
California State University, San Bernardino California State University, San Bernardino

CSUSB ScholarWorks CSUSB ScholarWorks

Theses Digitization Project John M. Pfau Library

2004

A Wiki paradigm to manage online course content A Wiki paradigm to manage online course content

Elharith Omer Elrufaie

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project

 Part of the Databases and Information Systems Commons

Recommended Citation Recommended Citation
Elrufaie, Elharith Omer, "A Wiki paradigm to manage online course content" (2004). Theses Digitization
Project. 2446.
https://scholarworks.lib.csusb.edu/etd-project/2446

This Project is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has
been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks.
For more information, please contact scholarworks@csusb.edu.

https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd-project
https://scholarworks.lib.csusb.edu/library
https://scholarworks.lib.csusb.edu/etd-project?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2446&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2446&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd-project/2446?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2446&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

A WIKI PARADIGM TO MANAGE ONLINE COURSE CONTENT

A Project

Presented to the

Faculty of

California,State University,

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

Computer Science

by

Elharith Omer Elrufaie

June 2004

A WIKI PARADIGM TO MANAGE ONLINE COURSE CONTENT

A Project

Presented to the

Faculty of

California State University,

San Bernardino

by

Elharith Omer Elrufai~

June 2004

ABSTRACT

The term Wiki means quick in Hawaiian. Wiki, by

creator Ward Cunningham's original description, is "the

simplest online database that could possibly work!" A

wiki allows users to freely create and edit web page

content using any regular web browser. Consequently, a

wiki page is a web page that can be created and edited in

a quick and easy way. In this context, the wiki paradigm

can be used to enable a quick, easy and convenient

management system of online course content. However, some

limitations exist in currently available wiki systems

that must first be handled to enable successful online

course management. In this project, I have improved a

previous work done by a CSUSB alumnus to extend the wiki

paradigm for use in classroom. In this new version of the

wiki-based course management system, the system works as

a generic teaching tool for any information technology

department, where there exist many instructors, courses

and students. Instructors and students will contribute

content using XHTML markup instead of the traditional

wiki markup language which adds an excellent learning

value to the system.

iii

ACKNOWLEDGMENTS

I would like to dedicate my work to my family,

especially to my father and mother, for being such a good

example to follow, and for their continuous encouragement

and support even when being a part. They have always

believed in me and never doubted my potential.

My sincere thanks goes to my advisor, Dr. David

Turner, for his continuous help to promote my technical

and research skill. I appreciate his enthusiasm for his

work and for being such a nice, supportive and helpful

advisor. I also would like to thank Vishal Dharod, Buket

Tuna and Volkan Uzun for being such good friends in this

place. Additionally, I'd like to thank my friends Ibrahim

and Ali Mamoun for their useful and valuable advices and

guidance through my years in the United States.

Finally, I would like to thank the department of

Computer Science at CSUSB for supporting my mission to

pursue my M.S degree.

The support of the National Science Foundation (NSF)

under award 9810708 is gratefully acknowledged.

Elharith Elrufaie

iv

TABLE .OF CONTENTS

ABSTRACT iii

ACKNOWLEDGMENTS . iv

LIST OF TABLES viii

LIST OF FIGURES . ix

CHAPTER ONE: SOFTWARE REQUIREMENT SPECIFICATION

1. 1 Introduction-. 1

1.2 Purpose of this Project..................... 1

1.2 Context of the Problem...................... 2

\
1. 3 Project Products . 3

1.4 Definition of Terms and Abbreviations....... 3

1.5 Preliminary Design.......................... 5

1.5.1 Users Characteristics................ 5

1.5.2 Users Functions 6

CHAPTER TWO: SYSTEM DESIGN

2 .1 Architecture . 10

2.1.1 Client Tier 10

2.1.2 Middle Tier 10

2 .1. 3 Database Tier . 11

2.2 Database Design 11

2.2.1 Database Schema Conceptual Model 11

2.2.2 Database Schema Logical Model 12

2.3 System Components........................... 16

2.4 Software Interfaces 17

V

CHAPTER THREE: IMPLEMENTATION

3. 1 Introduction . 18

3. 2 Basic Interface . 18

3.2.1 Authorization and Authentication 18

3.2.2 New User Registration 19

3.2.3 Student Main Menu 20

3.2.4 Student Add Course Page 21

3.2.5 Student Edit Information Page 22

3. 2. 6 Instructor Main Menu .·. 23

3.2.7 Instructor Add Courses 25

3. 2. 8 View Course Details 26

3.2.9 Administrator Main Menu 27

3.2.10 Edit Users' Information Page 28

3.2.11 XHTML Edit Page 30

CHAPTER FOUR: VERIFICATION AND VALIDATION

4.1 Unit Test................................... 33

4.2 Subsystem Testing 35

4. 3 System Testing , 3 7

CHAPTER FIVE: MAINTENANCE MANUAL

5 .1 Software Installation . 39

5 .1.1 RedHat Installation 39

5.1.2 PostgreSQL Installation.............. 40

5.1.3 JAVA 2 Platform, Standard Edition
(J2SE) . 42

vi

5. 1. 4 Tomcat 43

5.1.5 JAVA Database Connectivity (JDBC) 46

5.2 Variables Modification ...•.................. 47

5.2.1 System Variables 47

5. 3 Installation/Migration . 49

5.4 Backup and Restore 49

5.4.1 System Backup 49

5. 4. 2 Database Backup . 50

5.4.3 System Restore_ 50

5. 4. 4 Database Restore ·... 50

CHAPTER SIX: CONCLUSION AND FUTURE DIRECTIONS

6. 1 Conclusion . 52

REFERENCES . 54

Vll

LIST OF TABLES

Table 1. Terms and Abbreviations.................... 4

Table 2. Users Table . 13

Table 3. Course Table . 14

Table 4. Student Status Ta~le .~. 15

Table 5. Page Table. 16

Table 6. Unit Test Results (Forms) 34

Table 7 . Unit Test Results (Class: User) 35

Table 8 . Unit Test Results 35

Table 9. Subsystem Test Results . 36

Table 10. System Test Results 38

viii

LIST OF FIGURES

Figure 1 . Use Case Diagram.......................... 7

Figure 2 . System Architecture 10

Figure 3 . Entity Relationship Diagram 12

Figure 4. Login Page . 19

Figure 5. New User Registration 20

Figure 6. Student Homepage 21

Figure 7. Student to Add New Courses 22

Figure 8. Student Edit Information Page 23

Figure 9. Instructor Main Page 24

Figure 10. View Student Information 25

Figure 11. Instructor to Create New Courses 26

Figure 12. Course Information 27

Figure 13. Administrator Main Page 28

Figure 14. Administrator View Users 29

Figure 15. Administrator Edit Users 30

Figure 15. XHTML Edit Page........................... 31

Figure 16. XHTML Error Page 32

ix

CHAPTER ONE

SOFTWARE REQUIREMENT SPECIFICATION

1.1 Introduction

This system will run as a communication interface

between students and the instructor. Using this

interface, pages are created and modified quickly and

easily. An instructor will be able to publish course

materials, post announcements, presentations timetable,

etc into the web. If the student is enrolled in the

course, she will be able to edit these pages and can add,

for example, her presentation title to the presentations

timetable, or her paper abstract to the term paper page,

etc. Moreover, all the pages can be used as a public or

private repository, in which students post their homework

and limit access of these materials to the instructor.

1.2 Purpose of this Project

The purpose of this project is to develop a new

version of the Wiki-Style Administration of Online Course

Content. The current version of this system was developed

by Jimmy Wang in the fall of 2003 in fulfillment of his

Master degree requirements [6]. The main purpose is to

implement a teaching and a learning tool that works as an

1

easy and quick communication interface between each

instructor and his students. By teaching tool, we mean

that both instructor and students can post coursework,

and share information and knowledge in the course web

page. By learning, we mean that users will be required to

use XHTML [8] for input; all input is parsed to determine

if it is valid XHTML text, and will not be accepted

otherwise. This system extends the traditional wiki by

providing authorization functionality, that is, only

authorized users (per class) are eligible to make changes

in course pages.

The second purpose is to design an easily extendable

and maintainable architecture, which provides a generic

' wiki system that can work for any information technology

department, and handles sets of courses and instructors.

1.2 Context of the Problem

The context of the problem is to extend the

traditional wiki paradigm and_ the current running

Wiki-Style Administration of Online Course Content by

designing and implementing a system that eliminates

current limitations and adds learning benefit.

2

1.3 Project Products

This project would lead to the following products:

• Web Application: A web application that follows

the Model View Controller (MVC) architecture,

uses PostgreSQL database for storing data, and

uses Hibernate as its persistence framework.

This web application should achieve the needs

of a communication interface between instructor

and students. It should also serve as a

learning tool, because it requires the use of

XHTML as input markup language.

• Users manual: an implementation manual will be

available for the user.

• Systems Manual: a project report (this report)

will be available with design details and

specifications.

1.4 Definition of Terms and Abbreviations

See table 1 for list of terms and abbreviations.

3

Table 1. Terms and Abbreviations

API Applications Programming Interface.

CSCI Computer Science

css Cascading Style Sheets.

CSUSB
California State University, San
Bernardino.

GUI Graphical User Interface.

HIBERNATE

It is object/relational persistence and
query service for Java. Hibernate lets
you develop persistent objects following
common Java idiom - including
association, inheritance, polymorphism,
composition and the Java collections
framework.

HTML Hypertext Markup Language.

HTTP Hypertext Transfer Protocol.

IEEE
Institute of Electrical and Electronics
Engineers.

Java Servlet
A Servlet can be thought of as an applet
that runs on the server side--without a
face.

JDBC Java Database Connectivity.

JSP Java Server Page.

MVC Model View Controller.

PostgreSQL
The most advanced open source database
system.

RDBS
A relational database stores data in
tables (relations). A database is a
collection of tables.

SQL Structured Query Language.

SRS Software Requirement Specification.

SSL Secure Socket Layer

Tomcat

Tomcat is the Servlet container that is
used in the official Reference
Implementation for the Java Servlet and
Java Server Pages technologies.

URL Uniform Resource Locator.

XHTML extensible Hypertext Transfer Protocol.

4

1.5 Preliminary Design

There are four types of user classes implemented in

this project:

1. Registered Student.

2. Instructor.

3. System Administrator.

4. Guest.

A menu page is associated with each type of user.

The pages will allow the user to enter, retrieve and/or

maintain the data depending on the privileges.

1.5.1 Users Characteristics

Users of the Wiki system would fall into one of the

following groups:

1.5.1.1 Student. The user in this group is enrolled

in a class at CSCI department, CSUSB. To use the system,

the user needs to obtain a login name and password. Once

a student adds a class, his class instructor would be the

only one to activate his membership to this class. If the

instructor accepted him, after comparing his information

with the class roster, the student status is

automatically changed to active, and afterwards the

student can edit and create pages in the course homepage.

Otherwise, the student sta't.us is set to rejected. In

5

http:sta't.us

either case, the student is informed by email of any

change in his status.

1.5.1.2 Instructor. The user of this group is a

faculty in the Department of Computer Science, CSUSB.

Registration of instructors is activated upon approval of

administrator.

1.5.1.3 Administrator. The user in this group could

be a faculty, or a staff, or any system administrator.

1.5.2 Users Functions

The following use case diagram best describes user

functionalities.

- -

- -

-

- ~C)
<<includ~ Set Page Properties

->C)
Create New Page

-
Delete Page

Accept Student

->C)
Reject Student

Accept Instructor

--:::::,.C)

Reject Instructor

Edit User

Delete User

~-<-<_i_n-cl_u_d_e_>_>--------------1C)

View Pa!:)es
Guest

--Registed Student
Modify Pages

Control Student Access

Manage Users

Figure 1. Use Case Diagram

- -
<<include>> -

<<include>>---
<<include>>

-<<include>>

<<include>-;:-

<<include>>

- -
<<include>>

7

1.5.2.1 Student functions. This menu page provides

four options for this class of user:

1. Create pages in the wiki system.

2. Delete pages created by him.

3. Set properties of each page, such as read-only

or private.

4. Modify pages in wiki system, unless the page is

read-only.

5. Modify personal information.

6. Add and remove courses.

1.5.2.2 Instructor functions. This menu has the same

functionality as the student menu page in addition to the

following:

1. Start a new class on the system.

2. Change the status of his classes (active or

inactive).

3. Approve and reject students on his classes.

4. View his students' information.

5. Contact all his students by email.

1.5.2.3 Administrator functions. This menu page

provides the same functionality as instructor menu in

addition to:

8

1. Approve and reject pending instructors.

2. Delete a user.

3. Edit user's information.

1.5.2.4 Guest functions. Guest user will have the

ability to view the public pages only, with no authority

to edit any page.

9

CHAPTER TWO

SYSTEM DESIGN

2.1 Architecture

This project follows a 3-tier architecture. The

following figure best describes this architecture:

~----------------------------~
'

r...,

f''"""" ..,..,,.._..,..,.,.....,..,,,.,
t ... I

I
I
I
I

I
I
I
I

• ' I ____ ,.-u.., __ ... ___ ,.. _____ ,,..,,...., I),"" ___ ,,._..,.,..,.. J

Enterprise Servers/ Application Server Data Sources

Figure 2. System Architecture

2.1.1 Client Tier

The first tier is the client that represents web

browser viewing the system pages.

2.1.2 Middle Tier

The middle is the wiki Server that contains Jakarta

Tomcat web server module (with JSP and Servlet API's)

This tier follows the Model View Controller (MVC)

architecture. In the MVC design pattern, the application

server is segregated into three parts:

10

1. Model: Stores the data and deals with all the

data retrieval issues.

2. View: Displays information and results.

3. Controller: Resolves all business issues, calls

appropriate methods in model to forward back to

the view.

2.1.3 Database Tier

The third tier is the data source, where Hibernate

persistent objects framework maps Java objects to a

PostgreSQL relational database management system.

2.2 Database Design

2.2.1 Database Schema Conceptual Model

In designing the schema of this project, three

distinct parts have been identified:

1. Courses: collection of courses that are created

by faculty or administrator and made available

for students to add.

2. Pages: includes all wiki pages information,

such as title, contents and page settings.

3. Users: Defines system user and his roles. Every

user in the system has a relation to some

courses. Meaning that a user can have courses

11

that she created (if administrator or

instructor), or added (if student).

The following Entity ~elationship diagram (ER) best

describes the system.

username

firstname

courses

id

name

Figure 3. Entity Relationship Diagram

2.2.2 Database Schema Logical Model

The conceptual model ER diagram maps the following

relational table design. In the following tables,

underlined fields indicate the table primary key.

12

Table 2. Users Table

Field Name Data Type Description

id - INT8 Auto incremented id.

role VARCHAR(255)

Identifies user's role. 'A'

for Administrator, ' I' for

Instructor and 's / for

Student.

username VARCHAR(255) Unique name for user.

password VARCHAR(255) Password for user to login.

firstName VARCHAR(255) User's first name.

lastName VARCHAR (255) User's last name.

email VARCHAR (255) User's ,email.

status VARCHAR (255)

Shows status of Instructor

in the system. Switched

from 'PENDING' to 'ACTIVE'

for every activated

instructor.

- Id field is auto incremented primary key.

- Class should not be null.

- username should not be null.

13

Table 3. Course Table

Field Name Data Type Description

id- INT8 Auto incremented id.

instructor id - INT8
Stores course creator if

was Instructor.

admin id - INT8
.Stores course creator if

was Administrator.

title VARCHAR(255) Course title.

quarter VARCHAR (255) Course Quarter.

year INT4 Course Year.

status VARCHAR(255)
Course status, can be

'ACTIVE' or 'INACTIVE' •

- id field is auto incremented primary key.

- instructor id is a foreign key to the id field in-

Users table.

- admin id is a foreign key to the id field in Users-
table.

14

Table 4. Student Status Table

Field Name Data Type Description

student id - INT8 Stores student id.

Course id - VARCHAR(255) Stores course id.

Status VARCHAR(255)
Represent student's status

for each class.

- student id is a foreign key to the id field in-

Users table.

- course id is a foreign key to the id field in-
Course table.

- student id and course id forms a composite primary- -
key.

15

Table 5. Page Table.

Field Name Data Type Description

Id INT8 Stores student id.

Name VARCHAR(255) Stores course id.

owner id- VARCHAR (255)
Represent student's status

for each class.

Content TEXT Stores page XHTML contents.

Visible BOOL
Identifies if the page is

visible to all users.

modifiable BOOL
Identifies if the page can

be modified by others.

- id is

- owner-
Users

an auto incremented primary key.

id is a foreign key to the id field in the

table.

2.3 System Components

To enable successful and flexible interaction

between the system tiers, some languages, scripts and

tools were used. Below I explain the reasons of using

each of these technologies:

• Java was used for its reputation of robustness

for web applications use. Java API has a rich

set of functions and classes, which allows the

16

flexibility and the ability to build such web

applications.

• PostgreSQL was used for data -storage medium.

PostgreSQL is a real multi-user datab.ase and is

royalty-free open .source software.

• Hibernate is a persistence service that stores

Java objects in relational databases. Hibernate

is a full-featured, open source mapping

framework for the Java platform.

2.4 Software Interfaces

• Internet browser: No browser constraints.

• Operating System (OS): No OS constraints.

• Database: PostgreSQL.

• Web Server: Jakarta Tomcat 5.

• Java API: JDK 1.4.2.

17

CHAPTER THREE

IMPLEMENTATION

3.1 Introduction

In this chapter, we will discuss the system's basic

interface and functionality. One of the main goals of

this new version of wiki is to develop a system with a

good look and feel. For this purpose, I use·Cascading

Style Sheets (CSS) to develop the pages; I also use a set

of contrasting colors. Every page is divided into two

parts: menu options and body. Menu options vary according

to the user role. However, the wiki part of the page in

the body is the same for all users. The wiki part of the

page checks the user input, and reports any invalid XHTML

input with a friendly error message. In the following

subsections, I describe in more detail the functionality

of the system.

3.2 Basic Interface

3.2.1 Authorization and Authentication

This is the main login page (see figure 3). All

users, students, instructors and the system administrator

will use this page to log in. This page uses server side

authentication and authorization using Java Servlets.

18

Dnn~ have accilunp Enter your username and·password to .login

New user sign up

I
forgcrt,use'rnafu~ or passwotri?C',;j
Receive username end pas.fword by cm~i!

Al! E:ights !:."czerveci to Dc-partment of ,:;crY!pUter Science. California State Uni1:er::;ity. S:;m B,:irn;irclino. V-/;k/ Oniin~ Co1Jrse A1Q1 2004

Figure 4. Login Page

3.2.2 New User Registration

New students and instructors use this page to obtain

username and password (see figure 4).

19

Registration Form

IJscrname !
Passworrl r-1_----~--,
Verify Password I

Bae!:

Type

Last Harne

First flame

E-ma ii

;:=:::::;;:;-
!Student @;j
.-------

L....
.-------

~'
(ff
:i(
/<

~f
f,~
i'.'~
,)

-~..... ·,c........... , ..---·-··-·-·, fi\~

Figure 5. New User Registration

3.2.3 Student Main Menu

Student main page shows the student status in the

wiki system. It lists the student's status per class. A

student status can be active (if an instructor accepted

him) so that she can edit the course page. Otherwise, the

status is pending (waiting for course instructor

authorization).

20

Course Name Course lns1ructor

Introduction to JAVA Turner, David

Software En ineering ·' · Ctiricepcitin, Arturo

Figure 6. Student Homepage

3.2.4 Student Add Course Page

The student uses this page to view all active

courses in the system and any course to his records. The

student is added directly with a pending status by

default (see figure 6).

21

Figure 7. Student to Add New Courses

3.2.5 Student Edit Information Page

The student uses this page to view and edit his

information, such as first name, last name, email and

password (see figure 7).

22

Last Name l~~~i~ --,~
Fimt Name !Elharitn

E-mail leelrufai@cscic.csusb.edu i

Olooge Password

Figure 8. Student Edit Information Page

3.2.6 Instructor Main Menu

The instructor's main page shows a list of all

students who want to enroll in their courses. The

instructor is given the option to view their information,

such as name and email to ensure they are activating the

correct student. Activating a student will change the

student status to active, thus she will be able to edit

the course page (see figures 8 and 9).

23

Figure 9. Instructor Main Page

24

Username

tlame
Email

Back

elharith

Elrufaie; Elrufaie
eelrufai@c;scic.cs.usb.edu

Figure 10. View Student Information

3.2.7 Instructor Add Courses

The instructor uses·this page to view his cu;r:-rent

courses in the system and to create new courses as well

(see figure·10)

{

. 25,

Add ·Courses:

Course Name

Quarter

Year

Figure 11. Instructor to Create New Courses

3.2.8 View Course Details

Instructor uses this page to view students' status

per course, and the course web page (see figure 11).

26

Course deiails:

Course Title Advanced Oper /ting Systems

Number of active students 0 (View StudentslJ'
Number of pending studen1s 1 (Vlew students

•·Oat to coUrse web page

I

Figure 12. Course Informatioh

3.2.9 Administrator Main Menu

'
The administrator mainipage-shows a list of all

pending instructors and the administrator's pending

students. Activating an instructor will allow the
I

I

instructor tq create new cburses. Note that the

I

instructor is activated once, urllike a student, who needs

activation• per course. The admini.strat'or is also given

the option to view the pending instruc:tors and student

information such as name and email (s:ee figure 12).,_

27

Figure 14. Administrator View Users

29

Hello, admln

-~-=.~·-,---.,~< .· View I E~it Osers.)

Username

Set New Password

J?d,r,i,;::.=====I•••••
fy~ '""IA-~-~~~-.-~,,affl..
Last Name !Turns~-•- _..,__

First Name fDa"!.d _...·-···

E-mail '""jtu-rne-.r@"'"cs----,-ci.c-s-us-b.-ed,-u..-•...-,.....!

;·~ng"ei:':j L9ancefJ

n C • • '•• ',

(C~H.!ta~--~-d~ir-J_ ...-•.n -n. -- ·······'-c;.~·- •. ,.:_, ··- nn~;-~,-.".n,-•- . . ---- . --·'--- n.~~.n- "-·-···'.:.:~ '""'· . - ,_ .~ .'""""'"'" ...
t[i~fill(i1fuijj'i\trif!\:i/fu&;'.§;i!}l,'J?;l1ij;lfujij'm/j'i\i m !• =·=··""-'.;;,f.,.•f~;•'-"'._.·-·=•_ _.,.4fM.8*~-""'"'"•..,,...-i•.;;,•--~"""-'-'-----....;;...--

Figure 15. Administrator Edit Users

3.2.11 XHTML Edit Page

This is the most important page that the system has.

To edit the page, browse to the page you want to edit and

double click anyplace in the page body. The whole text of

the page should be transformed into a large text area box

to allow changing page contents. Input language in this

version is XHTML, unlike the wiki markup language used in

this first version of this project. If the user who is

editing the page is the owner of the page, there will be

two more check boxes shown at the bottom of the text

field named "modifiable by users" and "visible by

30

others." These are the page attributes that can be set by

the owner of the page to grant or deny to other users the

ability to view or modify the page (figure 15) .

.!t};,::....'?...~ ...

syllabus
<:!DCC7:YPZ h'tJt'tl E'tJSt:IC "-//WSC//DTD X.'iTI1!. l.t;< .S~~~c:c//E:!:l"
'_'h<;;tp; / /Wl.,ill, ws, crg-/TR/x"t1'eli'..i.'l'/Dl'D/xh~~l.l-~'Cz:ict..d.tC..>
<:~~cm.l>
<.bead>
<t.i~le></,;;.i1:le>
</hea-d.>
<bcdy>

<l..:.>W.in~e7: Q'..i~i·,;;er 2003<:/J..i>
<l:i>'Lect.'...!re: ?-10:nd.a;t e:nd N-edn~sd.e.y 2.~<i:0-3:.S.S. i.J.3-113 </Z.i.>
<l.:i.>!.<ltb~: l{o~day l:'!r.:.d Wedneed.e_y ~:-:o-.S:50 ~-:J,SS <Jl.i.>
</cl>

<l.t><a t.::=e:t-•.nt;t:p: I /ce-c.i. C"-t.tl'b .edu/turr.e~ • >Cf:f1.c4! twu!:~ and con-cact- :!.~:fo:rmati.or.<:/,a::> </1:t>
</;;.:l.>

<'.U.l�
<l.i}--Tee:chJ..ng ;.!!s::ister.t:.: 3.ar.ich ZJ.:::~f,,:.!.e </.li>
<:l.i>O.f:!.ice: Jfl .s,;,::, </l.i>

<1::.>Ee.~:i2.: ee.1::.-:u.t'a.!tlc~!:-:i. C3t2$b. ed"<.!</1:!.>
<l.i>�;.!Li.ce b.C~::'.S! V..o:no-ay 4.C.d Wed.:-.e~>.J.ay '.l:SO - l::S0</1.!.>
<l>:.l.>·

<fbedy>
</h-cm!>·

original Do you want your page to be modified by all the course students? (~Yes· ONo
Do you want your page to be visible by all users? ,,Wes ONo

! Sll!~l?. Changes J

Figure 15. XHTML Edit Page

31

http:Wed.:-.e~>.J.ay
http:l.i>�;.!Li.ce
http:Cf:f1.c4

X

Error on line 24: The element type "p" must be terrninat,;id by the matching end-tag "<ip>".

original Do you vro.nt your page to be modified by al! the course students? <Z,Yes ONo
Do you want your page to be visible by all users? <:> Yes O No

I Save Changes I I Cancel Changes

Figure 16. XHTML Error Page

32

CHAPTER FOUR

VERIFICATION AND VALIDATION

The system validation test is a kind of test process

which can ensure that our program meets the expectation

of the user. The purpose of the system validation is to

provide a high degree of assurance that a specific

process will consistently produce a result which meets

predetermined specifications and quality attributes. This

can also guarantee the system performance and

reliability.

4.1 Unit Test

Unit test is the basic level of testing where

individual compon~nts are tested to ensure that they

operate correctly. These individual components can be

object, class, program, etc.

33

Table 6. Unit Test Results (Forms)

Forms Tests Performed Results

Add User Page • Verify handling valid data
input.

• Check all the buttons work
properly.

Pass

Frame allocate
page

• Verify the frame allocation
is properly. Pass

Edit Page • Verify the timer work
properly.

• Check the insert function
work properly.

• Check all the button work
properly.

Pass

Login. Page • Check all the button work
properly.

• Verify the page can get the
error message and work
properly by the message.

• Verify the user save in
session after login

Pass

Logout Page • Check all the button work
properly.

• Verify the user remove from
session after logout.

• Check the page redirect to
proper page after logout.

Pass

Update My Account • Check all the buttons work
Page properly.

• Verify the page get the
correct user account
information.

• Verify handling valid data
input.

• Verify the data updated
correctly.

Pass

34

Table 7. Unit Test Results (Class: User)

Forms Tests Performed Results

get_no • Make sure the returned number is
correct. Pass

Getid Make sure the returned id is•
correct. Pass

Getname • Make sure the returned name is
the correct user's name. Pass

Getpassword • Make sure the returned password
is the user's password. Pass

Getemail • Make sure the email address
returned is the correct user's e-
mail address.

Pass

Table 8. Unit Test Results

4.2 Subsystem Testing

Subsystem testing is the next step up in the testing

process where all related units from a subsystem do a

certain task. Thus, the subsystem test process is useful

for detecting interface errors and specific functions.

Table 24 show subsystem test results in detail .

..
35

Table 9. Subsystem Test Results

Subsystem Tests Performed Results

Authorize • Test if it can get the
subsystem error message.

• Make sure the result of
authorizing user is
correct.

• Verify the login user
information is store in
session properly.

• Check if the saving user
login information
function stores the user
information in cookies
for future login use.

• Check if the login page
can get the saved user
login information saved
before from cookies.

• Verify the login page
redirect to the correct
browsing or editing page
after the user logins in.

Pass

Accounts • Make sure all the
management existing users are list
subsystem in the user list.

• Check if the subsystem
can detect the error of
creating of the user that
exists in the subsystem.

• Check if the user can
update his/her own
account properly.

• Verify the created user
information is the same
as the information
provided.

• Verify the subsystem can
delete a user account

Pass

36

Subsystem Tests Performed Results

properly.

Make sure the password•
query function can work
properly.

Browsing Check if the subsystem•
subsystem checks for user privilege

before showing pages.

Verify the page is•
showing properly after
the user click on the
page link.

Pass

Editing Make sure the subsystem•
subsystem checks the user privilege

before forwarding to edit
page.

Verify the subsystem•
check the user privilege
before update the page
information.

Verify if the subsystem•
shows the page properties
is the users are the
owner or the
administrator.

Pass

Orphan pages Make sure all the orphan•
subsystem pages are shown on the

list.

Verify the owner the page•
or the administrator can
delete the specific
orphan page.

Pass

4.3 System Testing

System testing is the testing process that uses real

data, which the system is intended to manipulate, to test

37

the system. First all subsystem will be integrated into

one system. Then test the system by using a variety of

data to see the overall result.

System testing of begins with the following steps:

Table 10. System Test Results

System Testing Results

1. Install the system into server. Pass

2. Start up all servers including Tomcat
server and PostgreSQL database server.

Pass

3. Running testing by using real data on all
forms and reports.

Pass

38

CHAPTER FIVE

MAINTENANCE-MANUAL

The maintenance manual records any information that

can be used to setup the system or backup the system. In

order to make sure the system works smoothly and meets

the expectation of the users, it is very important to

follow the maintenance manual step by step carefully.

5.1 Software Installation

The system requires Linux RedHat as an operating

system, PostgreSQL, JSDK, Ant, TOMCAT, and JDBC to run

the programs. Following will detail the installation of

those 6 softwares.

5.1.1 RedHat Installation

RedHat is a linux base operating system which is offered

freely and be downloaded from internet. The reason we

choose RedHat is it offers better performance than a

Microsoft operating system. Following are the steps to

install RedHat onto your machine.

1. Download a latest version of the RedHat

operating systems from

http://ftp.redhat.com/pub/redhat/linux/9/en/iso

/i386/ and burn the files into CDs.

39

http://ftp.redhat.com/pub/redhat/linux/9/en/iso

2. Install the operating system by inserting CD 1

into the CD-ROM and start up the machine which

is going to install the operating system.

3. The machine will startup via CD-ROM and start

to install RedHat.

4. Follow the install wizard and sets up the

required information such as network setting

and the hardware environment.

5. After all the necessary files are copied into

the computer and install it, the machine will

restart and Redhat is installed.

5.1.2 PostgreSQL Installation

PostgreSQL is the database system we use in this

project; it's free, and is included in RedHat by default.

To install PostgreSQL, follow the following steps:

1. Because PostgreSQL may install on to RedHat

when the operating system is installed, the

first thing we have to do is to check if the

PostgreSQL is already in the operating system.

Using the command to check if PostgreSQL exist

in the operating system:

rpm -q postgresql

40

If PostgreSQL .·is not installd in the operating

system, then use rpm to install it.

2. In order to create a database user, "wiki," and

database, have the following commands executed.

su postgres

initdb -D /var/bin/pgsql/data

createuser wiki

createdb wiki

where at the first command, the postgres is the

default user for PostgresSQL. Starting the

database by using the command "initdb" with the

directory "/var/bin/pgsql/data/" which is the

default database directory will start up the

database system. Login postgres as the

supervisor and create a database user, "wiki,"

and the database "wiki."

3. There are still some steps needed to setup the

environment values.

In the user's environment setup file

/etc/profile.d/*.sh, add the following line:

export PGDATA=/var/lib/pgsql/data

41

http:etc/profile.d/*.sh

Open the file

/var/iib/pgsql/data/postgresql.conf and

uncomment the line:

tcpip_socket = true

In ord~r to have the database system starup at

the system start, have the command executed:

/sbin/chkconfig --level 3 postgresql on

And, the last step is to startup the database

system immediately now without restart the

system:

/sbin/service postgresql start

After having the steps above executed, the database

system is ready to go and now we have to install JAVA

platform, JAVA 2 Platform, Standard Edition (J2SE)

5.1.3 JAVA 2 Platform, Standard Edition (J2SE)

J2SE is the compiler program for JSP and JAVA

Servlet programs and it's required in TOMCAT JAVA

Container. Fist of all, we go to

http://java.sun.com/j2se/l.4.l/download.html to download

SDK Linux (all languages, including English) to the

directory /usr/java, then execute the following commands:

chmod +x j2sdk-1_4_2_01-linux-i586-rpm.bin

./j2sdk-1_4_2_01-linux-i586-rpm.bin

42

http://java.sun.com/j2se/l.4.l/download.html

rpm -ivh j2sdk-1_4_2_01-linux-i586.rpm

And, set the environment variables in the file

/etc/profile.d/*.sh:

JAVA_HOME=/usr/java/j2sdkl.4.2_01

PATH=${PATH}:${JAVA_HOME}/bin

Export JAVA_HOME

5.1.4 Tomcat

TOMCAT is one of the apache jakarta projects, which

is a web container to process JSP and JAVA Servlet

programs, and to serve static web pages. First of all, we

go to the tomcat's official download ftp server at

http://ftp.epix.net/apache/jakarta/tomcat-5/v5.0.12-

beta/bin/ to download the file of tomcat server for linux

jakarta-tomcat-5.0.12.tar.gz to /usr/java/ and extract it

to the hard drive.

tar -xzvf jarkata-tomcat-5.0.12.tar.gz

Also, we modify the file /usr/java/jarkata-tomcat-

5.0.12/conf/server.xml by add the following setting

in the file:

<Context

path="/wiki"

docBase="/pub/wiki"

debug="0"

43

http:jarkata-tomcat-5.0.12.tar.gz
http:jakarta-tomcat-5.0.12.tar.gz
http://ftp.epix.net/apache/jakarta/tomcat-5/v5.0.12
http:etc/profile.d/*.sh

swallowOutput="true" >

<Logger

className="org.apache.catalina.logger.FileLogger"

prefix=""

suffix=".log"

directory="/pub/wiki/logs"

timestamp="true" />

<Parameter name="contextPath"

value="/wiki" />

<Parameter name="homePage" value="HomePage" />

<Resource name="jdbc/postgres"

auth="Container"

type="javax.sql.DataSource" />

<ResourceParams name="jdbc/postgres">

<parameter>

<name>factory</name>

<value>org.apache.commons.dbcp.BasicDataSourceF

actory</value>

</parameter>

<parameter>

<name>driverClassName</name>

<Value>org.postgresql.Driver</value>

</parameter>

44

<parameter>

<name>url</name>

<value>jdbc:postgresql://127.0.0.1:5432/wiki</v

alue>

</parameter>

<parameter>

<name>username</name>

<value>Jimmy</value>

</parameter>

<parameter>

<name>password</name>

<value></value>

</parameter>

<parameter>

<name>maxActive</name>

<value>l0</value>

</parameter>

<parameter>

<name>maxldle</name>

<value>2</value>

</parameter>

<parameter>

<name>maxWait</name>

45

<value>-1</value>

</parameter>

</ResourceParams>

</Context>

And, set the environment variable by adding the following

lines in the file /etc/profile.d/*.sh

CATALINA_HOME=/usr/java/jarkata-tomcat-4.1.27

PATH=${PATH}:${JAVA_HOME}/bin:${CATALINA_HOME}/bin

export CATALINA_HOME

Add the following lines in the file /etc/re.local to

have the tomcat run when the system boots:

Export JAVA_HOME=/usr/java/j2sdkl.4.2 01

export CATALINA_HOME=/usr/java/jarkata-tomcat-4.1.27

${CATALINA_HOME}/bin/startup.sh

5.1.5 JAVA Database Connectivity (JDBC)

The API used to execute SQL statement is different

for each database engine. Java programmers, however, are

lucky and are freed from such database portability

issues. They have a single API, the Java Database

Connectivity API (JDBC), that's portable between database

engines. The JDBC library provides an interface for

executing SQL statements. It provides the basic

functionality for data access. A number of drivers are

46

http:CATALINA_HOME}/bin/startup.sh
http:CATALINA_HOME=/usr/java/jarkata-tomcat-4.1.27
http:CATALINA_HOME=/usr/java/jarkata-tomcat-4.1.27
http:etc/profile.d/*.sh

available for PostgreSQL, and information about this can

be obtained at the PostgreSQL homepage· at

http://jdbc.postgresql.org/download/. Download

pg73jdbc3.jar and copy the file to /usr/java/jakarta

tomcat-4.1.18/common/lib/.

5.2 Variables Modification

We have to change some environment variables in the

linux system and server.xml in Tomcat server

configuration directory.

5.2.1 System Variables

1. Open the file "server.xml" in the directory

"/usr/java/jakarta-tomcat-4.1.18/conf" via "vi"

or any other editor.

2. Scroll down until you see the context area we

added in at chapter 7.4.1.

3. The variable "path" in Context indicates the

context path of the web application. The

default value would be "/wiki."

4. The variable "docBase" in Context is the files

directory for the web application. Th~ default

value would be "/pub/wiki."

47

http://jdbc.postgresql.org/download

5. The variable "variable" in Logger is the

absolute or relative pathname of a directory in

which log files created by this logger will be

placed. The default value would be

"/pub/wiki/logs."

6. Now, lets look down at the parameter setting.

7. The parameter "contextPath" indicate the

context path for the system which would be the

same as the value of path.

8. The parameter "homepage" sets the name of the

home page of wiki system. The default value

would be "HomePage."

9. The parameter "username" is the user name who

can access the database system. Usually, this

value would be the administrator.

10. The parameter "password" is the password

corresponding to the user name at 9. If there

is no special setting in database system, leave

the value to be empty.

48

5.3 Installation/Migration

1. All the JSP programs and HTML programs are

stored in

\pub\wiki

2. All the classes are stored in

\pub\wiki\WEB-INF\classes

3. Place the web.xml for in

\pub\wiki

5.4 Backup and Restore

Backup is a very important action needed for any

system to prevent losing data. No one can say a system

works very well and will never have a problem. There are

two steps to back up WOACC. One is to backup the system

files. The other step is to backup the database which is

used by the system.

5.4.1 System Backup

All the files are located in the directory

"/pub/wiki" and all its subdirectory. Thus, in order to

backup the system files, all we need to do is to backup

the files in the directory. The method here I suggest is

to compress the directory of "/pub/wiki" including its

subdirectory to compress files for future use by the

49

compress program "tar," Using the following command to

backup the system files:

tar -cf wiki.tar /pub/wiki

5.4.2 Database Backup

To backup the database system, we use pg_dump

command. The following command is used to backup the

database:

pg_dump wiki gzip wiki.zip

After executing the backup command above, the file

Wiki.zip would be the backup file of the database.

5.4.3 System Restore

To restore the system file, simply extract the

backup file by using the following command:

tar -xzvf wiki.tar /

By the command above, all the files will restore into the

directory /pub/wiki and complete the restore system

process.

5.4.4 Database Restore

To restore the database needed for the system, go to

the directory where your database backup file is in, and

execute the following commands:

createdb wiki

gunzip -c wiki~zip I psql wiki

50

After the commands are executed, the database is restored

to the database system. Then, restart tomcat, the wiki

will be completely restored.

51

CHAPTER SIX

CONCLUSION AND FUTURE DIRECTIONS

6.1 Conclusion

This project shows a successful implementation of

extending the wiki paradigm to serve a whole department

of instructors involved in teaching information

technology. The system has been designed and implemented

with highly effective contemporary tools and

technologies, which makes it flexible for more

enhancements and improvements. The system is capable of

handling sets of courses offered by set of instructors,

where students can be enrolled in more than one class.

Moreover, the wiki part works with XHTML validation,

which provides an excellent learning environment for

students.

This system will run as a communication interface

between students and instructors. Using this interface,

pages are created and modified quickly and easily. An

instructor will be able to publish course materials, post

announcements, presentations timetable, etc into the web.

If the student is enrolled to the course, she will be

able to edit these pages and can add for example her

52

presentation title to the presentations timetable, or her

paper abstract to the term paper page. Moreover, all the

pages can be used as a public or private repository, so

that students can post her homework and then limit access

to instructor.

This project consists of various state-of~the-art

j~va web technologies. The project has provided me with

the experience in server side programming and persistent

object frameworks, designing extensible web applications,

and debugging real world applications.

53

REFERENCES

1. Martin Fowler with Kendall Scott. UML Distilled - A

brief guide to the standard object modeling

language. Addison Wesley Longman, July 2001.

2. Elmasri and navathe. Fundamentals of Database

Systems, third edition. Addison Wesley, June 2000.

3. PostgreSQL Reference Manual for version 7.3.

<http://www.postgresql.org/docs/>.

4. Dr Turner homepage. <http://www.drturnet.net>.

5. Hibernate Reference Manual. http://www.hibernate.org

6. Chien-Min Wang. Wiki-Style Administration of Online

Course Content, 2003.

7. Chien-min Wang and David Turner. Extending the Wiki.

Paradigm for Use in the Classroom, International

Conference on Information Technology (ITCC 2004),

Las Vegas, NV, Apr 2004.

8. XHTML. The Extensible HyperText Markup Language.

<http://www.w3.org/TR/xhtml1/>.

54

http://www.w3.org/TR/xhtml1
http:http://www.hibernate.org
http:http://www.drturnet.net
http://www.postgresql.org/docs

	A Wiki paradigm to manage online course content
	Recommended Citation

