent)

Figure 2.9 JscmtLogin

ClientApplication

by JSCMT application.

ClientApplication is the most important class of the
JSCMT application. ClientApplication class can be

considered as a GUI interface to all the services provided

JscmtClient which then joins the Session and Channel
created by JSCMT server to collaborate with other users.
is responsible for delegating all the user requests like,

inviting user for private text messaging, private audio

21

It creates the instance of

video conferencing, and viewing web cam. ClientApplication
also maintains the list of AVTransmitter, AudioTransmitter,
and private Channels in the fora of Vector. It creates the
instance of UserTree which manages the user information.
ClientApplication implements JscmtDebﬁgFiagé which is
useful in debugging. ClientApplication class is shown in

Figure 2.10.

22

client.ClientApplication

fs,messageField : JTextField
buttons : JButton
session : Session
éclient : JscmtClient
»channel : Channel

connected : boolean
hasWebcam : boolean
videoBroadcast : boolean
audioBroadcast : boolean
»my LocalAVreceiver : boolean
my LocalAVtrans mitter : boolean
my LocalAudioReceiver : boolean
messageArea . JTextArea
s_pane : JScrollPane
channelsJoined : Vector
avtransmitters : Vector
oY o
audltransmltter : Vector
(iruserName : String
userIP : String
usersOnline : UserTree
hostname : String
Grhostport : String

i

sessionTy pe : String

$ClientApplication(uName : String, serverAdd : String, hasWcam : boolean, hasMphone : boolean)

Heonneetd)

$disconnect() : void

QuwriteLine(message : String, messageCategory : char, messageType : char)

Y wiiteLine(message : String, messageCategory : char, messageType : char, receivingClient : String)
@send_actionPerformed(e : ActionEvent)

chat_actionPerformed(e : ActionEvent)

Qv ideoChat_actionPerf ormed(e : ActionEv ent)

audioChat_actionPerf ormed(e : ActionEvent)

$exit_actionPerformed(e : ActionEvent)

®stopAV_actionPerf ormed(e : ActionEvent)

$stopAudio_actionPerformed(e : ActionEvent)

@closeAudio_actionPerf ormed(e : ActionEvent)

privateAVConf (receiverName : String, receiverlP : String)
QprivateAudio(receiverName : String, receiverlP : String)

4 iewWebcam(receiverName : String, receiverlP : String)
%privateMessenger(sendToCIient : String)

Qpn‘vateMessageHandler(receiver : 8tring, chName : String, if Requester : boolean)
$getMyIp() : String

Figure 2.10 ClientApplication

23

JscmtClient

JscmtClient class is an implementation of Client
interface of JSDT. It is instantiated by ClientApplication
and joins Channel and Session created by the JSCMT server.
Authentication action is performed when JscmtClient joins a
Channel or Session and when it creates or destroys Channel
for private text messaging therefore, JscmtClient
implements authenticate method of ﬁhe Client interface.
Unique username that client uses when logging into the
system is used by JscmtClient in initializing client name.

JscmtClient class is shown in Figure 2.11.

client.JscmtClient

ouriString : URLString
%yname : String

®JscmtiClient(name : String)
%authenticate(info : AuthenticationInfo) : Object
®getName() : String

Figure 2.11 JscmtClient

JscmtDebugFlags

JdscmtDebugFlags can be considered as a utility class
that is used in debugging JSCMT application. It is a
collection of Boolean variables. JscmtDebugFlags class is

shown in Figure 2.12.

24

client.JscmtDebugFlags

gJscmtlogin_Debug : boolean
&ClientApplication_Debug : boolean
pJscmtMessageConsumer_Debug : boolean
&JscmiClient_Debug : boolean
&JscmtSessionListener_Debug : boolean
gJsemtChannelListener_Debug : boolean
¢JsemiReceiverListner_Debug : boolean
gJscmiReceiverMessenger_Debug : boolean
&PrivateMessageConsumer : boolean
&PrivateMessageHandler : boolean
¢ReceiverClosedEvent : boolean
»ReceiverClosedListener : boolean

Figure 2.12 JscmtDebugFlags

JdscmtMessageConsumer

JscmtMessageConsumer class is the backbone of JSCMT
application. Only one instance of this class is created per
JSCMT application. JscmtMessageConsumer implements
ChannelConsumer interface of JSDT API. This class consumes
messages from the channel that client has joined, processes
the message and directs it to the appropriate message
handler. JSCMT messages are classified into three different
categories i.e. broadcast, request, and response. When a

request is received from another client,

25

JscmtMessageConsumer checks if the request can be processed
or not and sends appropriate response to the client.

JscmtMessageConsumer class is shown in Figure 2.13.

client.JscmtMessageConsumer

gname : String

guserApplication : ClientApplication
oreceiverListener : JscmtReceiverListener
oreceiverMessenger : JscmiReceiverMessenger

¥JscmtMessageConsumer(userApp : ClientApplication)
®dataReceived(data : Data) '
¥processBroadcast(data : Data)

®processRequest(data : Data) {
®processResponse(data : Data)
¥displayTextMessage(senderName : String, message : String)
¥processAVBroadcast(senderName : String, message : String)
®processAudioBroadcast(senderName : String, message : String)
©processPrivateAudio(senderName : String, message : String)
$processPrivateAV(senderName : String, message : String)
$processViewWebcam(senderName : String, message : String)
$processWeamInviteRequest(senderName : String, message : String)
®processCloseAVTrans mitter(receiver : String)
“processCloseMyTransmitter()

®receiverClosed(re : ReceiverClosedEvent)

Figure 2.13 JscmtMessageConsumer.

JscmtSessionliistener

JscmtSessionlistener class takéé-care:of various
events taking place in the Session that{JSCMT client has
joined. It implements SessionListener interface of JSDT API.
When private channel is created to handle private text

messaging between two clients SessionEvent is fired which

26

is processed by JscmtSessionlistener. JscmtSessionListener

class is shown in Figure 2.14.

client.JscmtSessionListener

®JscmtSessionListener() . ,
¥byteArrayCreated(event : SessionEvent)
PbyteArrayDestroyed(event : SessionEvent)
®channelreated(event : SessionEvent) '
©channelDestroyed(event : SessionEvent)
¥sessionDestroyed(event: SessionEvent)
¥sessionJoined(event : SessionEvent)
¥sessionLeft(event : SessionEvent)
¥sessioninvited(event : SessionEvent)
%SessionExpelled(SessionEvent event)
“$tokenCreated(event : SessionEvent)
PtokenDestroyed(event : SessionEvent)’

Figure 2.14 JscmtSessionlListener

JscmtChannell.istener

JscmtChannelListener class handles Channel events by
implementing Channellistener interface of JSDT API.
JscmtChannellListener plays important role when JSCMT client
joins a Channel and leaves a Channel. When a new client
joins or leaves the Channel created by the JSCMT server,
ChannelEvent is fired which is processed by all the clients
that are registered to receive the event. This assures that
every client has an updated list of oniine users.

JscmtChannellistenér class is shown in Figure 2.15.

27

client.JscmtChannelListener
&pclientNm : String
&mylp : InetAddress
&pmylpAddress : String
&usersOnline : UserTree

¥JscmiChannelListener(uApp : ClientApplication)
$getMylp() : String

%channelConsumerAdded(event : ChannelEvent)
“%channelConsumerRemoved(event : ChannelEvent)
%channelExpelled(event : ChannelEvent)
®channellnvited(event : ChannelEvent)
®channelJoined(event : ChannelEvent)
“%channelLeft(event : ChannelEvent)

Figure 2.15 JscmtChannellListener

PrivateMessageHandler

PrivateMessageHandler class handles private text
messaging between two JSCMT clients. ClientApplication
instantiates PrivateMessageHandler object when user selects
the option of private messaging. It creates a private
Channel and sends request to other client to join the
Channel. To consume private messages sent on the private
Channel PrivateMessageHandler creates the instance of
PrivateMessageConsumer. When the private message window is
closed PrivateMessageHandler makes JSCMT client to leave
the private channel. PrivateMessageHandler class is shown

in Figure 2.16.

28

client. PrivateMessageHandler

Q;pm_consum er; PrivateMessageConsumer
&data : Data
&privateChanne! : Channel
&senderClient: JscmtClient
&pclientChannels : Vector
&,channelName : String
&panel1 : JPanel
&panel2 : JPanel
&pm_field : JTextField
obm_area : JTextArea
opm_spane : JScrollPane
&pm_sendButton : JButton

—SPrivateVigssageHandler(pm_channel - Channel, SClient: JscmiClient, CName : Sting, receiver : Siing)
%®send_actionPerformed(event : ActionEvent)
dinalise()
®channelLeftievent : ChannelEvent)
%channellmited(event : ChannelEvent)
$channelExpelled(event : ChannelEvent)
%channelConsumerAdded(event : ChannelEvent)
¥channelConsumerRemoved(event : ChannelEvent)

Figure 2.16 PrivateMessageHandler

PrivateMessageConsumer

PrivateMessageConsumer class consumes messages sent

over private Channel created by PrivateMessageHandler

between two JSCMT clients. It implements ChannelConsumer

interface by defining dataReceived method. The life cycle

of PrivateMessageConsumer is defined by

PrivateMessageHandler, i.e., when private message window is

closed, PrivateMessageConsumer associated with the Client

object is removed. PrivateMessageConsumer class is shown in

Figure 2.17.

29

client.PrivateMessageConsumer

messageArea : JTextArea
@senderName : String

@ PrivateMessageConsumer(sName : String, mArea : JTextArea)
$dataReceived(data : Data)

Figure 2.17 PrivateMessageConsumer

ReceiverClosedEvent

When a JSCMT client who is transmitting audio-video to
one or more clients chooées to clo;e the audio-video
transmitter, all the receiving clients needs to be notified
about it so that they can close the receiver for the
transmitting client. The job of notifying all the receiving
clients about this event is done by ReceiverClosedEvent
class. This class extends the functionality of EventObject
by defining methods that will be useful to process the
event by the JSCMT clients. ReceiverClosedEvent class is

shown in Figure 2.18.

30

client ReceiverClosedEvent
obj : Object
userName : String

%ReceiverClosedEvent(source : Object)
BsetUserName(uName : String)
PgetUserName()

®getSource() : Object

Figure 2.18 ReceiverClosedEvent

JscmtReceiverlListener

JscmtReceiverListener class implements
ReceiverClosedListener interface of JSCMT. It handles
ReceiverClosed event which is fired when any of audio-video
or audio receiver is closed. JscmtReceiverlListener class is

shown in Figure 2.19.

client. JscmtReceiverListener
&yuserApplication : ClientApplication

®JscmtReceiverListener(userApp.: ClientApplication)
®receiverClosed(re : ReceiverClosedEvent)

Figure 2.19 JscmtReceiverListener

ReceiverClosedlListener

ReceiverClosedListener is a interface with only one
method that is to be defined by the class implementing it.

ReceiverClosedListener interface is shown in Figure 2.20.

31

O

client.ReceiverClosdedListener

®ReceiverClosed(re : ReceiverClosedEvent)

Figure 2.20 ReceiverClosedListener

JscmtReceiverMessenger

JscmtReceilverMessenger class maintains the list of
objects that have registered to be notified about the
ReceiverClosedEvent. This list is maintained by
EventListnerList object which is static transient type so
that all the JscmtReceiverMessenger have the some copy.
When the ReceiverClosedEvent occurs all the
ReceiverClosedListener classes in EventListnerList are
notified about the event. JgcmtReceiverMessenger class is

shown in Figure 2.21.

clientJscmiReceiverMessenger
%Eventust : EventListenerLigt

G JscmtReceiverMessenger()
$addReceiverClosedListener(listener : ReceiverClosedListener)
$removeReceiverClosedListener(listener : ReceiverClosedListener)
Pnotifyall(name : String)

$fireReceiverClosedEvent(uName : String)

Figure 2.21 JscmtReceiverMessenger

32

Package Server
This package contains classes used by JSCMT server
which includes classes that are responsible for creating
Sessions and Channels which are then joined by the
distributed clients. Session and Channel manager classes
are responsible for authenticating JSCMT clients when they
join the Session and Channel respectively.

ServerClient

ServerClient class is an implementation of Client
interface of JSDT. It is instantiated by JscmtServer.
ServerClient is not required to join the Session and
Channel created by JscmtServer which excludes it from
explicitly defining authenticate method of the Client

interface. ServerClient class is shown in Figure 2.22.

server.ServerClient
@,;name : String

%ServerClient()
@authenticate(info : Authenticationlnfo) : Object
®getName() : String

Figure 2.22 ServerClient

JscmtServer

JscmtServer class creates all the basic collaborative

components of the JSCMT application. JscmtServer creates

33

socket based Registry in which the Session is then created
at the port which is passed as a command line parameter.
Channel is then created in the specified Session.
JscmtServer associates Session and Channel managers at the
time of Session and Channel creation respéctively. These
managers play important role in monitoring JSCMT client
activities. Since ServerClient does not participate in the
collaboration, it does not join any Session and Channel

created. JscmtServer class is shown in Figure 2.23.

server.JscmtServer

&client : ServerClient

&chatSession : Session

&url : URLString

&sessionType : String

&hostname : String

Eghostport : int

sessionManager : JscmtSessionManager
%channelManager :JscmtChannelManager

PJscmiServer()

$getHost(args : Strig[*]) : String
“getPort(args : String[*]) : int
$getType(args : String[*)) : String
¥main(args : String[*))

Figure 2.23 JscmtServer

JscmtSessionManager

JscmtSessionManager class i1s associated with the

Session at the time Session creation. It is responsible for

34

authenticating JSCMT client when the client tries to create
or destroy a Channel. Whenever JSCMT client is trying to
create a new Channel JscmtSessionManager sends a challenge
to the client and waits for the response. Client is allowed
to create a new Channel only if the authentication of the
response is successful. JscmtSessionManager class is shown

in Figure 2.24.

sener.JscmtSessionManager

“sessionRequest(session : Session, info : Authenticationlnfo, client : Clienf) : boolean

Figure 2.24 JscmtSessionManager

JscmtChannelManager

JscmtChannelManager class is associated with the
Channel at the time Channel creation. It is responsible for
authenticating JSCMT client when the client tries to join
or leave a Channel. Whenever JSCMT client is trying to join
a Channel JscmtChannelManager sends a challenge to the
client and waits for the response. Client is allowed to
join a Channel only if the authentication of the response
is succegsful. JscmtChannelManager class is shown in Figure

2.25.

35

senver.JscmtChannelManager

“channelRequest(channel : Channel, info : AuthenticationInfo, client : Client) : boolean

Figure 2.25 JscmtChannelManager

Package Constants
This package contains the class which caters to all
the constants used by other classes of the JSCMT
application.

JscmtConstants

JscmtConstants class stores all the constants used by
various classes of JSCMT application. JscmtConstants class

is shown in Figure 2.26.

36

constants.JscmtConstants

&BROADCAST : char

HREQUEST : char

HRESPONSE : char

G TEXT_BROADCAST : char
SNEWUSER_BROADCAST : char
&USER_REMOVED_BROADCAST : char
&AUDIO_BROADCAST : char

&AV_BROADCAST : char
HREQUEST_PRIVATE_TEXT : char
$REQUEST_PRIVATE_AUD!O : char
REQUEST_PRIVATE_AV: char
HREQUEST_VIEW_WEBCAM: char
HREQUEST_INVITE_WEBCAM : char ‘
REQUEST_CLOSE_AVTRANSMITTER : char
QREQUEST_CLOSE_AUDIOTRANSMITTER : char
HRESPONSE_PRIVATE_TEXT_OK: char
&RESPONSE_PRIVATE_AUDIO_OK : char
RESPONSE_PRIVATE_AV_OK : char
©RESPONSE_PRIVATE_AUDIO_NO: char

" ¢RESPONSE_PRIVATE_AV_NO : char
HRESPONSE_PRIVATE_VIEW_WEBCAM_OK : char
HRESPONSE_PRIVATE_INVITE_WEBCAM_OK : char
$RESPONSE_PRIVATE_VIEW_WEBCAM_NO : char
&RESPONSE_INVITE_WEBCAM_NO : char
$DEFAULT_AV_PORT : String
&DEFAULT_AUDIO_PORT : String

Figure 2.26 JscmtConstants

Package User
This package contains classes, which are responsible
for storing important information of all the clients and
are very useful for most of collaborative activities

between clients.

37

UserTree

JSCMT client has to maintain a current list of all the
users logged into the system. UserTree class is used to
maintain updated list of JSCMT clients that is done by
storing client particular information in the form of a data
structure. Taking into consideration graphical display of
all the users logged into the system, JTree is used as data
structure to store client information. UserTree organizes
this information using UserNode and UserInfo objects. As
JTree supports pop up menus most of the client requests are
primarily handled by UserTree which are then directed to
ClientApplication. UserTree class is shown in the Figure

2.27.

38

user.UserTree

&puserApplication : ClientApplication

&ym_tree : JTree

&ym_model : DefaultTreeModel
&|CON_USERS_ONLINE : Imagelcon
»!CON_USER : Imagelcon
onoOfUser : int

&m_popup : JPopupMenu

&»m_action : Action

&ym_clickedPath : TreePath

SUserTree(userApp : ClientApplication)
%getTreeNode(path : Treepath) : DefaultMutable TreeNode
®addUser(userName : String, userlp : String)
%removeUser(userName : String)

9getUserNode(uName : String) : DefaultMutableTreeNode
®getUserlPs() : String[*]

®otherUserlPs(userName : String) : String[*]
$getUserinfo(uNode : DefaultMutableTreeNode) : Userlnfo
®pm_actionPerformed(e : ActionEvent)
PprivateAVcon{_actionPerformed(e : ActionEvent)
PprivateAudio_actionPerformed(e : ActionEvent)
®viewWebcam_actionPerformed(e : ActionEvent)
®inviteWebcam_actionPerformed (e : ActionEvent)

Figure 2.27 UserTree

UsexrNode

UserNode class is the sub component of the data
structure that forms a UserTree. When a new client logs
into the system a new instance of UserNode is created and
added to the UserTree. UserNode class is shown in the

Figure 2.28.

39

user.UserNode

gm_icon :lcon
@m_expandedicon : Icon
¢m_data : Object

%UserNode(icon : Icon, data Object)

@UserNode(icon : Icon, expandedicon : Icon, data : Object)
®geticon() : lcon

%getExpandedicon() : Icon

%getObject() : Object

@toString() : String

Figure 2.28 UserNode

UserInfo

UserInfo class encapsulates JSCMT client information
and forms data component of UserNode. UserInfo stores
client’s username and IP address. UserInfo class is shown

in the Figure 2.29.

user.Userlnfo

name : String
inAddress: String

¥Userinfo(userName : String, IpAddress : String)
$getName() : String

%getlpAddress() : String

BtoString() : String

Figure 2.29 UserInfo

40

Package Audiovideo
This package contains classes used by JSCMT clients to
handle and process audio-video requests.

AudioReceiver

AudioReceiver class processes all the incoming audio
streams from different JSCMT clients. At any given time
only one instance of AudioReceiver class exists for a JSCMT
application. AudioReceiver runs as a Thread. It opens RTP
sesgssion at the specified port and listens to the audio
streams transmitted at the port. When a new audio stream is
received it is checked for the right supported audio format,
processed and then finally rendered using Player. When the
client transmitting audio stream stops the transmission,
ByeEvent is fired and AudiReceiver listening to the event
closes the Player that is rendering the receiveq'audio

stream. AudioReceiver class is shown in Figure 2.30.

41

audiovideo.AudioReceiver
osessions[: String
¢mgrs[l : RTPManager
¢players : Vector
odataReceived : boolean
@dataSync : Object
gsessionlLabel : SessionlLabel
oplayerWindow : PlayerWindow

®AudioReceiver(sessions : String[*])

Srun()

¥initialize()

¥close()

#find(Player p) : PlayerWindow

®update(evt : SessioinEvent)

$find(strm : ReceiveStream) : PlayerWindow
¥update(evt : ReceiveStreamEvent)
¥controllerUpdate(ce : ControllerEvent)

Figure 2.30 AudioReceiver

AudioTransmitter

AudioTransmitter class transmits audio to one or more
JSCMT clients. AudioTransmitter runs as a Thread. At any
given time only one instance of AudioTransmitter can be
created. Instance of AudioTransmitter is created when user
chooses to broadcast audio to all the users online or
participate in private audio session. It creates RTP
session at the specified port. AudioTransmitter initializes
the microphone to capture the audio and creates DataSource,
which is then used to create Processor. It sets GSM audio
format for the audio track to be transmitted.

AudicoTransmitter is provided with the array of destination

42

IPs, interested in receiving audio stream, at the time of
its creation. AudioTransmitter class is shown in Figure

2.31.

audiovideo.AudioTransmitter

BpaudioLocator : MedialLocator
&zvideoLocator : Medialocator
&ipAddress : String
&destlPs : String

&pportBase : int

&y stateLock : Integer

&failed : boolean
&ysenderName : String
&yreceiverName : String
&audioProcessor : Processor
&pripMgrs : RTPManager
&yaudioDataOutput : DataSource
&»GSM : AudioFormat
&paudioStream : SendStream

QAudioTransmitter(ipAddresses + String [*]; pb—String; senderString; Teceiver - Sting)
QinitMicrophone()

Frun()

PstopTransmitter()

%createAudioProcessor()

¥createAudioManager()

®createTrans mitter()

@getStateLock() : Integer

®waitForState(p : Processor, state : int)

Figure 2.31 AudioTransmitter

PrivateAudioProcessor

When JSCMT client invites another client for private
audio session, the request is processed by
PrivateAudioProcesgssor class. PrivateAudioProcessor

instantiates AudioTransmitter that transmits Real-time

43

audio captured by client’s microphone. It also instantiates
AVReceiver if it does not exists to receive Real-time audio
transmitted by another client. PrivateAudioProcessor class

is shown in Figure 2.32.

audiovideo. PrivateAudioProcessor

&senderlP : String

&receiverlP : String
&senderName : String
&puserApplication : ClientApplication
&receiverName : String

DPrivateAudioProcessor(userApp : ClientApplication, rName : String, sIP : String, rlP : String)
%®constructTransmitter()
“constructReceiver()

Figure 2.32 PrivateAudioProcessor

AVReceiver

AVReceiver class processes all the incoming audio and
video streams from different JSCMT clients. At any given
time only oné instance of AVReceiver class exists for a
JSCMT application. AVReceiver runs as a Thread. It opens
RTP sessions for audio and video at the specified ports and
listens to the audio and video streams transmitted at those
ports. When a new audio or video stream is received it is
checked for the right supported formats, processed and then
finally rendered using Player. When the client transmitting

audio and video streams stops the transmission ByeEvent is

44

fired and AVReceiver listening to the event closes the
Player that is rendering the received audio and video

streams. AVReceiver class is shown in Figure 2.33.

audiovideo.AVReceiver

&ysessions[: String

&mgrs][]: String

&yplayers : Vector
&dataReceived : boolean
&psessionLabel : SessionLabel
&pplayerWindow : PlayerWindow
&dataSync : Object

®AVReceiver(sessions[*] : String)

@run()

Finitialize()

¥close()

%find(p : Player) : PlayerWindow

%find(rStream : ReceiveStream) : PlayerWindow
Qupdate(evt : SessionEvent)

%update(evt : ReceiveStreamEvent)
%controllerUpdate(ce : ControllerEvent)

Figure 2.33 AVReceiver

AVTransmitter

AVTransmitter class transmits audio and video to one
or more JSCMT clients. AVTransmitter runs as a Thread. At
any given time only one instance of AVTransmitter can be
created. Instance of AVTransmitter is created when user
chooses to broadcast audio-video to all the users online or
participate in private audio-video session. It creates RTP

session at the specified port. AudioTransmitter initializes

45

microphone to capture audio and web cam to capture video,
to create audio and video data sources respectively. These
data sources are used to create audio and video Processor.
It sets GSM audio format for audio track and H263 RTP video
format for video track. AVTransmitter is provided with the
array of destination IPs, interested in receiving audio énd
video streams, at the time of its creation. AVTransmitter

class is shown in Figure 2.34.

46

audiovideo. AV Transmitter

&paudioLocator : MedialLocator
&pvideoLocator : MediaLocator
&ipAddress : String
&ysenderName : String
&receiverName : String
&destlPs : String[]

&yportBase : int

&ystateLock : Integer

& failed : boolean
&»audioProcessor : Processor
&vidoeProcessor : Processor
&srtpMgrs[] : RTPManager
&yaudioDataOutput : DataSource
&xnvideoDataOutput : DataSource
&,GSM: AudioFormat
&,H263_VIDEO : VideoFormat
&userdesclist] : SourceDescription
&yaudioStream : SendStream
&pvideoStream : SendStream

BinitMicrophone()

Pinitvideo()

®run()

¥stopTransmitter()
%createAudioProcessor()
QcreateVideoProcessor()
®createAudioManager()
®createVideoManager()

%create Transmitter()
QcheckForVideoSizes() : Format
$getStateLock() : Integer
¥getTransmitter() : String
$waitForState(p : Processor, state : int)

QAT itter(ipAddresses.: Stingl*], pb-. St o Stri ier - String;

Figure 2.34 AVTransmitter

PrivateAVProcessor

When JSCMT client invites another client for private

audio-video session the request is processed by

PrivateAVProcessor class. PrivateAVProcessor instantiates

47

AVTransmitter that transmits Real-time audio and wvideo. It
also instantiates AVReceiver if it does not exists to
receive Real-time audio and video transmitted by another

client. PrivateAVProcessor class is shown in Figure 2.35.

audiovideo.PrivateAVProcessor

&senderlP : String

&preceiverlP : String
&psenderName : String
&receiverName : String
&suserApplication : ClientApplication

$PrivateAVProcessor{userApp : ClientApplication, rName : String, sIP : String, rlP : String)
%constructTrans mitter()
¥ constructReceiver()

Figure 2.35 PrivateAVProcessor

WebcamRequestHandler

When JSCMT client invites another client to its web
cam the request is handled by WebcamRequestHandler class.

WebcamRequestHandler class is shown in Figure 2.36.

48

audiovideo.WebcamRequestHandier

&senderlP : String

EpreceiverlP : String
&ysenderName : String
&receiverName : String

&destlPs [: String
&puserApplication : ClientApplication

$WebcamRequestHandler(userApp : ClientApplication, Name : String, sIP : String, rIP : String)
%constructTransmitter()
%constructReceiver()

Figure 2.36 WebcamRequestHandler

Detailed Design

Detailed design describes various functionalities of
the application by defining interaction between different
smaller components of the application. Detail design
discusses application design by describing the structure to
be used via narrative, tables, flow éharts, etc. Sequence
diagram is one of the most widely used software design
tools in the process of detailed design.

Functionality of JSCMT application can be explained by
applying a scenario and narrating the interaction between
various components of JSCMT application. Different
scenarios were developed to cover various collaborative
functionalities and sequence diagrams were used to describe

the data transferred between different JSCMT units.

49

JSCMT Client Construction

JSCMT client construction is most important process of
the JSCMT system. Several components are constructed during
client’s initialization. When JscmtLogin’s “Login” bﬁtton
is clicked instance of ClientApplication is created. It
uses server IP address and port number to connect to server.
ClientApplication creates instance of JscmtClient that is
authenticated by SessionManager and ChannelManager on the
server side, when it joins the Session and Channel
respectively. JscmtMessageConsumer is created as the part
of client construction process which is responsible for
handling and processing most of the client requests.
Sequence diagram explaining JSCMT client construction is

shown in Figure 2.37.

50

I8

UOTIONIASUOD JUSTTD IWDSL LE'Z 2InbTg

:Jscmtlogin :ClientApplication :JsemtClient :SessionManager :ChannelManager :JscmtSession | ;JscmtChannel JscmtMessage
Listener Listener Consumer
|Login clicked | i [| | | |
< creates J I I | | I I
creates | | | | | |
create Sessmn>g | ' I | |
pam— | | | l |
Join Session__ | | | | | [
request permissign .
q authenticates | | I l
= | I | |
grant persmission < | | | |
create Channel | | ! |
éJoin Channel ; | | | |
request permission L authenticates | | |
Lr
grant pefmission < | | |
| creates | | |
add SessionListener | !TJ | |
=1 l i | |
| creates ! ! ~ 1 |
add ChannelListeher | | | U |
- 1

< | ! creates ! ! !
I T i ‘T]

l		
l | | |
l l | |
l I I I

—

—

I
!
|
!
I
|

l
I
|
l
|
|

Add New User

When a new user joins the JSCMT application it
broadcasts “New User” message to all the other users online.
JscmtMessageConsumer receives this messaée and sends new
user information to its instance of UserTree which creates
a new UserNode. UserNode stores new user information in
UserInfo object and is added to the UserTree. Updated
UserTree is displayed in the online user display area.
Sequence diagram that explains add new user scenario is

shown in Figure 2.38.

:JscmtMessageConsumer ‘UserTree :UserNode :Userinfo

receives New User broadcast
<]
sends User Info

creates

creates

l
|
|
|
|
|
add UserNode ‘TI
|
|
I
I
|
l
|

:
|
|

Figure 2.38 Add New User

Remove User

When JSCMT client leaves the application all the

clients logged into the system receive

52

ChannelConsumerRemoved event. Client’s UserTree locates the
UserNode for the user to be removed and is deleted. Updated
UserTree is displayed in the online users display area.

Removing user is shown in Figure 2.39.

:ClientApplication :JsemiChannel ‘UserTree :UserNode :Userlnfo
Lisetener

I receive ChannelConumerRemoved event

| remowe user <

username of user tolbe removed

|
|
|
|
|
getUserNode |

getuser name

return user name

locate UserNode

return UserNode| |<—

|

I

I

|

I

I

I

I

|

I

I

I

T I
| |
I |
| |

Figure 2.39 Remove User

Text Message Broadcast

When JSCMT client clicks ClientApplication's “Send”
button, txtFiled.getText () method grabs the message typed
in the message text field and broadcasts it to all the

other clients online. This broadcast message is received by

53

JscmtMessageConsumersg of all the receiving clients.
Received message is then displayed by ClientApplication in
its display area. Sequence diagram explaining text

broadcast scenario is shown in Figure 2.40.

:ClientApplication :JscmtMessageConsumer

B send button clicked

|
1
{ broadcast message to all clients

<
recevie Text Broadcast
2::]

process message

<

-

display message

S

Figure 2.40 Text Message Broadcast

Sending AV Broadcast

Upon clicking ClientApplication’s “Video” button check
is performed. if the client is already broadcasting audio-
video. If the client is not broadcasting audio-video and
has web cam and microphone dialogue box pops up on the

screen to confirm the audio-video broadcast action. Upon

54

http:performed.if

action confirmation ClientApplication requests list of IP
addresses of online users from UserTree. UserTree processes
the request and sends array of IPs to ClientApplication.
This array of IPs is seﬁd to AVTransmitter at it’s time of
creation which is used to form list of targets to receive
audio and video streams transmitted by the client. Sending
video broadcast is explained using sequence diagram shown

in Figure 2.41.

55

ClientApplication ‘UserTree :UserNode :Userlnfo :AVTransmitter

video broalicast button clicked!
—

< I
get user IPs __ |

I

|

|
navigate to UserNode

|
I
I
|
I

I

I

I

I

iterates through get user IP |

all the nodes I
_retum user IP |

return UserNode data |
I

getUserlPs() }
return amay of IPs|<—— |
I

creates new KIVTransmitter(StﬁrIlg[] userlPs)

injtMicrophone()
<
initvideo()
<
createAudioProcessor()
Iz

createfudioManager()

[

|

I

|

I

|

|

I

| <)
| create\fideoProcessor()
| <

| createMideoManager()
| I==
|

|

|

|

|

I

|

I

|

feTransmitter()

<
run()

P—

cre

!
I
|
I
I
I
|
I
|
|
|
I
|
|
I
I
I
|
|
I
I
|

———

N
|
|
I

Figure 2.41 Sending AV Broadcast

Receiving AV Broadcast

JscmtMessageConsumer receives AV broadcast message. It

checks with Client if AVReceiver exists. This is done to

56

assure that at any given time only one instance for
AVReceiver exists. If AVReceiver does not exist,
JscmtMessageConsumer creates an instance of AVReceiver.
AVReceiver creates RTP sessions for audio and video at
different ports and listens to new incoming audio and video
streams at these ports. When a new audio or video stream is
received, AVReceiver creates a player to render the stream.
Sequence diagram for receiving AV broadcast is shown in

Figure 2.42.

:JscmtMessage :ClientApplication :AVReceiver :JscmtReceiver
Consumer ClosedListener

receives vidéo broadcast message
<]
check iflocal \/i?eceiver exists

_Ieturns AVReceiverf status

if AVReceiver does not exist

creates creates

add Rece lverCIosedLlst/g'r‘

AL

initialize()
<]

< 1

|

l

|

| I

| |

| |

| |

chnstruct players for received audio and \/#| eo streams

|
l
l
|
|
l

N
|
I
|
|

S

Figure 2.42 Receiving AV Broadcast

57

Sending Audio Broadcast

Upon clicking ClientApplication’s “Audio” button check
is performed if the client is already broadcasting audio.
If the client is not broadcasting audio microphone dialogue
box pops up on the screen to confirm the audio broadcast
action. Upon action confirmation ClientApplication requests
list of IP addresses of online users from UserTree.
UserTree processes the request and sends array of IPs to
ClientApplication. This array of IPs is send to
AudioTransmitter at it’s time of creation which is used to
form list of targets to receive audio streams transmitted
by the client. Sending audio broadcast is explained using

sequence diagram shown in Figure 2.43.

58

:ClientApplication :UserTree :UserNode :Userinfo :AudioTransmitter

audio broa_'gicast button clicked |

| I
P — I | I I
get user IPs _ | | | I
navigate to UsérNode | [
iterates through| | getuseriP _ | |
all the nodes
_retum user IP |
return UserNode data i
I
I
getUserlPs() |
retum array of IPsj<— T |
creates new A-L,EdioTransmitter(StlIlng[] useriPs) |
I I
1 | I in IIZ!PISEPB"SO
I I | P —
[| l createAudioProcessor()
| | l createAudioManager()
| | | Ie<:
: I { createTransmitter()
I | I <
run()
I | I =
| | | <
I | |
I I I
I | I
| I |
| I I

Figure 2.43 Sending Audio Broadcast

Receiving Audio Broadcast

JscmtMessageConsumer receives audio broadcast message.
It checks with Client if AudioReceiver e#ists. This is done
to assure that at any given time one instance for
AudioReceiver exists. If AudioReceiliver does not exist,

JscmtMessageConsumer creates an instance of AudioReceiver.

59

AudioReceiver creates RTP sessions for audio at specified
port and listens to new incoming audio streams at this port.
When a new audio stream is received, AudioReceiver creates
a player to render the stream. Sequence diagram for

receiving audio broadcast is shown in Figure 2.44.

:JscmtMessage :ClientApplication || :AudioReceiver || :JscmtReceiver
Consumer ClosedListener

receives audio broadcast messade

— I

< .] . .
check if local AudioReceiver exists

returns AudioReceiver status

if AudioReceiver does not exists

| creates creates

I /Lé

| add ReceiverClosedListener

| <1 I

I initialize() 1

| <] |

} construct player.for received audio %treams
<

| < |

| I

| |

I I

| |

| |

L
|
|
|
|
l

Figure 2.44 Receiving Audio Broadcast

Inviting User for Private AV Conference

When JSCMT client right clicks on any of the users

displayed in online users display area, a pop up menu

60

appears showing all the available options to communicate
with the other client. On selecting “Invite for Audio-Video
Session” action is processed by UserTree. UserTree locates
the UserNode for the user selected and gets the required
information from the UserInfo data object of UserNode.
ClientApplication uses this user information to invite the
selected JSCMT client for private audio-video conference.
The sequence diagram to explain this scenario is shown in

Figure 2.45.

61

‘UserTree :UserNode :Userlnfo :ClientApplication

select Iser and right click I I
<— | |
"private audio-video session’ selected |
<— | |
I
|
|
|
|

locate UserNode for selecteH user
< |
request Userinfo |

get User IP

return User IP
return Userinfo

privateAVConf(username, iuserlP)

| T <)

send private audio-vido conferencing invitation to JSCMT client
I

l

|

|

|

|

I I
| 1
| |
| |

Figure 2.45 Private AV Invitation

Process Response to Private AV Invitation

On accepting the invitation for private audio-video
conference JSCMT client sends “OK” response to the inviting
client. Response is received by the JsmctConsumer of the
inviting client. If the response is “OK” instance of
PrivateAVProcessor is created. PrivateAVProcessor creates
AVTransmitter that configures the web éam and microphone

and transmits audio and video streams to the other client.

62

PrivateAVProcessor checks with ClientApplication if
AVReceiver exists and creates one in case it does not.
AVReceiver constructs player to render every new incoming
media stream. The scenario of processing the response to
private audio-video conference invitation is explained

using sequence diagram shown in figure 2.46.

63

:JscmtMessage || :PrivateAVProcessor
Consumer

:Clien lication

:AVTransmitter

:AVReceiver :JscmtReceiver

ClosedListener

privaté audio-video invitationIaccpeted respose I

< I
creates |

I

creates new AVTraIﬁsmitter(Stn'ng[] serlPs)

I
I
I
I
I
I
I
|
I

check iflocal local A\IReceiver exists

sgnds AVReceivers/I%a us

if AVR Ic iver does not ex

<

<

initMicrophone() I
initVideo() |
crea(eAudloProoEssor(

<
createAudioManiager()

< .
createVideoManager()

createTransm |ttér

1, create I creates

|
I
I
|
|
|
|
I
|
|
I |
|
|
I
I
|
|

S
C

|

| I
| |
I |
| |
tonstruct players fof received audio dnfd video streams
| I
I |
I |
| |
| I
| |
| I

add Red elverCIosedLlste?e%I:I

initialize()

IIII

I
I
|
I
I
|
|
I
I

Figure 2.46 Process Private AV Invitation

Inviting User for Private Audio Conference

When JSCMT client right clicks on aﬁy of the users

displayed in online users display area,

a pop up menu

appears showing all the available options to communicate .

with the other client.

On selecting “Invite for Audio

64

http:ecei-.ed
http:AVRecei-.er
http:Recei-.er

Session” action is processed by UserTree. UserTree locates
the UserNode for the user selected and gets the required
information from the UserInfo data object of UserNode.
ClientApplication uses this user information to invite the
selected JSCMT client for private audio conference. The
sequence diagram to explain this scenario is shown in

Figure 2.47.

‘UserTree :UserNode :Userinfo :ClientApplication

select Lllser and right click l }
< | |
"private audio session" sélected |
< | !

locate UserNode for selected user |
= |

request Userln ! :
f

get User IP

retum User IP
retum Userinfo

privateAudio(username,| useriP)

1 <
send private audip conferencing invitatian to JSSCMT client

|

| I
| | |
| | |
I | l
| | |

Figure 2.47 Private Audio Invitation

65

Process Response to Private Audio Invitation

On accepting the invitation for private audio
conference JSCMT client sends “OK” response to the inviting
client. Response is received by the JsmctConsumer of the
- inviting client. If the response is “OK” instance of
PrivateAudioProcessor is created. PrivateAudioProcessor
creates AudioTransmitter that configures microphone and
transmits audio streams to the other client.
PrivateAudioProcessor checks with ClientApplication if
AudioReceiver exists and creates one in case it does not.
AudioReceiver constructs player to render every new
incoming media stream. The scenario of processing the
response to private audio conference invitation is

explained using sequence diagram shown in figure 2.48.

66

wJscmtMessage :PrivateAudio :ClientApplication || :AudioTransm || :AudioReceiver || :JscmtReceiver
Consumer Processor itter ClosedListener

pn‘Iate audio invitation acI:peted respose I I

|
Pm— | | | |
creates I | I I

creates new AudioTransmitter(String[l userlPs) |

| initVicrophone() |

I

I

] createAudnoProoeror()
| <:::I

I createAudloManager()
I

I

I

<
createTransmitter()

| <

| sends AudioReceiver status

I
I
check if local local A&dIoReceiver exists }
I
|
|

T
|
if AudioReceiver does not e)gIlst create creates

|
|
I
|
|
|
|

|

I

I

|

I

|

I

I

|

|

. |
| —
| add RegejverClosedListenel]
| initialize() |
| < I
construct pIaylers for received aydio streams |
I
|
I
I
I
I
I

<1

1
|
|
|
|
|
|
|
|
|
|
|
I

|

| T
I I
I |
| I
| I
| |

_—

Figure 2.48 Process Private Audio Invitation

Sending View Web Cam Request

When JSCMT client right clicks on any of the users
displayed in online users display area, a pop up menu
appears showing all the available options to communicate

with the other client. On selecting'“View Web Cam”, action

67

is processed by UserTree. UserTree locates the UserNode for
the user selected and gets the required information from
the UserInfo data object of UserNode. ClientApplication
uses this user information to request to view other
client’s web cam. The sequence diagram to explain this

scenario is shown in Figure 2.489.

:UserTree :UserNode :Userlnfo :ClientApplication

select yser and right click ; {
<— | |
ew Webcam" selected |
<] I |
I
I
|
I
|

—

locate UserNode for selecteH user
: I

request Userinfo |

get User IP

return User IP
retumn Userlnfo

viewWWebcam(usermname, useriP)

.
request to view JSCMT client's web cam

' !
|
I

J L] -
I
|
I
I
|
|

i
|
I

I
|
I
I

Figure 2.49 Sending Request to View Web Cam

68

Viewing User’s Web Cam

On accepting JSCMT client’s request to view web cam
client sends “OK” response to the client requesting the
permission. JscmtMessageConsumer of the requesting client
receives the “OK” response. JscmtMessageConsumer checks
with ClientApplication if AVReceiver has been created. If
AVRecelver does not exist JscmtMessageConsumer creates
AVReceivervto receive the media streams from the requested
client. The sequence diagram that explains the scenario of

viewing user’s web cam is shown in the Figure 2.50.

69

JscmtMessage || :ClientApplication :AVReceiver :JscmtReceiver
Consumer ClosedListener

request to \iew webcam acceptéd

check if local AVI?eceiver exists

returns AVReceiver status

if AVReceiver does not exist
creates

creates

/\

initialize()
Pm—

o streams

I
I
I
|
I
|
|
|
|
y
add ReceiverClosedListenér
I
I
|
I
l
de
I
I
I
I
|
I

|
I
I
I
I
I
I
cdlnstruct players for 'ecelved audio and
I
I
|
I
I
I

n
I
|
I
I
|

Figure 2.50 Viewing User’s Web Cam

Inviting User to View Web Cam

When JSCMT client right clicks on any of the users
displayed in online users display area, a pop up menu
appears showing all the available options to communicate
with the other clients. On selecting “Invite to View My Web
Cam”, action is processed by UserTree. UserTree locates the
UserNode for the user selected and gets the required
information from the UserInfo data object of UserNode.

ClientApplication uses this user information to invite

70

http:VRecei\.er
http:AVRecei\.er

other client to view one’s web cam. The sequence diagram to

explain this scenario is shown in Figure 2.51.

:UserTree :UserNode :Userlnfo :ClientApplication

select ngser and right click l l
<— I I
"Invite to View My Webcam" selected |
ZI | |

locate UserNode for selecteld user I
5 I |

I

l

request Userinfo

get User IP

return User IP
retumn Userlnfo

inviteToViewWebcam(usern ame, userlP)

O
invite JSQMT client to view onei'_ﬁ webcam

e

Figure 2.51 Inviting User to View Web Cam

Process Response to View Web Cam Invitation

On accepting the invitation to view inviting client’s
web cam JSCMT client sends “OK” response to the inviting
client. Response is received by the JsmctConsumer of the
inviting client. If the response is “OK” instance of

WebcamRequestHandler is created. WebcamRequestHandler

71

creates AVTransmitter that configures the web cam and
microphone and transmits audio and video streams to the
other client. WebcamRequestHandler checké wifh
ClientApplication, if AVReceiver exists and creates one in
case it does not. AVReceiver constructs player to render
every new incoming media stream. The scenario of processing
the response to view web cam invitation is explained using

sequence diagram shown in figure 2.52.

72

:JscmtMessage

:WebcamRequest

Consumer

Handler

:ClientApplication

:AVTransmitter

:AVReceiver || :JscmtReceiver

ClosedListener

invitation Ito view one's webmmI accepted

creates |

creates new AVTransmitter(String[] useriPs)

I I
| I
| I

I

|
|
:
I
|
I
I
|
|
|
|
I

check iflocal local AVReceiver exists <

Ends AVReceiver status

eiver does not ex|

initMicrophone()|
<:I |
nitvideo()
"‘“:3< |
createAudxoProoIessor()
DR I
createAudioManhager()
Z_:I |

createVdeoProcIassor()
createVdeoMan?ger(

createTrans m lttér()
run() I

t, create I

creates

R S

c
I
I
|
I

I
I
I
I
I
I
|

I
I
I
|
I:onstruct players for} received audio gnd video streams
|
I
|
I
|
|

|
I
I
I
I
I
I
I
|
I
I
I
|
|
|
I
O .

add RegejverClosedListener

II

initialize()

|

I

S
|
|
|
|
I
I
I
I
|

—]

Figure 2.52 Process View Web Cam Invitation

Inviting User for Private Text Messaging

On selecting “Send Private Message” option from the

available communication options,

UserTree.

action is procéssed by

UserTree locates the UserNode for the user

selected and gets the required information from the

73

http:JscmtReceil.er
http:AVReceil.er

UserInfo data object of UserNode. ClientApplication uses
this user information to invite other client for private
text messaging. The sequence diagram to explain this

scenario is shown in Figure 2.53.

:UserTree :UserNode :Userlnfo :ClientApplication

select lLser and right click :
<— I
"Send Private Message" s¢lected

pR— |

locate UserNode for selectel

<
request Userln ,|

|
|
|
|
l
d user :
I
|
|

get User name

retumn User name
return Userlnfo

privateMessenger(usefriame)

1 [r=m—
Invite JSCMT Client for private teigr
o

l
|
I
|

messaging

l
|
T I |
| | |
1 | I
| | |

Figure 2.53 Inviting for Private Text Messaging

Process Private Text Messaging Invitation

On accepting JSCMT client’s invitation for private
text messaging client sends “0OK” response to the inviting

client. If the response is “0OK” it is directed to

74

ClientApplication. It creates private Channel if it does
not exists, which is used to exchange private messages
between two clients. To manage private text messaging
PrivateMessageHandler is created. PrivateMessageHandler
associates the private Channel with PrivateMessageConsumer.
Private message window is then displayed which acts as an
interface for private text messaging. The scenario to

process private text messaging invitation is explained by

the sequence diagram shown in Figure 2.54.

75

:JscmtMessage || :ClientApplication .PrivateMesssage || :PrivateMessage
Consumer Handler Consumer

invitatiqb for private message accpeted

—— |
< I

privateMessageHandler()

|
|
I
|
|
check if Channel exisits
<] I

create private Chan|:1el
< |

. creates |
! creates

I
I
I
I
I
I
I
I
|
|
I
|

add PrivateMessageConsumer to private Channel
I
|

construct pri

T
T |
| |
| |
| |

Figure 2.54 Process Private Text Messaging

Summary
.In this chapter JSCMT architecture, JSCMT package
structure, JSCMT components were explained. Data flow
between various components to accomplish the functionality
defined by the application was explained using sequence

diagrams.

76

CHAPTER THREE

USER MANUAL

Overview

Java Synchronized Collaborative Multimedia Toolkit
(JSCMT) is a Java application that brings together users
from different geographical location. Users collaborate
through various communication tools integrated by the JSCMT
épplication.

Using JSCMT users can communicate by exchanging text
messages with each other. JSCMT clients can collaborate by
exchanging real-time voice messages with each other.
JSCMT’s audio-video support enables client to broadcast
audio-video or participate in private audio-video
conferencing. JSCMT uses microphone to capture real-time
audio and.web cam to capture real-time video. JSCMT also
supports private text messaging between two clients. At any
given time JSCMT client can participate in only one audio-
video or audio session because at present creation of only
one audio-video or audio transmitter is supported by JSCMT.

The user manual guides the user in using different

functionalities of JSCMT. It elaborates on available

77

features of the application and explains step by step

procedures for using them.

Logging In
Upon starting the application, you will be prompted
with a log in screen which is shown in Figure 3.1. Steps

involved in logging in are:

° Type username in the username text field.

° Type password in the password text field.

. Type IP address of the server in the server text
field.

° Check microphone check box if microphone is
available.

° Check web cam check box if web cam is available.

° Click on the “Connect” button.

Once you have successfully logged in, a graphical user
interface to all the services provided by JSCMT is created

and is shown in Figure 3.2.

78

T o

CMT Login .

- =

e

79

Figure 3.2 JSCMT Client Graphical User Interface

Broadcést Text Message
To broadcast text message to all the other clients
logged into the system the stepé’ipvolved are:
° Click on the button with label'ﬁchat", Which is
the part of the user optioﬁs button:group'of

client application window.

80

] Type message to be broadcasted in the message
field.

° Click on the “Send” button.

JSCMT client broadcasting text message is shown in

Figure 3.3.

E Rotile Hello Svewbiod, Binw vou guys dolng
it Duing Good, Rohil
coaih= Hi Robi
(Rohit» Mow did the Heeling go

Figure 3.3 Broadcast Text Message

81

Broadcast Audio-Video
JSCMT client needs to have web’cam and‘micréphone to
broadcast audio-video to all the users. The stéps involved
in broadcasting audio-video are: |
° Click on the button with label "“Video” and camera
icon, which is the part of the user options
button group of client application window.
° You are prompted to confirm the audio-video
broadcast action.
° Upon confirming the action, audio-video is
broadcasted to all the users
JSCMT client broadcasting audio-video is shown in

Figure 3.4.

82

i) Onding Usets

Figure 3.4 Broadcast Audio-Video

Stop Audio-Video Broadcast
Audio-Video Broadcast can be stopped by clicking “Stop

AV Broadcast” button. This is shown in Figure 3.5.

83

essage Arga.
E %Rehfw Helio Sxebody

Fahibe 1 am Slaping reyAudio Video Broacast
i ok

Figure 3.5 Stop Audio-Video Broadcast

Broadcast Audio
JSCMT client needs to have microphone to broadcast
audio to all the users. The Steﬁs involved in broadcasting
audio are:
. Click on the button with label “Audio” and phone
icon, which is the part of the user options

button group of client application window.

84

° You are prompted to confirm the audio broadcast

action by a dialogue box.

. Upon confirming the action, audio is broadcasted

to all the users.

JSCMT client broadcasting audio is shown in Figure 3.6.

gﬁﬁmﬁm EverBody
sl 1 sra Sloping my Audio Video Broscast

%ﬁfﬁ?’” ok

ohite Dyrpudd ke b roadeast sutic

’ |94 onling Users

Figure 3.6 Broadcast Audio

85

Stop Audio Broadcast
Audio Broadcast can be stopped by clicking “Stop Audio

Broadcast” button. This is shown in Figure 3.7.

Ssagedrea .
j ?@lﬁl:‘: Hellis Bvawbody
E Rolibs § ain Bloping mw Audio Video Broacast
ik
ohib teoudd e o roadeast auddio
ofibe Mow Stopping sudio Broadeast

Figure 3.7 Stop Audio Broadcast

Inviting User for Private Audio-Video Conference
The steps involved in inviting JSCMT client for

private audio-video conference are:

86

° Select the user from the list of online users

displayed in the users online'display area.

. Right click to pop up the context menu.

. Select “Invite for Audio-Video Session” option.

° You are prompted to confirm the action.

° Upon confirming the action, invitation is sent to

the selected client.

JSCMT client inviting another client for private
audiofvideo conferencing is shown in Figure 3.8 and Figure
3.9 shows the client receiving this invitation. Both the
clients participating in a private audio-video conferencing

can be seen in Figure 3.10.

87

Message hrea
i

v

I:

i

&

Figure 3.8 Invite for Private AV Conference

88

4 Culine Users

fiew by Webcam

Tye your messagehere .

Figure 3.9 Receive Private AV Conference Invitation

89

9. %‘ Onling Users
o

Figure 3.10 Participating in Private AV .Conference

Close Audio-Video Session
JSCMT client participating in private audio-video
session can close audio-video session by clicking “Close AV

Sessions” button. This is shown in Figure'3.11.

90

Bl

| Message Area s

uﬁ@éwmmm%mmé@ -

(-

Figure 3.11 Close Audio Video Session

Inviting Usexr for Private Audio Conference
The steps involved in inviting JSCMT client for

private audio conference are:

° Select the user from the list of online users
displayed in the users online display area.
. Right click to pop up the context menu.

] Select “Invite for Audio Session” option.

91

] You are prompted to confirm the action.

) Upon confirming the action, invitation is sent to

the selected client.

JSCMT client inviting another client for private audio
conferencing is shown in Figure 3.12 and Figure 3.13 shows
the client receiving this invitation; Both the clients
participating in a private audio conferencing can be seen

in Figure 3.14.

92

liidite 1o View My Wekigaii

Tyne your messageere. 7

T

Figure 3.12 Invite for Private Audio Conference

93

‘Message Area

AL
g R s

Type your message here:

Figure 3.13 Receive Private Audio Conference Invitation

94

Uer Options

Figure 3.14 Participating in Private Audio Conference

Close Audio Session
JSCMT client participating in private audio session
can close audio session by clicking “Close Audio Sessions”

button. This is shown in Figure 3.15.

95

st

s

mﬁwm&f’s@{eheyg o

R
S e

Figure 3.15 Close Audio Session

Viewing Client’s Web Cam
The steps involved in requesting to view another

client’s web cam are:

. Select the user from the list of online users
displayed in the users online display area.
° Right click to pop up the context menu.

] Select “View Web cam” option.

96

Client reguesting to view another client’s web cam is
shown in Figure 3.16 and Figure 3.17 shows client receiving

this request.

Figure 3.16 Request to View Client’s Web Cam

97

wranto graiit permissionto

‘Typeyourmessagehere

Figure 3.17 Receiver View Web Cam Request

Inviting Client to View One’s Web Cam
The steps involved in inviting client to view one’s

web cam are:

. Select the user from the list of online users
displayed in the users online display area.
) Right click to pop up the context menu.

. Select “Invite to View My Web cam” option.

98

Client inviting another client to view one’s web cam
is shown in Figure 3.18 and Figure 3.19 shows invited

client viewing inviting client’s web cam.

 tessagofirea-

B

oexw{

Send J%ﬁw mww %@M%@% %

et

Figure 3.18 Invite to View One'’s Web Cam

99

fﬁééﬁmenﬁm

- Type your mgssagéuer@

Figure 3.19 View Inviting Client’s Web Cam

Private Text Messaging
Client can exchange private text messages with another
client by using private text messaging feature of JSCMT.
The steps involved sending private text messages to another
client are:
° Select the user from the list of online users

displayed in the users online display area.

100

° Right click to pop up the context menu

. Select “Send Private Message” option

Client inviting another client for private text
messaging is shown in Figure 3.20. Clients actively

engaging in private text messaging can be seen in Figure

3.21.

% Ate 10 Vet Hy Welic ,
E :]
? :

AV Senslis -1}

Figure 3.20 Invite for Private Text Messaging

101

Ontine Users - O
1o {5 oniine users
/ ;&awﬂ

Kiri

Tpeyouriressagetiors
o ‘

i i

Figure 3.21 Participate In Private Text Messaging

Summary
This chapter explains step by step procedures for
using various features of JSCMT Application. It elaborates

various functions of JSCMT with the help of user interfaces.

102

CHAPTER FOUR

CONCLUSIONS AND FUTURE DIRECTIONS

Conclusions

Motivation to collaborate users with common interest
but located in different geographical locations, using
various communication tools resulted in the developmgnt of
JSCMT. Streaming of real-time audio and video over the
network for interactive communication between users has
increased widely. JSCMT incorporates streaming of real-time
audio and video into its audio-video conferencing tool.

JSCMT is developed as a Java application. JSCMT
architecture is based on conventional client/server model.
Server is only responsible for creating Session and Channel
that are eventually used by collaborating clients. This
design dictates very little processing load on the server
whereas most of the request processing is done by the
clients. JSCMT uses two types of protocols, TCP for text
messaging and RTP for media streaming over the network.
JSCMT uses JSDT API to implement communication-part of the
project and JMF API to implement streaming and receiving

real-time audio and video.

103

Future Directions

JSCMT has a good scope for future enhancements.
Functionality of JSCMT application can be extended by
providing support to allow the user to participate in more
than one audio video session. Authentication process can be
further refined. Functionality of JSCMT can be extended to
support more than one Session. Various other features that
can be added to JSCMT in future are discussed in this
chapter.

Refining Authentication Process

Authentication process implemented by JSCMT is at a
low level. JSCMT server authenticates the client by using
the information sent by the client and matching it with the
information maintained by the server in the form of text
file. This process can be further enhanced by implementing
database on the server which stores the user specific
information of all the clients.

Support for Multiple Sessions

Currently creation of only one Session is supported by
JSCMT. Support for Multiple Session will allow a new
Session to be created for every new location. JSCMT client
can participate in any of the available Sessions. This adds

a distributed feature to the application.

104

Support for File Transfer

Functionality of exchanging files between the users is
one of the important features of any collaborative
application. Currently JSCMT does not implement this
feature. File transfer support can be added as a attractive
feature to JSCMT by implementing an appropriate file
transfer utility.

Support for Multiple Audio-Video Session

Currently JSCMT allows user to participate in only one
audio-video session at any given time. This means if user
is broadcasting audio-video to all the users online and
wants to invite another user for private audio-video
session, client needs to stop the broadcast first. If the
mechanism is implemented to create instances of data
sources for audio and video upon request without requiring
initializing the capture devices, client can participate in.

more than one session.

Summary
In this chapter, future recommendations were discussed

that can add new features to the application.

105

REFERENCES

[1]. “IEEE Recommended Practice for Software Requirements
Specifications (IEEE Std 830-1993)"

[2]. Bruce Eckel, “Thinking in Java”, 3™ Edition (2002), -
Prentice Hall, ISBN: 0131002872

[3]. Martin Fowler and Kendall Scott, “UML Distilled”, 2™
Edition, Addison-Wesley Publishing Company, ISBN: 0-201-
65783-X

[4] . Rob Gordon, Stephen Talley, Robert Gordon.,
“Essential JMF - Java Media Framework”, 1% Edition (1999),
Prentice Hall, ISBN: 0130801046

[5]. Rich Burridge, “Java Shared Data Toolkit User Guide”,
1999, Sun Microsystems

[6]. Java 2 Platform, Standard Edition (J2SE) 1.4.1 API
Specification, Sun Microsystems,
http://java.sun.com/j2se/1.4.1/docs/api

[7] . Java Media Framework (JMF) 2.1.1 API Specification,
Sun Microsystems, http://java.sun.com/products/java-
media/jmf/2.1.1/apidocs/

[8] . Java Shared Data Toolkit (JSDT) 2.0 API Specification,
Sun Microsystems, http://java.sun.com/products/java-
media/jsdt/reference/api/

[9]. O. Kim et al., “Issues in Platform-Independent
Support for Multimedia Desktop Conferencing and Application
Sharing,” Poc. Seventh IFIP Conf. on High Performance
Networking (HPN’97), Chapman & Hall London, 1997, pp. 115-
139

106

http://java.sun.com/products/java
http://java.sun.com/products/java
http://java.sun.com/j2se/1.4.l/docs/api

	JAVA synchronized collaborative multimedia toolkit: A collaborative communication tool
	Recommended Citation

