
California State University, San Bernardino California State University, San Bernardino

CSUSB ScholarWorks CSUSB ScholarWorks

Theses Digitization Project John M. Pfau Library

2004

Develop heuristics to the popular Minesweeper game Develop heuristics to the popular Minesweeper game

Angela Tzujui Huang

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project

 Part of the Software Engineering Commons

Recommended Citation Recommended Citation
Huang, Angela Tzujui, "Develop heuristics to the popular Minesweeper game" (2004). Theses Digitization
Project. 2545.
https://scholarworks.lib.csusb.edu/etd-project/2545

This Project is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has
been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks.
For more information, please contact scholarworks@csusb.edu.

https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd-project
https://scholarworks.lib.csusb.edu/library
https://scholarworks.lib.csusb.edu/etd-project?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2545&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2545&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd-project/2545?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2545&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

DEVELOP HEURISTICS TO THE POPULAR MINESWEEPER GAME

A Project

Presented to the

Faculty of

California State University,

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

Computer Science

by

Angela Tzujui Huang

Septembeir 2 0 04

DEVELOP HEURISTICS TO THE POPULAR MINESWEEPER GAME

A Project

Presented to the

Faculty of

California State University,

San Bernardino

by

Angela Tzujui Huang

September 2004

Approved by:

Dr. Richard Botting, Chaj/r, Computer Science Dace

Dr. Kerstin/Voigt, Computer Science

Dr. Ernesto Gomez A Computer Science

ABSTRACT

The mine sweeper game is a popular computer game,

which can be viewed as a logic game or a probability game.

There are certain cases where you can decide if there is or

is not a mine. However, there are also cases that you can

not decide whether there is a mine or not and you have to

guess according to the probability. This project develops

heuristics to help users solving the problem quickly with

high success rates.

This project applies three colors: red, yellow, and

green to covered squares to show the risk probability. The

red color represents the highest risk square which has

definitely a bomb or mine underneath, and the green color

represents a safe square which has no bomb, and the yellow

color represents an undecided square which may or may not

have a bomb. The yellow color'in a square has a size

proportional to the risk. In the beginning, user should

randomly guess several steps to get the uncovered area as

large as possible to achieve the minimal time performance.

Then, the heuristic will find safe uncovered squares as

well as squares with bombs and assign green and red to them

respectively. Besides, this project will calculates

probability for each square which is neither red nor green.

Furthermore, the probabilities of overlap conditions and

iii

specific patterns, which are derived or obtained from

simulation, are applied.

iv

ACKNOWLEDGMENTS

Without the support and encouragement of my advisor,

my family, and my friends, this project would not have been

completed successfully. I am so grateful to Dr. Botting,

who is such a wonderful and perfect advisor, for his kind

advice, guidance, and suggestions. I also am grateful to Dr

Kerstin Voigt and Dr. Ernesto Gomez to be my committee and

provide helpful comments on this project.

I appreciate my family for all their love,

understanding and tolerance. My husband not only supports

me in learning and living but also helps to take care of my

son and daughter so I have enough time to finish my works.

My sisters and brother always encourage me throughout my

study in many ways, such as this notebook computer to

develop the project. I would like to share the honor with

them. I also want to thank all my friends who helped me

during my studying at CSUSB.

v

TABLE OF CONTENTS

ABSTRACT ...

ACKNOWLEDGMENTS ...

LIST OF TABLES................. i...........................

LIST OF FIGURES...............i...........................

CHAPTER ONE: INTRODUCTION i

1.1 Purpose of the Project

1.2 Scope of the Project |..........................

1.3 Significance of the Project

1.4 Limitation of the Project

1.5 Definitions and Abbreviations

1.6 Organization of the Documentation

CHAPTER TWO: RELATED WORK REVIEW

2.1 Introduction'..........................

2.2 Related Designs
I

CHAPTER THREE: SOFTWARE REQUIREMENTS SPECIFICATION

3.1 Introduction !..........................

3.2 Overall Description

3.2.1 Product Perspective

3.2.2 Product FunctionsI
3.2.3 User Characteristics

i

iii

v

viii

ix

1

4

5

6

6

8

9

10

3.2.4 Constraints . .

3.2.5 Assumptions and
i
Dependencies

3.3 Specific Requirements

15

15

15

20

23

23

23

24

, i
vi;

Ii

t
1

3.3.1 External Interface Requirements . 24

3.3.2 Functional Requirements 25

3.3.3 Performance Requirements 27

3.3.4 Software Systemj Attributes............ 27

CHAPTER FOUR: PROBABILITY ANALYSIS

4.1 Risk Probability in Special Patterns 28

4.1.1 One Number Known........................ 28

4.1.2 Two Numbers Known......................... 28

4.2 Simulation Results 44

4.3 Discussion . 45

CHAPTER FIVE: SOFTWARE DESIGN

5.1 Architecture Design 48

5.2 Detailed Procedures 59

5.3 Pseudo Code...................................... 69

CHAPTER SIX: MAINTENANCE MANUAL

6.1 Source Files.................................... 7 6

6.2 Installation Description 77

CHAPTER SEVEN: CONCLUSIONS AND FUTURE DIRECTION

7.1 Conclusions...................................... 78

7.2 Future Direction 79

APPENDIX A: SOURCE CODE OF AUTOMINE . .'.............. 81

APPENDIX B: SOURCE CODE OF SIMULATION.................. 87

APPENDIX C: MAKEFILE...................................... 98

REFERENCES.. 100

vii

LIST OF TABLES

Table 1. Definitions and Abbreviations 7

Table 2. Prolog Code of Minesweeper End Game.......... 10

Table 3. Risk Simulated Results........................ 45

Table 4. Calculated Probability 46

Table 5 . State Variable of Xbomb 69

Table 6. Source Files.................................... 76

viii

LIST OF FIGURES

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

1. The Minesweeper Game

2. Example of Local Probabilities

3. The Minesweeper Game....................... .

4. Deployment Diagram . •..........................

5. Memory Constraints in the Project

6. Cases with Safe Cells

7. Cases with Risky Cells

8. Use Case Diagram

9. The Automine Shows Green for Safe

10. One Number Known

11. (1, 1) Two Cases

12. (1, 2) Two Cases

13. (1, 3) Two Cases

14. (1, 4) One Case............

15. (2, 2) Three Cases

16. (2, 3) Three Cases

17. Results of Theory and Simulation

18. Initial Board of Beginner Level

19. Architecture of Xbomb

20. First Click

21. Enable Automine

22. Architecture of Automine

23. Intermediate Level

3

14

17

18

2 0

21

21

24

25

28

29

31

32

34

35

37

47

48

50

51

52

53

54

ix

Figure 24. Expert Level

Figure 25 . Risk of Special Pattern (1, 4)

Figure 26. . Risk of Patterns (1, 1) and (1, 2)

Figure 27 . Risk of Patterns (1, 2) and (3, 3)

Figure 28 . Risk of Rotated Pattern (2, 3)

Figure 29

Figure 30

Figure 31

Figure 32

Figure 33

Figure 34

Figure 35

Figure 36

Figure 37

Figure 38

Figure 39

Initial Two Clicks

Choose the Smallest Risk

Show Ordered Items' Status

Marking Red Squares Would Not Help

Select the Smallest Risk Squares

Select Green

Need to Guess

Get More Greens

Only Red Squares Left

Game Won, Stop

The Highest Score of Beginner Level

55

56

57

58

58

59

60

61

62

63

64

65

66

66

67

68

x

CHAPTER ONE

INTRODUCTION

1.1 Purpose of the Project

The mine sweeper game can be viewed as a logic game or

probability game. The object of Minesweeper is to find all

the mines as quickly as possible without uncovering any of

them. The player clicks any square on the playing field to

uncover it. If it is a mine, the player loses the game.

Otherwise, a number is displayed indicating how many mines

are in the eight squares that surround the numbered one.

Besides, clicking one of the safe areas will uncover the

whole connected safe area. The player could right-click the

square to mark it as a mine. Two right-clicks mark it with

a question mark ('?') . Later, a player can either mark the

square as a mine or uncover it by right-clicking again once

or twice. When the player has marked all mines around a

numbered square, the player can quickly uncover all empty

squares around it by clicking that square with both mouse

buttons. A good player looks for common patterns in

numbers, which often indicate a corresponding pattern of

mines.

The Minesweeper solver program (Automine) is based on

the Linux xwindow C program with xwindow graphic library.

1

There will be a user interface that can let user to play

the minesweeper game and keep the statistic of the good

choice of next step for various patterns. There will be a

heuristic demo mode that shows steps generated from

different heuristics and the results of successful rate and

time used will be added into the statistics. Besides, there

will be just heuristic running mode to collect that

information fast.

As shown in Figure 1, there are the numbers of mines

not found and total time used. If the player clicked the

save area, it will show all the safe area and the number of

mines in the edge area. User can mark the mine with a red

flag. However, if user marks the wrong one, it will show

the "x" mark after the mine explores. The exploded mine

will be red and the others will show up.

2

Figure 1. The Minesweeper Game

There are certain cases that you can decide if there

is or is not a mine. However, there are also cases that you

can not decide whether there is a mine or hot and, you have

to guess. This project will develop heuristics to help

users calculate the probabilities while achieving

acceptable performance such as minimal time and successful

rates.

This project applies three colors: red, yellow, and

green to unknown squares for the risk probability. The red

color represents the highest risk square which has

definitely a bomb underneath, and the green color

represents a safe square which has no bomb for sure, and

the yellow color represents undecided squares which may or

3

may not have bombs. The size of the yellow maker is

proportional to the risk. In the beginning, user has to

randomly guess several steps to get the uncovered area as

large as possible to achieve the minimal time performance.

Then, the heuristic will find safe uncovered squares as

well as squares with bombs and assign green and red to them

respectively. Besides, this project calculates probability

for each square which is neither red nor green. Furthermore,

the probabilities of overlap conditions and specific

patterns, which are derived or obtained from simulation,

will be applied.

1.2 Scope of the Project

The software product defined in this document is to be

known as heuristics for the minesweeper game. The delivery

of this product will provide the following:

1. Description and implementation of the minesweeper

game.

2. Write a plan on how and when to finish the project.

3. Information regarding the patterns that can decide if

there is or is not a mine.

4. Special attention will be paid in guessing the next

step if there is no determinable step to take.

4

5. Study and implement 3 heuristics to solve the

minesweeper game.

5.1 Full Search - show the safe square and bomb.

5.2 Overlap Adjustment - Search for overlapped

squares, increase its probability and reduce those of

the others.

5.3 Special Pattern - Search for isolated special

patterns and apply simulated probability.

6. The performance will be analyzed and compared, in the

successful rate, time required and resource required.

7. User can compete with the same game as the heuristics

and the program can learn the most successful way to

solve specific patterns.

8. All description and source codes will available in

pure text, Post-Script or Adobe Acrobat PDF format.

1.3 Significance of the Project

This project will develop heuristics for the

minesweeper game to solve the problem while achieving

satisfaction performance. The program will help human to

spot squares with bombs red and squares with no bomb green.

Some patterns are applied to get more exactly probabilities

to help user to determine the risk of a bomb. The brain

works with the computer to achieve better performance.

5

1.4 Limitation of the Project

Although many squares can be decided to be safe or i
unsafe, there are still squares which have to be guessed.

Here the program takes to tries to calculate the risk.

However, a square with low risk may have a bomb underneath

it. This makes the game more interesting! i

1.5 Definitions and Abbreviations

The definition of special terminology and the acronyms

as well as abbreviations are listed in Table 1.

i

6

Table 1. Definitions and Abbreviations

Automine Provide colors to show risk in Xboirib game.

C, C++ High level programming language.

Heuristic A simplified algorithm that finds near

IEEE

optimal solutions with reasonable time

and resource instead of searching the

whole solution space.

Institute of Electrical and Electronics

Linux

Engineers

A free operation system.

Minesweeper A game distributed with Microsoft

Windows. There are numbers on the

Prolog

rectangular grid board showing the

number of mines in its 8 neighbors.

Artificial Intelligence programming

Risky Square

language.

Can't decide if there is a bomb.

SRS Software Requirements Specification

Safe Square No bomb for sure

Xbomb Free minesweeper game in Linux.

Xwindow Graphics programs read keystrokes and

mouse clicks, and display shapes in

Linux.

7

1.6 Organization of the Documentation

The remaining sections of this document will be

organized as follows: Chapter 2 provides information

regarding the related work. Chapter 3 describes the

software requirement specification (SRS). Chapter 4

illustrates the probability analysis. Chapter 5 introduces

the detailed software design. Chapter 6 is maintenance

manual. Chapter 7 contains conclusions and points out

future work.

8

CHAPTER TWO

RELATED WORK REVIEW

2.1 Introduction

Clay Mathematics Institute has provided Million Dollar

for solving Minesweeper because it is an NP-complete

problem [1].

In the paper of "Some Minesweeper Configuration", Dr.

Richard Kaye proved that minesweeper is NP-complete and

collected some interesting configurations. He mentioned

that playing Minesweeper is about probabilities, not

certainties. There are also variations of minesweeper games

such as a 3-Dimensional version and infinite version [7].

Dr. Hudelson's paper "The Math of Minesweeper"

provided five theorems of the game and programmed these

theorems into a solver. The results showed that the

hexagonal shape was the easiest because each cell had only

six adjacent cells. That would make the regions smaller and

the theorems more powerful [3].

9

2.2 Related Designs

Professor Botting in California State University, San

Bernardino, developed a minesweeper end game with Prolog

[6]. If it is the last few steps, the one upper row and one

left column should be known numbers otherwise the

information could be used. If there is only one mine left,

it must in W (1,0,0,0) to be shared with two 'l's. If there

are two mines left, they could be X and Y (0,1,1,0) or W

and Z (1,0,0,1).

Table 2. Prolog Code of Minesweeper End Game

% A minesweeper end game

% In the last few steps of the minesweeper game, you

have a single mine to flag

% It is somewhere in the 4 squares in the bottom right

hand corner of the board

% The corner looks like this (f is a flag, W, X, Y, Z

are unknown squares)

% f 2 1

% 2 W X

% 1 Y Z

% where is the last mine?

10

% Encode W, X, Y, Z is 1 for a mine and 0 for no mine

on that square unique u(...) is true if precisely one

argument is 1 and the rest are 0

u(l,0,0,0), u(0,1,0,0), u(0,0,1,0), u(0,0,0,1).

% original problem

where(Field): -Field=[W, X, Y, Z] , u(W,X,Y,Z)

1 is W+X,

2 is 1+W+X,

2 is 1+W+Y,

1 is W+Y.

% suppose we don't know how many mines are

corner

where2(Field): -Field=[W, X, Y, Z] ,

(X=1;X==0), (W=l;W=0), (Y=l;Y=0), (Z=1;Z=O)

1 is W+X,

2 is 1+W+X,

2 is 1+W+Y,

1 is W+Y.

11

% optimized with the unknown number of mines

where3(Field) : -Field=[W, X, Y, Z] ,

(X=l;X=0), (W=1;W=O),

1 is W+X,

2 is 1+W+X,

(Y=1;Y=O),

2 is 1+W+Y,

1 is W+Y,

(Z=1;Z=O).

go: - where3(Field), count(Field), fail.

results:-counters(W, X, Y, Z), total(T),

Wl is 100.0*W/T, write(Wl), write('\t'),

XI is 100.0*X/T, write(XI), nl,

Yl is 100.0*Y/T, write(Yl), write('\t') ,

Zl is 100.0*Z/T, write(Zl), nl.

reset:-retract(counter(_,_,_,_)),

assert(counters(0,0,0,0)), retract(total(_)),

assert(total(0)).

12

:-dynamic(counters/4).

counters(0,0,0,0).

:-dynamic(total/1).

total(0).

Count(Field):-retract(total(TO)), Tl is TO + 1,

assert(total(Tl)), retract(counters(WO,XO,YO,ZO)),

Field=[W,X,Y,Z], Wl is WO+W, XI is XO+X, Yl is YO+Y, Zl

is ZO+Z, assert(counters(Wl,XI,Yl,Zl)).

For another design in the paper of Minesweeper:

Advanced Tactics introduced some tactics in playing the

game and described how to resolve local probability

conflicts [4]. Author Sean Barrett wrote about the advanced

tactics of minesweeper games. If user only checks the local

probabilities, you can see that each of the squares in the

marked mutually exclusive groups have a 50-50 chance of

being a mine. The definition of local probabilities is that

if the square has a '1' next to two unknown squares, each

has a 50% chance of being a mine. His abstract method of

computing probabilities is to run through all possible

arrangements of mines, discard the ones that don't match

the data we've collected, and count up the statistics for

13

each possible location. The time is exponential in the

number of unknown squares.

Figure 2. Example of Local Probabilities

Besides, there are many websites showing the

description of advance tactics and strategies for solving

the minesweeper [4,5].

14

CHAPTER THREE

SOFTWARE REQUIREMENTS SPECIFICATION

3.1 Introduction

This software requirement specification is for the

automine project that helps to solve the popular

minesweeper game by showing the hidden squares with green,

red as well as yellow blocks whose size is proportional to

the risk probability.

3.2 Overall Description

3.2.1 Product Perspective

The object of Automine is to add a helper to

Minesweeper and find all the mines as quickly as possible

without uncovering any of them. The player clicks any

square on a rectangular playing field to uncover it. If it

is a mine, the player loses the game. Otherwise, a number

is displayed indicating how many mines are in the eight

squares that surround the numbered one. Besides, clicking

one of the safe area will uncover the whole connected safe

area. The player could right-click the square to mark it as

a mine. Two right-clicks mark it with a question mark

('?'). Later, a player can either mark the square as a mine

or uncover it by right-clicking again once or twice. When

15

the player has marked all mines around a numbered square,

the player can quickly uncover all empty squares around it

by clicking that square with both mouse buttons. If not all

mines touching the square are marked, the uncovered

touching squares flash. A good player looks for common

patterns in numbers, which often indicate a corresponding

pattern of mines.

The automine solver program is base on the Unix

Xwindow C program with xwindow graphic library. There will

be a user interface that can let user to play the

minesweeper game and keep the statistic of the good choice

of next step for various patterns. There will be a

heuristic demo mode that shows steps generated from

different heuristics and the results of successful rate and

time used will be added into the statistics. Besides, there

will be a heuristic running mode to show information fast.

As shown in Figure 3, there are the number of mines

not find and total time used. If the player clicked the

safe area, it will show all the safe area and the number of

mines in the edge area. User can mark the mine with a red

flag. However, if user marks the wrong one, it will show

the "x" mark after the mine explores. The exploded mine

will be red and the others will show.up.

16

Figure 3. The Minesweeper Game

There are several modes for the Microsoft minesweeper

game: 1. Beginner: 8x8 squares with 10 mines; 2.

Intermediate: 16x16 squares with 40 mines; 3. Expert: 16x32

squares with 99 mines; and 4. Custom: Users define height,

width, and number of mines. On a palm pilot PDA there are

11x11 squares with 20 mines.

3.2.1.1. The minesweeper solver will have a server to

generate the new game and update the status from

user/clients response as well as divide the problem and

distribute'to clients. The user can click a location to

17

uncover the number of mines in its neighbor or mark it as a

mine. The clients will generate the next step according to

the heuristics as shown in Figure 4.

Figure 4. Deployment Diagram

18

3.2.1.2. The minesweeper solver (automine) will not

implement hardware interface directly. However, it will

trust the underlying operating system (Linux in this case)

to handle the hardware interfaces.

3.2.1.3. The Graphic User Interface will be

implemented through xwindow libraries. Users can use hot

keys as well as mouse to play the game.

3.2.1.4. The software product detailed in this SRS

would perhaps require more than 128 MB of Physical Memory

depending on how large the game field is. The RAM needed by

the product is essentially a function of the size of game,

too. Memory constraints in the project are shown as figure

5 .

19

Memory (MB)

□ Memory (MB)

Figure ,5. Memory Constraints in the Project

3.2.1.5 . User chooses the New game from the Game

Menu. There are four modes can be chosen: 1. Beginner; 2.

Intermediate; 3. Expert. Follow the logic solution to

uncover the safe squares and mark the mines until all mines

are identified. The heuristic will generate the next steps

and the successful rate and time used will be analyzed.

3.2.2 Product Functions

As detailed before (and repeated here for the reader's

benefit), the product functions are as follows:

3.2.2.1. Description and implementation of the

minesweeper game.

20

3.2.2.2 . Write a plan on how and when to finish the

project. It is designed for common users, expert users and

software development programmers.

3.2.2.3 . Information regarding the patterns that can

decide if there is or is not a mine. For example,

Figure 6. Cases with Safe Cells

3.2.2.4 . Special attention will be paid in guessing

the next step if there is no determinable step to take. For

example, to guess the first square and second square. Or

when there is no more information for deterministic step.

One way is to try the safest square. The other way is to

have some chances to take risks.

[. 1 oarer

1

2
Higher Risk

Figure 7. Cases with Risky Cells

21

3.2.2.5 . Study and implement 3 heuristics to solve

the minesweeper game. The initial idea is to implement (1)

full search algorithm: try the first safe step; (2) overlap

adjustment: find the overlap squares, increase the risk; (3)

look up for special patterns: Find special patterns and

apply simulation results of risk probability.

3.2.2.6. The performance will be analyzed and

compared in the successful rate, time required and resource

required. Sometimes, the competition only cares the minimal

time to solve the problem. The heuristic may set the number

of larger initial guessing steps to try its luck. If it

unfortunately touches the mine, the heuristic can start

over really quick. If it is lucky to get a large safe area,

then it can divide the problem and solve it much faster.

However, if the safety is the most important concern, the

number of guessing steps will be minimized.

3.2.2.7 . All description and source codes will

available in pure text, Post-Script or Adobe Acrobat PDF

format.

22

3.2.3 User Characteristics

The set of users can be grouped as follows:

a. Common user: Use minesweeper solver to help playing

the game. There are two types of users: "Risk Averse"

users will spend time avoiding risky guesses and

"speed demons" who will take risks to finish quickly.

By the way the "Risk Averse" types tend to play a

version that doesn't give a score—the Palm Pilot Mine

Hunt for example. This software supports both!

b. Software development programmer: Analyze the

performance and learn from statistics.

3.2.4 Constraints

The original software keeps only the highest score.

Here the top ten of each mode will be recorded.

3.2.5 Assumptions and Dependencies

Sometimes, there is an assumption that the first top-

left square is safe for the game or at least first 2

squares in the top-left corner is uncovered to guarantee

the game can be finished more safely.

23

Figure 8. Use Case Diagram

3.3 Specific Requirements

3.3.1 External Interface Requirements

Some of these interfaces have been prototypes in C and

xwindow library.

24

3.3.2 Functional Requirements

3.3.2.1. User can mark the mine and uncover the safe

squares. If user wants to get help from the solver, click

the Automine menu and the safe squares will become green,

the square with bomb would become red and size of yellow

markers shows the risk.

Figure 9. The Automine Shows Green for Safe

25

3.3.2.2. The display will include the number of mines

left and the time used. The program will be initiated by

the user and will remain active as long as the user desires

to remain playing new games. The highest ten scores will be

recorded.

Top 10 Mine Sweepers

Beginners:

1. Richard 55 seconds 02/14/02 09:30:55

2 . Angela 60 seconds 03/18/02 15:20:05

10. Tiffany

Intermediate:

500 seconds 06/11/02 23:55:16

1. Richard 155 seconds 02/15/02 09:30:55

2 . Angela 160 seconds 03/19/02 15:20: 05

10. Tiffany 800 seconds 06/12/02 23:55:16

Expert:

1. Richard 355 seconds 02/16/02 09:30:55

2 . Angela 460 seconds 03/16/02 15:20:05

10. Tiffany 1800 seconds 06/13/02 23:55:16

26

3.3.3 Performance Requirements

The product should be running normally at all times.

The highest score list can be reset. The statistic of

various heuristic and criteria will be analyzed. For

example:

3.3.4 Software System Attributes

The software development programmer should be able to

use the system for the following reasons:

a. Maintaining the system: remove the potential bugs in the

system, improve the functions of the system based on

user's feedback, answering questions, updating the

necessary information.

b. Security: encryption of the highest score record so that

no one can edit it.

c. Backup: frequently back up the system and the

information. If there is any damage or change in the

system or data, the backup can be restored to replace or

compare the data or system.

d. Check the good patterns used in the game and implement it

in the database.

27

CHAPTER FOUR

PROBABILITY ANALYSIS

4.1 Risk Probability in Special Patterns

4.1.1 One Number Known

1/8 1/8 1/8

1/8 1 1/8

1/8 1/8 1/8

1

1/5 1/5

1 1/5

1/5 1/5

1/3 1/3

1 1/3

Figure 10. One Number Known

If there is only one number known, the probability of

there is one mine in its neighborhood is n/8, where n is

the known number. For the special case of the known number

is at the corner or edge, the probability would become 1/3

and 1/5 respectively as shown in Figure 10.

4.1.2 Two Numbers Known

If there are two numbers known, the probability of

there is one mine in its neighborhood is a very complicated

conditional probability problem. The probability will be-

proportional to the combination of different situation and

the size of board and the number of mines. For example, in

the beginner level where X=8, Y=8, N=10, there are 64

28

squares in the board and there are 4x3=12 squares in the

neighborhood of two known numbers and 64-12=52 squares

outside the neighborhood.

For known numbers (1,1), there are two cases: (A) two

numbers share 1 mine and (B) two numbers share 0 mines, 'a'

is the probability if one of the top 3 squares has bomb.

'b' is the probability if one of the 4 middle squares has

bomb, 'c' is the probability if one of the 3 bottom squares

has bomb. P(A) is the conditional probability when special

pattern (1, 1) happens and case (A) happens. P(B) is the

conditional probability when special pattern (1, 1) happens

and case (B) happens.

For case (A), there is one mine in the neighborhood

and nine mines outside the neighborhood. The total

combination is C(4,1)*C(52,9), where C(m,n)=m!/(m-

n) !/n! =m* (m-1)*...* (m-n+1)/n! . For case (B) , there are two

29

mines in the neighborhood and eight mines outside the

neighborhood. The total combination is

C (3,1) *C (3,1) *C (52,8) . The sum of probability of case A and

B equals 1. Therefore, the probabilities can be calculated

from the ratio of the two cases.

R = P(A)/P(B) = {C(4,l)*C(52,9)}/

{C (3,1) *C (3,1) *C (52,8) }

= 4/9* {52 *...*45*44/9 ! } / {52*...*45 /8 ! }

= 4/9*44/9

= 2.1728

P(A)+P(B)=1

R*P(B)+P(B)=1

P(B) = 1/(1+R) = 0.3152

P (A) = 1- P(B) = 0.6848

= P(B) * R

For case (A), four squares share the same probability

of one mine. Therefore,

b = P (A)/C(4,l) = 0.1712.

For case (B), three squares share the same probability

of one mine. Therefore,

a = c = P(B)/C(3,1) = 0.105.

For known numbers (1,2), there are two cases: (A) two

numbers share 1 mine and (B) two numbers share 0 mine.

30

Figure 12. (1, 2) Two Cases

For case (A), there is two mine in the neighborhood

and eight mines.outside the neighborhood. The total

combination is C (4,1) *C (3,1) *C (52,8) . For case (B), there

are three mines in the neighborhood and seven mines outside

the neighborhood. The total combination is

C(3,l) *C(3,2)*C(52,7) .

The sum of probability of case A and B equals 1.

Therefore, the probabilities can be calculated from the

ratio of the two cases.

R = P(A)/P(B) = {C (4,1) *C (3,1) *C (52,8) } /

(C(3,l)*C (3,2)*C(52,7)}

= 12/9* {52*...*46*45/8! }/{52*...*46/7 ! }

= 12/9*45/8

= 7.5

P(A)+P(B)=1

R*P(B)+P(B)=1

31

P(B) = 1/(1+R) 0.1176

P(A) = 1- P(B) = 0.8824

= P(B) * R

For case (A), four squares share the same probability

of one mine. Therefore,

b = P(A)/C(4,1) = 0.2204.

For case (B), three squares share the same probability

of one mine.

Therefore,

a = P(B)/C(3,l) = 0.0392.

c = P (A)/C (3,1)+P(B)/C(3,2)*2 = 0.3725

For known numbers (1,3), there are two cases: (A) two

numbers share 1 mine and (B) two numbers share 0 mines

(shown in Figure 13).

a a a

.< 1 —1 b r
3 b 3 b

c c c

4

3

Figure 13. (1,3) Two Cases

For case (A), there is three mine in the neighborhood

and seven mines outside the neighborhood. The total

32

combination is C (4,1) *C (3,2) *C (52,7) . For case (B), there

are four mines in the neighborhood and six mines outside

the neighborhood. The total combination is

C (3,1) *C (3,3) *C (52,6).

The sum of probability of case A and B equals 1.

Therefore, the probabilities of A and B can be calculated

from the ratio of the two cases.

R = P(A)/P(B) = {C(4,1)*C(3,2)*C(52,7)}/

{C (3,1) *C (3,3) *C (52,6) }

= 12/3*{52*...*47*46/7 ! } / {52*...*47/6 ! }

= 12/9*46/7

= 8.762

P(A)+P(B)=1

R*P(B)+P(B)=1

P(B) = 1/(1+R) = 0.1024

P(A) = 1- P(B) = 0.8976

= P(B) * R

For b in case (A), four squares share the same

probability of one mine. Therefore,

b = P(A)/C(4,l) = 0.2244.

For a in case (B), three squares share the same

probability of one mine. Therefore,

a = P(B)/C(3,l)*1 = 0.0341.

33

For c in both case (A) and (B), three squares share

the same probability of one mine. Therefore,

c = P(A)/C(3,2)*2+P(B)/C(3,3)=

0.5984+0.1024=0.7008

For known numbers (1,4), there is only one case: (A)

two numbers must share 1 mine.

1.
4

a a. a

b 1
' b 4 b

c ;'c

-1,

Figure 14. (1,4) One Case

For case (A), P(A)=1, a=0, b = P(A)/C(4,1) = 0.25,

c=l.

For known numbers (2,2), there are three cases: (A)

two numbers share 2 mines and (B) share 1 mine and (C)

share 0 mines.

34

Figure 15. (2,2) Three Cases

For case (A), there are two mines in the neighborhood

and eight mines outside the neighborhood. The total

combination is C(4,2)*C(52,8). For case (B), there are

three mines in the neighborhood and seven mines outside the

neighborhood. The total combination is

C(3,1)*C(4,1)*C(3,1)*C(52,7). For case (C), there are four

mines in the neighborhood and six mines outside the

neighborhood. The total combination is

C(3,2)*C(3,2)*C (52,6) .

The sum of probability of case A, B and C equals 1.

Therefore, the probability can be calculated from the ratio

of the three cases.

R1 = P(A)/P(C) = {C (4,2) *C (52,8) } /

(C(3,2)*C(3,2)*C(52,6)}

= 6/9*{52*...*46*45/8! }/{52*...*47/6! }

= 6/9*46*45/8/7

= 24.64

35

R2 = P(B)/P(C) = {C(3,l) *C(4,1) *C(3,1)*C(52,7)}/

{C(3,2)*C(3,2)*C(52,6)}

= 3 6/9* { 52*...*47*46/7 ! } / {52*...*47/6 ! }

= 4*46/7

= 26.28

P(A)+P(B)+P(C)=1

R1*P(C)+ R2*P(C)+P(C)=1

P(C) = 1/(1+R1+R2) = 0.01926

P (A) = R1*P(C) = 0.4746

P(B) = R2*P(C) = 0.5062

For a, c in case (B) and (C),

a = c= P(B)/C(3,1) + P(C)/C(3,2)*2 = 0.1816

For b in case (A) and (B),

b = P(A)/C(4,2)*3 + P(B)/C(4,1) = 0.2373 +

0.1266 = 0.3639

(For example, (0011,0101,0110,1001,1010,1100),

C(4,2)=6 cases, in which 3 cases have the first=l.)

For known numbers (2,3), there are three cases: (A)

two numbers share 2 mines and (B) two numbers share 1 mine

and (C) share 0 mines.

36

2
3,

■•a? a ■a.

b 2 b
b 3 b

ttf

© w

3'
©

w

© .©

1
1

.© © ©

Figure 16. (2,3) Three Cases

For case (A), there are three mines in the

neighborhood and seven mines outside the neighborhood. The

total combination is C(4,2)*C(3,1)*C(52,7). For case (B),

there are four mines in the neighborhood and six mines

outside the neighborhood. The total combination is

C(3,1)*C(4,1)*C(3,2)*C(52,6). For case (C), there are five

mines in the neighborhood and five mines outside the

neighborhood. The total combination is

C(3,2)*C(3,3)*C(52,5) .

The sum of probability of case A and B equals 1.

Therefore, it can be calculated from the ratio of the two

cases.

Rl = P(A)/P(C) = {C (4,2) *C (3,1) *C (52,7)}/

{C(3,2)*C(3,3)*C(52,5)}

' = 18/3* {52*...*47*46/7 ! } / {52*...*48/5 ! }

= 18/3*47*46/7/6

= 308.86

37
<5

R2 = P(B)/P(C) = {C(3,l) *C(4,1) *C(3,2)*C(52,6)}/

{C(3,2)*C(3,3)*C(52,5)}

= 36/3*{52*...*48*47/6! } / {52*...*48/5 ! }

= 36/3*47/6

= 94

P(A)+P(B)+P(C)=1

Rl*P(C)+ R2*P(C)+P(C)=1

P(C) = 1/(1+R1+R2) = 0.002476

P (A) = R1*P(C) = 0.7647

P(B) = R2*P(C) = 0.2327

For a in case (B) and (C),

a = P(B)/C(3,1) + P(C)/C(3,2)*2 = 0.0792.

For b in case (A) and (B) ,

b = P(A)/C(4,2)*3 +P(B)/C(4,1)=

0.3824+0.0582 = 0.4406.

(For example, (0011,0101,0110,1001,1010,1100),

C(4,2)=6 cases, 3 cases have the first=l)

For c in both case (A), (B) and (C), therefore,

c = P(A)/C(3,1)+P(B)/C(3,2)*2+P(C)=

0.2549+0.1551+0.002476=0.4125

For known numbers (2,4), there are three cases: (A)

two numbers share 2 mines and (B) two numbers share 1 mine.

For case (A), there are 4 mines in the neighborhood

and 6 mines outside the neighborhood. The total combination

38

is C(4,2)*C(3,2)*C(52,6). For case (B), there are 5 mines

in the neighborhood and 5 mines outside the neighborhood.

The total combination is C (3,1) *C (4,1) *C (3,3) *C (52,6) .

The sum of probability of case A and B equals 1.

Therefore, it can be calculated from the ratio of the two

cases.

R = P(A)/P(B) = {C(4,2)*C(3,2)*C(52,6)}/

{C (3,1) *C (4,1) *C (3,3) *C (52,5) }

= 18/12* {52*...*47/6 ! } / {52*...*48/5 ! }

= 18/12*47/6

= 11.75

P(A)+P(B)=1

R*P(B)+ P(B)=1

P(B) = 1/(1+ R) = 0.07843

P (A) = R*P(B) = 0.9216

For a in case (B),

a = P(B)/C(3,1) = 0.02614.

For b in case (A) and (B) ,

b = P (A)/C(4,2)*3 +P(B)/C(4,1)=

0.4608+0.01961 = 0.4Z04.

For c in both case (A), (B), therefore,

c = P(A)/C(3,2)*2+P(B)/C(4,1)=

0.6144+0.0784=0.6928

39

For known numbers (3,3), there are 4 cases: (A) two

numbers share 3 mines and (B) share 2 mine and (C) share 1

mine (D) share 0 mines.

For case (A), there are three mines in the

neighborhood and seven mines outside the neighborhood. The

total combination is C(4,3)*C(52,7). For case (B), there

are four mines in the neighborhood and six mines outside

the neighborhood. The total combination is

C(3,1)*C(4,2)*C(3,1)*C(52,6). For case (C), there are five

mines in the neighborhood and five mines outside the

neighborhood. The total combination is C(3,2)*C(3,2)*C(4,1)

*C(52,5). For case (D), C(52,4).

The sum of probability of case A, B, C and D equals 1.

Therefore, the probabilities can be calculated from the

ratio of the four cases.

Rl = P(A)/P(D) = {C(4,3)*C(52,7)}/ C(52,4)

= 4* {52*...*47*46/7 ! } / {52*...*49/4 ! }

= 4*48*47*46/7/6/5

= 1977

R2 = P(B)/P(D) = {C (4,2) *C (3,1) *C (3,1) *C (52,6) } /

C(52,4)

= 54*{52*...*47/6! }/,{52*...*49/4! }

= 54*48*47/6/5

= 4060.8

40

R3 = P(C)/P(D) = {C(3,2) *C(4,1)

*C (3,2) *C (52,5)}/C(52,4)

= 36*{52*...*48/5! }/{52*...*49/4! }

= 36*48/5

= 345.6

P(A)+P(B)+P(C)+P(D)=1

Rl*P(D)+ R2*P(D)+R3*P(D)+P(D)=1

P(D) = 1/(1+R1+R2+R3) = 0.00016

P(A) = R1*P(D) 0..3096

P(B) = R2*P(D) 0.6361

P(C) . = R3*P(D) 0.0541

For a,c in case (B), (C) and (D),

a=c= P(B)/C(3,1) + P(C)/C(3,2)*2 +P(D) =

0.2483.

For b in case (A), (B) and (C),

b = P(A)/3+P(B)/C(4,2)*3 +P(C)/C(4,l) =

0.5637.

For known numbers (3,4), there are three cases: (A)

two numbers share 3 mines and (B) share 2 mines and (C)

share 1 mine.

For case (A), there are 4 mines in the neighborhood

and 6 mines outside the neighborhood. The total combination

is C(4,3)*C(3,1)*C(52,6). For case (B), there are 5 mines

in the neighborhood and 5 mines outside the neighborhood.

41

The total combination is C (3,1) *C (4,2) *C (3,2) *C (52,5) . For

case (C) , there are 6 mines in the neighborhood and 4 mines

outside the neighborhood. The total combination is

C (4,1) *C (3,2) *C (52,4) .

The sum of probability of case A, B and C equals 1.

Therefore, the probabilities can be calculated from the

ratio of the three cases.

Rl = P(A)/P(C) = {C(4,3)*C(3,1)*C(52,6)}/

{C (4,1.) *C (3,2) *C (52,4) }

= 12/12* {52*...*48*47/6 ! }/{52*...*50*49/4 ! }

= 12/12*48*47/6/5

= 75.2

R2 = P(B)/P(C) = {C(4,2)*C(3,1)*C(3,2)C(52,5)}/

{C (4,1) *C (3,2) *C (52,4)}

= 18/T2*{52*...*48/5 ! } / {52*...*49/4 ! }

= 54/12*48/5

= 43.2

P(A)+P(B)+P(C)=1

R1*P(C)+ R2*P(C)+P(C)=1

P(C) = 1/(1+R1+R2) = 0.00838

P(A) = R1*P(C) = 0.6298

P(B) = R2*P(C) = 0.3618

For a in case (B) and (C),

a = P(B)/C(3,1) + P(C) /C(3,2)

42

For b in case (A) and (B) and (C),

b = P (A)/C (4,3) *3 +P(B)/C(4,2)*3 + P(C)/4

= 0.6554.

(For example, (0011,0101,0110,1001,1010,1100),

C(4,2)=6 cases, 3 cases have the first=l)

For c in both case (A), (B) and (C), therefore,

c = P(A)/C(3,1)+P(B)/C(3,2)*2+P(C)

= 0.4600

43

4.2 Simulation Results

To verify the probability of these special patterns, a

simulation utility program is developed. First, generate

the board and randomly assign the mines. Second, count the

total matched pattern and the total mines in each

neighborhood location.

Pseudo code of sim_mine.c

// Minesweeper Utility

Define variable for beginner, medium, expert

main()

{

// random seed

srand4 8((int)time());

// initialization

new_board();

// define the special pattern

for(i=0;i<Row;i++)

for (j =0 ; j<C,ol; j ++)

{

//check in 4 directions to see if there is a hit

hit();

// calculate the total mines in each location

sum();

}

44

// report: show probability of each location

The simulation result is shown in Table 1. The

assumption of this simulation is other squares are hidden

except the known pattern. This would be a good

approximation if not much area is uncovered. So the result

is still good for guessing the safe square.

Table 3. Risk Simulated Results

0.1069 0.1050 0J.039 0.0000 0.0000 0.0000 0.0270 , 0.0242 0.0299
0.1711 1 0.1716 0.2526 ' 1 0.2500 ; 0.4879 2 0.4901
0.1707 1 0.1707 0.2422 4 0.2552 ■ 0.4580 4 0.4828
0.1043 0.1052 0.1064 1.0000 1.0000 1.0000 0.7104 •0.6896 0.6811
0.0382 0.0387 0.0388 ! 0.1820 0.1806 0.1789 0.2427 0.2504 0.2488
0.2217 1 0.2220 ; 0.3664 2 0.3627 . 0.5685 3 0.5664
0.2203' 2 . 0.2203 : 0.3622 2 0.3672 0.5612 3 0.5619
0.3709 0.3768 0.3680 ; 0.1775 0.1806 0.1835 0.2497. 0.2462 0:2460
0.0119 0.0110 0.0144 0.0828 0.0779 0.0792 : 0.1430 0.1237 0.1201
0.2350 1 0.2396 0.4388 2 0.4357 • 0.6795 3 0.6657
0.2424 • 3 0.2458 0.4435 3 0.4422 ’ 0.6385 4 0.6295
0.6685 0.6937 0.6750 0.4143 0.4194 0.4062 0.4762 0.4418 0.4689

4.3 Discussion

Compare to the calculation, the simulation result is

very good. The maximal variance of simulation result is

about 0.04. However, the difference between the calculated

probability and the average of simulation result is within

+/- 0.0011. Therefore, the simulation and calculation is

well matched.

45

Table 4. Calculated Probability

0.1050 0.1050 0.1050 ; 0.0000 0.0000 0.0000 0.0270 0.0270 0.0270
0.1712 1 0.1712 0.2500 1 . 0.2500 0.4797 2 0.4797
0.1712 1 0.1712 0.2500 4 0.2500 i 0.4797 . 4 ' 0 4797
0.1050 0.1050 ■ 0.1050 ; 1.0000 1.0000 1.0000 ' 0.6937 0.6937 0.6937
0.0392 0.0392 0.0392 ! 0.1816 0.1816' 0.1816 0.2473 0.2473 0.2473
0.2204 1 0.2204 i 0.3639 2 0.3639 0.5645 ■3 0.5645
0.2204 2 0.2204 ! 0.3639 •2 0.3639 0.5645 , 3 ■ 0.5645
0.3725 0.3725 0.3725 1 0.1816 0.1816 0.1816 .0.2473 0.2473 ' 0.2473
0.0122 0.0122 0.0122 1 0.0792 0:0792 0.0792 0.1289 0.1289 0.1289
0.2409 1 0.2409 : 0.4406 ' 2 0.4406 ; 0.6533 3 0.6533
0.2409 3 0.2409 | 0.4406 3 • 0.4406 0.6533 ■ 4 0.6533
0.6789 0.6789 0.6789 0.4125 0.4125 .0.4125 : 0.4623 0.4623 0.4623

46

Difference

0.0025

0.0020 ||jj

0.0015

0.0010

------ ------- ;-------

0.0005 ■....
id

0.0000
n p.

tai
2

CL, -0.0005 —U—

-0.0010

-0.0015

-0.0020

-0.0025

Pattern

El top

0 middle

□ bottom

Figure 17. Results of Theory and Simulation

47

CHAPTER FIVE

SOFTWARE DESIGN

5.1 Architecture Design

In the automine project, the FindRisk() function is

added to the basic xbomb program. The DrawRisk() function

is added into the xwindow.c. Automine menu is added to

toggle between enable/disable the helper. Figure 18 shows

the architecture of the xbomb program and xwindow program

as well as the modification of automine algorithms. In the

left bottom corner, there are two blocks showing the time

used and the bombs left.

Figure 18. Initial Board of Beginner Level

48

The architecture of the original xbomb is shown in Fig

19. When the square is chosen, if it is a bomb, the game is

over; if it is in the safe area (0 bomb in its

neighborhood), it will uncover all the connected safe area.

49

Figure 19. Architecture of Xbomb

50

In the automine project, the goal is to help users to

achieve minimal time performance easily. The user should

first randomly click several times to make the uncovered

area as large as possible, more than 50%. It could hit bomb

but speed is critical to achieve the minimal time.

■>

Restart] Unit (■H'ltuniPh |

1

1

1 1 1

i

1 2

1

1 2

1

- Tine 5 f|»H5 : !■»1
—..... -

Figure 20. First Click

51

Figure 21. Enable Automine

After there is a large uncovered area, automine would

show colors in hidden squares: green means absolutely safe,

red means a bomb, yellow means unsure condition with the

area proportional to the probability of risk. In many case>

just follow the sequence to uncover or mark the closest

green or red squares, the more information would lead to

more certain decisions. However, there are still some cases

that users need to guess when no green or red squares

available. Users are suggested to choose the smallest risk.

Keep in mind that sometimes the smallest risk one would

still have a bomb hidden there.

52

Figure 22. Architecture of Automine

53

The project covers the three typical levels: beginner

(8x8, 10 bombs), intermediate (16x16, 40 bombs) and

difficult (16x30, 100 bombs).

Figure 23. Intermediate Level

54

Figure 24. Expert Level

Three algorithms are applied:

1. Full search: to find out the green and red ones

according to the known information.

2. Adjustment of overlap probability: When the hidden

square has two or more neighbors uncovered, the

risk probability calculated with the individual

information would be adjusted. For example, the

overlap one would take the maximum risk and the

others should be reduced.

3. Special Patterns: There are certain patterns whose

probability could be calculated or simulated. With

55

a table look up scheme, the probability of the

neighbor squares could be identified precisely.

There are some special cases that the automine does

not use repeated checking. For example, the special pattern

matching happens in the latest stage of the three

algorithms. The (4,1) pattern has the red and green squares

but it seldom happens. Note: the overlap adjustment has the

limitation that does not change the red and green status

but just change the probabilities.

Figure 25. Risk of Special Pattern (1,4)

Figure 25 shows the repeated updating of the FindRisk

status. The first one that can be determined is square (2,2)

that has one bomb in its neighborhood and has only one

56

covered square. So the square must have a bomb and shown

red color. After knowing that one is a bomb, the square

(3,2) and (2,3) could determine the other squares are safe

and shown green. So the process will be repeated until

there is no more change.

■»

Restart] {Level j fcTane l*jpe j [Hi-Seanes] [guilt [

Figure 26. Risk of Patterns (1,1) and (1,2)

Figures 26, 27, 28 show the probability for special

patterns.

57

Figure 27. Risk of Patterns (1,2) and (3,3)

Figure 28. Risk of Rotated Pattern (2,3),

58

5.2 Detailed Procedures

Here is an example of the expert level to illustrate

the detailed procedures to use the automine game. The

expert level here has 16x30 square board and 100 mines. The

density of mine is higher that that of the beginner and

medium level which has 8x8 board with 10 mines and 16x16

board with 40 mines. Figure 29 shows the result of the

first 2 clicks. The safe area is not large enough. To

achieve the best time performance, user needs to take the

risk with more random clicks. Clicking green squares also

gives more information for the risk averse player.

Restart 11 Level 11 Gene' ‘Type 11 Hi-Seeres

ESsEC
? ? TPr

__ j__r _

lOui.tj

I .1

—j—

1
ill 1

! :
»
i
i

I

,, .4 _

1 1 ill "1
1 1
1 'J1 } 21 ? 1 i

2 .1.1 iP L
t-h—.- ‘n't

TT

Figure 29. Initial Two Clicks

59

User can click on separated locations. Because the

automine provides the precise probability with special

pattern matching, it is suggested to click the adjacent

squares. Figure 30 shows more clicks and there are special

patterns (1,2) and (2,3). The risk probability below the

(2,1) pattern is very small, so user can choose those

quickly.

Figure 30. Choose the Smallest Risk

60

Figure 31 shows the results after choosing the small

risk square below the special pattern (1,2). So those are

really safe. User can see the risk area of the adjacent

squares changed. However, those risks look similar because

there is no enough information to tell the difference. If

the probability is not making a big difference, it is high

risk just to choose a small risk one. So it is time to

uncover the know square to get more information.

U"—— -----:---- . ;.B *

h
i , nr; ■, r cri it, - 1 v •

3 1 7 X
:: . .

-“4 n - k «A i.. 1 1 1 1, X.
?? 1 1 XX 1 1 fe T 1

1 ? 1 3 ... f. . 1 Xi 8L. X1 J. 1 & 1 1 a ? 3.1 M 1 1 1 1 '/,.z < ■ zr.- 13
ill

- sw
Li i.1 IS 1 ;hb .'. •

[?
1 i1 b X i ? 1 '?

? Ifl ?x T 15^ £ Si ? 1 i i 1 1 1 Ip 3. 1& 1 • ? 11 BB 1
W' §18 ___ ■ ax 1 - h

•hs ? ■WS 3 •1' . ■ . ■ □ Bji 1 *■ i 1 T ■' E31nr 3 J «wt ! ■ 3 ih . .33 ? T 7
4# 5. • 3* ,

..... - IX.
‘“ji

\»
V

,'X
' r■7

MM"“FTri
: 36 -ga,-l

Figure 31. Show Ordered Items' Status

61

Here is a quick illustration that mark on the red

square which indicate there is a bomb is not helping to get

more information. Because, the automine use the iteration

algorithm to check all useful information. Only when green

square is uncovered and the information in the square would

tell how many mines in its neighborhood, then the automine

get more information.

Resltirt j | Level | [G<we. Type 11 Hi-Scorcs | |~Quit |

si • 1 . 3 *" gg? 1 ■ lb r\

"2-
*

Mf ; i
■

■ ■ «. .rt-'b ’• X T Ub $p-
2 ? T ■ ■ •>/ 7 J t 1 X 1 1 ■

1 $? 1 3 d< 1] ? X
? 1 X x F 3 ■ h '■* kx?

ill 1 l i 1 /•“ j,
5B55&

' i : *

* 1 i 1 1 -'4aSbil t; * t z rt"t .■
1 2J 1 Y ' I'' ' • ■

‘ .
....

2] ? a
i 1V 1 ■X , ‘I ’? ? " ‘i 1 T i 1

lOil Ha2 1 T 1 i 1 1 4, *>
»1M ■ X 1 T f. ? T 1 ffi§f X I

. X 1 . 1 1
2

.....
X fil J X ■ Fii: ? 1 X

1 i f. ■■ f P T 1 R 3 T •? X:
i ■ ■ ■ 'SOkr, <-'»y sWil -t -

-
X X X.Up ”1, w. ite U1'-V ■■ - .

H Tine I 35 ||»XB t 821

Figure 32. Marking Red Squares Would Not Help

62

There is a special pattern (2,3) that shows the small

risk squares. User can select those and would get good

results as shown in Figure 33.

r'a;.W
Rcatwtjj Level 11 G.iiw Type 11 Hi-Seores GiiU

FT1 3 2n 1 T-l : Y, AY ■< - ty- -4 "Pin I X ' tl -
F- 1Kish3 1 2 ■ ■3 41 , ‘ ' s\'........ • X 1 1 1 IT; - -

2 T I] 3 ■ 1 kt I 1 X T 2^
] aSe4 X 3 2I 3 i:... J- X Xa 11 III M.

,X,
-] 3 2I T X ? ? 3 ■t

Pl i' 1 3- B 1 ■T 1 I 1
•iki ■: f; yj* ri 14' *■ ’T-p

T 1 pip T 1 - 3
ri-ffIo OSi «#■ •1 snnn&iM 1 3 2 1 2 X

IBS© 3 W3®3 ? I 'X 2; - 1 X X 1b 1
L
j \

4 3 BBSHUB ? 1 1] 1 1 1 1 • t.5 F 3 I
3 M3 3 3 2 1 B 1 3- 2 1 I -x ■ r X

•

U"
i *•'

•J '

3 3 2 ? 1 ? 3 P2 3 ? 2 X 1 1 3 2 T T]
»S|1

? 1 * ■P X r 3 I I 3 X
3Xi2i 1 2 •>& ■ ■ ■ I w XX 3 3 2 1 X■1 1 51 -

1
-- .?>'•.. ..1 - 1® X

■ '. X X “7- - -■ k ' 1I
TiinePd 8*1

Figure 33. Select the Small Risk Squares

So the safe area is quite large now and user can begin

to select all the green squares so that that information

can be used to get more green and red squares as shown in

Figure 34.

63

I

ie VI.1v|35SfiBE

i1
mamfimna IFQ0JIH HHEC HHmnnH □■■■■■nHEiiEHne' □□□ Banna aaaaan EiBOMniEHE aan

HWlflMIl
E^nninnnR
hkiiih

MP w
M S'aiifc: ? 1 ? EH

T 1 1 1
K 1

1
3 ? 1 1 1
1 ? is
3 3 ? ES

Figure 34. Select Green

It is very possible that all the green squares are

selected but user needs to guess by the risk probability as

shown in Figure 35. User can either guess the high risk one

is a bomb or guess the small risk one is safe. Figure 36.

shows more green squares appear as the result of a lucky

guess.

64

•“ r vs
ittf rU Level Gtfde Type Ill-Scores Quit
r> 3 X 7 1 T 1 2l21 1 11

I >•4. 3 1 245e 7 2 4 §3 *</ rift 1 1 1 1 1 P 1
2 ? 1] 1 ? - - ■«i hi 3 3 1 1 1 X 1 1 7 7 3

1 ■x 3 7 1 3 3^ 7 '] 7 1 72 XI 7
] a 7 1 T X 7 7 3 7 1 s 1 I 3 2
] 2 1 * 1 T 1 1 1 77 -3 7 1 7 1

1 1 1 1 1 1n 1 . 1 1 tW 7 7 3Jlx s 3 7
3 i1 1 1 p at 7 7 3»2ffi 7? 1 7 X 1

3 9 3 3 13 7 1 X 2 21 2 7 ii q
7 1 J 1 1 1 1 leal H 2 T

3 212 •3 7] fe 1 1 3 3 7 1 3 X X 1j 3 7 2 1 7 7 3 2 3 7 7 xaa I i 7 3? 1 1 1■■ fci ? 1 * 7 *- X X 3 3 3 7 i &
?

1 7 •Xrift'
3 1] 7 i 7 7 3 ? 4 W 7 .wb^ k.**P «■> 1 3 3 7 1 7 1rik

4 2a 3 fSB 7 7 X X X: T 1 1•ii 3i - 12 i3 2 Q 3

Figure 35. Need to Guess

Follow these procedures and there would be only red

squares left as shown in Figure 37. Then mark all the red

squares to win the game.

65

Restart] Level11 Gone Type 11 Hi-Scwes |<Suit

3 3 f 2 1 1 1 X $ 2 2 1 1 1 l 1r r 3 1 2 2 2 A •c. 2 3 r 2 1 1 1 1 1 1 2 1
2 2 1 1 1 2 J 2 3 3 3 1 1 1 1 1 2? 3 1I 2 4 I 3 2 1 3 3W 2 i$ 2 1 1 2 1 2 th 2 ■

1 3 2 1 1 I ? 2 2 1 itt 1 1 '*» 34 2
1 2 1 1 1 1 i l 2 2 3 2 1 2 v

>3 1
1 T 1 1 1 1 1 1 i l 2 On 2 2 5 5 3 2
1 1 2 X. 1 1 1 1 1 1 2 P2 2 3 1 2 7 > 1 2 X 1

2, 3 2 3 x 3 3 2 1 2 2 i 2 2 3 T 1 1 1
aA i

M
A 3l

•#£
3.
? 2 3 2 1 t 1 1 3 3 2 T 1 3 r

o
1• '• 3 2 2 1 2 2 3 2 3 2 2 tsj 1 1 2 3 2 1 1 1

—.

i

4
2

1
2

1
3 3« 1

- -

IB
H
n
n

B
0p"
0

0
0
0

B
0
0

B
H
63
El

B

n
■

0
0
63
El

0
63
El

q»

I

63
0
0

■
n
63
0

n
n
B

0
0

n
0
B
0

■
0
H
0

■
63
B
63

■63
EI0
E1E1
Ell

B
B
El
■

Tlim/i Z17 ||U»B': ~S5|

Figure 36. Get More Greens

Figure 37

66

It is really difficult to finish the expert level

without help. Here shows the game finished in 325 seconds

with documentation process going on. The good results with

automine would generate like 200 seconds performance

according to the experiment with some careful users.

. T-1 &“HUOil] ate 1 ♦ ' & X: ■ ,r«? ■rr BBS to " -
i Re:jfcarfc | |Level 11Gene Type 11Hi-Scores |0uit.

3 r<A 3 X 7 4 1 r~ 1 1 2 X 1 •1 X X 7 7 1 1 1 T 1
, X- r«* 3 1 2 X 2 2 4 ► 4 7 3] 2 7 3 A 7 r 1 1 1 1 1 X 7 1
, 7 7 1 1 1 7 X X r 3 X 7 X 7 7 3 3 3 1 1 1 X T 4 7 7 3 X?!f . 1 7 4 X 3 7 1 3 3 A 7 X X 7 1] 7]' 7 7 X 1 7 X

1 >- 3 7 1 1 X 7 7 3 X 7 1 X 1 1 '3 X 5 4 3 2[•] 7 X T T 1 1 1 4 7 7 3 7 T 7 X X X r X 1
■ 1 1 1 T 1 1 T •1 1 1 1 7 »•& X 7 7 3 X S’ X s 3 2
.•1 I 1 2 x 3 1 1 1 1 1 1 7 2 7 7 3 X 7 X 7 7 1 7 X 1
; ? 3 ? '3 ► 3 r 3 4 >-A 7 1 fc-A •7 7 1 7 7 3 '3 7 T 1 1 1• X 4 X 4 3 4 3 X X 7 1 1 1] 4 1 1 1 1 X 3 rfta 3 4

X 3 X 3 X X 7 •7 3 ? 1 1 X] 1 3 3 7 I 1 7> '2 X 1
! 7 . *- 3 3 7 7 1 7 7 3 7 3 7 7 X <>A T 1 7 ■3 7 4 4 1
: 3' s- I 2 'I t 7 *» X x 3 3 3 7 4 X T 7 X
: X A X 3 1 1 .? 7 1 2 7 3 7 4 X 7 7 r:A '3 1 1 2 3 3 7 1 7 ’!
! 3 4 4 X .7 3 X 1 1 F-sk 3 7 ■7 4 7 4 fr-A ;X 7 7 .3 X X X 1 1 1
! 1 iA, 212 X x 3. T 12 X • I r X •XA a2 . 1.’ X 3 ■3 2 4 '■

Tihe'-- • ,3£4»357| (IXB* o)

Figure 38. Game Won, Stop

Applying this procedure, sample users improve the time

performance a lot. For beginner level, average improvement

is 67% to become less than 10 sec. For intermediate and

expert levels, sample users can't really finish one. But

67

the automine can help to achieve around 90 sec and 150 sec

respectively.

Figure 39 shows the highest score of the beginner

level. If you get the top ten score, it would show your

latest score in dark. Otherwise, it would show your last

score in the last row.

«V" Aufomiftfr Vl-ta
Restart 1 Level i 1 Gone Tnoe I EfTBrB 5HI | quit 1 I

1 x I 1

1 1 2 4 4 2

x 1 T x • ► 1

] 1 2: 3 3 1

1 T 1 1 1 1

1 ► ■ 2 2 2 1 ■

2. 3 4 ►
. T 1

J ■ p- • p- 2 1
Tine : ,12;230||UXB;: «1

i ;PO3 Mono lino Date

I Top angela 9.54 Sat May 22 00:53:49 2004

1 2nd angola 11.14 Sun ttay;23 13:20;00 2004;

Lli^SH 9 angela I 12.24 ■ Sat May 23 18:12:0? 2004

4th angola 12.36 Sat jKaa. & .01:17:3?2004

> <?tb' hMigela 12.49 .Simi M ay 2313:20:22 2004,

j angcld . 12.49 ^□t. May,22 09:15:04 2004

7th aiigela 12.51 Sat Hay0l;0€i5i 2004

8th angola ,13.22 Suh May 23 13:19:11.2004;

flth angela 13.60 Frl.Hay ZlJ08:21:38 2004

10th 'ongela' 13.63 ;Sob-Hay;22>01:02:01r2004-

Figure 39. The Highest Score of Beginner Level

68

5.3 Pseudo Code

This section would illustrate the detailed

implementation of automine algorithms. In the xbomb, there

is a state variable showing the state of the square:

Table 5. State Variable of Xbomb

state status

0-8 known, n=state

64-72 covered, n=state-64

80 Bomb; not used

112 think bomb

void FindRisk(void)

{

First_Run{

//update the average risk of the squares that have no

neighborhood information.

if(ro nopt equalO and ro not equal

l)risk[i][j]equal ro; // far risk

// risk: check valid number of neighbors

// then compare with the known number with safe

// and think_bomb numbers. Suitable for all cases

69

// including edges and corners.

for(i=0;i<grid_width;i++)

for(j=0;j<grid_height;j++)

if (state[i][j]<Nbr) //uncovered

{ tb= 0;kn= 0;tn=0;un= 0;

for(k=-l;k<2;k++)

for(1=-1;1<2;1++)

{if(i+k>=O&&i+k<grid_width&&

j+l>=O&&j+l<grid_height) // avoid edge and corner

if(k!=0 or 1!=0)

{tn++; //total neighbors

if (state[i+k][j+1]<Nbr) kn++; //known

uncovered

if (state[i+k][j+1]==Think_bomb) tb++;

//thinkbomb

un=tn-kn-tb; //unknown

if (un>0) //check the risk

{

if (tb==state[i][j]) r=0;//others must be

safe

else if (state[i][j]-tb==un) r=l;

//others must be bombs

else r=(double)(state[i][j]-tb)/un;

//assign equal Risk

70

// update risk value

for(k=-l;k<2;k++)

for(1=-1;1<2;1++)

{if(i+k>=O&&i+k<grid_width&&

j +l>=0&&j +l<grid_height)

if(k!=0 or l!=0)

{

if (state[i+k][j+l]>Nbr &&

state[i+k][j + 1]!=Think_bomb) //covered

if (r==0 or risk[i+k][j+1]==0)

risk[i+k][j+1]=0;

else if (r==l or risk[i+k] [j+l]==l)

risk[i+k][j+1]=1;

//else if

(risk[i+k][j+1]!=0||risk[i+k][j+1]!-l) //get the latest

//else if

(risk[i+k][j+1]!=0&&risk[i+k][j+l]<r) //get the max Risk

// risk[i+k][j+1]=r;

else if

(risk[i+k][j+1]!=0]|risk[i+k][j+1]!=1) //get f(a,b)=f(b,a)

risk[i+k] [j + 1] = (r+risk[i+k] [j+1])/2.0;

//average

else ;

}

71

} //for

Print information;

}//uncovered left

} //find risk

} // First_run

// Second Run Repeated to check all information used

do{

keep record;

update average risk;

check risk;

update risk;

check if any risk value changed;

} //do

while (change!=0);

11 Overlap

int ov=0;

for(i=0;i<grid_width;i++)

for(j=0;j<grid_height;j++)

if (risk[i] [j]>0.1 and risk[i][j]<0.9)

{ov= 0;

for (k=-l;k<2 ;k+'+)

for(1=-1;1<2;1++)

{if(i+k>=0 and i+k<grid_width and

j +l>=0&&j +l<grid_height)

72

if(k!=0 or 1!=0)

if (state[i+k][j+1]<Nbr) ov++;

}

if (ov==l) {risk[i][j]*=Add;}

else if (ov>l) {risk[i][j]*=Reduce;}

}

// isolated

int iso=0,kl,ll,nl,m;

//0:12, 1:13, 2:14, 3:23, 4:24, 5:25, 6:34, 7:35, 8:45

static double rl[9][3]=

04,0.21,0.37, 0.01,0.24,0.68, 0.00,0.25,1.0,

09,0.43,0.42, 0.03,0.47,0.70, 0.00,0.50,1.0,

13,0.65,0.46, 0.09,0.69,0.75, 0.27,0.79,0.61};

for(i=l;i<grid_width-l;i++)

for(j =1;j<grid_height-l;j ++)

{

if (state[i] [j]==1)

{

iso=0;

for(k=-l;k<2;k++)

for(1=-1;1<2;1++)

if(k!=0 or 1!=0)

{

73

if(state[i+k][j+1]==2 and iso==0)

{iso=l;kl=k;ll=l;nl=0;}

else if(state[i+k][j+1]==3 and iso==0)

{iso=l;kl=k;ll=l;nl=l;}

else if(state[i+k][j+1]==4 and iso==0)

{iso=l;kl=k;ll=l;nl=2;}

else

if(state[i+k][j+1]>63&&state[i+k][j+1]!=112){;}

else {iso=2;break;}

}

} //I

repeat for case 2, 3 and 4;

if(iso==l) // Yes isolation

update risk;

} //for iso

// Draw Risk

for(i=0;i<grid_width;i++)

for(j =0;j<grid_height;j ++)

if(state[i][j]>Nbr and

state[i][j]!=Think_bomb)

{

DrawRisk(i,j,risk[i][j]);

} //draw

} // FindRisk

74

void DrawRisk(int x, int y,double value)

{

/* Find the position. */

// 0: black 1: red 2: yellow 3: blue 4: grey 5

6: white

green

s=sqrt(value); //calculate side from risk

if(value==0) draw green;

else draw gray; then draw yellow/red;

}

75

CHAPTER SIX

MAINTENANCE MANUAL

6.1 Source Files

In the automine project, there are 13 source code

files.

Table 6. Source Files

automine/COPYING copyright

automine/FILES Files Description

automine/LSM Program Description

automine/README Readme

automine/ChangeLog Tracking changes

automine/Make file Compile

automine/hiscore.c High score

automine/automine.c Main program

automine/automine.h Including header

automine/xwindow.c Xwindow function

automine/automine.6 manual

automine/automine.ad Application default

automine/icon.h Icon

76

6.2 Installation Description

The installation of Automine is very simple. Just

follow the two steps.

1. Copy the above files in 6.1 to an automine

directory.

2. Run the makefile $ make (see APPENDIX C).

77

CHAPTER SEVEN

CONCLUSIONS AND FUTURE DIRECTION

7.1 Conclusions

In the automine project, the goal is to help users to

achieve minimal time performance easily. The user should

first randomly click several times to make the uncovered

area as large as possible, more than 50%. It could hit and

bomb but that is critical to achieve the minimal time.

After there is a large uncovered area, automine would show

there colors in hidden squares: green means absolutely safe,

red means a bomb, yellow means unsure condition with the

area proportional to the probability of risk. In many case,

just follow the sequence to uncover or mark the closest

green or red squares, the more information would lead to

more certain decisions. However, there are still some cases

that users need to guess when no green or red squares

available. Users are suggested to choose the smallest risk.

Keep in mind that sometimes the smallest risk one would

still have a bomb hidden there.

The project covers the three typical levels: beginner

(8x8, 10 bombs), intermediate (16x16, 40 bombs) and

difficult (16x32, 80 bombs).

78

Three algorithms are applied:

1. Full search: to find out the green and red ones

according to the known information.

2. Adjustment of overlap probability: When the hidden

square has two or more neighbors uncovered, the

risk probability calculated with the individual

information would be adjusted. For example, the

overlap one would take the maximum risk and the

others should be reduced.

3. Certain Patterns: There are certain patterns whose

probability could be calculated or simulated. With

a table look up scheme, the probability of the

neighbor squares could be identified precisely.

7.2 Future Direction

The most interesting automine project should be

extended with a PC camera that can capture the information

on any system and any variation of program. Then reproduce

the information in the server computer, apply the automine

algorithm and show suggestions on server computer.

Therefore, the user can use the help from the automine to

beat any record in any machine.

The application should include the PC camera software

development kit (SDK) and simple pattern recognition

79

algorithms to tell the numbers, safe area (0 bomb) and the

marked bomb. These are the only information needed by the

automine to provide the suggestions.

Besides, the xbomb has three types of minesweeper

games: regular, triangle and hexagon. The algorithm could

be applied to those special games with modification.

Furthermore, the parallel processing algorithm using Spider

System or PVM can be applied. The server will divide the

problem into several segments and distribute to clients.

One possible way is, for example, to segment the 8x8 field

to four 5x5 fields. The other way is assign a new possible

way to a new client to follow up.

80

APPENDIX A

SOURCE CODE OF AUTOMINE

81

// Calculate Risk
//
// initialization

void FindRisk(void)
{
int i,j,k,1,tb=0,kn=0,tn=0,un=0,change;
double r=0, ro=0, rol; //ro is the basic risk=covered bomb/covered square
static int Think_Bomb=112, Wrong_Bomb=98, Max_Nbr=8, Hidden=64;
static double Overlap_Add=l.05, Overlap_Reduce=0.9;
tb= 0; kn= 0 ; tn= 0; un= 0 ;
// First Run

for(i=0;i<grid_width;i++)
for(j =0;j<grid_height;j++)
{if(state[i][j]==Think_Bomb||state[i][j]==Wrong_Bomb) tb++;
if(state[i][j]<=Max_Nbr) kn++;

}
if(grid_height*grid_width-kn-tb>O)

ro=(double)(grid_bombs-tb)/(grid_height*grid_width-kn-tb);
for(i=0;i<grid_width;i++)

for(j = 0;j <grid_height; j ++)
if(ro!=0&&ro!=1)risk[i] [j]=ro; // far risk

// find risk
for(i=0;i<grid_width;i++)

for(j =0;j<grid_height; j ++)
if (state[i][j]<=Max_Nbr) //uncovered
{ tb= 0;kn= 0;tn=0;un= 0;
for(k=-l;k<2;k++)
for(1=-1;1<2;1++)
{if(i+k>=O&&i+k<grid_width&& j+l>=O&&j+l<grid_height)
if<k!=0|]1!=0)
{tn++; //total neighbors
if (state[i+k][j+1]<=Max_Nbr) kn++; //known uncovered
if (state[i+k][j+1]==Think_Bomb||state[i+k][j+1]==Wrong_Bomb)

tb++; //thinkbomb
}

}
un=tn-kn-tb; //unknown
if (un>0) //check the risk
{

if (tb==state[i][j]) r=0; //others must be safe
else if (state[i][j]-tb==un) r=l; //others must be bomb
else r=(double)(state[i][j]-tb)/un; //assign equal Risk

for(k=-l;k<2;k++)
for(1=-1;1<2;1++)
{if (i+k>=0&&i+k<grid_width&& j+l>=0&:&:j+l<grid_height)
if(k!=0|11!=0)
{
if

(state[i+k] [j+1]>Max_Nbr&&state[i+k] [j+1] !=Think_Bomb&&state[i+k] [j+1] !=Wrong_B
omb) //covered

if (r==0||risk[i+k][j+1]==0) risk[i+k][j+1]=0;
else if (r==l||risk[i+k][j+1]==1) risk[i+k][j+1]=1;
//else if (risk[i+k][j+1]!=0||risk[i+k][j+1]!=1) //get the latest
//else if (risk[i+k][j+1]!=0&&risk[i+k][j+l]<r) //get the max

// risk[i+k][j+l]=r;
else if (risk[i+k][j+1]!=0||risk[i+k][j+1]!=1) //get f(a,b)=f(b,a)
risk[i+k][j+1]=(r+risk[i+k][j+1])/2.0; //average

else ;

82

}
} //for

fprintf(stderr,"i=%d j=%d tn=%d kn=%d tb=%d un=%d\n",i,j,tn,kn,tb,un);
}//uncovered left

} //find risk

// Second Run
change=0;
do{

for(i=0;i<grid_width;i++)
for(j =0;j <grid_height; j ++)

riskl[i][j]=risk[i][j]; //keep record
rol=ro;
tb=0;kn=0;tn=0;un=0;
for(i=0;i<grid_width;i++)

for(j =0;j <grid_height; j ++)
{if(state[i][j]==Think_Bomb||state[i][j]==Wrong_Bomb) tb++;
else if (risktij [j]==1) tb++;
else if (state[i][j]<=Max_Nbr) kn++;
else if (risk[i][j]==0) kn++;
else ;

}
if(grid_height*grid_width-kn-tb>0)
ro=(double)(grid_bombs-tb)/(grid_height*grid_width-kn-tb);

for(i=0;i<grid_width;i++)
for(j=0;j<grid_height;j++)

if (risk[i][j]==rol&&ro!=0&&ro!=1) risk[i] [j]=ro; // update far risk

// update risk
for(i=0;i<grid_width;i++)

for(j =0;j <grid_height; j ++)
if (state[i][j]<=Max_Nbr) //uncovered
{ tb=0;kn=0;tn=0;un=0;
for(k=-l;k<2;k++)
for(1=-1;1<2;1++)
{if(i+k>=O&&i+k<grid_width&& j+l>=O&&j+l<grid_height)
if(k!=0||1!=0)
{tn++; //total neighbors

//consider risk==0 or 1
if (state[i+k][j+1]<=Max_Nbr) kn++;
else if (risk[i+k][j+1]==0) kn++; //known uncovered
else if (state[i+k][j+1]==Think_Bomb||state[i+k][j+1]==Wrong_Bomb)

tb++ ;
else if (risk[i+k] [j+1]==1) tb++; //thinkbomb
else ;

}
}

un=tn-kn-tb; //unknown
if (un>0) //check the risk
{

if (tb==state[i][j]) r=0;//others must be safe
else if (state[i][j]-tb==un) r=l; //others must be bomb
else r=(double)(state[i][j]-tb)/un; //assign equal Risk

for(k=-l;k<2;k++)
for(1=-1;1<2;1++)
{if(i+k>=0&&i+k<grid_width&& j+l>=0&&:j+l<grid_height)
if(k!=0||1!=0)
{
if

(state[i+k][j+1]>Max_Nbr&&state[i+k][j+1]!=Think_Bomb&&state[i+k][j+1]!=Wrong_B
omb) //covered

83

if (risk[i+k][j+1]!=0&&risk[i+k][j+1]!=1) //covered
if (r==0||rxsk[i+k][j+l]==0) risk[i+k][j+1]=0;
else if (r==l| |risk[i+k] [j+l]==l) risk[i+k] [j+1]=1;
//else if (risk[i+k][j+1]!=0||risk[i+k][j+1]!=1) //get the latest
//else if (risk[i+k][j+1]!=0&&risk[i+k][j+l]<r) //get the max

Risk
// risk[i+k][j+l]=r;
else if (risk[i+k][j+l]<=r)//get f(a,b)=f(b,a)

risk[i+k][j+l]=r;
//risk[i+k][j+1]=(r+risk[i+k][j+1])/2.0; //average

}
} //for
}//uncovered left

} //find risk
change=0;

f or (i=0;i<grid_width;i++)
for(j=0;j<grid_height;j++)

if(risk[i] [j]>=0&&risk[i] [j]<=1)
if((int) (100*riskl[i] [j]) ! = (int) (100*risk[i] [j])) {change=l;

//fprintf(stderr,"*****************\n%d %d %f %f\n",i,j,riskl[i][j],risk[i][j])
break;}

} //do
while (change!=0);

I/ Overlap
int ov=0;

for(i=0;i<grid_width;i++)
for(j =0;j <grid_height;j ++)

if(risk[i][j]>0.1 && risk[i] [j]<0.9)
[ov=0;
for(k=-l;k<2;k++)
for(1=-1;1<2;1++)
{if(i+k>=0&&i+k<grid_width&;& j+l>=0&&j+l<grid_height)
if(k!=0||1!=0)

if (state[i+k][j+1]<=Max_Nbr) ov++;
}
if (ov==l) {risk[i][j]*=Overlap_Reduce;}
else if (ov>l) {risk[i][j]*=Overlap_Add;}

}
// isolated
int iso=0,kl,ll,nl,m;
//0:12, 1:13, 2:14, 3:23, 4:24, 5:25, 6:34, 7:35, 8:45
static double rl[9][3]={0.04,0.21,0.37, 0.01,0.24,0.68, 0.00,0.25,1.0,

0.09,0.43,0.42, 0.03,0.47,0.70, 0.00,0.50,1.0,
0.13,0.65,0.46, 0.09,0.69,0.75, 0.27,0.79,0.61};

for(i=l;i<grid_width-l;i++)
for(j =1;j<grid_height-l;j ++)
{

iso=0;
if(state[i][j]==1)
{
iso=0;
f or (k= -1; k<2; k++)
for (1=-1; 1<2 ; 1++)
if(k!=0||1!=0)
{
if(state[i+k][j+1]==2&&iso==0) {iso=l;kl=k;ll=l;nl=0;}
else if(state[i+k] [j+1]==3&&iso==0) {iso=l;kl=k;ll=l;nl=l;}
else if(state[i+k][j+1]==4&&iso==0) {iso=l;kl=k;ll=l;nl=2;}
else

if(state[i+k][j+1]>=Hidden&&state[i+k][j+1]!=Think_Bomb&&state[i+k][j+1]!=Wrong
_Bomb){;}

84

else {iso=2;break;}
}

} //I
else if(state[i] [j]==2)
{
iso=0;
for(k=-l;k<2;k++)
for(l=-l;l<2;l++)
if(k!=0 I11!=0)
{
if(state[i+k][j+1]==3&&iso==0) {iso=l;kl=k;11=1;nl=3;}
else if(state[i+k][j+1]==4&&iso==0) {iso=l;kl=k;ll=l;nl=4;}
else if (state[i+k] [j+1]==5&&iso==0) {iso=l;kl=k;ll=l;nl=5;}
else

if(state[i+k][j+1]>=Hidden&&state[i+k][j+1]!=Think_Bomb&&state[i+k][j+1]!=Wrong
_Bomb){;}

else (iso=2;break;}
}

} //2
else if(state[i][j]==3)
{
iso=0;
for(k=-l;k<2;k++)
for(1=-1;1<2;1++)
if(k!=0||1!=0)
{
if(state[i+k][j+1]==4&&iso==0) {iso=l;kl=k;11=1;nl=6;}
if(state[i+k][j+1]==5&&iso==0) {iso=l;kl=k;ll=l;nl=7;}
else

if(state[i+k] [j+1]>=Hidden&&state[i+k] [j+1] !=Think_Bomb&&state[i+k] [j+1] !=Wrong
_Bomb){;}

else {iso=2 ,-break; }
}

} //3
else if(state[i][j]==4)
{
iso=0;
for(k=-l;k<2;k++)
for(l=-l;l<2;l++)
if(k!=0||1!=0)
{
if(state[i+k][j+1]==5&&iso==0) {iso=l;kl=k;ll=l;nl=8;}
else

if(state[i+k][j+1]>=Hidden&&state[i+k][j+1]!=Think_Bomb&&state[i+k][j+1]!=Wrong
_Bomb){;}

else {iso=2;break;}
}

} //4

if(iso==l) // Yes isolation
{ //update

if((kl==l||kl==-l)&&ll==0)
{

for(m=-l;m<2;m++){nOl(&risk[i+2*kl][j+m],rl[nl][2]) ;
nOl(&risk[i+kl][j+m],rl[nl][1]);
nOl(&risk[i][j+m],rl[nl][1]);
nOl(&risk[i-kl] [j+m],rl[nl] [0]) ; }

}
if((11==1| |ll==-l)&&kl==0)
{

for(m=-l;m<2;m++){nOl(&risk[i+m][j+2*ll],rl[nl][2]);
nOl(&risk[i+m][j+11],rl[nl][1]);
nOl(&risk[i+m][j],rl[nl][1]);

85

nOl(&risk[i+m] [j-11],rl[nl] [0]) ; }
}

} //update
} //for iso

// Draw Risk
for(i=0;i<grid_width;i++)

for(j =0;j <grid_height;j ++)
if (state [i] [j]>Max_Nbr && state [i] [j] ! =Think_Bomb&:&

state[i][j]!=Wrong_Bomb)
{

DrawRisk(i,j,risk[i] [j]) ;
} //draw

} // FindRisk

// check if the old risk is neither 0 nor 1 then update with new risk
void nOl(double *m, double v)
{
if (*m>0&&*m<l) *m=v;

}

86

APPENDIX B

SOURCE CODE OF SIMULATION

87

B. 1 SOURCE CODE

// Automine Minesweeper Utility
// Test the probability of special pattern
// Angela Tzujui Huang
// Beta Version 1.0
// 10/04/2002

#include
#include
#include
#include

<stdio.h>
<stdlib.h>
<string.h>
<math.h>

//global variables
//mine number; max 50x50
#define Max 50
#define Nbr 8 //Neighbor
#define Bomb 9
([define Sim_Times 1E4
#define BEGINER 1
Sifdef BEGINER
Sdefine ROW 8
#define COL 8
Sdefine Emn 10
Sendif
Sifdef INTERMEDIATE
ttdefine ROW 16
#define COL 16
#define Pmn 40
#endif
Sifdef EXPERT
Sdefine ROW 16
Sdefine COL 32
Sdefine Emn 100
Sendif
int board[Max][Max], hit[Max][Max];
//Define Pattern
int PRow=4, PCol=3;
int N1=2,N2=3;
int valid=0;
int Row=ROW, Col=COL, pmn=Pmn;

int sum(int i, int j)
{

int s;
if(i==0&&j==0) s=(board[i][j+1]>Nbr)+(board[i+1][j]>Nbr)+(board[i+1][j+1]>Nbr);
else if (i==Row-l£cS:j==0) s= (board[i] [j+1] >Nbr) + (board[i-l] [j] >Nbr) + (board[i-l] [j+1] >Nbr) ;
else if(i==0&&j==Col-l) s=(board[i] [j-1]>Nbr) + (board[i+1] [j]>Nbr) + (board[i+1] [j —1]>Nbr);
else if (i==Row-l&5cj==Col-l) s=(board[i] [j —1] >Nbr) + (board [i —1] [j] >Nbr) + (board[i-l] [j-

1]>Nbr);

else if(i==0) s=(board[i+l][j—1]>Nbr)+(board[i+1][j]>Nbr)+(board[i+l][j+l]>Nbr)
+ (board[i] [j—1]>Nbr) + (board[i] [j+1]>Nbr);

else if(i==Row-l) s=(board[i-l][j-1]>Nbr)+(board[i-l][j]>Nbr)+(board[i-l][j+l]>Nbr)
+(board[i][j-1]>Nbr)+(board[i][j+1]>Nbr);

else if(j==0) s=(board[i-l][j+1]>Nbr)+(board[i-l][j+1]>Nbr)+(board[i+l][j+l]>Nbr)
+(board[i-l][j]>Nbr)+(board[i+l][j]>Nbr);

else if (j==Col-l) s=(board[i-1][j+1]>Nbr)+(board[i][j+1]>Nbr)+(board[i+l][j+l]>Nbr)
+(board[i-l][j]>Nbr)+(board[i+l][j]>Nbr);

else { s=(board[i-l][j-1]>Nbr)+(board[i-1][j]>Nbr)+(board[i-1][j+l]>Nbr)
+ (board[i] [j-1] >Nbr) + (board [i] [j+l]>Nbr)
+(board[i+1][j-1]>Nbr)+(board[i+1][j]>Nbr)+(board[i+1][j+1]>Nbr);

//printf("i=%d %d %d %d %d\n",i,j, (int)(board[i][j-1]>Nbr),board[i][j+1]>Nbr,s);
}

return s;

void new_board()

88

int n=Row*Col,tmp[Max*Max];
int i,j,k,r,c;

for(i=0;i<n;i++) tmp[i]=i;
for(i=0;i<pmn;i++)
{

k=drand48()*n;
r=tmp[k]/Col;
c=tmp[k]%Col;
board[r][c]=Bomb;
tmp[k]=tmp[n-1];
n--;

}

for(i=0;i<Row;i++)
for(j=0;jcCol; j++)
{

if (boardti] [j] ==0)
board[i][j]=sum(i,j);

}

//Print board
/*

for(i=0;i<Row;i++)
{

for(j=0;j<Col;j++)
printf("%d ”, board[i] [j]);

printf("\n");
}

*/
}

void stat()
{

int i,j,k,r,c,x,y;

for (i=2i<Row-2; i++)
for(j=2;j<Col-2;j++)
{

if(boardfi][j]==N1)
{

if(board[i+1][j]==N2)
{ for(r=0;r<PRow;r++) for(c=0;c<PCol;C++)

hit[r][c]+=(board[i+r-l][j+c-1]>Nbr);
valid++;}

if(board[i-l][j]==N2)
{ for(r=0;r<PRow;r++) for(c=0;c<PCol;C++)

hit[r][c]+=(board[i-r+l][j-c+1]>Nbr);
valid++;}

if(boardti] tj+l]==N2)
{ for(r=0;r<PRow;r++) for(c=0;c<PCol;C++)

hit[r][c]+=(board[i-c+l][j+r-1]>Nbr);
valid++;}

if (boardti] [j-l]==N2)
{ for(r=0;r<PRow;r++) for(c=0;c<PCol;C++)

hit[r][c]+=(board[i+c-1][j-r+1]>Nbr);
valid++;}

/*
*/

}
}

main()
{

int i, j , k, r, c;
float avg;

// random seed

89

printf("%d\n",i=(int)time()) ;
srand48(i);

scanf("%d %d %d %d %d",&Row, &Col, &pmn, &N1, &N2);

// initialization
for(i=0;i<PRow;i++)
for(3=0;j<PCol; j++)

hit [i] [j]=0;

// Begin

for(k=0;k<Sim_Times;k++)
{

for(i=0;i<Row;i++)
for(j=0;jcCol;j++)
{

board[i][j]=0;
}
new_board();
stat();

printf("XnReport.... Row= %d Col= %d pmn= %d\n\n”,Row, Col, pmn)

// Report

printf("Valid sample: %d\n\n",valid);

hit[l][1]=N1‘valid;
hit[2].[l]=N2 ‘valid;
for(i=0;i<PRow;i++)
{

for(j=0;j<PCol; j++)
printf("%f ”,(float)hit[i][j]/valid);

printf("\n");
}

printf("\n");
avg=0;
for(i=0;i<PRow;i++)

for(j=0;j<PCol; j + +)
avg+=hit[i] [j J;
printf("avg= %f\n\n",(float)avg/valid-Nl-N2);

B.2 RUN SCRIPT

echo "8 8 10 1 1"
echo "8 8 10 1 2"
echo ”8 8 10 1 3"
echo "8 8 10 1 4"
echo "8 8 10 2 2"
echo "8 8 10 2 3"
echo "8 8 10 2 4"
echo "8 8 10 3 3"
echo "8 8 10 3 4"

. /sim_mine»t.dat

. /sim_mine»t.dat

./sim_mine>>t.dat

. /sim_mine»t. dat

. /sim_mine»t. dat

. /sim_mine»t. dat

. /sim_jnine»t .dat

. / sim_mine»t. dat

./sim_mine>>t.dat

echo ”16 16 40 1 1"
echo ”16 16 40 1 2"
echo "16 16 40 1 3"
echo "16 16 40 1 4"
echo "16 16 40 2 2"
echo "16 16 40 2 3"
echo "16 16 40 2 4"
echo "16 16 40 3 3"
echo "16 16 40 3 4"

echo "16 32 99 1 1"
echo "16 32 99 1 2"

. /sim_mine»t. dat

. /sim_mine»t .dat

. /sim_mine»t.dat

. /sim_mine»t. dat

. /sim_mine»t.dat

. /sim_mine»t.dat

. /sim_mine»t. dat

./sim_mine>>t.dat

. /sim_mine»t. dat

. /sim_mine»t. dat

. / s im_mine»t. dat

90

echo "16 32 99 1 3"
echo "16 32 99 1 4"
echo "16 32 99 1 5"
echo "16 32 99 2 2"
echo "16 32 99 2 3"
echo "16 32 99 2 4"
echo "16 32 99 2 5"
echo "16 32 99 3 3"
echo "16 32 99 3 4"
echo "16 32 99 3 5"
echo "16 32 99 4 4"
echo "16 32 99 4 5"

. /sim_mine»t.dat

. /sim_mine»t.dat

. /sim_mine»t. dat

./sim_mine>>t.dat

. /sim_mine»t. dat

. /sim_mine»t. dat

. /sim_mine»t. dat

. /sim_mine»t.dat

. /sim_mine»t.dat

. /sim_jnine»t.dat

. /sim_mine»t.dat

. /sim_mine»t .dat

B.3 RESULT

1086073538

Report.... Row= 8 Col= 8 pmn= 10

Valid sample: 90510

0.106927 0.105038 0.103944
0.171141 1.000000 0.171583
0.170688 1.000000 0.170677
0.104331 0.105215 0.106364

avg= 1.315910

1086073538

Report.... Row= 8 Col= 8 pmn= 10

Valid sample: 43272

0.038200
0.221714
0.220258
0.370933

0.038709 0
1.000000 0
2.000000 0
0.376826 0

038801
222037
220281
367952

avg= 2.115710

1086073539

Report.... Row= 8 Col= 8 pmn= 10

Valid sample: 6899

0.011886
0.234962
0.242354
0.668503

0.011016 0
1.000000 0
3.000000 0
0.693724 0

014350
239600
245833
675025

avg= 3.037252

1086073539

Report.... Row= 8 Col= 8 pmn= 10

Valid sample: 384

0.000000 0
0.252604 1
0.242188 4
1.000000 1

000000 0
000000 0
000000 0
000000 1

000000
250000
255208
000000

avg= 4.000000

1086073539

91

Report.... Row= 8 Col= 8 pmn= 10

Valid sample: 40377

0.181985 0
0.366372 2
0.362211 2
0.177453 0

180623 0
000000 0
000000 0
180573 0

178914
362682
367214,
183496

avg= 2.541521

1086073539

Report.... Row= 8 Col= 8 pmn= 10

Valid sample: 12923

0.082798 0.077923 0.079161
0.438753 2.000000 0.435735
0.443473 3.000000 0.442157
0.414300 0.419407 0.406175

avg= 3.239882

1086073539

Report.... Row= 8 Col= 8 pmn= 10

Valid sample: 1775

0.027042 0.024225 0.029859
0.487887 2.000000 0.490141
0.458028 4.000000 0.482817
0.710423 0.689577 0.681127

avg= 4.081127

1086073539

Report.... Row= 8 Col= 8 pmn= 10

Valid sample: 7113

0.242654 0.250387 0.248840
0.568536 3.000000 0.566428
0.561226 3.000000 0.561929
0.249684 0.246169 0.246028

avg= 3.741881

1086073539

Report.... Row= 8 Col= 8 pmn= 10

Valid sample: 1657

0.143030 0.123718 0.120097
0.679541 3.000000 0.665661
0.638503 4.000000 0.629451
0.476162 0.441762 0.468920

avg= 4.386844

1086073539

Report.... Row= 16-Col= 16 pmn= 40

Valid sample: 795102

0.099985 0.099509 0.099236
0.175145 1.000000 0.175327

92

0.175335 1.000000 0.175463
0.099263 0.099479 0.099988

avg= 1.298730

1086073540

Report.... Row= 16 Col= 16 pmn= 40

Valid sample: 359524

0.040790
0.218428
0.221051
0.371594

0.040220
1.000000
2.000000
0.375978

0.040278
0.218353
0.220881
0.373716

avg= 2.121288

1086073540

Report.... Row= 16 Col= 16 pmn= 40

Valid sample: 60339

0.014667
0.238585
0.239033
0.678649

0.014153 0
1.000000 0
3.000000 0
0.679710 0

013706
241784
238072
684168

avg= 3.042526

1086073541

Report.... Row= 16 Col= 16 pmn= 40

Valid sample: 3364

0.000000 0
0.244946 1
0.240785 4
1.000000 1

000000 0
000000 0
000000 0
000000 1

000000
252973
261296
000000

avg= 4.000000

1086073541

Report.... Row= 16 Col= 16 pmn= 40

Valid sample: 341355

0.188575 0
0.359585 2
0.360088 2
0.186211 0

186179 0
000000 0
000000 0
186495 0

186158
359596
359819
188206

avg= 2.560912

1086073542

Report.... Row= 16 Col= 16 pmn= 40

Valid sample: 118816

0.089079
0.433157
0.433065
0.422746

0.088700
2.000000
3.000000
0.422830

0.089811
0.433081
0.433107
0.422014

avg= 3.267590

1086073542

93

Report.... Row= 16 Col= 16 pmn= 40

Valid sample: 17341

0.032812 0.033966 0
0.473502 2.000000 0
0.477135 4.000000 0
0.694193 0.708091 0

033677
474655
474252
698172

avg= 4.100456

1086073543

Report.... Row= 16 Col= 16 pmn= 40

Valid sample: 71520

0.269114
0.549692
0.548280
0.266848

0.268820 0
3.000000 0
3.000000 0
0.269379 0

266303
548923
548867
268009

avg= 3.804237

1086073543

Report.... Row= 16 Col= 16 pmn= 40

Valid sample: 18813

0.154893 0
0.629777 3
0.633870 4
0.492053 0

153192 0
000000 0
000000 0
489024 0

158188
636262
633817
485196

avg= 4.466273

1086073544

Report.... Row= 16 Col= 32 pmn= 99

Valid sample: 1505522

0.118099
0.161066
0.161789
0.118370

0.117747 0
1.000000 0
1.000000 0
0.117798 0

118533
161650
161116
118211

avg= 1.354379

1086073545

Report.... Row= 16 Col= 32 pmn= 99

Valid sample: 837394

0.050655
0.212022
0.211841
0.384150

0.051064
1.000000
2.000000
0.384285

0.050833
0.211751
0.211835
0.384117

avg= 2.152552

1086073546

Report.... Row= 16 Col= 32 pmn= 99

Valid sample: 180653

0.018411 0.018538 0.018234

94

0.236359 1.000000 0.235346
0.235922 3.000000 0.237190
0.685087 0.684821 0.685275

avg= 3.055183

1086073547

Report.... Row= 16 Col= 32 pmn= 99

Valid sample: 13315

0.000000 0.000000 0.000000
0.252572 1.000000 0.253323
0.249643 4.000000 0.244461
1.000000 1.000000 1.000000

avg= 4.000000

1086073548

Report.... Row= 16 Col= 32 pmn= 99

Valid sample: 0

nan nan nan
nan nan nan
nan nan nan
nan nan nan

avg= nan

1086073549

Report.... Row= 16 Col= 32 pmn= 99

Valid sample: 901694
)

0.213000 0.213038 0.212986
0.340433 2.000000 0.340100
0.340339 2.000000 0.340104
0.212916 0.212928 0.213180

avg= 2.639024

I 1086073550

Report.... Row= 16 Col= 32 pmn= 99

Valid sample: 377893

0.110486 0.110314 0.110275
0.417605 2.000000 0.417658
0.416515 3.000000 0.417147
0.443686 0.444173 0.443215

avg= 3.331075

1086073551

Report.... Row= 16 Col= 32 pmn= 99

Valid sample: 70280

0.045120
0.468284
0.465894
0.713389

0.046429 0
2.000000 0
4.000000 0
0.710031 0

044863
465581
463830
712991

avg= 4.136411

95

1086073552

Report.... Row= 16 Col= 32 pmn= 99

Valid sample: 4542

0.000000 0.000000 0.000000
0.498239 2.000000 0.498899
0.503963 5.000000 0.498899
1.000000 1.000000 1.000000

avg= 5.000000

1086073553

Report.... Row= 16 Col= 32 pmn= 99

Valid sample: 267376

0.297985 0.298142 0.299215
0.525556 3.000000 0.527157
0.527224 3.000000 0.524722
0.298965 0.298191 0.298187

avg= 3.895342

1086073554

Report.... Row= 16 Col= 32 pmn= 99

Valid sample: 85212

0.186453 0.183484 0.183530
0.612296 3.000000 0.612907
0.611991 4.000000 0.609339
0.515855 0.519094 0.518519

avg= 4.553467

1086073555

Report.... Row= 16 Col= 32 pmn= 99

Valid sample: 12637

0.087125
0.687426
0.684814
0.752315

0.086729 0
3.000000 0
5.000000 0
0.751840 0

084039
686318
683548
753739

avg= 5.257893

1086073556

Report.... Row= 16 Col= 32 pmn= 99

Valid sample: 42071

0.390293 0
0.711868 4
0.707708 4
0.383542 0

386656 0
000000 0
000000 0
386394 0

383756
707899
711820
390768

avg= 5.160705

1086073557

Report.... Row= 16 Col= 32 pmn= 99

Valid sample: 9850

96

0.269848 0.275330
0.796650 4.000000
0.793503 5.000000
0.611574 0.608122

avg= 5.823350

.278173

.791878

.794619

.603655

97

APPENDIX C

MAKEFILE

98

This file Copyright 2004 Angela T. Huang
It may be distributed under the GNU Public License, version 2, or
any higher version. See section COPYING of the GNU Public license
for conditions under which this file may be redistributed.
#

CC=gcc
CFLAGS=-O2

INCLUDES=

LIB=

XLIB=-L/usr/XllR6/lib -lXaw -lXmu -lXt -1X11

COMPILE={(CC) -c {(CFLAGS)

LINK={(CC)

OBJ=automine.o xwindow.o hiscore.o

INSTDIR=/usr/local

########

automine : {(OBJ)
{(LINK) $(OBJ) -o $@ {(LIB) $(XLIB)

########

%.o : %.c
{(COMPILE) $< -o $@ {(INCLUDES)

automine.o : automine.c automine.h
xwindow.o : xwindow.c automine.h icon.h
hiscore.o : hiscore.c automine.h

########

clean :
-rm -f *.o *- core

########

install :
strip automine
install -d {(INSTDIR)/bin
install -d {(INSTDIR)/man/man6
install -d {(INSTDIR)/1ib/app-defaults
install -m 755 automine $(INSTDIR)/bin
install -m 644 automine.6 {(INSTDIR)/man/man6

install -m 644 automine.ad $(INSTDIR)/lib/app-defaults/Automine

99

REFERENCES

[1] Clay Mathematics Institute, "Million-Dollar

Minesweeper,"

http://www.claymath.org/prizeproblems/milliondollarmin

esweeper.htm

[2] IEEE Recommended Practice for Software Requirements

Specifications (IEEE Std 830-1993).

[3] Kevin Wright and Hudelson, "The Math of Minesweeper"

http://leibrand.net/kevin/mine_paper.htm

[4] Minesweeper: Advanced Tactics

http://www.nothings.org/games/minesweeper

[5] Minesweeper Analysis and Strategies

http://fvdp.homestead.com/files/msw_index.html

[6] Richard Botting, "Minesweeper End Game"

http://www.csci.csusb.edu/dick/cs320/prolog/mine.pig

[7] Richard Kaye, "Some Minesweeper Configurations,"

http://www.mat.bham.ac.uk/R.W.Kaye

[8] The Minesweeper Page- About Probabilities

http://www.frankwester.net

100.

http://www.claymath.org/prizeproblems/milliondollarmin
http://leibrand.net/kevin/mine_paper.htm
http://www.nothings.org/games/minesweeper
http://fvdp.homestead.com/files/msw_index.html
http://www.csci.csusb.edu/dick/cs320/prolog/mine.pig
http://www.mat.bham.ac.uk/R.W.Kaye
http://www.frankwester.net

	Develop heuristics to the popular Minesweeper game
	Recommended Citation

	C(3,l) *C(3,2)*C(52,7) .

	(C(3,l)*C (3,2)*C(52,7)}

	(C(3,2)*C(3,2)*C(52,6)}

	= 36*{52*...*48/5! }/{52*...*49/4! }

	for(1=-1;1<2;1++)

