
California State University, San Bernardino California State University, San Bernardino

CSUSB ScholarWorks CSUSB ScholarWorks

Theses Digitization Project John M. Pfau Library

2004

An image delta compression tool: IDelta An image delta compression tool: IDelta

Kevin Michael Sullivan

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project

 Part of the Software Engineering Commons

Recommended Citation Recommended Citation
Sullivan, Kevin Michael, "An image delta compression tool: IDelta" (2004). Theses Digitization Project.
2543.
https://scholarworks.lib.csusb.edu/etd-project/2543

This Thesis is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has
been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks.
For more information, please contact scholarworks@csusb.edu.

https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd-project
https://scholarworks.lib.csusb.edu/library
https://scholarworks.lib.csusb.edu/etd-project?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2543&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2543&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd-project/2543?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2543&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

AN IMAGE DELTA COMPRESSION TOOL:

IDELTA

A Thesis

Presented to the

Faculty of
California State University,

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree
Master of Science

in

Computer Science

by
Kevin Michael Sullivan

June 2004

AN IMAGE DELTA COMPRESSION TOOL

IDELTA

A Thesis

Presented to the

Faculty of
California State University,

San Bernardino

by
Kevin Michael Sullivan

June 2004

Approved by:

eh, chair, Computer Science

Dr. George Georgiou

© 2004 Kevin Michael Sullivan

ABSTRACT
Versioning techniques which save only the changes, or

'deltas', made in a file during an edit are important text

editing tools. Saving and managing deltas rather than the

entire file for each version iteration uses less disk

space and assists in maintaining version integrity. Tools

that provide this capability have become a critical part
of fields such as software engineering.

The currently available equivalents for binary files

perform poorly on multidimensional data such as images,

despite significant progress in compression algorithms.

When using commercial image editing tools, one must store
each edited image as an independent file, making

versioning difficult.
The lack of versioning tools for images is a result

of two problems. First, creating an efficient
representation for the changes for binary data is more

difficult than for text data. Seemingly small edits by the

user can potentially lead to large changes in much of the

data in the byte file. This is especially true for

multi-dimensional files such as image. Second, modern
image files are quite complex, frequently containing

multiple layers with varying degrees of similarity between

these layers.

iii

This paper examines the possibility that modern delta

compression combined with a detailed understanding of an

image formats composition could yield a useful image

versioning tool that can work with commercial editors.

This paper specifically examines optimizing the current
binary delta compression tool zdelta for use with the

Photoshop file format (PSD). This optimized PSD format

differencing tool is integrated into Photoshop as a file

format module to save and open differences directly from

the Photoshop interface.

iv

ACKNOWLEDGMENTS

I would like to acknowledge the following people for

assistance with my thesis: my family, my co-workers, my

professor Dr Zemoudeh, and Dimitre Trendafilov, the author

of zdelta.

v

TABLE OF CONTENTS

ABSTRACT.. iii
ACKNOWLEDGMENTS v
LIST OF TABLES....................................... viii
LIST OF FIGURES..................................... ix
CHAPTER ONE: BACKGROUND

1.1 Introduction............................... 1
1.2 Purpose of the Thesis...................... 1
1.3 Context of the Problem..................... 2
1.4 Significance of the Thesis................. 8
1.5 Definition of Terms 8
1.6 Organization of the Thesis................. 9

CHAPTER TWO: LITERATURE REVIEW
2.1 Introduction............................... 10
2.2 Tool and Algorithm Review.................. 10
2.3 History of Differencing.................... 11
2.4 Summary.................................... 14

CHAPTER THREE: METHODOLOGY
3.1 Introduction............................... 15
3.2 Discussion of Solutions.................... 15

3.2.1 Solution One........................ 16
3.2.2 Solution Two........................ 17
3.2.3 Solution Three...................... 17
3.2.4 Solution Four....................... 17
3.2.5 Solution Five....................... 18

vi

3.3 Hypothesis Statement....................... 19
3.4 How Differences are Compressed and

Decompressed With IDelta 20
3.4.1 Compression......................... 20
3.4.2 Decompression....................... 22
3.4.3 Algorithm Walk Through.............. 22

3.5 Photoshop Implementation................... 24
3.6 IDelta's Relationship to Zdelta............. 24
3.7 Summary.................................... 2 6

CHAPTER FOUR: RESULTS
4.1 Introduction............................... 27
4.2 Comparison Tests 27
4.3 Result Tables.............................. 29
4.4 Discussion of Results...................... 40
4.5 Summary.................................... 43

CHAPTER FIVE: CONCLUSIONS AND FUTURE WORK
5.1 Introduction............................... 44
5.2 Conclusions................................ 44
5.3 Future Work................................ 44
5.4 Summary.................................... 4 7

APPENDIX A: EXAMPLE PHOTOS 48
APPENDIX B: ABRIDGED PHOTOSHOP FILE FORMAT WHITE

PAPER................................... 50
APPENDIX C: DELTA FILE LAYOUT....................... 57
APPENDIX D: PHOTOSHOP IMPLEMENTATION SCREENSHOTS 60
REFERENCES.. 64

vii

LIST OF TABLES

Table 1. Test Results with Testlmage .psd.............. 29
Table 2. Test Results with Buterfly3.psd, #1.......... 30
Table 3. Test Results with Buterfly3 .psd, #2.......... 31
Table 4. Test Results with Globe.psd.................. 32
Table 5. Test Results with Cactus.psd, #1........ 33
Table 6. Test Results with Cactus.psd, #2............. 34
Table 7. Test Results with Cave wave.psd.............. 35
Table 8. Test Results with Pfeifer.psd................ 36
Table 9. Test Results with Lighting.psd............... 37
Table 10. Test Results with Gods Eye.psd............... 38
Table 11. Aggregate Comparison of IDelta to

Zdelta...................................... 39

viii

LIST OF FIGURES

Figure 1. Byte Separation Example 5
Figure 2. Color Image Comparison 7
Figure 3. Algorithm Walk Through...................... 23

ix

CHAPTER ONE

BACKGROUND

1.1 Introduction
Versioning systems can utilize 'Differencing' or

'Delta' algorithms to save space and maintain version
integrity. These algorithms accomplish lossless

compression by finding the data that has not changed

between two versions of a file and only save the changed

data. The data that has not changed is referenced with

markers in the original file. Thus, only the delta is
saved rather than re-saving the entire file for each
version iteration. Optimally, the algorithm should store

only the data that actually changed in the delta file, and

this should occur without high costs in time complexity.

1.2 Purpose of the Thesis
This thesis will present a modified version of the

algorithm used in the open source differencing tool

zdelta, entitled 'iDelta'. This algorithm will manage file

data and will be built specifically to difference images

in the Photoshop file format. Hence, it will be a 'file
type aware' differencing algorithm. The Photoshop file

format is currently the most popular and robust 2-d image

1

file format, therefore it is the best candidate for this

thesis.

1.3 Context of the Problem
The analysis of image file formats revealed the

following observations. The optimal way to represent an

image is via byte combinations, which when read together

can represent a set range of colors. 24-bit Red Green Blue

(RGB) color can represent; (1 byte * 1 byte * 1 byte) =
(255 * 255 * 255) = 16,581,375 potential colors. Each
pixel is thus represented by 3 bytes, containing a

relative color value for a specific color range, commonly

referred to as a channel (One byte red, one byte green,

one byte blue.) When these are read together, they make up

the exact color for any one pixel. Each pixel also has a
coordinate (based on the format used) which determines its
position on screen. The placement and order of the bytes

in a file are subject to the method employed by the format

used.
This is a fundamentally different organization than

is used by non-binary files. By examining a Microsoft Word
or a Word Perfect document, it is evident that even
complex word processing text files save data sequentially

in a file. Image files are not saved to disk in the same

2

way they are presented on screen. The data is broken up

into different logical sections (vis-a-vis 24 bit RGB byte
combinations), so it is not written sequentially in the

file. This becomes one of the primary problems for

differencing image files. When changes occur, even when

these changes are small, these changes can be spread
throughout the. file.

I

Images are not text. Although this sounds self

evident, the concept of change is different when applied

to images. The type of change that images usually undergo

should be considered. Images represent a completely

different medium of communication. When one changes an

image over time, it is truly a different process than when
one changes a text document, be it code, art or
scholastic. Although it is difficult to make empirical

statements to this effect, it is important to consider as

the investigation proceeds. In trying to capture change, a
typical change for an image involves different actions,
and results in a different outcome.

The following example illustrates how the

non-sequential storage of bytes in an image file can make

binary image data more difficult to difference than text

data. If a paragraph is cut or copied into a different,

location in a text document, the paragraph itself is still

3

intact; it is just in a different location. If one adds a

new paragraph in the middle of already existing text, the

previous and following paragraphs are still the same. When

committed to disk, the bytes that are written into the

file are in the same sequence as in the original file,

save the addition of the new paragraph. Alterations that

the user affects while changing the file do not disrupt

the binary file in a drastic fashion. The bytes following

the new paragraph are shifted down by the length of the

addition, but the byte order is maintained over all.

The byte order of image files, however, is easily
disrupted. Simple changes at the user level may cause

large byte reordering in the binary file. For instance, a

still life picture of a basket of vegetables was altered

by copying a vegetable to the upper right side of the

basket (see appendix A for photos.) While this type of
change is simple and rather ineffectual at the user level,
it could have the repercussions discussed below.

Moving or copying a portion of an image from one

location to another does not have a one to one effect as

does moving a block of text. A 'one to one' effect here

refers to the grouping of bytes and where they reside in

the file. Textual data is stored one ASCII character after
another. Image data is stored in a PSD file as horizontal

4

scan lines in the image. Any particular object in an

image, such as the red pepper in the example photo, is not

written to disk in the grouping of the red pepper, but as

horizontal one pixel wide lines of bytes. Thus the bytes
that make up the copied red pepper are separated by the

bytes that precede them and follow them in the particular

scan lines on which they reside. See table 2.1 for a

visual representation of this. In the table, the bytes

proceeding and following the pepper are represented by

'x's and the byte of the pepper are represented by 'o's.
The PSD format then encodes these byte vectors via a

Scanline: Bytes:
1
2
3
4
5
6
7
8

xxxxxxxxxxxxxxxxxxxxxxxxxxxxooxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxoooooxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxoooooooxxxx
xxxxxxxxxxxxxxxxxxxxxxxxoooooooooxxx
xxxxxxxxxxxxxxxxxxxxxxxxoooooooooxxx
xxxxxxxxxxxxxxxxxxxxxxxxxoooooooxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxoooooxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxooxxxxxx

Figure 1. Byte Separation Example

loss-less compression such as Run Length Encoding (RLE) to

save space in the disk file [1]. In the example, the new

vegetable added changes approximately 10% of the scan
lines in the image. This will change the compression ratio

that the RLE had achieved in the first iteration of the
file. In this case, the ratio was not as efficient as in

5

the first file. Instead of a flat background, the pepper

introduces a new color. All affected scan lines will now

take up more space in the flat file. Any bytes that

followed that portion of the image (from scan lines 9 to

the end of the image) will now be shifted lower in the
byte file. The overall file size will increase as well,

even though we did not actually increase the dimensions of

the file.

It is also apparent from this example that the bytes

that comprise the pepper are surrounded by the bytes that
precede and follow them on each scan line in the image.
This phenomenon is why image data is described as multi

dimensional [2]. If we were to look for this change, we

would traverse linearly down the file, scan line 1 to 2 to

3...etc, and continue this way. The changes on scan line 1
from table 2.1 would be separated by a large number of
bytes from the changes on scan line 2, etc. So not only
did the addition cause a change in the compression ratio,

but the changes to the byte file are interwoven between

the unchanged bytes the that precede and follow them.

To summarize, two example files were altered, a text

document and an image file. In the text document, text was

moved and added, and the resulting file was slightly

larger than its original, and resulted in a small shift in

6

the byte file. Similar user level changes in the image

file analogous to the text file were made, and the file

grew by a noticeable amount. Further, the change was
intermingled between many other unchanged portions of the

image.

The base assumption in creating a delta rather than

resaving the entire file is that as versions are created

through the life of the file, each incremental change is

not drastically different from its original. This
assumption can simply be false for image files. Figure 2.1

is an example of a hex view of the image data section of

two, very small 24 bit single color image files.7 These are

the sets of byte scan lines of the image; the set on the

left represents a blue square, and the set on the right

i Bytes: Image one Bytes: image Two
E807E807E807E807E807E807E807E807
E807E807E807E807E807E807E807E807
E807E807E807E807E807E807E807E807
E807E8D7E8D7E8D7E8D7E8D7E8D7E8D7
E8D7E8D7E8D7E8D7E8D7E8D7E8D7E8D7
E8D7E8D7E8D7E8D7E8D7E8D7E8D7E8D7
E8D7E8D7E802E802E802E802E802E802
E802E802E802E802E802E802E802E802
E802E802E802E802E802E802E802E802
E802E802E802

E8E9E8E9E8E9E8E9E8E9E8E9E8E9E8E9
E8E9E8E9E8E9E8E9E8E9E8E9E8E9E8E9
E8E9E8E9E8E9E8E9E8E9E8E9E8E9E8E9
E8E9E813E813E813E813E813E813E813
E8 13 E8 13 E8 13 E8 13 E8 13 E8 13 E8 13 E8 13
E8 13E8 13E8 13E8 13E8 13E8 13E8 13E8 13
E8 13E8 13E8 1DE8 1DE8 1DE8 1DE8.1DE8 ID
E8 1DE8 1DE8 1DE8 1DE8 1DE8 1DE81DE8 ID
E8 1DE8 1DE8 1DE8 1DE8 1DE8 1DE8 1DE8 ID
E8 1DE8 1DE8 ID

Figure 2. Color Image Comparison

represents a blue-green square. The PSD format writes the

data one channel at a time, in the pattern RRR, GGG, BBB,

7

the bytes are presented here to be read from left to

right, top to bottom.

The color was changed to illustrate how the byte file

is affected. Note how different the byte set on the right

is. When differencing these files, regardless of

differencing methods employed, a relatively large delta

will be produced. Though the encoding of the ultimate
difference can mitigate this problem to a degree, there is

clearly significant change, so a large delta is

unavoidable. This illustration demonstrates that simple

changes can alter the byte layout for an entire section of

an image file, and invalidate the versioning delta

assumption stated earlier.

1.4 Significance of the Thesis
The current delta algorithms perform poorly when used

with image data. The significance of the thesis was to

address whether the poor performance of the current

differencing tools when used on multi-dimensional data
could be noticeably improved.

1.5 Definition of Terms
The following terms are defined as they apply to the

thesis. RGB stands for the Red, green, blue color model.

This was the primary color model used for test cases run

8

with iDelta. PSD stands for Photoshop Document, and is the

registered file type for this type of document.

1.6 Organization of the Thesis
The thesis was divided into five chapters. Chapter

One provides an introduction to the context of the

problem, purpose of the thesis, significance of the

thesis, and definitions of terms. Chapter Two consists of

a review of relevant literature and a history of delta

compression. Chapter Three documents the Methodology used

in this thesis. Chapter Four presents the results from the

thesis. Chapter Five presents the conclusions from the

thesis, and makes suggestions for future work. The
Appendices for the Thesis follows Chapter Five. Finally,

the references for the Thesis are presented.

9

CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction
Chapter Two presents the current tools that perform

the task of delta compression, and the history of delta

compression. Currently, most image differencing engines,

such as MPEG-2, DIVX, and MPEG-4 are built for motion

image formats. As part of the initial literature review,

the following sources were exhaustively researched for

pertinent documentation on tools that could potentially be

used for static images; IEEE transactions, the online ACM

Library, The California State University Library, and the

Internet.

2.2 Tool and Algorithm Review
The current open source binary differencing tools are

the following: diff, vdelta (currently implemented as
VCDiff), and zdelta. Diff is currently part of standard
Unix distributions, VCDiff is written by Vo Phong at AT&T

[3], and zdelta was designed by Dimitre Trendalov of New

York Polytechnic. All are implemented on UNIX and have

source code available, zdelta was chosen as the foundation

for this thesis, based on a number of considerations. The

primary reason is that zdelta is the most current

10

iteration of these tools, and performed better than the

other tools in most tests. The other reasons included

compact code base, and portability to the WIN 32 platform.

The UNIX tool 'diff' performs well for text files

such as source code; however, it performs poorly for

binary files [3],[4]. In response to the need to

difference such files, a number of methods have been

developed. Vdelta, xDelta, and zDelta have all been

created to work on a wider range of files [3],[5]. Zdelta
is the most recent tool, and showed the best results

overall in the tests performed.

All of these tools were investigated and reviewed to

determine what the best method to difference images would

be. While achieving good compression over all, none of
these tools perform well on multi dimensional files, such

as image and sound files.

2.3 History of Differencing
Lossless compression revolves around representing

portions of a file with like segments of the file itself.

By replacing a string of characters that already exists in

a file with a pointer back to that string, considerable
space can be saved during compression. Ziv and Lempel

devised an algorithm known by their initials and the year

11

it was created (LZ77) [6], which uses this copy based

method of compressing individual files. The Unix

compression library zlib was based on their algorithm.

This style of compression inspired the algorithms that
will be discussed here.

Delta compression takes this compression technique

one step further by using a reference file to make

pointers to, so that not only data that is similar in the
file itself can be refereed, but also data in a reference
file. This can lead to significant increase in efficiency

in the compression ratio. The caveat is that the reference

file will always be needed to decompress the delta file.

Early efforts in differencing centered on finding the

longest common subsequence (LCS) of matching bytes, and
represented them with edit commands in the delta file
(Tichy's String to String correction problem [7]). The
non-similar bytes are placed in a delta file with

reference to where they-belong in the target file. To

reconstruct, the edits are enacted on the delta to

reproduce the original file. This is both costly in time

complexity and assumes that the data will be in a similar
order in both files. It further lacks the optimization of

accounting for repeated substrings in the reference file.

12

Tichy then improved on the string to string
correction method by adding what are called 'Block moves'.

Block moves add the optimization of accounting for

repeated strings within a file. A block move is defined as

a common substring found in the reference and target

files, represented by a starting point, ending point, and

a length. The block move method insures that unlike LCS,
once this common substring is included, it does not need

to be re-included in the delta file. If this substring is

found again, only a reference to it will be placed in the

delta file. With the assumption that all operations have

unit cost, the best solution under the block-move approach
proved at least as good as that of the longest common

subsequence approach [3].
The next optimization made to further compress the

difference was to match substrings that are only present

in the target file that do not appear in the reference
file. This is how compression formats such as zlib gain

efficiency and was utilized by zdelta to make the
differencing library that iDelta is built on.

The final advance was to take the difference file and

encode- it using standard encoding techniques. Zdelta

utilizes Huffman encoding to compress the chunks of the

13

already differenced file as it compares the reference file

and the target file.

2.4 Summary
A discussion of the literature important to the

thesis was presented in Chapter Two. All current.

differencing tools were reviewed to find a good foundation
for an image compression tool for use with sequences of

static images. Zdelta was chosen because of its good

performance and good portability. The history of

differencing was discussed to explain the previous work

that has been done in this area.

14

CHAPTER THREE

METHODOLOGY

3.1 Introduction
The methodology section reviews the solutions

explored to achieve a more efficient image delta. The

implementation of the solutions is then discussed in

detail. iDelta was then implemented in C++ and run from

with the Photoshop host application to create deltas from

the test images. The following chapter discusses this

process.

3.2 Discussion of Solutions
The following are the five methods that were'

initially evaluated to assist in creating an efficient

image delta. As a result of the initial evaluation, three
chosen for implementation, and two were ruled out' based on
lack of potential or provable merit.

For the analysis process, the PSD format file

structure was analyzed, and code was implemented to

catalogue the anatomy of a Photoshop file. All section and

sub section offsets were set so as to make decisions on
the file make up possible. For an abridged description of

the PSD file format, please review the attached white
paper "Abridged PSD file format" in the appendix B. [8].

15

3.2.1 Solution One
Difference the file based on the different sections of the
PSD file format.

The first aspect of the structure that appeared to be

useful for differencing is that the format is laid out in

logical sections, some containing basic file information,

others containing detailed metadata about certain areas of

the file, and others containing the actual pixel data.
Given the nature of image files reviewed above,
differencing the file based on these logical sections

appeared to be the best place to begin. In the processing

for this method, each section of reference file and the

target file is copied to separate buffers, differenced,

encoded, and ultimately stored in a total delta buffer
along with the deltas of the other sections. This stands

to answer one of the two issues cited previously, namely
the byte schisms that develop between iterations of a

versioned file. By synchronizing the reference file and

target files' metadata and pixel sections, the difference

will not be incorrect due to their location in the file.

This solution was implemented.

16

3.2.2 Solution Two
Difference the metadata and pixel data of the layers

section.

A layer has two logical portions, the layer metadata,

and the channel pixel data. Although the layer meta
section is generally not large, it can change enough to
shift the bytes which follow it. This was done as a

precursor to solution four. This solution was implemented.

3.2.3 Solution Three
Enlarge the byte comparison window of zdelta.

The current implementation of zlib, and consequently
zdelta (a modification of zlib) use a 64 kilobyte window

for byte comparison iterations. The window size is built

into the foundation of the code base, and changing it for

this thesis was not possible. This change was explored

regarding concerns that matching strings could be offset
by more than this amount.
3.2.4 Solution Four
Difference each individual layer's channel data.

This requires some supposition regarding the

relationship of reference and target file layers. Layers

are not given unique identifiers, so matching them can

lead to erroneous comparisons. Layers have names, but

these are easily changed. Layers have dimensions, but if

17

these change, the value of differencing them separately is

suspect. Despite the potential for incorrect comparisons,

the difference will be no worse than if all of the data is
out of alignment. Test indicated that even if one layer

was matched, this method produces a smaller delta. This

solution was implemented.

3.2.5 Solution Five
Establish the bounding box of individual layer dimension

data to extract what part of the underlying image data
will be affected. Then break up the image data section via

these coordinates and difference the portions separately

based on the coordinates of the effecting layers.

Each layer contains the coordinates of its pixel

data. The layer sections' purpose is often to add effects
to the underlying image data. If changes to an image
reveal that only the layer data has changed, and the layer
only affects the upper third of an image, the lower two

thirds of the image will likely have little or no change.

So, if handed separately to the differencing function, it

was considered possible that a more efficient delta would

be produced by doing so.

Analysis showed that one of two following cases is

most common. The first case is when only the layer data

changes. The same efficiency will be achieved whether

18

these sections is separated or not. This is due to that
since the layer sections add effects to the underlying

image data, the underlying image data is unchanged in the

flat file. It is not till the image is opened for viewing

that the effects are applied.

The second case is when the image data itself

changes, and changes to the image data do not necessarily
correspond to the layer data above. Not enough information

is available to make an informed decision in this case.

This would lead the algorithm to portion the image data

when differencing it in mass would have been preferable.

Performing the layer arithmetic and differencing the image

data based on this could cause disparate portions of the

image to be compared, and even lead to larger, rather than
a smaller delta. This option was ruled out due to these

concerns.

3.3 Hypothesis Statement
Based on this analysis, the following hypothesis was

developed'. By differencing corresponding portions of an

image file, the effects of change that usually disrupts

the differencing process can be mitigated, and reasonable

sized deltas can be produced in most cases.

19

3.4 How Differences are Compressed and
Decompressed With IDelta

iDelta .uses the copy-based method developed by Tichy,

as well as the hashing and indexing scheme for string

matching, as utilized by VCDiff [3] and zDelta [4]. The

difference is then encoded using Huffman encoding to

achieve a more compact difference. This is primarily based

on the fact that iDelta is built on top of zdelta.

3.4.1 Compression
iDelta begins by setting all the important locations

of the reference file and the target file into objects to

make file pointer offsets. iDelta then copies each

applicable section in each file into separate buffers for

comparison, to be compared one after another until the

files have been completely compared.
The two file portion buffers are compared in up to 64

kilobyte chunks. The differencing process produces two
basic commands; 'copy' or 'insert' (described in detail
below). A hash table is constructed; file pointer offsets

are created in the reference and target files and indexed

in the hash table for reference. Each index in the hash

table is searched to find a match. The hash table is keyed

with three byte triples from the reference file for

comparison purposes.

20

Processing at each iteration is as follows, matches

are searched for, and one of the two actions occurs: If

there is no match, an index is marked for the current

position of the target file into the hash table, the

current position pointer is incremented, and an 'insert'

command is produced for output into the delta file.

If there is a match, the algorithm attempts to extend

that match as far as possible. Once the current set of

matched bytes is exhausted, the current position pointer

is incremented by the length of the match, and a 'copy'

command is generated for output into the delta file.
After a 64k buffer has been differenced, the

resulting delta is then Huffman encoded to achieve a more

efficient compression ratio. The Huffman encoding
implemented in zdelta is reused for this task.

This is repeated until the each file section has been
differenced and all section deltas are computed. Each of

the four sections of the PSD file is differenced in this
fashion, and the final delta is constructed. It is built

in a sequential fashion. Each portion is prefaced with the

delta length, followed by its actual uncompressed length.

For a detailed description of the delta file make up, see
appendix C.

21

3.4.2 Decompression
As stated above, there are 2 commands that the delta

file is built with. They are the 'copy' command and the

'insert' command. Copy commands copy data from the

reference to the target file during decompression. Insert

commands put the changed data back into the target file in

the locations where copying was not possible.

To decompress, the delta file is opened, and the same

object code that parses the PSD file parses the delta and

extracts all applicable lengths and offsets. The reference

file is opened and parsed for lengths and offsets, and the

two files are then portioned based on their applicable

sections. Each section delta is extracted from the delta

file, and it is Huffman decoded. Following that, some data
is copied directly from the delta file into the target
file when 'insert' commands are found or copied from the

reference file when a 'copy' command is found. Copy
commands make a marker pointing to a location in the

source file, with a starting point and a length, that is

how the command knows where to copy the bytes from the how

many to copy.
3.4.3 Algorithm Walk Through

The algorithm compares the bytes in the reference and

target buffers, comparing the sections for matches as it

22

proceeds. For'portions of the reference and target file

that match, the algorithm outputs a copy command. For

changed portions it outputs an insert command along with
the new data. Thus for files that have been minimally

altered, the delta will consist mostly of copy commands,

which are simple markers (pointers) into the original

file. Figure 3 demonstrates what the algorithm will output

given the two example byte strings:

Reference file: xyzxyzxyzxxyz
Target file: xyzabczxyzabc

Order of
operation command

bytes to copy
or add

iterations +/or
Bytes to add

1 copy 3 1
2 insert 3 "abc" x 1
3 copy 1 from index 5 1
4 copy 3 from index 3 1

5 copy
3 from index 3
of target file 1

Figure 3. Algorithm Walk Through

Although this is a simplified example, it elucidates
how the commands are generated. Notice that the copy

command chooses the 'abc' string from the target file, not

the reference file. This behavior enables the algorithm to

further compress the delta. This behavior was discussed in

the "Tool and Algorithm Review" section in Chapter 2, and

is covered in the discussion about the block move method.

23

3.5 Photoshop Implementation
Photoshop supports a plug-in architecture. Developers

can extend the application to perform tasks the original

application was not designed for. As part of this

investigation, approval was received from Adobe Corp, to

utilize the advanced software development kit (SDK), which

includes the file format information. The SDK allowed for

development of a plug-in to add the differencing code into

Photoshop.

iDelta was added into Photoshop via the plug-in

architecture as a file format module. This allows for
saving and opening the difference files directly into the

application. See appendix D for screen shots of the format

module being used from within the application.

3.6 IDelta's Relationship to Zdelta
iDelta uses zdelta to perform its work. Zdelta itself

is a modification of the Unix zlib compression library.
Zlib is based on LZ77, using the copy approach to

represent portions of a file with pointers to already

compressed portions of the same file. Zdelta extended this

functionality to include a reference file, which made

delta compression possible. Zdelta modified the zlib
compression to enable it to set pointers to positions both

24

before and after the current file pointer, and added an

extra Huffman tree for encoding these new copy pointers.

Zdelta then enabled the compression routine to accept

multiple reference files, so that more copy commands

(references to existing data) rather than insert commands

(saving the data in the delta itself) would be used, and

hence a more compact delta could be created. More

reference files have the potential for greater compression
because they increase the chance that existing data will

be available for matches.
iDelta utilizes most aspects of zdelta. iDelta is

designed to be a version tool only, so only one reference

file is used. Despite the fact that a greater compression

can be achieved with more reference files, the problem of
having more than one reference file can confuse the
versioning process and was ruled out for this cause. It

was necessary to port the code to be compatible in a Win32

environment, and some alterations were made to compile it

with C++ rather than in its native C implementation. After

these changes, iDelta reused both the compression stage

and the Huffman encoding stage of zdelta. The research and

analysis done for iDelta indicated that focusing on

aligning the data rather than trying to improve the

25

already high functioning differencer / encoder, would

produce a more efficient algorithm.

3.7 Summary
The methodology section reviewed the solutions

explored to achieve a more efficient image delta. The

implementation of the solutions was discussed, and the

algorithm was presented. The implementation in the host

application was presented, and screen shots for this

implementation are in the appendix.

26

CHAPTER FOUR

RESULTS

4.1 Introduction
Included in Chapter Four is a presentation of the

results of the thesis. Below is a discussion of the test

procedures and results produced from the tests.

4.2 Comparison Tests
For the comparison tests, zdelta was run as a command

line application, and iDelta was run directly from

Photoshop. Images for tests were chosen based on size and

image type, a selection of photographers and art images

were used. The image sizes fit into the categories of 2-3

megabyte images, 10-20 megabyte images, 40-60 megabyte
images, 100 megabyte and a 250 megabyte image. The
metric's tested for were run time and ultimate size of the

delta file. Results are presented in graph form with

information provided about the compression ratio based on

target file compressed, and execution time to perform the

difference.

The following changes were made to the images to test
and compare the ability of iDelta and zdelta to

efficiently represent the changed image file. Note that

not all images were subjected to all tests. Layers were

27

moved to different positions, actual layer data was

altered, existing image data was copied from an exiting

layer and added as a new layer, color and hue were

altered, and the Unsharp Mask effect was applied.

The following tests were not performed, for reasons
explained below. Large resolution changes, such as

resampling an image from a print resolution of 300 dpi to

a screen resolution of 72 dpi, were not tested. This

process changes all pixels in the image. Color mode

changes, such as switching from RGB to CMYK, were not

performed. Changing the color mode requires that a layered
image be flattened, so all useful versioning information
will be lost if this is done. These tests were considered

too invasive to the nature of the file, and will produce

deltas near the size of the original file. For practical

purposes, these changes would warrant starting new a
complete new version.

The specifications for the machine used to test are
as follows: Windows XP operating system (Service pack 1),

Athlon 1.8 Gigahertz processor, 1 gigabyte of RAM, SCSI

raid 5 disk array with more than 5 gigabytes of free space

available. Tests were performed on a fresh restart, with

all non essential applications turned off. Each test
presented here was run three times, and a baseline NULL

28

case (differencing an unchanged image) was performed to

verify accuracy.
Below are tables 1 through 10, and contain all

pertinent information regarding the tests performed and
the performance of the two algorithms. The tables are laid

out with the information about the image being tested

first, followed by the results of the specific test being

run. Two of the tests were performed on the same reference

image; tests 2 and 3, and tests 5 and 6. All other tests

were performed on separate images.

4.3 Result Tables

Table 1. Test Results with Testlmage.psd.

Document name: Testlmage.psd
DPI: 333

Number of Layers: 1
Description: The Vegetable basket from Appendix

Size (Reference
Document): 1015 kilobytes

Changes Made for Test 1 2 layers added, the pepper from example,
and the bottom background

New size (Target
Document) 1549 kilobytes

Results for Test One Size of Delta
(kb)

Time
Min:Sec.

millisecond
Compression

Ratio
Uncompressed 1549 NA NA

iDelta 95 0:00.219 0.0613
zdelta 212 0:00.640 0.1328

29

Table 2. Test Results with Buterfly3.psd, #1
Document name Butterfly3.psd

DPI 72
Number of Layers 6

Description Art picture
Size (Reference

Document) 1.5 Megabytes

Changes made for test 2 Layers reordered
New size (Target

Document) 1.5 Megabytes

Results for Test Two Size of
Delta:(kb)

Time
Min:Sec.

millisecond
Compression

Ratio
uncompressed 1,500 NA NA

iDelta 7 0:00.312 0.0047
zdelta 1,192 0:00.617 0.7947

30

Table 3. Test Results with Buterfly3.psd, #2
Document name Butterfly3.psd

DPI 72
Number of Layers 6

Description Art picture
Size (Reference

Document) 1.5 Megabytes

Changes made for test 3 Layer data was changed.
New size (Target

Document) 2.1 Megabytes

Results for Test Three Size of
Delta:(kb)

Time
Min:Sec.

millisecond
Compression

Ratio
Uncompressed 1,800 NA NA

iDelta 481 00:01.020 0.2672
zdelta 632 00:01.050 0.3511

31

Table 4. Test Results with Globe.psd
Document name Globe.psd

DPI 233
Number of Layers 0(Background image only)

Description Art picture
Size (Reference

Document) 6.6 Megabytes

Changes made for test 4 Piece of Background is cut and copied into
a new layer

New size (Target
Document) 13.8 Megabytes

Results for Test Four Size of
Delta:(kb)

Time
Min:Sec.

millisecond
Compression

Ratio
Uncompressed 13,800 NA NA

iDelta 4,400 0:06.703 0.3188
zdelta 4,800 0:10.310 0.3478

32

Table 5. Test Results with Cactus.psd, #1

Document name Cactus.psd

DPI 233

Number of Layers 3 Layers; 1 pixel layer
2 adjustment layers

Description Photograph
Size (Reference

Document) 20.4 Megabytes

Changes made for test 5 Unsharp mask is applied
to pixel layer

New size (Target
Document) 21.6 Megabytes

.

Results for Test Five Size of
Delta:(kb)

Time
Min:Sec.

millisecond
Compression

Ratio
Uncompressed 20,250 NA NA

iDelta 19,100 0:20.734 0.9432

zdelta 19,500 0:28.099 0.9630

33

Table 7. Test Results with Cave wave.psd
Document name Cave wave.psd

DPI 550

Number of Layers 4 layers; 1 pixel layer,
3 adjustment layers

Description Photograph
Size (Reference

Document) 34.4 Megabytes

Changes made for test 7
2" x 2" portion of rack face on the pixel
layer is removed and made its own layer.

Other layers are reordered.
New size (Target

Document) 34.5 Megabytes

Results for Test Seven Size of
Delta:(kb)

Time
Min:Sec.

millisecond
Compression

Ratio
Uncompressed 34,600 NA

iDelta 2,100 0:09.330 0.0607
zdelta 16,500 0:50.688 0.4769

35

Table 8. Test Results with Pfeifer.psd

Document name Pfeifer.psd
DPI 325

Number of Layers 1
Description Photograph

Size (Reference
Document) 41 Megabytes

Changes made for test 8 Duplicate entire base image, add 2 effect
layers, Hue and saturation.

New size (Target
Document) 61. 7 Megabytes

Results for Test Eight Size of
Delta:(kb)

Time
Min:Sec:

millisecond
Compression

Ratio
Uncompressed 61,600 NA

iDelta 31,300 ' 0:51.740 0.5081
zdelta 47,800 1:51.030 0.7760

36

Table 9. Test Results with Lighting.psd
Document name Lighting.psd

DPI 325
Number of Layers 15

Description Art Image
Size (Reference

Document) 105.6 Megabytes

Changes made for test
9

Removed 3 pixel layers, unhide 2 previously
hidden layers, reordered 4' layers to
interact with newly unhidden layers

New size (Target
Document) 79 Megabytes

Results for Test Nine Size of
Delta:(kb)

Time
Min:Sec:

millisecond
Compression

Ratio
Uncompressed 80,000 NA

iDelta 2,300 00:32.090 0.0288
zdelta 51,900 04:85.670 0.6488

37

Table 10. Test Results with Gods Eye.psd
Document name Gods Eye.psd

DPI 300
Number of Layers 6 pixel layers,

2 adjustment
Description Art Image

Size (Reference
Document) 243 Megabytes

Changes made for test
10 Layers are reorganized

New size (Target
Document) 243 Megabytes

Results for Test Ten Size of
Delta:(kb)

Time
Min:Sec:

millisecond
Compression

Ratio
Uncompressed 244,000 NA

iDelta 5,300 11:13.010 0.0217
zdelta 200,800 33:15.970 0.8230

Table 11 below displays the results along with the

aggregate ratios comparing how iDelta compared with
zdelta. The results show that iDelta was able to out

perform zdelta with a 2500% better compression ratio,
based on an average of all tests performed. Even without

the result of test 2, which could be considered an
outlier, iDelta showed a 900% better compression ratio
over all.

38

Table 11. Aggregate Comparison of IDelta to Zdelta

Name Size(kb) Time
(Secs)

Compression
Ratio

Time
Ratio

Size
ratio

Uncompressed 1596 NA NA
iDelta 92 0.219 0.0613
zdelta 212 0.640 0.1328
zd'/'id.' 1 2.922 2.700.
uncompressed 1,500
iDelta 7 0.312 0.0047
zdelta 1,192 0.617 0.7947
zd/id 1.977 ,170.286
Uncompressed 1,800 NA
iDelta ' 481 1.02 0.2672
zdelta 632 1.05 0.3511
zd/id • 1.029 - ' 1.314
Uncompressed 13,800 NA
iDelta 4,400 6.703 0.3188
zdelta 4,800 10.31 0.3478
zd/id . :1.538 1.091
Uncompressed 20,250 NA
iDelta 19,100 20.734 0.9432
zdelta 19,500 28.099 0.9630
zd/id ' - 1.355 „ 1.021-. ■ .
Uncompressed 20,500 NA
iDelta 1,900 5.609 0.0927
zdelta 10,500 21.834 0.5122
zd/id 3.893 5.526 ■
Uncompressed 34,600 NA
iDelta 2,100 9.33 0.0607
zdelta 16,500 50.688 0.4769
zd/id 5.433 ‘ ■ 7.857.
Uncompressed 61,600 NA
iDelta 31,300 51.74 0.5081
zdelta 47,800 107.37 0.7760
zd/id 2.075' - 1.-527'
Uncompressed 80,000 NA
iDelta 2,300 23.9 0.0288
zdelta 51,900 280.06 0.6488
zd/id ' ' - 9.0625 . 22.565 ' .
Uncompressed 244,000 NA
iDelta 5,300 578.3 0.0217
zdelta 200,800 1995 0.8230
zd/id 11.718 37.887
Totals
average 3.595 25.657

39

iDelta out performed zdelta's execution time by a

factor of 3. This was an unexpected performance

enhancement, , as no specific speed optimization was added

to iDelta. It is important to mention that the algorithm

runs more quickly when there is more similar data between

files rather than difference. In cases when iDelta is very

successful in aligning the data, hence presenting more

similarly rather than dissimilarity to the differencer,

iDelta will run faster based on this fact alone. However,

test 5 shows that even when similar sized deltas are

produced, iDelta performed faster by a factor of 2.

4.4 Discussion of Results
Based on the results, iDelta performed at least as

well as zdelta in all tests. In some trials, iDelta
performed significantly better. iDelta consistently out
performed zdelta in execution time. The following is

detailed analysis of the results.

Test one used a very simple image, and was used as a

baseline comparison to ensure that iDelta's basic

functionally was intact.
The result of test 2, in which the only change was

the reordering of layers, iDelta produced a delta with a

compression ratio of .004. This was a better than expected

40

ratio, although the change made only shifts pixels, and

causes minimal byte reordering.

Test 3 shows the effect of actually manipulating the

data on one of the layers. In this test, pixels on the

third of five layers were rotated 90 degrees. This has the

effect of re-ordering the pixels on that layer, and the

resulting compression ratio is considerably lower.

Test 4 removes a large portion of the background

layer, and places it on a new layer. This results in some

byte reordering, as well as copying pixels to the new

layer. In this case, zdelta performs nearly as well as

iDelta, creating a delta on 4k larger.
In test 5, both iDelta and zdelta performed poorly

with .9 compression ratios. This is the case in which an
effect filter (Unsharp mask) was run. Sharpening an image

actually affects all pixels, running arithmetic algorithms

based on the values of the existing pixels to achieve the

effect. This will physically change the values of the
pixels present, so there is 100% change. As discussed in

the section entitled "The problem", and illustrated by

figure 2.1, there are cases in which there is enough

change to result in a very large delta.

Test 6 runs the same filter but on a new layer in

which only a portion of the image is copied to. This is a

41

more common use case, and a much better compression ratio

is achieved (.09.)
Test 7 shows iDelta achieving a .06 compression

ratio, while zdelta achieves a .4 ratio. In cases where

data was moved from one layer to another, and when layers

are shuffled, iDelta performed significantly better.

Test 8 explored the case in which large amounts of

data are added to the new file; in this case the new file
is 50% larger than it's original. IDelta managed to
achieve a .5 compression ratio when compressing he target

file, while zdelta achieved a .7 compression ratio.

Although .5 could be considered an average performance, it

is actually quite good. The original file size grew by

50%, so 20 of the 30 megs in delta, about 66% of its size,
can be explained by that alone.

Test 9 demonstrates the case in which data is
eliminated, not added to the image. Although this

decreases the file size, significant reordering occurs.

iDelta was able to create a significantly better

compression ratio than zdelta in this case.

The last test uses a large image of approximately 250
megabytes in size. A simple test is performed, the layers

are reordered. IDelta should perform better than zdelta on

this test, as the change made is similar to test 2 where

42

iDelta achieved an excellent compression ratio. This
speculation was correct, as iDelta does create a

significantly smaller delta than zdelta. However, iDelta

takes approximately 10 minutes to perform the difference

This could be considered too long to be functionally

useful.

4.5 Summary
Chapter Four covered the results of the performance

tests run between iDelta and zdelta. Result tables were

presented, and iDelta's over all performance was

significantly better than that of zdelta.

43

CHAPTER FIVE

CONCLUSIONS AND FUTURE WORK

5.1 Introduction
The following chapter discusses conclusions that can

be drawn from the performance of iDelta. Ideas for future

work are then suggested.

5.2 Conclusions
The primary conclusion that can be drawn from this

study is that data alignment can significantly assist in
the differencing process. Although image files can

experience large byte shifts in the process of editing,

the results indicate that this issue can be mitigated with

mixed success. By using information about the file type to
keep sections with a higher probability of similarity
matched when differencing, reasonably sized deltas can be
produced. In the tests run with iDelta, 60% of the images

had compression ratios greater than 80%. Despite this

success, one test yielded a ratio of .9 (10% compression).

5.3 Future Work
The worst ratio achieved by iDelta was for test 5,

which involved using pixel based effects. Pixel based

effects change all pixel values to achieve the particular

44

result they were designed to create. It is unrealistic to

expect any type of lossless compression, be it delta

compression or standard compression, to achieve a good

ratio in these cases. As a post test, the Cactus.psd file

from test 5 was compressed using zip compression, and the

resulting file was 4k larger than the file produced by

iDelta. It would appear that once this type of change is

made to a file, lossless compression is not going to yield

desirable results.
One idea to avoid this would be to create a logging

process, similar to transaction logging in SQL databases.

Instead of saving an image that had been affected by an

invasive filter, only the log event of the application of

the filter could be saved. Saving only the log would not
take very much space, as only the command would be written

to the delta. This would require support from the host

application, and could add considerable time to opening

the document.
Lossless compression depends on referencing data that

already exists in the file to be compressed. If the data

is organized in such a way that string matching is

prevented, any type of lossless compression is likely to

yield a poor ratio. iDelta had success in reorganizing

45

data and differencing file sections that had a higher

probability of being similar.

Another potential method could be to remove the

dimensional aspect of the file in order to set the bytes

in a more logical sequence. The example of the vegetable
basket used in chapter one's section "The context of the

Problem" discusses how the RLE compression ratio can

change after the image has been edited. The PSD file

format divides the main pixel section (Section 5 of the

file format) as 2 byte long length fields for each of the

channels represented, followed by each channel's scan line
pixel data. If this was reordered so that each scan line

length was paired with all the channels' bytes for the

current scan line, then the shift in data showed in the
vegetable basket example would not be problematic.

The PSD file's data section has the all of the scan

line lengths grouped together. Consider a 50 x 50 pixel

image; the first scan line length will be the RLE
compressed length for the first Red channel scan line (The

channels are stored in planar order; Red, Green, Blue.) If

the red, green and blue channels scan line data was moved

directly next to their respective scan line lengths, then

the section would be organized by scan line, not

sectionalized as lengths and planar pixel data.

46

This organization would be similar to the way text is

organized, where the byte file is can be read left to
right, top to bottom. In the current example, if only scan

lines 9, 10, 11 and 12 had changed, this reorganization

could lead to the creation of a smaller difference.

The downside of this method would be the time it

takes to reorganize the file, and the time taken to
reassemble on decompression. If the data section had
undergone major changes, as seen in test 5 of the results,

then this method would do little to improve the results.

5.4 Summary
This chapter discussed conclusions of the results

achieved by iDelta. The primary conclusion was that by
focusing on data alignment, better delta compression

ratios are achievable. Recommendations for future work on

the topic were then presented.

47

APPENDIX A

EXAMPLE PHOTOS

48

Example photo before change:

Example photo after change: (Red Pepper was copied to top
right of the vegetable basket.)

49

APPENDIX B

ABRIDGED PHOTOSHOP FILE FORMAT WHITE PAPER

50

Photoshop file format abridged
This is a summary of the Photoshop file formats document used as
reference 7. It was written to give the readers of this document an
over of the file format, without need to review the manual.

The Photoshop file format is the 8BPS format on the

Macintosh platform, and as the PSD format on MS windows.

OS
Photoshop file types

Filetype/extension
Mac OS
Windows

8BPS
.PSD

Important notes:

Photoshop is a Mac native app. It uses big endian
byte ordering, and for simplicity's sake, it maintains
this in other OS's. If working in a windows OS, you must
byte-swap when reading or writing files.

For cross platform compatibility, all needed data is
stored in the data fork of the file. For Mac's, some data
is then duplicated in the recourse fork.

The format is made up of 5 distinct sections, please

see Figure 1.1 below:

51

Figure 1.1 Photoshop file structure

File Header I
Color Mode Data r
Image Resources r
Layer and Mask

Information I
Image Data

f

I

I. File header - is as it sounds, this is the
section in which information about the file is stored. It
is a fixed length of 26 bytes, and is the only fixed
length section of he format.

II. Color mode data - Only indexed color and duotone
have color mode data, the length of which is stored in the

first four bytes of the section. For all other modes, this

section is just the 4-byte length field, which is set to
zero. If the image is of either of these sources, the
color mode specific data goes here.

52

III. Image Resources Section -
The image resource section derives its name from

Macintosh's concept of splitting files, in which metadata

was stored in a 'resource fork', and the file data was

stored in the 'data fork'. This motif is mirrored here in

which 'info about' the image, commonly referred to as

metadata, is stored here.

Format information. It begins with a 4 byte length

field.
Some obsolete data fields are stored here at specific

locations, left in for backwards compatibility. The

following info is stored here (truncated for Brevity)

Resolution
Display units (pixels, inches, etc)
Caption
Border info
Default Background color
Print flags
Duotone / Grayscale data
Masking info
Path info
Jpeg quality setting
Copyright flag
ICC profile
Watermark
Slice data
Print scale

The more complex of these are expanded upon in the

text.

By seeking the end of the section, you arrive at the

beginning of the Layer section.

53

VI. Layer and Mask Information Section -
The layer section is really where Photoshop breaks

away from other image editors and becomes the premiere
image-editing tool. By supporting layers, which are akin

to having acetate layers each appearing one on top of the

other, Photoshop allows you to add effects or montage

images very easily and intuitively.
Layers can either affect the pixels below its logical

placement in the file, or can it be actual pixel image
data which resides on top of the background image data. By

adjusting the transparency, you can achieve both image and

affect if you need.

Format Information: As the other sections, it begins

with a length field, and is then following by the layers
and masks sub sections respectively. The layers specific

section is comprised of a 4 byte fixed length field

beginning, giving the length of the layers section. The

next portion is variable in length and gives the layer

info; the next is variable in length and gives the mask
info. It is important to explain that although the flat

image data is stored in the last section (see section 5)

the layer channel data is stored in this section. By

54

following the lengths at each layer, you arrive at the

channel data 'for all the layers. It is stored in planar

fashion just as the data is, and is compressed with RLE

(Run length encoding) as well. The layer section gives the

bounding box that contains any particular layer data.

The second of the 2 sections is the mask section,

which manages many minor effects fields. They are small,
but there a lot of them. (In the doc, the file format goes
from page 7 to 47. Pages 24 to 46 comprise the layer-mask

info.) By seeking the end of the layers/masks section, you

arrive at the data section.

V. Image data section -
This is where the actual image data resides. This is

what is actually drawn on screen, save any affects that

may be applied to it via the layer section.

Format Information: The image data section begins wit
a 2 byte compression method indicator.

0 = Raw
1 = RLE compression

2 = ZIP w/o predication

3 = ZIP with predication

Following this is the flat image data (by flat, it is'what

you actually see, it does not store hidden data) and is

55

stored in planar fashion, Red data first, Green data

second, and Blue data third. It uses RLE encoding for

compression, and is stored as the scan line coordinates,

then the color data.

56

APPENDIX C

DELTA FILE LAYOUT

57

30 bytes - Target file header and color mode length
4 bytes - The reference file length
Variable - The reference file name

4 bytes - Image resource delta section length
4 bytes - this section's uncompressed length
variable - this section's delta buffer

4 bytes - layer metadata delta section length
4 bytes - this section's uncompressed length
variable - this section's delta buffer

If(simple diff case)
{

4 bytes - channel section delta section length
4 bytes - this section's uncompressed length
Variable - this section's delta buffer

}
else // complex diff, i.e. reordered layers
{

while(layers)
{

4 bytes - channel sec delta section length
4 bytes - ref layer
4 bytes - target layer
4 bytes - this section's true length
Variable - section's channel delta buffer

}
}
4 bytes - image section delta section length
4 bytes - this section's uncompressed length
variable - this section's delta buffer

The target file header is a fixed 26 bytes, so it is

not worth the over head to difference it alone. Adding it

to another section is an option, however, it provides a

good header for iDelta, since it retains simple macro data

about the target file that it is a difference of. It is

simply copied into the main delta buffer for this reason.

58

The color mode data section is 'O' except for unusual

cases, which iDelta is currently not supporting. It will

be trivial to add later if the need arises. This is
followed by the length of the reference file name, and the

reference file name itself. The Next field is the length

of the image resource delta section length, referring to

the actual differenced data buffer for this section,

followed by the true length of uncompressed data. This

length is useful for both memory allocation for
decompression, as well as a data check to confirm the

decompression was successful. This is followed by the

actual difference buffer which contains the copy and

insert commands and bytes to insert for the extraction

process. This pattern follows true for the layer, channel,
and image sections of the file.

The only aberration of this is when layers have been

reorder. In this case, iDelta does a best guess match of

the layers, then sections out the channel data to

difference against the most likely similar channel data.

This process adds extra length fields, as more data is

needed for extraction.

iDelta adds no footer, as all need info is embedded

in the contents of the delta file itself.

59

APPENDIX D

PHOTOSHOP IMPLEMENTATION SCREENSHOTS

60

CO

LRleJi Edit?mintage. Layef- Select- Filter/View: "Window, Help

New...

(Open:..

-Brpw.se. .5

(£>pen;As,?; ,

(Open-Recent,

'Close;; -•Ctrl+W ‘

'SdvefAs;,..; (ShftRCtrfrS

'Save for Web/.
'Reyej;6/

Alt+Shft+Ctrl+S

(Place..-. . . .

-Import; ►'
,v

Export1,

' /Workgrpup k:

1 (foatomatek kl

File'Jnfd.-i-r-

-Page;S.etu'p;.i. ■/Shft+Ctrl+P
Print with; Preview " Ctri+P

. 'Print... . " (AJttctrllP -

jump To £

.. Ctrl+Q { ftiDeltaPr'epj

Ctrl+N

ctH+o
•Slift+Ctrl+6

fflit+etri^d

qt iCre.ate Droplet';.;

/Conditional ,Mo,de Ghange
jCpntadt' Sheet(II;.'.
^itimage;;;

;Multi7RegeRbFto‘ PSD...,
,-fc y ‘
/PicturejPackage;..-
:;W,eblphotpCallery....

i-MakeSelettFill-

IDelta Preparation Routine:

Brpw.se

The iDelta save function:

Save As

Save in: Ph 2 meg O $ e?

File name:

Format:

■Save Options=
Save:

rtr reference

[eB| Butterf Iy3 delta 2 change.idf
Q Butterfly3 delta reorder.idf

Butterfly copy.idf |l Save

iDeltaFormat (“.IDF/.IDF) IF || Cancel

Ml £s:a

Ej| Algfe

A Ej

Photoshop r.PSDAPDD)
BMP (“.BMP;“.RLE;“.DIB)
CompuServe GIF (’.GIF)
Photoshop EPS (“.EPS)
PhotoshopDCS1.0r.EPS)
Photoshop DCS 2.0 (“.EPS)

liDeltaFormat (“.IDFhIDF
Color: E! W]sej

□I ICCTl

O Ifoumbrjail!

A FilFile must be saved as

JPEG l“.JPG;“.JPEG;“.JPE)
PCX (“.PCX)
Photoshop PDF (“,PDF;“.PDP)
PICT File (“,PCT;“.PICT)
Pixar (“.FXR)
PNG (“.PNG)
Raw (“.RAW)
Scitex CT (“.SCT)
Targa (X.TGA;“.VDA;“.ICB;“.VST)
TIFF (“TIF;“TIFF) sti.

62

The iDelta .Open Dialogue:

£5 2 meg

IF - E* ■■' iLook in:

LMy Documents’

My\Compute'r'(

'/W.7

My Network ,
' Plates = ■
' - J /• 1lpu - ‘

rtl reference
[g^l jifljtterf Iy3. delta 2 change. idf]
|[B| Butterfly3 delta reorder.idf

File name:

•Files of type:

Butterfly3 delta 2 change, idf

iDeltaFormat (X.IDF;“.IDF)

£
Fi

Open

Cancel

File Size: 480K

63

	An image delta compression tool: IDelta
	Recommended Citation

	IDelta Preparation Routine:

	The iDelta save function:

	The iDelta .Open Dialogue:

	IF - E* ■■' i

