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ABSTRACT

An interconnection network that passes all N!

permutations, when N=2n, in one pass through the network is

defined as rearrangeable. No formal proof has been

developed to show that (2n-l) stages of the shuffle-

exchange (SE) network are sufficient to pass all

permutations.

The heuristic developed for the SE network relies on

the use of the topologically equivalent baseline (BL)

network concatenated with the cube-connected (CC) network.

This thesis establishes a control heuristic for setting the

states of the switching elements for arbitrary permutations

for a 7-s,tage (2n-l) BL.CC network with N=16 (2n) inputs.

The conditions and requirements, which were discovered,

will help serve as a foundation for future work on the

proof of the rearrangeability of the SE network.
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CHAPTER ONE

OVERVIEW

■ Introduction

The algorithms, which control network routing, are

specific to the network because the algorithms are designed

to take advantage of that network's topology. The

"goodness" of a network includes such criteria as a simple 

routing algorithm, and a simple routing algorithm would

increase the use of the SE network.

No formal proof has been developed to show that (2n-l)

stages of the SE network are rearrangeable. Subsequently,

there is no simple routing algorithm that allows one to set

the states of the switches and pass all permutations in

(2n-l) stages. This thesis provides insight into the

required conditions to establish the proof that (2n-l)

stages of the SE network1 are rearrangeable.

Definition of Terms

1. Binary Switching Element: A (2X2) switch that has

two inputs and two outputs as well as two possible

switch settings, through or cross. If the setting 

is "through", the upper and lower inputs go to the

1



upper and lower outputs respectively. If the

setting is "cross", the upper and lower inputs go to

the lower and upper outputs respectively. See

Figure 1.

F F

F F

Through

Figure 1. Switch Settings

2 . Line Numbers (LN) : The input lines to each binary

switch. See Figure 2.

LN
I

000
001

010
Oil

100
101

110
111

TA Switch

Figure 2. Cube-Connected Network

3 . Targpt Address (TA) : Identifies the destination

processor. See Figure 2.
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4. Stage: A column consisting of 2n_1 binary switches 

for N=2n inputs. See Figure 2.

5. Routing: Moving information, or transmitting a

message, across a network from a source to a

destination. See Figure 3 for an example of a CC

routing algorithm applied to a permutation. The

arrows point to the position of the control bit.

Figure 3. Cube-Connected Network Routing

6. Switching Network: Switching elements are used to

establish time variant paths among processors. All

processors are connected to both the inputs and

outputs of one or more switching elements. The

switching'elements, based on the target addresses,

decide on the connections that must be made to

3



establish a path. A CC network is an example of a

switching network.

7. Multistage Interconnection Networks (MINs): A MIN

consists of a number of binary switching elements

arranged in several stages such that the output

lines of one stage are the input lines of the next

stage. There are N=2n inputs and outputs, N/2

switches per stage, and 0(log2N) stages. The input

lines are numbered from 0 to N-l from top to bottom.

The connection between stages is controlled by some

interconnection function. Different MINs are

constructed based on changing the interconnection

function that exists between the stages. Figure 4

shows three examples of MINs: SE, BL, and CC. A MIN

of size 2 is a switch.

SE Network BL Network CC Network

Figure 4. ■ Multistage Interconnection Networks
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8. Output Contention:' More than one input attempts to

send data to the same output.

9. Blocking: When there is no output contention and an

input sent to a particular output blocks another

input from going to some output. In a blocking

network, data cannot flow on all connections

simultaneously.

10. Non-blocking: Any input can go to any output

without interfering with another input going to an

output. Data can flow on all connections

simultaneously.

11. Rearrangeablity: An interconnection network that

passes all N! permutations in one pass through the

network is called rearrangeable.

12. Shuffle-Exchange Networks: Identical stages in

which there is a perfect shuffle of the input

lines followed by an exchange between the

switches. See Figure 5.

5



stage O' stage 1

Figure 5. A Two-Stage Shuffle-Exchange Network

Purpose

The control heuristic provided in this thesis was

developed in the quest to prove the rearrangeability of the

(2n -1) stage SE network for N=2n inputs. It provides a

simple routing heuristic that allows one to set the states

of the switches for N=16 inputs and pass most permutations

in (2n-l)=7 stages. This thesis documents minimum

requirements that can be used to develop a simple routing

algorithm for SE networks.

6



Scope

This thesis establishes a heuristic. It provides a

method or tool for passing most permutations, but not all.

Those who work with SE networks and have a need to route 16

(24) inputs benefit from using this control heuristic. Some 

permutations can be quickly and easily routed through the

network. Additionally, the user is able to gain an

understanding as to the constraints and conditions which

must be met for routing the more difficult permutations.

Whenever an exact solution is not generated, an approximate

solution is made available. One can start with an

approximate solution and generate an exact solution throughI
the use of■iterations.

Significance

A 5-stage SE network with N=8 inputs has been shown to

be rearrangeable [10]. This work for 16 inputs will help

further the cause for the use of SE networks in more

routing platforms. The lack of a good (minimum stage) non-

blocking routing algorithm for SE networks that scales well

hinders its use in some applications. Since unique paths

and the chance of blocking exist in current SE networks of

size N k 16, a simple routing algorithm that constructs a

7



non-blocking SE network in (2n-l) stages will be useful.

The techniques used in generating the switch settings to

route 16 inputs could be extended to larger 2n data sets

because all of the rules and constraints are applicable

regardless of the value of n.

The ability of a SE network to send all inputs to all

outputs simultaneously if the network is non-blocking

increases the speed of the network for parallel processing

and other data transfer applications. All. work towards

establishing a non-blocking SE network contributes to the

development of faster, more efficient networks.

Limitations

There are several ways to set the switches and route

an arbitrary permutation. This control heuristic provides

one way to set the switches to route a particular

permutation. All possible solutions are not generated.

This control heuristic is specific to 16 inputs and would

have to be modified to scale to larger sets of

permutations. Permutations are limited to the form of 2n

and those outside of this format do not work with this

methodology. The approach taken in this thesis was to work

with 16 inputs because the data set was manageable.

8



CHAPTER TWO

BACKGROUND

History of Shuffle-Exchange Networks

SE networks were initially proposed by Stone and the

proof of their rearrangeablity has challenged researchers

for decades [1]. The lower bound of (2n-l) stages was

established as necessary to pass any N! permutation for N=2n

through a SE network. Permutations were shown that could

not be realized in fewer than (2n-l) stages and these

permutations provided the proof for this lower bound [2].

However, no formal proof has ever been developed to show

that a (2n-l) stage network is sufficient to pass all

permutations.

SE networks have been studied extensively in parallel

processing due to their efficient interconnection scheme

[3][4][5]. A SE network with N input lines and log2N stages

is called an Omega network, Figure 6. An Omega network is

capable of passing some important classes of permutations

that are useful in parallel processing. Most importantly,

the Omega network can be controlled by a simple routing

algorithm. Unfortunately, when N is large, the network can

9



only perform a small fraction of the N! possible

permutations [2].

oooo
0001

0010
oon
0100
0101

0110
0111

1000
1001

1010
1011

1100
1101

1110
1111

— 0000 
0001

1100
1101

Figure 6. 16-Input Omega Network

Supporting Research

Algorithms that define a non-blocking SE network have 

been improving in terms of the minimum number of stages 

required. Following are some established proofs to date.

Stone developed an algorithm for a non-blocking SE 

network. It required (log2N)2 stages [1].

In 1975, Benes conjectured that a (2n-l) stage SE

network was rearrangeable [6] . He established the well-

10



known (2n-l) lower bound but never proved the sufficiency

of (2n-l) stages to pass all permutations.

Siegel developed an algorithm for performing arbitrary

permutations on a single-stage shuffle/exchange network in 

3/2(log2N)2 - (log2N)/2 passes [7]. Parker subsequently 

improved this bound to 31og2N stages [8]. Unfortunately,

Parker did 'not specify a control algorithm for determining

the states of the switching elements.

The best-known rearrangeable SE algorithm was
1established by Wu and Feng [9]. They observed that (31og2N

-1) stages are sufficient for rearrangeability of the SE

network. Another significant accomplishment of Wu and Feng

is that they showed how to compute the switch settings for

arbitrary permutations.
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! CHAPTER- THREE

NETWORKS

Design

Shuffle-Exchange

Switch Connections. Each identical stage of the SE

network consists of a perfect shuffle of the input lines

followed by switching elements. Figure 7 depicts the!
switch connections, which show that the output lines from

switches in one stage are input to two different switches

in the next stage. To determine which switch in a stage is

connected to which switch in the next stage, left shift one

place the switch number in the previous stage and add a "0"

or "1" to the end.

If a switch is located in the upper half, its output

lines connect to the upper inputs of the switches in the

next stage. If a switch is located in the lower half, its

output lines connect to the lower inputs of the switches in

the next stage.

Alternate Method. Another way to determine the SE

switch connections is to start with the switches in the

next stage. For each switch, right shift one place its

12



switch number and add a "0" or "1" to the beginning. The

two resulting numbers are the. switches in the previous

stage to which it is connected.

The "0" in the beginning indicates that the upper

input line comes from a switch in the upper half of the

previous stage: The ."1" in the beginning indicates that

the lower input'line comes from a switch in the lower half

of the previous stage. Besides understanding of how the

switches are connected it is important to know how the line

numbers are determined.

Input Lines Output Lines< , stage 0 stage 1 ,

Figure 7. Shuffle-Exchange Switch Connections

13



Line Numbers. The line numbers are the inputs to each

binary switch. It is important to define the switch

numbers properly because the line numbers are based on the

switch numbers. For N=2n input lines, the switches are 

numbered zero through (2n_1 - 1) . The input lines have (n)

bits and the switch numbers have (n-1) bits. The input1
line to each switch is the (n-1) bit switch number with a

"0" or "1" appended to the beginning. See Figure 7.

Baseline

The stages in the BL network are recursively divided

in half as shown in Figure 8. For all N=2n inputs, there

will be (n),stages with the stages getting subdivided n-1

times. The output lines from each switch connect to both a

switch located in the upper half and a switch located in

the lower half.

The upper half of each subdivision receives inputs

from the upper output lines of the switches in the previous

stage. The lower half of each subdivision receives inputs

from the lower output lines of the switches in the previous

stage.

Cube-Connected

The stages in the CC network are recursively divided

in half as shown in Figure 9. For all N=2n inputs, there

14



Figure 8

Figure 9

Baseline(N)

Cube-Connected(N)
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I

will be (n)i stages with the stages getting subdivided n-1

times. The! output lines from each switch connect to both ai
switch located in the upper half and a switch located in

the lower half.

To determine the switch connections from stage 0 to

stage (n-1)1, one output line connects to the same numbered

switch as depicted in Figure 10. If this output line is

from a switch in the upper half, the upper output line

connects to' the upper input line of same numbered switch.

If the output line is. from a switch in the lower half, the 

lower output line connects to the lower input line of same

numbered switch. To determine the connection for the

second output line, the stage is used to define the bit

position. The Second output line connects to the switch

different in only that bit position. The bit positions are

counted from left to right with the MSB numbered as "0" and

controlling, stage 0 connections to stage 1. Proceeding

from left to right, the LSB controls the, connection from

stage n-2 to stage n-1. The connection for the second

output line; will be from the lower output to the upper

input or vice versa.

16



stage 0 stage 1 stage 2

Figure 10. .Cube-Connected Switch Connections

The upper half of each subdivision receives inputs

from the upper output lines of the switches in the previous

stage. The lower half of each subdivision receives inputs

from the lower output lines of the switches in the previous

stage.

Topological Equivalence

The SE network, BL network and CC network are all

topologically equivalent when they have the same number of

(N=2n) input lines and the same number of (n) stages. There 

are a total of 2n’1 (or N/2) switches in each stage. Figure 

11 depicts topologically equivalent networks. A method for

demonstrating topological equivalence between

17



interconnection networks is to transform one network to

another by reordering the switches within each stage.

Shuf fie-exchange 
Network

Baseline Network

Figure 11. Topologically Equivalent Networks

Cube-connected
Network

Shuffle Exchange Reorganized 
as a Baseline Network

The number of stages is (n) while the final stage is

numbered (n-l) because the stages are numbered starting

with zero. In order to set the switch numbers for the SE

network reorganized as a BL network, the initial stage must

be set as defined in the next paragraph. The subsequent

stages are set based on the switch settings in the previous

stage. For example, if stage "0" is the initial stage,

stage "1" is set based on stage "0" switch numbers. Stage

"2" switch numbers are then determined based on stage "1"

switch ;numbers, and so on.

Setting the Initial Stage. The SE initial stage 

switch numbers are numbered zero through (2n_1 -1) in 

ascending order. The number of bits is (n-l). The

18



reorganized BL network initial stage switch numbers are 

also numbered zero through (2n_1 -1) in ascending order 

except the numbers are incremented starting with the MSB

instead of the LSB. In ordinary binary notation, the

pattern for 8 switches is 000, 001, 010, Oil, 100, 101,

110, 111. To count in reverse, the pattern is 000, 100,

010, 110, 001, 101, Oil, 111.

Setting'Subsequent Stages. Once the initial stage is

set, the subsequent stage switch numbers are set from the

switch numbers in the same position in the previous stage.

A left-circular shift (LCS) is performed on the previous

stage switch number to determine the switch number in the

next stage. The stage number dictates how many bits on

which the LCS is performed. The initial stage is defined

as stage "0". Therefore, the next stage is stage "1". A

LCS is performed on one bit, namely the least significant

bit (LSB), of the switch number. A LCS on only the LSB

yields the same number. This explains why in going from

stage 0 to stage 1, the switch numbers remain the same.

When defining stage "2" switch numbers, a LCS is performed

on the1"2" LSBs of the switch numbers in stage "1". For

example, "110" becomes "101" in stage 2 and "011" becomes

"Oil" in stage 2. One continues in this manner until stage

19



number (n-1) is defined; where all switches are numbered 

zero through (2n_1 -1) in ascending order. Figure 12 is an 

example of a 16-input SE network reorganized as a BL

network.

Line
Numbers

0000
1000

0100
1100

0010
1010

0110
1110

0001
1001

0101
1101

0011
1011

0111
1111

Switch
Numbers

Line
Numbers

stage 0 stage 1 stage 2 stage 3

Figure 12. 16-input, Shuffle-Exchange Network Reorganized 
as a Baseline Network

Shuffle Exchange Reorganized 
as a Cube-Connected Network

Setting the Initial Stage. The reorganized CC network

initial stage switch numbers are set as numbers zero thru 

(2n_1 -1) in ascending order. This switch numbering is the

20



same as the switch numbering for the initial stage of the

SE network.

Setting Subsequent Stages. Once the initial stage is

set, the subsequent stage switch numbers are set from the

switch numbers in the same position in the previous stage.

A LCS is performed on the previous stage switch number to

determine the switch number in the next stage. The number

of bits is (n-1). The LCS is performed on all

(n-1) bits. This methodology for setting subsequent stages

is used in setting all stages from stage "1" to stage

number "n-1", which is the final stage.

Reorganized Baseline.Cube- 
Connected Network

A 16-input SE network is shown in Figure 13. An N-

input BL network with (n) stages concatenated with an N-

input CC network with (n) stages forms a composite BL.CC 

network for N=2n input lines. The last stage of the BL

network is the same as the first stage of the CC network as

shown in Figure 14. When this redundant stage is combined,

the composite BL.CC network has (2n-l) stages. Figure 15

shows a 7-stage, 16-input SE network reorganized as a

composite BL.CC network. The first (n-1) stages are the BL

network and the next (n) stages represent the CC network.

21



The stage interconnections in the SE network are reproduced

in the composite BL.CC network. For example, switch "0" is

connected to switches "0" and "1" in every stage in both

the SE network and the BL.CC network.

stage: 0123456

Figure 13. 16-Input, 7 Stage Shuffle-Exchange Network

22



BL stage 4 CC stage 0

Figure 14.. Redundant Stage of Baseline.Cube-Connected 
Network

BL
stage 0

0000
1000

BL
stage 1

0101
1101

0011
1011

0111
1111

1000
1001

1010
1011

1100
1101

1110
1111

Figure 15. 16-Input, 7 Stage Baseline.Cube-Connected 
Network
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Functional Equivalence

Two interconnection networks are functionally

equivalent if they realize the same set of permutations.

When two interconnection networks are topologically

equivalent, their functional equivalence can be established

by relabeling their inputs [11][12].

Topological equivalence between the SE and BL.CC

network has been demonstrated. Functional equivalence can

be shown by renaming the inputs to the BL.CC network. The

renaming of the input lines to the BL.CC network, as

depicted in Figure 15, simulates the SE network.

The output produced by (2n-l) stages of the SE network

and (2n-l) stages of the BL.CC network is the same for any

given permutation. Both networks relate the output to the

input in the same way and therefore realize the same

permutations. This establishes that the N-input BL.CC

network is functionally equivalent to the N-input SE

network, when N=2n.

24



CHAPTER FOUR

CONTROL HEURISTIC DEVELOPMENT

Design

The approach to establishing the heuristic on the

rearrangeability of (2n-l) stages of the SE network

involves developing a heuristic on the rearrangeability of

(2n-l) stages of the composite BL.CC network. The control

heuristic uses fundamental principals of the BL and CC

networks. The first (n-l) stages are the BL portion of the

composite BL.CC network. The permutation is routed through

the first (n-l) stages such that at stage number (n-l) the

permutation is reordered as a CC permutation. Once this is

achieved, the well-known bit-matching algorithm for routing

TAs through a CC network is used to complete the routing of

the inputs through the rest of the network.

Conditions and Requirements

Cube-Connected Network Routing
I

Cube-Connected Permutation Requirements. The

algorithm for routing inputs through a CC network is

documented and well understood. A cube-connected

permutation (CCP) is necessary for routing inputs through a

25



CC network. A CCP has the following requirements for 16

inputs:

• All combinations of the most significant bit (MSB)

on each switch (this is simply 0 and 1). For

example, switch 0 must have Oxxx and lxxx, where x

could be 0 or 1.

• All permutations of the 2 MSB on all switches 

equivalent modulo 2n“2. This is the same as stating 

all.switches different in only their MSB have all

permutations of the 2 MSBs. For example, switches 0

and 4 must have OOxx, Olxx, lOxx, and llxx.

• All permutations of the 3 MSB on switches equivalent 

modulo 2n“3. This is the same as stating all even 

switches (and all odd switches) have all

permutations of the 3 MSBs. For example, switches

0, 2, 4, and 6 must have OOOx, OOlx, OlOx, Ollx,

- lOOx, lOlx, llOx, and lllx.

Figure 16 shows three examples of CCPs and the attributes

for 16 inputs.

26



All combinations 
of the MSB

All combinations 
of the 2 MSB

Figure 16. Cube-Connected Permutations

3 MSB

All combinations 
of the 3 MSB

Routing Algorithm. The ith bit controls the setting 

for the switch in stage n-i-1. The initial stage is stage

"0". Figure 17 depicts bit numbering for 16 inputs with

n=4. For example, in setting stage "0", the MSB, bit

number 3, determines the switch setting.

X X X X
3 2 10

Figure 17. 16-Input Bit Numbering
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Inputs are routed once the control bit is determined.

If a "1" is on the upper input line in the control bit

position, the switch setting is: cross. If a "1" is on the

lower input line, the switch setting is through. The CC

control scheme is depicted in Figure 18.

Control bit
1
0011
1010

1111
0101

1000
0111

0001
1101

0100
1110

0010
1001

0000
1100

0110
1011

Control bit Control bit Control bit

0000
0001

0010
0011

0100
0101

0110
0111

1000
1001

1010
1011

1100
1101

1110
1111

Figure 18. Cube-Connected Network Control Algorithm

Baseline Network Routing

Purpose. The majority of work done for this thesis

was in developing the conditions for passing permutations

through the BL segment of the BL.CC network. The purpose

28



of routing the inputs through the BL segment is to realize

a CCP in BL stage (n-1), which is also CC stage 0.

Routing Conditions. Two conditions (conditions 1 and

2) were discovered, which must be adhered to in order to

realize a CCP in CC stage 0. Conditions 1 and 2 are

defined for N=16 (n=4). The conditions operate on the TAs

as they are routed through the BL portion of the network.

The TAs, shown in Figure 19, are a random input

permutation.

TA

0010
1101

1111
1011

1000
0100

0110
1010

1001
1100

0101
0000

0011
0001

1110
0111

CCP Required

Figure 19. Baseline Portion of Baseline.Cube-Connected 
Network
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• Condition 1: In every stage, there must be an equal

number of zeros and ones in the MSB position within

each subdivision. That is, going from stage 0 to

stage 1, inputs to switches 0, 4, 2, and 6 must have

four Oxxx and four lxxx. Going from stage 1 to

stage 2, switches 0 and 4 must have two Oxxx and two

lxxx. Figure 20 depicts the subdivisions.

Figure 20. Baseline Stage Subdivisions

• Condition 2: In BL stage 2, there must be a pair of

the 2 MSBs on switches equivalent modulo 2. That

is, switches 0, 4, 2, and 6 in stage 2 must have two
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OOxx, two Olxx, two lOxx, and two llxx. See Figure

21. Condition 2 must be adhered to in conjunction

with the constraints defined in the upcoming

paragraph titled "Condition 2 Locked Pair

Constraints." The condition 2 constraints exist

because of the CCP requirements. The CCP

requirements are defined and then the condition 2

constraints are explained.

BL CC

Figure 21. Baseline Stage Condition 2 Criteria
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Routing Requirements. It is necessary to follow

conditions 1 and 2 to set the switches in BL stages 0 and 1

because these conditions control how the TAs will be

arranged as inputs to BL stage 2. It is necessary to

follow the CCP requirements to set the switches in BL stage

2. The CCP requirements .are enforced so that TAs are

arranged as a CCP for input to CC stage 0. The

requirements apply to CC stage 0.

• MSB Requirement: All switches have all permutations

of the MSB.

• 2 MSB Requirement: All switches equivalent modulo 4

have all permutations of the 2 MSBs.

• 3 MSB Requirement: All switches equivalent modulo 2

have all permutations of the 3 MSBs.

Routing Constraints. Conditions 1 and 2 are necessary

but not sufficient to guarantee that the inputs to BL stage

2 can be arranged such that a CCP can be generated in CC

stage 0. When the number of constraints exceeds the number

of switches that can be freely set, conflicts occur. When

a constraint exists between switches, one switch

automatically sets the other. The goal is to reduce,
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minimize, and even eliminate constraints so that a CCP can

be generated.

Condition 2 Locked Pair Constraints. It was

discovered that constraints exist for the pair of 2 MSBs on

switches .equivalent modulo 2 required by condition 2.

These constraints result from the necessary requirements

defined for having a CCP in CC stage 0. To reiterate the

CCP requirements for N=16 inputs: all permutations of the

MSB on each switch, all permutations of the 2 MSBs on

switches equivalent modulo 4, and all permutations of the 3

MSBs on switches equivalent modulo 2. A "locked pair" is a

pair of TAs that always exists together on a switch in CC

stage 0. Following is an explanation of how the CCP

requirement for the MSB creates locked pairs and how other

constraints follow when enforcing the CCP requirement for

the 2 MSBs and the 3 MSBs in the presence of locked pairs.

Locked Pair Creation. Within each subdivision of BL

stage 2, there exists a set of switch numbers differing in

only their MSB, refer to Figure 22. The switches within

each subdivision are defined as partners Pl and P2.

Because there is a requirement for an even distribution of

the MSB within each subdivision, if the MSB differs on Pl,

this automatically implies a difference on P2. When this
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occurs, one switch setting automatically sets the other

switch. A constraint called "locked pairs" is created

because the CCP requirement for the MSB requires all

permutations of the MSB on each switch in CC stage 0 and

the pairs that exist on the switches in CC stage 0 are

"locked" together. When a "Oxxx" is sent to an upper

switch by Pl, a "lxxx" must be sent to the upper switch by

P2, and vice versa. P2 has no freedom in choosing its

switch setting. This leads to the corollary that the worst

case in BL stage 2 is when each switch has all permutations

of the MSB (i.e., every switch has a TA with a MSB zero and

another with a MSB one). Worst case is defined as the case

when there is reduced freedom in setting switches because

one switch setting automatically sets the other.

Figure 22. SwitchesPartner
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Locked Pairs and the Cube-connected Permutation

Requirement for 2 MSBs. The even switches in BL stage 2,

highlighted in Figure 21, produce the inputs for switches

0&4 and switches 1&5 in CC stage 0. The even switches in

BL stage 2 are required to have a pair of the 2 MSBs so

that in CC stage 0 the switches equivalent modulo 4 can

have all permutations of the 2 MSBs. When the even switches

have a pair of the 2 MSBs, the odd switches meet this

criterion by default and switches 2&6 and switches 3&7 can

have all permutations of the 2 MSBs. If locked pairs exist

on any one set of partner switches, there are more

constraints in setting the switches to meet the CCP

requirement for the 2 MSBs because there is less

flexibility in setting the BL stage 2 switches. If locked

pairs exist on both sets of partner switches (i.e., on all

the even numbered switches or all the odd numbered

switches), flexibility in setting the BL stage 2 switches

such that a CCP is generated in CC stage 0 is reduced even

more.

Locked Pair Conflict. An example of a conflict is

shown in Figure 23. The locked pair "0000" and "1001"

exists on switch 0 in CC stage 0. The pair "1000" and

"0011" exists on switch 6 in BL stage 2. No matter how
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switch 2 is set in BL stage 2, one of the outputs must be

an input to switch 4. As such, switches 0&4 can never have

all permutations of the 2 MSBs. Changing the switch setting

for switch 0 in BL stage 2 to "cross" means that switches

1&5 can never have all permutations of the 2 MSBs. Under

no circumstances will this permutation create a CCP in CC

stage 0. , The CCP requirement for the 2 MSBs will always be

violated. The conditions stated for the even switches

apply likewise to the odd switches with the rule that the

odd switches produce inputs for switches 2&6 and switches

3&7 in CC stage 0.

“=“ through switch setting

Figure 23. 2 Most Significant Bits Locked Pair Constraint
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Locked Pairs and the Cube-connected Permutation

Requirement for 3 MSBs. The locked pairs created by the

partner switches in BL stage 2 also create a constraint

between the 3 MSBs in CC stage 0 and increase the chance of

a conflict. If a locked pair exists in CC stage 0 and does

not create a 2 MSB conflict, the 3 MSBs must be examined.

The 3 MSBs of that locked pair cannot exist together on the

same switch in BL stage 2. This constraint exists because

every switch in BL stage 2 produces an input for an even

switch and an input for an odd switch. If the "locked

pair" 3 MSBs exist together on a switch in BL stage 2, at

least one of the 3 MSBs will be repeated on an even switch

or on an odd.switch, depending on how the switch is set.

As the example in Figure 24 shows, the 3 MSB "001" on

switch 7 in CC stage 0 conflicts with the 3 MSB "001" on

switch 1 in CC stage 0. This conflict means that a CCP

cannot be achieved in CC stage 0 because the CCP

requirement for the 3 MSBs requires that all permutations

of the 3 MSBs exist on both the even and the odd switches.

This is an example of a permutation that satisfies the CCP

requirement for the 2 MSBs but fails to satisfy the CCP

requirement for the 3 MSBs.
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BL

stage 2

CC

stage 0

locked pair 
conflict 

with 3 MSB

Locked pair

0

“=“ through switch setting 
“X” cross switch setting

Figure 24. 3 Most Significant Bits Locked Pair Constraint
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CHAPTER FIVE

CONTROL HEURISTIC IMPLEMENTATION

Methodology

Introduction

A control heuristic was implemented to pass N=16

inputs through the BL portion of the BL.CC network and

realize a. CCP in CC stage 0. When N=16, there are 16!

(approximately 20.9 trillion) permutations. This is called

a heuristic because the conditions, which control the

heuristic, are necessary but not sufficient to generate a

CCP for all 16! permutations. This chapter outlines the

logic for setting the BL switches. The heuristic is given

in Appendix A.

Approach

Switch Setting Scheme. The default switch setting is

"through" for all switches in every stage. The switches

are set in ascending order from position one to position

N/2. See Figure 25. After each switch is set, a check is

made to determine if a condition or requirement is violated

or a conflict is detected. If there is a violation or

conflict, the switch is reset to "cross".
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. unset direction

Figure 25. Baseline Stage Switch Setting Scheme

Switch Reset Scheme. If resetting the switch at

position j to "cross" does not satisfy the current

requirements, the switch at position j is unset and the

switch at position j - 1 is reset. The switches within a

stage are unset in the reverse order in which they are set

so that the previous switch can be reset, as shown in

Figure125. The switches are unset in' reverse order until

an acceptable switch setting is found. When an acceptable

switch setting is found, the switch setting scheme proceeds

forward. The stage switch setting scheme ends when an

acceptable setting is found for all N/2 switches or the
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switch in position 1 has been reset and the current

requirements still cannot be satisfied.

Stage Termination. If a condition or requirement

cannot be satisfied or a conflict cannot be resolved by-

resetting the switches within a stage, a message is sent

that the switches for that stage cannot be set; and, the

control heuristic terminates. Backtracking from one stage

to a previous stage is not allowed to minimize the time

complexity of the program.

Condition 1 Implementation

Condition 1 is implemented when setting the BL 

switches as follows. Each subdivision of each stage, as

shown in Figure 26, is forced to have an equal number of

zeros and ones in the MSB position. This guarantees that

in BL stage 2 there will not be a problem setting the

switches to distribute a zero and a one to each switch in

CC stage 0. Since each stage is recursively divided, this

rule must be enforced. If it is not enforced, there is a

guarantee that there will be a violation of the CCP

requirement for the MSB. The switch interconnections have

been removed for clarity.
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BL

TA stage 0

BL

stage 1
BL

stage 2

CC

stage 0

Figure 26. Condition 1 Example

Baseline Stage 0. In setting the switches in BL stage

0 to produce the inputs for BL stage 1, condition 1 is

enforced. The MSB ones and zeros are evenly distributed at

the end of setting the stage. The default switch setting

is "through". The switch setting "cross" is used when

resetting within the stage is required to balance the

distribution of zeros and ones. Condition 1 can always be

met when setting BL stage 0 switches.

Baseline Stages 1 and 2. Condition 1 is not

explicitly implemented when setting the switches in BL
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stages 1 and 2. Condition 1 defaults to true when

condition 2 and the CCP requirements are satisfied. For

example, there cannot he a pair of the 2 MSBs on the even

switches without there being an equal number of zeros and

ones in the MSB position, refer to Figure 26.

Condition 2 Implementation

Condition 2 is implemented when setting BL stage 1

switches. The switches are set to produce the inputs for

BL stage 2 and ensure that there are all permutations of

the 2 MSBs on switches equivalent modulo 2. If condition 2

cannot be enforced after resetting the BL stage 1 switches,

a message is sent that the BL stage 1 switches cannot be

set; and, the control heuristic terminates.

Condition 2 Locked Pair 
Constraint Implementation

Baseline Stage 1, 2 MSBs. The condition 2 locked pair

constraint is checked after all BL stage 1 switches have

been set to meet condition 2. If the constraint exists and

causes a conflict with the CCP requirement for the 2 MSBs,

the switches are reset. If resetting does not allow

condition 2 to be met while also eliminating conflicts, a

message is sent that the BL stage 1 switches cannot be set;

and, the control heuristic terminates.
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Baseline Stage 1, 3 MSBs. The condition 2 locked pair

constraint is checked for the 3 MSBs after the constraint

is checked for the 2 MSBs. If the condition 2 locked pair

constraint exists and causes a conflict with the CCP

requirement for the 3 MSBs, the switches are reset. If

resetting does not remove the conflict, an error message is

sent that the BL stage 1 switches cannot he set; and, the

control heuristic terminates.

Cube-Connected Permutation 
Requirements Implementation

Baseline Stage 2, MSB. The CCP requirement for the

MSB is enforced when setting the BL stage 2 switches. The

BL stage 2 switches can always be set to meet the CCP MSB

requirement when BL stage 1 is successfully set.

Baseline Stage 2, 2 MSBs. The CCP requirement for the

2 MSBs is enforced when setting the BL stage 2 switches.

This requirement is enforced in conjunction with the CCP

requirement for the MSB. The BL stage 2 switches can

always be set to meet the CCP 2 MSB requirement when BL

stage 1 is successfully set and the 2 MSB locked pair

conflict has been avoided. ■

Baseline Stage 2, 3 MSBs. The CCP requirement for the

3 MSBs is enforced when setting the BL stage 2 switches.
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This heuristic detects'and tries to avoid conflicts created

by locked pairs for the 3 MSBs. If the BL stage 1 switches

have been set, then any locked pair constraints for the 3

MSBs will not cause a failure in setting BL stage 2

switches. The BL stage 2 switches cannot always be set to

meet the CCP 3 MSB requirement. This is because the BL

stage 2 switches cannot be set to satisfy the CCP 3 MSB

requirement without also being set to satisfy both the CCP

2 MSB requirement and the CCP MSB requirement. Figure 27

is an example of this type of conflict.

BL CC

stage 2 stage 0

Figure 27. Baseline Stage 2 Conflict
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Interdependencies Among 
Requirements

Failure in setting the BL stage 2 switches for the 3

MSB CCP requirement occurs because this requirement is

enforced in conjunction with the CCP requirement for the 2

MSBs, which is enforced in conjunction with the CCP

requirement for the MSB. The interdependencies and

constraints caused by satisfying all three CCP requirements

at the same time create scenarios where there is no

acceptable switch setting for permutations as they are

arranged in BL stage 2. Interdependencies result when one

switch sets another. The BL stage 2 switches cannot always

be set to meet all of the 3 CCP requirements at the same

time. When resetting within BL stage 2 fails to produce a

CCP in CC stage 0, an error message is sent that the BL

stage 2 switches cannot be set; and, the control heuristic

terminates.

Results

Scope ,II
The model chosen for this control heuristic is a 16-

I
input model. Random permutations of numbers 0 through 15

are generated as input for the BL control heuristic. The
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control heuristic sets the switches in the BL portion of

the BL.CC network. The algorithm for setting the switches

in the CC portion of the BL.CC network always works as long

as a CCP , is generated as input for CC stage 0; therefore,

it is not, necessary to display results for the CC portion.

Type of Results

The control heuristic generates results for BL stages

0 through 2 and CC stage 0. There are "'three types of

results. , The first type, category A, demonstrates that the

control heuristic can set the switches and generate a CCP

in CC stage 0. The second type, category B, demonstrates

that the control heuristic can fail to set the switches in

BL stage 2 and therefore a CCP is not generated in CC stage

0. The third type, category C, shows that the control

heuristic can fail to set the switches in BL stage 1 and

therefore a CCP is not generated in CC stage 0. Examples

of the three types of results are shown in Appendix B.

Although there are three types of results, the control

heuristi'c either succeeds in generating a CCP in stage 0 or

it fails. Category A results are successful. Category B

and C results are failures.
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Input Permutations

The question to be answered is how many of the

possible 16! permutations this control heuristic succeeds

in passing through the BL portion of the BL.CC network. In

order to avoid exhaustively running all 16! permutations, a

scheme is used that generates a uniform distribution of

random permutations [13]. The algorithm is depicted in

Figure 28. Of the 16! possible permutations, each receives

an equal probability of being generated.

N = 16;
for j = 1 to x {

for i = 0 to N-1, do a[i] - i;
for i = 0 toN-2, do swap(a[i], a[Random(i,N-1)])

}

Figure 28. Random Permutation Algorithm

Two loops are implemented to produce "x" number of

random permutations, and "x" is a minimum of 10 and a

maximum of 100 million. The "x" number of random

permutations is considered a set. Random permutations were

run in different size sets to discover patterns and note

anomalies in the results. The results shown in Table 1 are

based on using this uniform distribution of random

permutations as inputs to BL stage 0 and routing the
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permutations as TAs through the BL portion of the BL.CC

network.

Table 1. Control Heuristic Results

Size of
set x

Number of
Successes

Number of 
Failures

Running Time

10a 8 2 0.01 secs

10b 5 5 0.01 secs

10c 2 8 0.01 secs

100a 54 46 0.09 secs

100b 57 43 0.08 secs

1000a 557 443 1.03 secs

1000b 562 438 1.06 secs

10,000a 5,661 4,339 10.22 secs

10,000b 5,577 ' 4,423 10.39 secs

100,000a 56,111 43,889 102.11 secs

100,000b 56,194 43,806 102.94 secs

1,000,000a 560,923 439,077 -17 mins

1,000,000b 559,907 440,093 -17 mins

10,000,000a 5,606,712 4,393,288 -2.75 hrs
10,000,000b 5,608,384 4,391,616 -2.75 hrs
100,000,000a 56,072,347 43,927,653 -28 hrs

100,000,000b 56,095,683 43,904,317 -28 hrs
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CHAPTER SIX

CONCLUSIONS AND RECOMMENDATIONS

Summary

When setting the switches in BL stages 0, 1, and 2,

there is a known condition and requirement for the MSB.

There must be an equal number of MSB zeros and ones within

each subdivision, condition 1 and CCP MSB requirement.

When setting the switches in BL stages 1 and 2, there is a

known condition and requirement for the 2 MSBs, condition 2

and CCP 2 MSB requirement. When setting the switches in BL

stage 2, there is a known requirement for the 3 MSBs, CCP 3

MSB requirement. Other constraints have been exploited

when setting BL stage 2 switches for condition 2. When

there are locked pairs, sometimes steps can be taken to

avoid conflicts. Unfortunately, these conditions,

requirements and conflict avoidance techniques are not

enough to guarantee that a CCP will be generated in CC

stage 0.

Conclusions

The goal was to discover a method to pass all

permutations. The results show that when the conditions
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and requirements of this research are met, a CCP is

generated approximately 56% of the time. The results are

consistent and demonstrate that this control heuristic

succeeds more than 50% of the time.

There is more than one way to set the BL switches to

pass a permutation. This heuristic defines one way of

setting the switches to achieve this.

This research serves as the foundation for defining

the final algorithm that will allow all permutations to

pass through the BL portion of the network and result in a

CCP. Once all permutations can pass through the BL stages,

all permutations will pass through the entire BL.CC

network. The BL.CC network is functionally equivalent to

the SE network and therefore can be used to prove that a

16-input SE network is rearrangeable.

Recommendations and Future Work

There are several areas that can be explored to

increase the success of this control heuristic. Care

should be taken to discover conditions that are both

necessary and sufficient.
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Case Studies

One has to avoid analyzing cases that sometimes fail

and then removing all cases that fit that scenario. For

example, when the MSB is different on the partner switches

in BL stage 2, the chance of conflicts increases due to

multiple constraints. However, there are cases when

permutations successfully pass although this condition

exists. See Figure 29. If the control heuristic is

designed to remove this scenario, one has to make sure that

probability of success increases and does not decrease.

Successfully 
generated CCP

Figure 29. Successfully Generated Cube-Connected 
Permutation
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Condition 3

A condition needs to be found to control the 3 MSBs in

BL stage 0 or BL stage 1. This would eliminate some of the

constraints encountered when setting the switches in BL

stage 2. The necessity to satisfy all three CCP

requirements at the same time causes conflicts that

sometimes cannot be solved by resetting the BL stage 2

switches. Constraints should be removed earlier in the

heuristic that reduce the chance of the 3 MSBs conflicting

in setting BL stage 2.

3 MSBs Conflict Reduction

There are cases in which conflicts between the 3 MSBs

in BL sfage 2 can be reduced. If the 3 MSBs are evenly

distributed between the upper and lower halves of BL stage

2, all of the switches in the upper half can be set without

regard to the value of the 3 MSB. If the same 3 MSBs exist

on a switch in stage BL stage 2, that switch can be set

without regard to the .3 MSBs since the upper output line

always goes to an even switch and the lower output line

always goes to an odd switch. Additionally, since only 2

outputs from BL stage 2 have the same 3 MSBs, no other

switch will have a constraint based, on these 3 MSBs.
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These cases help eliminate 3 MSB conflicts but they

don't guarantee a CCP in CC stage 0. So when one tries to

provide for these scenarios, more generalized cases are

missed. The goal is to find the generalized cases that

always succeed. As stated earlier, when specific

conditions are added to the heuristic, one has to make sure

that probability of success increases, and does not

decrease.

Non-locked Pair Constraints

When there were locked pairs, the heuristic checked

for 2 MSB and 3 MSB conflicts. There are ways that non-

locked pairs combine that will cause conflicts. The

heuristic could be modified to add checks for cases when

non-locked pairs cause conflicts. Unfortunately, this

involves checking numerous combinations of possible switch

settings.

Backtracking

The switches are reset within a stage, and a concerted

effort has been made to avoid backtracking from a current

stage to a previous stage. Future work could involve a

backtracking scheme as long as the time complexity of that

scheme is considered and minimized.
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Iterations

Efforts were made to run multiple iterations.of the

same input permutation as long as that permutation failed

to produce a CCP in CC stage 0. These efforts were

abandoned because the BL stage 0 switch settings were reset

by the user for every iteration after the first iteration

failed. The user's switch settings were random and not

based on known conditions. The idea was simply "the other

setting didn't work" so "try a different setting". The

goal is to identify and control the conditions that allow a

permutation to succeed, not stumble on a successful pass

through,the network. If iterations are to be explored, one

must define a consistent repeatable process. One must

define how many iterations to run and what stages to

repeat. Running multiple iterations is similar to

developing a backtracking scheme and the time complexity

must also be analyzed and taken into consideration.

Permutations

One could exhaustively run all 16! permutations

through this heuristic discover the exact number of success

and failures. A more useful exercise would be to analyze

the arrangement of the permutations that succeed and those
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that fail. This exercise could lead to additional

necessary and sufficient conditions.

One way to generate permutations is in lexicographical

order. When permutations were generated in this manner,

there were 100 successes and 0 failures for the first 100

generated permutations. A comparison can be made to the

Table 1 results for 100 uniformly random permutations,

which had a success rate of just over 50%. This

demonstrates that the more organized the input permutation,

the more likely the chance of success. The more organized

input permutations have fewer constraints as they pass

through the BL stages. As more permutations were generated

using the lexicographical algorithm, the percentage of

successes decreased. There was a 90% success rate for the

first 1,000,000 permutations. There was a 75% success rate

for the 2 millionth through the 3 millionth generated

permutations. As the arrangement of the permutations

becomes more random, the probability of success decreases.

The open question is what constraints are generated by

randomly arranged permutations and how can conflicts due to

these constraints be avoided. This is an important

question to answer because the randomly arranged

permutations make up the majority of the N! permutations.
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Scalable Program

One final area for future work is to develop a

scalable program. If the program for 16 inputs is

scalable, one sets the foundation for not only proving the

rearrangeability of a 16-input SE network but for proving

the rearrangeability of the SE network for all N=2n inputs
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APPENDIX A

CONTROL HEURISTIC TO SET SWITCHES IN BASELINE STAGES
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Initialize N = 16

Generate random input permutation

Initialize current input line
Initialize current output line

Process input permutation
Validate inputs include 0-15 inclusively

Pass inputs through BL stages 0-2
Determine BL stage 0 switch order 
Determine BL stage 0 switch settings

Enforce condition 1 
Get BL stage 0 outputs

Determine BL stage 1 switch order
Set BL stage 0 outputs as BL stage 1 inputs
Set BL stage 1 switches
Enforce condition 2
Enforce 2 MSB locked pair constraint 
Enforce 3 MSB locked pair constraint 
If conflict

While position 1 switch not reset 
Reset current switch

If conflict
Unset switch
Reset previous switch

Else set next switch 
If no conflicts, Get BL stage 1 outputs 
Else exit

Determine BL stage 2 switch order
Set BL stage 1 outputs as BL stage 1 inputs
Set BL stage 2 switches

Enforce CCP MSB requirement 
Enforce CCP 2 MSB requirement 
Enforce CCP 3 MSB requirement 
If conflict

While position 1 switch not reset 
Reset current switch

If conflict
Unset switch
Reset previous switch

Else set next switch
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If no conflicts, Get BL stage 2 outputs 
Else exit

Determine CC stage 0 switch order
Set BL stage 2 outputs as CC stage 0 inputs

Print results
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APPENDIX B

CONTROL HEURISTIC RESULTS
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*********RESULTS - CATEGORY A, #1**************

Here is your input permutation:
11 14 1 2 5 6 0 4 9 13 7 15 10 12 3 8

BL Stage 0 inputs are valid: All'numbers from 0 to 15 inclusively

Condi PASSED for BL Stage 1: Even distribution of MSB in upper and 
lower quadrants

Condi PASSED for BL Stage 2: Even distribution of MSB in upper and 
lower sub-quadrants
Cond2 PASSED for BL Stage 2: Pair of 2MSB on (0,4,2,6) and (1,5,3,7) 
Locked pair conflicts AVOIDED in BL Stage 2

CCP Reql PASSED for CC Stage 0: Even distribution of MSB on every
switch
CCP Req2 PASSED for CC Stage 0: All perm. of 2MSB on (0,4), (1,5),
(2,6), and (3,7)
CCP Req3 PASSED for CC Stage 0: All perm. of 3MSB on (0,4,2, 6) and
(1,5,3,7)

CONGRATULATIONS! You have a CCP!

BL BL BL CC
Stage! 0 Stage 1 Stage: 2 Stage

1011 0 1011 0 1011 0 1011
1110 = 0001 = 0000 = 0111

0001 4 0101 4 0111 4 0000
0010 = 0000 X 1010 = 1010

0101 2 1001 2 0001 1 0001
0110 = 0111 X 0101 = 1001

0000 6 1010 6 1001 5 0101
0100 = 1000 = 1000 = 1000

1001 1 1110 1 1110 2 1110
1101 = 0010 = 0110 = 0011

0111 5 0110 5 1101 6 0110
1111 = 0100 = 0011 X 1101

1010 3 1101 3 0010 3 0100
1100 = 1111 = 0100 X 1100

0011 7 1100 7 1111 7 0010
1000 X 0011 X 1100 X 1111
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*********RESULTS - CATEGORY A, #2**************

Here is your input permutation:
15 4 0 10 11 12 6 1 7 8 2 5 3 13 9 14

BL Stage 0 inputs are valid: All numbers from 0 to 15 inclusively

Condi PASSED for BL Stage 1: Even distribution of MSB in upper and 
lower quadrants

Condi PASSED for BL Stage 2: Even distribution of MSB in upper and 
lower sub-quadrants
Cond2 PASSED for BL Stage 2: Pair of 2MSB on (0,4,2,6) and (1,5,3,7) 
Locked pair conflicts AVOIDED in BL Stage 2

CCP Reql PASSED for CC Stage 0: Even distribution of MSB on every
switch
CCP Req2 PASSED for CC Stage 0: All perm, of 2MSB on (0,4), (1,5),
(2,6), and (3,7)
CCP Req3 PASSED for CC Stage 0: All perm, of 3MSB on (0,4,2,6) and
(1,5,3,7)

CONGRATULATIONS! You have a CCP!

BL
Stage 0

1111 0 
0100 =

0000 4 
1010 =

1011 2 
1100 =

0110 6 
0001 =

0111 1 
1000 =

0010 5 
0101 =

0011 3 
1101 x'

1001 7 
1110 =

BL
Stage 1

1111 0 
0000 =

1011 4 
0110 X

0111 2 
0010 =

1101 6 
1001 =

0100 1 
1010 X

1100 5 
0001 X

1000 3 
0101 =

0011 7 
1110 =

BL
Stage 2

1111 0 
0110 =

0111 4 
1101 =

0000 1 
1011 =

0010 5 
1001 X

1010 2 
0001 =

1000 6 
0011 X

0100 3 
1100 X

0101 7 
1110 =

CC
Stage 0

1111 0 
0111 *

0110 1 
1101 *

0000 2 
1001 *

1011 3 
0010 *

1010 4 
0011 *

0001 5 
1000 *

1100 6 
0101 *

0100 7 
1110 *
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******** *RESULTS CATEGORY A, #3**************

Here is your input permutation:
0 10 3 8 15 6 4 9 14 5 7 12 13 11 2 1

BL Stage 0 inputs are valid: All numbers from 0 to 15 inclusively

Condi PASSED for BL Stage 1: Even distribution of MSB in upper and
lower quadrants

Condi PASSED for BL Stage 2 : Even distribution of MSB in upper and
lower sub-quadrants
Cond2 PASSED for BL Stage 2 : Pair of 2MSB on (0 ,4Z 2,6) and (1,5,3,7)
Locked pair conflicts AVOIDED in BL Stage 2

CCP Reql PASSED for CC Stage 0: Even distribution of MSB on every
switch
CCP Req2 PASSED for CC Stage 0: All perm. of 2MSB on (0,4), (1,5) ,
(2,6), and (3,7)
CCP Req3 PASSED for CC Stage 0: All perm. of 3MSB on (0,4,2, 6) and
(1,5,3,7)

CONGRATULATIONS! You have a CCP!

BL BL BL CC
Stage! 0 Stage! 1 Stage! 2 Stage

0000 0 0000 0 0000 0 0000
1010 = 1000 = 1111 = 1110

0011 4 1111 4 1110 4 1111
1000 X 0100 = 0010 = 0010

1111 2 1110 2 1000 1 1000
0110 = 0111 = 0100 = 0111

0100 6 1101 6 0111 5 0100
1001 = 0010 X 1101 = 1101

1110 1 1010 1 1010 2 1010
0101 = 0011 = 0110 = 0101

0111 5 0110 5 0101 6 0110
1100 = 1001 = 1011 = 1011

1101 3 0101 3 0011 3 0011 ’
1011 = 1100 = 1001 = 1100

0010 7 1011 7 1100 7 1001
0001 = 0001 = 0001 = 0001
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*********RESULTS - CATEGORY A, #4**************

Here is your input permutation:
6 13 12 3 1 10 15 8 2 5 14 4 11 7 0 9

BL Stage 0 inputs are valid: All numbers from 0 to 15 inclusively

Condi
lower

PASSED for BL 
quadrants

Stage 1: Even distribution of MSB in upper and

Condi PASSED for BL Stage 2 : Even distribution of MSB in upper and
lower
Cond2

sub-quadrants 
PASSED for BL Stage 2 : Pair of 2MSB on (0 ,4,2,6) and (1,5,3,7)

Locked pair conflicts AVOIDED in BL Stage 2

CCP Reql PASSED for CC Stage 0 : Even distribution of MSB on every
switch
CCP Req2 PASSED for CC Stage 0 : All perm, of 2MSB on (0,4), (1,5),
(2,6), and (3,7)
CCP Req3 PASSED for CC Stage 0: All perm, of 3MSB on (0,4,2, 6) and
(1,5,3,7)

CONGRATULATIONS! You have a CCP!

BL BL BL CC
Stage: 0 Stage 1 Stage! 2 Stage

0110 0 0110 0 0110 0 0110
1101 = 1100 = 1111 = 1110

1100 4 0001 4 1110 4 1111
0011 — 1111 X 0000 = 0000

0001 2 0010 2 1100 1 0001
1010 = 1110 X 0001 X 1011

1111 6 1011 6 0010 5 1100
1000 = 0000 X 1011 X 0010

0010 1 1101 1 0011 2 0011
0101 = , 0011 X 1010 = 1001

1110 5 1010 5 0101 6 1010
0100 = , 1000 = 1001 X 0101

1011 3,' 0101 3 1101 3 1101
0111 = 0100 = 1000 = 0100

0000 7 0111 7 0100 7 1000
1001 = 1001 X 0111 = 0111
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*********RESULTS - CATEGORY A, #5**************

Here is your input permutation:
7 3 11 14 12 13 4 9 10 5 8 2 15 6 1 0

■ BL Stage 0 inputs are valid: All numbers from 0 to 15 inclusively

Condi PASSED for BL Stage 1: Even distribution of MSB in upper and 
lower quadrants

Condi PASSED for BL Stage 2: Even distribution of MSB in upper and 
lower sub-quadrants
Cond2 PASSED for BL Stage 2: Pair of 2MSB on (0,4,2,6) and (1,5,3,7) 
Locked pair conflicts AVOIDED in BL Stage 2

CCP Reql PASSED for CC Stage 0: Even distribution of MSB on every
switch
CCP Req2 PASSED for CC Stage 0: All perm, of 2MSB on (0,4), (1,5),
(2,6), and (3,7)
CCP Req3 PASSED for CC Stage 0: All perm, of 3MSB on (0,4,2, 6) and
(1,5,3,7)

CONGRATULATIONS! You have a CCP!

BL BL BL CC
Stage 0 Stage 1

0111 0 0111 0
0011 = ■ 1011 =

1011 4 1100 4
1110 = 0100 =

1100 2 1010 2
1101 = 1000 =

0100 6 0110 6
1001 = 0001 =

1010 1 0011 1
0101 = 1110 =

1000 5 1101 5
0010 = 1001 X

1111 -3 0101 3
0110 :x 0010 X

0001: 7 1111 7
0000 = 0000 =

Stage 2 Stage

0111 0 0111
1100 = 1010

1010 4 1100
0110 = 0110

1011 1 0100
0100 X 1000

1000 5 1011
0001 = 0001

0011 2 0011
1001 = 1111

0010 6 1001
1111 X 0010

1110 3 1101
1101 X 0000

0101 7 1110
0000 X 0101

0
*

1
*

2
*

3
*

4
*

5
*

6
*

7
*

0
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******** *j^2SULTS — CATEGORY B #1 **************

Here is your input permutation:
2 9 11 13 5 6 7 3 12 8 15 4 1 0 10 14

BL Stage 0 inputs are valid: All numbers from 0 to 15 inclusively

Condi
lower

PASSED for BL 
quadrants

Stage 1: Even distribution of MSB in upper and

Condi FAILED for BL Stage 2: Even distribution of MSB in upper and
lower
Cond2

sub-quadrants 
PASSED for BL Stage 2: Pair of 2MSB on ( 0,4,2,6) and (1,5,3,7)

Locked pair conflicts AVOIDED in BL Stage 2

Sorry! BL Stage 2 switches could not be set 
to generate acceptable inputs for CC Stage 0.

Sorry! You do not have a CCP.
*********************************

BL
Stagei 0

BL
Stage5 1

BL
Stage 2

CC
Stage! 0

0010 0 0010 0 1011 0 * * * 0
1001 = 1011 X 0111 X * * ★ *

1011 4 0101 4 1111 4 * * * 1
1101 = 0111 X 0001 = * * * *

0101 2 1100 2 0010 1 * * * 2
0110 = 1111 X 0101 X * * * *

0111 6 0001 6 1100 5 * * * 3
0011 = 1010 = 1010 X * * * *

1100 1 1001 1 1101 2 * * * 4
1000 = 1101 X 0011 X * * * *

1111 5 0110 5 0100 6 * * * 5
0100 = 0011 X 1010 X * * * *

0001 3 1000 3 1001 3 * * * 6
0000 = 0100 X 0110 X * * * *

1010 7 0000 7 1000 7 * * * 7
1110 = ■ 1110 2?^ 1110 = * * * *
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*********RESULTS — CATEGORY B #2**************

Here is your input permutation:
6 2 1 5 10 3 12 15 13 7 14 4 0 9 8 11

BL Stage 0 inputs are valid: All numbers from 0 to 15 inclusively

Condi
lower

PASSED for BL 
quadrants

Stage 1: Even distribution of MSB in upper and

Condi PASSED for BL Stage 2 : Even distribution of MSB in upper and
lower
Cond2

sub-quadrants 
PASSED for BL Stage 2 : Pair of 2MSB on (0,4,2,6) and (1,5,3,7)

Locked pair conflicts AVOIDED in BL Stage 2

Sorry! BL Stage 2 switches could not be set 
to generate acceptable inputs for CC Stage 0.

Sorry! You do not have a CCP.

BL
Stage! 0

BL
Stage! 1

BL
Stage 2

CC
Stage! 0

0110 0 0110 0 0110 0 * * * 0
0010 = 0001 = 1010 X * * * *

0001 4 1010 4 1110 4 * * * 1
0101 = 1100 = 0000 X * * * *

1010 2 0111 2 0001 1 * * * 2
0011 = 1110 X 1100 X * * * *

1100 6 0000 6 0111 5 * * * 3
1111 = 1000 = 1000 = * * * *

1101 1 0010 1 0010 2 * * * 4
0111 X 0101 = 1111 X * * * *

1110 5 0011 5 0100 6 * * * 5
0100 = 1111 X 1001 X * * * *

0000 3 1101 3 0101 3 * * * 6
1001 = 0100 X 0011 X * * * *

1000 7 1001 7 1101 7 * * * 7
1011 = 1011 = 1011 = * * * *
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*********RESULTS - CATEGORY B, #3**************

Here is your input permutation:
10 15 7 13 4 0 3 11 6 1 5 12 14 8 2 9

BL Stage 0 inputs are valid: All numbers from 0 to 15 inclusively

Condi PASSED for BL Stage 1: Even distribution of MSB in upper and 
lower quadrants

Condi PASSED for BL Stage 2: Even distribution of MSB in upper and 
lower sub-quadrants
Cond2 PASSED for BL Stage 2: Pair of 2MSB on (0,4,2,6) and (1,5,3,7) 
Locked pair conflicts AVOIDED in BL Stage 2

Sorry! BL Stage 2 switches could not be set
to generate acceptable inputs for CC Stage 0.

Sorry! You do not have a CCP.

BL
Stagei 0

BL
Stage; 1

BL
Stage 2

CC
Stage! 0

1010 0 1010 0 1010 0 * * * 0
1111 = 0111 = 0100 X ★ ★ ★ *

0111 4 0100 4 0110 4 * * * 1
1101 = 1011 = 1110 X * * * *

0100 2 0110 2 0111 1 ★ ★ ★ 2
0000 = 0101 = 1011 = * * * *

0011 6 1110 6 0101 5 * * * 3
1011 X 1001 = 1001 = ■fc ★ ★ *

0110 1 1111 1 1111 2 •k ★ ★ 4
0001 = 1101 = 0000 = * * * *

0101 5 0000 5 0001 6 ★ * ★ 5
1100 = 0011 = 1000 = * * * *

1110 3 0001 3 1101 3 * ★ * 6
1000 = 1100 = 0011 = * ★

0010 7 1000 7 1100 7 * ★ ★ 7
1001 X 0010 = 0010 = * * * *
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*********RESULTS — CATEGORY B, #4**************

Here is your input permutation:
12 6 15 3 1 14 9 4 0 7 10 2 11 8 5 13

BL Stage 0 inputs are valid: All numbers from 0 to 15

Condi PASSED for BL Stage 1: Even distribution of MSB 
lower quadrants

Condi PASSED for BL Stage 2: Even distribution of MSB 
lower sub-quadrants
Cond2 PASSED for BL Stage 2: Pair of 2MSB on (0,4,2,6) 
Locked pair conflicts AVOIDED in BL Stage 2

Sorry! BL Stage 2 switches could not be set
to generate acceptable inputs for CC Stage 0.

Sorry! You do not have a CCP.
*********************************

inclusively

in upper and

in upper and

and (1,5,3,7)

BL
Stage• 0

BL
Stage! 1

BL
Stage 2

CC
Stage! 0

1100 0 1100 0 1100 0 ★ * * 0
0110 = 0011 = 0001 X * * * *

1111 4 0001 4 0000 4 * * * 1
0011 X 1001 = 1011 X * * * *

0001 2 0000 2 0011 1 * * * 2
1110 = 1010 = 1001 X ★ ★ * *

1001 6 1011 6 1010 5 * * * 3
0100 = 0101 = 0101 X * * * *

0000 1 0110 1 0110 2 * * * 4
0111 = 1111 = 1110 X * * * ★

1010 5 1110 5 0111 6 * * * 5
0010 = 0100 = 1000 = * * * *

1011 3 0111 3 1111 3 ★ * * 6
1000 = 0010 = 0100 = ★ 9c 9c *

0101 7 1000 7 0010 7 * * * 7
1101 = 1101 = 1101 = 9c 9c 9c *
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*********RESULTS — CATEGORY B #5**************

Here is your input permutation:
8 1 7 0 2 5 10 14 6 15 13 3 4 9 12 11

BL Stage 0 inputs are valid: All numbers from 0 to 15 inclusively

Condi PASSED for BL Stage 1: Even distribution of MSB in upper and
lower quadrants

Condi PASSED for BL Stage 2 : Even distribution of MSB in upper and
lower sub-quadrants
Cond2 PASSED for BL Stage 2 : Pair of 2MSB on (0,4,2,6) and (1,5,3,7)
Locked pair conflicts AVOIDED in BL Stage 2

Sorry! BL Stage 2 switches could not be set 
to generate acceptable inputs for CC Stage 0.

Sorry! You do not have a CCP.
*********************************

BL
Stagei 0

BL
Stage: 1

BL
Stage 2

CC
Stage> 0

1000 0 1000 0 1000 0 * * * 0
0001 = 0111 = 0010 X ★ ★ ★ *

0111 4 0010 4 0110 4 ★ * * 1
0000 = 1010 = 1100 X * * * *

0010 2 0110 2 0111 1 * * * 2
0101 = 1101 = 1010 = * * * *

1010 6 0100 6 1101 5 * * * 3
1110 = 1100 X 0100 X * * * *

0110 1 0001 1 0001 2 * * * 4
1111 = 0000 = 0101 = * * * *

1101 5 0101 5 1111 6 * * * 5
0011 = 1110 = 1001 = *** *

0100 3 1111 3 0000 3 ★ ★ ★ 6
1001 = • 0011 = 1110 = * * * *

1100 7 1001 7 0011 7 * * * 7
1011 = 1011 = 1011 = * * * *
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*********RESULTS - CATEGORY C, #1**************

Here is your input permutation:
8 1 3 13 10 4 0 2 6 11 7 14 15 9 5 12

BL Stage 0 inputs are valid: All numbers from 0 to .15 inclusively

Condi PASSED for BL Stage 1: Even distribution of MSB in upper and 
lower quadrants

Sorry! BL Stage 1 switches could not be set
to generate acceptable inputs for BL Stage 2.

Sorry! BL Stage 2 switches could not be set
to generate acceptable inputs for CC Stage 0.

Sorry! You do not have a CCP.
*********************************

BL BL BL CC
Stagei 0 Stage 1 Stage! 2 Stage! 0

1000 0 1000 0 * * * 0 k k k 0
0001 = 0011 X *** k kkk *

0011 4 1010 4 * * * 4 kkk 1
1101 = 0000 X k k k * kkk *

1010 2 0110 2 k k k 1 kkk 2
0100 = 0111 X * ** k kkk *

0000 6 1111 6 5 kkk 3
0010 = 1100 X ★ k kkk *

0110 1 0001 1 *** 2 kkk 4
1011 = 1101 X * * * * kkk ★

0111 5 0100 5 * * * 6 kkk 5
1110 = 0010 X * kkk ★

1111 3 1011 3 kick 3 kkk 6
1001 = 1110 = * k k k kkk *

0101 7 1001 7 •kick 7 kkk 7
1100 X 0101 X k ★ *r * kkk *
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*********RESULTS - CATEGORY C, #2**************

Here is your input permutation:
14 9 0 13 12 4 1 5 11 3 10 7 6 8 2 15

BL Stage 0 inputs are valid: All numbers from 0 to 15 inclusively

Condi PASSED for BL Stage 1: Even distribution of MSB in upper and 
lower quadrants

Sorry! BL Stage 1 switches could not be set
to generate acceptable inputs for BL Stage 2.

Sorry! BL Stage 2 switches could not be set
to generate acceptable inputs for CC Stage 0.

Sorry! You do not have a CCP.
*********************************

BL
Stage 0

BL
Stage 1

BL CC
Stage! 0Stage! 2

1110 0 1110 0 k k k 0 kkk 0
1001 = 0000 X k * * * kkk *

0000 4 1100 4 ★ * * 4 kkk 1
1101 = 0001 X * * * * kkk *

1100 2 1011 2 * * * 1 kkk 2
0100 = 0111 = ★ * * * kkk *

0001 6 0110 6 * * * 5 kkk 3
0101 = 1111 X ★ ★ * kkk *

1011 1 1001 1 * * * 2 kkk 4
0011 = 1101 X * * * * kkk *

1010 5 0100 5 k k 6 kkk 5
0111 X 0101 X kkk * kkk *

0110 3 0011 3 k k k 3 kkk 6
1000 = 1010 X kkk * kkk *

0010 7 1000 7 kkk 7 kkk 7
1111 X 0010 X kkk k kkk *
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******** *RESULTS CATEGORY C, #3**************

Here is your input permutation:
2 11 9 8 3 7 0 6 4 1 12 14 13 5 15 10

BL Stage 0 inputs are valid: All numbers from 0 to 15 inclusively

Condi PASSED for BL Stage 1: Even distribution of MSB in upper and 
lower quadrants

Sorry! BL Stage 1 switches could not be set
to generate acceptable inputs for BL Stage 2.

Sorry! BL Stage 2 switches could not be set
to generate acceptable inputs for CC Stage 0.

Sorry! You do not have a CCP.

BL
Stage! 0

BL
Stage 1

BL
Stage! 2

CC
Stage! 0

0010 0 0010 0 * * * 0 ★ * * 0
1011 = 1001 X ★ ★ ★ * i i *

1001 4 0011 4 k * * 4 * * * 1
1000 = 0000 X ★ * * * k * * k

0011 2 0100 2 * * * 1 * * * 2
0111 = 1100 X * * * * * * * *

0000 6 1101 6 k k it 5 * * * 3
0110 = 1111 X * * * * * * * *

0100 1 1011 1 k ★ ★ 2 * * * 4
0001 = 1000 X •fc ★ * k k k *

1100 5 0111 5 * * * 6 ★ ★ ★ 5
1110 = 0110 X * ★ ★ * * * * *

1101 3 0001 3 * * * 3 k ★ ★ 6
0101 = 1110 X * * * * * * * *

1111 7 0101 7 * * * 7 ★ k k 7
1010 = 1010 = * * * * kkk *
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*********RESULTS _ CATEGORY C, #4**************

Here is your input permutation:
1 13 14 3 6 12 7 2 15 4 0 10 5 9 11 8

BL Stage 0 inputs are valid: All numbers from 0 to 15 inclusively

Condi PASSED for BL Stage 1: Even distribution of MSB in upper and 
lower quadrants

Sorry! BL Stage 1 switches could not be set
to generate acceptable inputs for BL Stage 2.

Sorry! BL Stage 2 switches could not be set
to generate acceptable inputs for CC Stage 0.

Sorry! You do not have a CCP.

BL
Stage! 0

BL
Stage 1

BL
Stage! 2

CC
Stage! 0

0001 0 0001 0 * * * 0 * * * 0
1101 = 1110 X * * * * * * * *

1110 4 0110 4 * * * 4 it is ic 1
0011 = 0111 X * ★ ★ * * * * *

0110 2 ' 1111 2 * * * 1 * * * 2
1100 = 0000 X ★ ★ ★ * * * * *

0111 6 1001 6 * * * 5 it it it 3
0010 = 1011 X * * * * it it it *

1111 1 1101 1 * * * 2 it it * 4
0100 = 0011 X * * * ★ * ★ * it

0000 5 1100 5 * * * 6 * * * 5
1010 = 0010 = * * * * * * * *

0101 3 0100 3 * * * 3 * * * 6
1001 X 1010 X * * * ★ * it it *

1011 7 0101 7 * * * 7 it it it 7
1000 = 1000 = ★ ★ ★ * * it * *

75



*********RESULTS - CATEGORY C, #5**************

Here is your input permutation:
2 7 0 12 5 15 13 11 8 1 9 4 14 3 6 10

BL Stage 0 inputs are valid: All numbers from 0 to 15 inclusively

Condi PASSED for BL Stage 1: Even distribution of MSB in upper and 
lower quadrants

Sorry! BL Stage 1 switches could not be set
to generate acceptable inputs for BL Stage 2.

Sorry! BL Stage 2 switches could not be set
to generate acceptable inputs for CC Stage 0.

Sorry! You do not have a CCP.
9c9c9c9c9c9c9c9c9c9c9c9c9c9c9c9c9c9c9c9c9c9c9c9c9c9c9c9c9c9c9c9c9c

BL
Stage: 0

BL
Stage 1

BL
Stagei 2

CC
Stage! 0

0010 0 0010 0 * * * 0 * * * 0
0111 = ' 0000 X * * * * * * * *

0000 4 1111 4 9c 9c 9c 4 9c * * 1
1100 = 1101 X 9c 9c 9c * 9c * * *

0101 2 1000 2 * 9c * 1 * * * 2
1111 X 0100 X * 9c * 9c ★ * * *

1101 6 1110 6 9c * * 5 * * 9c 3
1011 = 0110 = 9c 9c 9c 9c 9c 9c 9c *

1000 1 0111 1 9c * 9c 2 9c 9c 9c 4
0001 = 1100 = 9c * * 9c 9c * * *

1001 5 0101 5 •k 9c 9c 6 9c 9c 9c 5
0100 X 1011 X * 9c 9c * 9c 9c 9c *

1110 3 0001 3 ★ * * 3 9c 9c 9c 6
0011 = 1001 X * * * 9c ★ 9c 9c *

0110 7 0011 7 9c 9c 9c 7 9c 9c 9c 7
1010 = 1010 = 9c 9c 9c * * 9c * 9c
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