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ABSTRACT

Partial D2-like receptor agonists act as functional

antagonists when given during periods of high

dopaminergic tone (e.g., when self-administering

cocaine). The ability of a partial D2-like agonist

(e.g., terguride) to block the induction and

expression of cocaine-induced behavioral sensitization

was assessed in preweanling rats. The ability of

terguride alone to produce a sensitized response was

also investigated. It was hypothesized that terguride

would block induction and eventual expression of

cocaine-induced behavioral sensitization. It was

further hypothesized that terguride alone would not

produce behavioral sensitization. Subjects were 242

(n=8 per group) male and female rat pups of Sprague-

Dawley descent. In Experiments 1 and 2, rats were

injected with terguride (0.1-1.6 mg/kg) during the

pre-exposure phase to determine if a partial D2-like

agonist would block induction and eventual expression

of cocaine-induced behavioral sensitization. In

Experiment 3, rats were injected with terguride (0.2-

0.8) on test day to determine whether expression of
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cocaine-induced behavioral sensitization would be

blocked by acute treatment with a partial D2-like

agonist. The ability of terguride to produce

behavioral sensitization in and of itself was examined

in Experiment 4. In this experiment, rats were

injected with terguride (0.4, 0.8, or 1.6 mg/kg) 

during the pre-exposure phase, and received a test day

challenge injection of saline or 0.4 mg/kg terguride.

Interestingly, terguride reduced the locomotor

activity of cocaine-treated rats during the

pretreatment phase, but the partial D2-like agonist

did not block the induction of behavioral

sensitization. When given on the test day, terguride 

decreased locomotor activity. This may indicate that

a partial D2-like agonist is capable of blocking the

expression of cocaine-induced behavioral

sensitization, but it is more likely that terguride

reduced the acute locomotor-stimulating properties of

cocaine. Repeated treatment with terguride did not

produce behavioral sensitization. Because partial D2-

like agonists attenuate reward, it had been proposed

that this class of drugs may be an effective

pharmacotherapy for psychostimulant abuse. However,
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the present results bring into question whether

terguride will prove effective as a pharmacotherapy

for psychostimulant addiction, because the

sensitization component of the addiction process is

apparently unaffected by partial D2-like agonist

treatment.
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CHAPTER ONE

OVERVIEW

The worldwide use of the highly addictive

psychostimulant drug cocaine is increasing at an

alarming rate among both adults and children (National

Institute of Drug Abuse, 1999). Cocaine is one of the

most addictive substances known, and its use has major

social and economic implications that cross cultural

and societal lines (National Institute of Drug Abuse,

1999). Approximately 1 out of 10 people who use

cocaine develop a severe form of addiction that

involves incessant craving and chronic relapse (Di

Chiara, 1995; Robinson & Berridge, 1993). Due to

chemical changes in brain activity, addicted

cocaine users continue taking the drug despite serious

health and social conseguences (National Institute of

Drug Abuse, 1999; Robinson & Berridge, 1993).

Research has established that dopamine is one of

the major neurotransmitters involved in the

neurobiological substrates of drug addiction and

relapse (for reviews, see Bozarth, 1987; Di Chiara,

1999). Dopamine synapses are a critical component of
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endogenous reward systems in the brain, and are

important for sex drive, mood, and locomotion (Koob,

1992a, 1992b; Wise & Bozarth, 1984). Not

surprisingly, cocaine, as well as other

psychostimulants, are reinforcing because they

activate endogenous reward systems. Cocaine's

mechanism of action is well established, as cocaine

blocks the dopamine reuptake pump, resulting in large

amounts of dopamine in the synaptic cleft (see Figure

1) (Reith, Sershen, & Lajtha, 1980). In this way,

cocaine indirectly enhances dopamine neuronal

transmission (Cooper, Bloom, & Roth, 1996; Reith et

al., 1980). This increased neuronal transmission is

responsible for the sense of pleasure and excitement

that cocaine users report, as well as increased

locomotion and stereotyped movement (Koob, 1992a,

1992b; Robinson & Berridge, 1993; Shippenberg,

LeFevour, & Heidbreder, 1996).

Kebabian and Caine (1979) first described two

dopamine receptors subtypes (Di and D2) based on

biochemical action. More recently, these receptor

subtypes have been further delineated into the Di-like

(Di and D5) and D2-like (D2, D3, and D4) families of

2



Figure 1. Action of Cocaine on 
Dopamine Neuron. Cocaine binds to the 
reuptake pump, preventing reuptake of 
dopamine into the cell.
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receptors (Clark & White, 1987). Activation of the Dr

like receptor subtype stimulates' adenylyl cyclase,

whereas activation of the D2-like receptor subtype

inhibits adenylyl cyclase (Clark & White, 1987).

Besides differentially affecting adenylyl cyclase

activity, Di-like and D2-like receptors uniquely impact

behavior. For example, stimulation of the Di-like

receptor by a direct agonist drug, such as SKF 38393,

increases horizontal locomotor activity, whereas

stimulation of the D2-like receptor increases

stereotypy (Arnt, Hyttel, & Perregaard, 1987; Hu,

Brooderson, & White, 1992; Molloy & Waddington, 1985,

1987). Evidence also shows that Di-like and D2-like

receptors are differentially involved in mediating

reward (Beninger & Miller, 1998; Koechling, Colle, &

Wise, 1988). For example, reinforced responding can

be blocked using a dopamine Di-like receptor agonist

(e.g., SCH 23390), whereas sulpiride, a D2-like

receptor antagonist, does not block reinforced

responding (McDougall, Crawford, & Nonneman, 1992;

McDougall, Nonneman, & Crawford, 1991; Nakajima, 1986;

Nakajima & McKenzie, 1986). These findings provide

evidence that Di-like receptors are more intimately
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involved in reward processes than are D2~like receptors

(for review, see Miller, -Wickens, & Beninger, 1990).

Repeated administration of cocaine, and other

psychostimulants, results in an augmented motor

response known as behavioral sensitization (Kalivas &

Stewart, 1991; Robinson & Becker, 1986).

Sensitization is defined as a progressive increase in

responding to a drug after repeated administration,

whereas tolerance occurs when a drug has a lessened

effect after repeated administration (Kalivas &

Stewart, 1991; Robinson & Becker, 1986). Behavioral

sensitization is thought to reflect processes directly

related to drug craving (Brady, Lydiard, Malcolm, &

Ballenger, 1991; Burger & Martin-Iverson, 1994; Post,

1975; Robinson & Berridge, 1993).

Present treatment options for cocaine addiction

are inadeguate, in that they fail to sufficiently

decrease the intense craving and sensitized responding

that are major components of chronic drug taking

(Robertson, Leslie, & Bennett, 1991; Robinson &

Berridge, 1993). Developing an understanding of

behavioral sensitization and the synaptic changes that

accompany it will be important for developing

5



effective treatments for addiction. Interestingly,

partial D2-like agonists, such as terguride, may have

potential efficacy in the treatment of cocaine

addiction (Pulvirenti & Koob, 1994). For example, it

is possible that partial D2-like agonists may block the

sensitization process by binding to the receptor in

place of dopamine, and thus lessen incessant craving

(Bono, Balducci, Richelmi, Koob, & Pulvirenti, 1996;

Izzo, Orsini, Koob, & Pulvirenti, 2001) . In summary,

empirical studies show that: 1) The dopamine system is

involved in drug addiction; 2) Changes in brain

dopamine levels may be responsible for the addiction

and relapse occurring after repeated psychostimulant

treatment; 3) Behavioral sensitization is an integral

part of the addiction process and results in increased

locomotor activity and stereotypy; and 4) Due to their

pharmacological action on dopamine receptors, partial

D2-like agonists, such as terguride, may have potential

efficacy for the treatment of addiction.
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CHAPTER TWO

DOPAMINE RECEPTORS

Dopamine is a small catecholamine

neurotransmitter synthesized from tyrosine (for

review, see Cooper et al., 1996). Tyrosine is

converted to L-dihydroxyphenylalanine (L-DOPA) by the

enzymatic activity of tyrosine hydroxylase (TH). L-

DOPA is then converted to dopamine through a rapid

enzymatic process involving amino acid decarboxylase

(Cooper et al., 1996). Dopamine is metabolized in the

cell terminal by monoamine oxidase (MAO) and converted

to dihydroxyphen'ylacetic acid (DOPAC) . In the

synaptic cleft catechol-O-methyltransferase (COMT)

converts dopamine to homovanillic acid (HVA), which is

then processed and excreted from the body (Cooper et

al., 1996)..

Dopamine specific receptors are classified into

the Di-like (Di and D5) arid D2-like (D2, D3, and D4)

family of receptors based on their biochemical,

physiological, and pharmacological actions (see Table

1) (Bouthenet, Souil, Matres, Sokoloff, Giros, &

Schwartz, 1991; Clark & White, 1987).

7



Table 1. Dopamine Dj-like and D2-like Receptor 
Properties

Biochemical G- Example
Response Protein Agonist

Example
Antagonist

Di-like Receptor

Di tAdenylyl Cyclase Gs SKF38393 SCH23390

d5 fAdenylyl Cyclase Gs 6-Bromo-APB SCH23390

SCH39166

d2-■like Receptor

d2 jAdenylyl Cyclase Gi quinpirole sulpiride

d3 jAdenylyl Cyclase Gi 7-OH-DPAT AJ-76

Piribedil U99194

d4 j.Adenyly.1 Cyclase G± PD168077 clozapine

L-745,870

Clark and White (1987) confirmed dopamine receptor

selectivity by showing that dopamine agonists and

antagonists have distinct actions on the different

dopamine receptor subtypes. Dopamine receptor

agonists are capable of directly stimulating the

receptor, and frequently have a greater affinity for

the receptor site than the endogenous
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neurotransmitter. Dopamine receptor antagonists also

bind to the dopamine receptor site, but do not

stimulate the receptor (Cooper et al., 1996). Not

surprisingly, dopamine receptor antagonists attenuate

or reverse dopamine's actions (Cooper et al., 1996).

In all cases, dopamine receptors are metabotropic

G-protein-coupled (guanosine triphosphate GTP-binding

protein) receptors (Cooper et al., 1996). More

specifically, D2-like receptors are coupled to

inhibitory G-proteins (Gi) and, when activated, depress

adenylyl cyclase formation (Baldessarini & Tarazi,

1996) . Di-like receptors are coupled to stimulating G-

proteins (Gs) and, when activated, facilitate adenylyl

cyclase formation (Baldessarini & Tarazi, 1996). In

the latter case, Gs-proteins activate effector proteins

and the resulting adenylyl cyclase converts adenosine

triphosphate (ATP) into cyclic adenosine monophosphate

(cAMP) (Baldessarini & Tarazi, 1996; Hepler & Gilman,

1992; Hille, 1992). The resulting cAMP in the cytosol

activates protein kinase A, causing changes in calcium

and potassium permeability (Beninger & Miller, 1998;

Hepler & Gilman, 1992; Hille, 1992).
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Dopamine receptor subtypes differ in their

affinity for dopamine, as well as for agonist and

antagonist drugs (Cooper et al., 1996; Kebabian &

Caine, 1979; Ujike, Akiyama, & Otsuki, 1990). A major

difference among the Di-like receptor subtypes is that

D5 receptors have a 10-fold higher affinity for

dopamine than Di receptors (Cooper et al., 1996).

Differences in affinity have also been observed within

the D2-like family of receptors. For example, D3

receptors have 70 times greater affinity for dopamine

than Di or D2 receptors (Cooper et al., 1996).

Conversely, D2 receptors have a higher affinity for

apomorphine, a prototypical dopamine agonist drug,

than do D3 or D4 receptors (Cooper et al., 1996).

Other drugs show different receptor binding profiles.

For instance, clozapine (a neuroleptic) has a 10-fold

greater affinity for D4 receptors than D2 or D3

receptors (Gilbert, Millar, & Cooper, 1995). Thus,

the various dopamine receptor subtypes not only have

different affinities for dopamine, they also are

differentially stimulated by dopamine agonist and

antagonist drugs.
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Due to the role dopamine plays in reward

processes, a substantial number of studies have

examined whether the dopamine neurotransmitter system

is important for addiction. As indicated above, the

functioning of dopamine neurons and receptors can be

altered through pharmacological manipulation. Thus,

therapeutic interventions may eventually be able to

reverse or attenuate some of the psychostimulant-

induced molecular and cellular changes responsible for

addiction.
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CHAPTER THREE

NEURAL SUBSTRATES OF REWARD

Dopamine neuronal pathways are critical

components of the reward system. Early self­

administration studies by Olds and Milner (1954),

along with work by Dahlstrom and Fuxe (1964), greatly

increased our knowledge regarding reward and

reinforcement. They demonstrated that stimulation of

the medial forebrain bundle, traveling near the

lateral hypothalamus, was rewarding to a subject,

while lesioning the MFB disrupted reward. Additional

studies showed that stimulation of the MFB activates

an endogenous dopamine reward system that projects

from the midbrain to limbic structures (Bozarth,

1991). Subsequent neurochemical stimulation studies

have shown that two major dopamine pathways exist in

brain: the mesolimbic and nigrostriatal pathways (see

Figure 2)(Koob & Bloom, 1988; Wise & Bozarth, 1987).

Both the mesolimbic and nigrostriatal dopamine systems

have unique roles in reward and addiction. The

mesolimbic dopamine pathway is the primary site of

12



Figure 2. Brain Reward Pathways. The mesolimbic 
dopamine pathway originates in the ventral 
tegmentum and extends to the nucleus accumbens. 
Output fibers go to the frontal cortex. The 
nigrostriatal dopamine pathway projects from the 
caudate-putamen. Output fibers go to the frontal 
cortex via the ventral thalamus.
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reward (Wise & Bozarth, 1984). In contrast, the

increased stereotypy observed after chronic

psychostimulant use appears to be due to activation of

the nigrostriatal pathway (Stahl, Ferger, & Kuschinsky,

1997; Wise & Bozarth, 1984). For example,

microinjecting amphetamine into the nucleus accumbens 
results in locomotion and reward (Wise & Bozarth,

1987), whereas, microinjecting amphetamine into the

caudate-putamen results in stereotypy (Arnt, 1987).

Thus, psychostimulants like cocaine enhance

dopaminergic functioning in both the mesolimbic and

nigrostriatal pathways resulting in reward, locomotion,

and stereotypy (Wise & Bozarth, 1984).

The Mesolimbic Dopamine Pathway 
Anatomy and Receptors

The mesolimbic dopamine pathway modulates and

filters signals in the limbic system (Koob, 1992a,

1992b; Pierce & Kalivas, 1997). Efferent neurons from

the ventral tegmental area travel thru the MFB (which

is a major fiber bundle connecting the forebrain to

the midbrain) to the nucleus accumbens (known as the

ventral striatum) (McBride, Murphy, & Ikemoto, 1999;

14



Wise & Bozarth, 1984). Output fibers from the nucleus

accumbens project to the prefrontal cortex (Wise &

Bozarth, 1984). Various brain areas provide

excitatory input into the ventral tegmental area,

including the lateral hypothalamus, prefrontal cortex,

and amygdala (Beninger & Hahn, 1983; Wise & Rompre,

1989; Wise, Spindler, deWit, & Gerber, 1978). The

most important input into the ventral tegmental area

is from the lateral hypothalamus, because it is

critical for the reward associated with food, water,

sex, and predation (Di Chiara, 1999; Leshner & Koob,

1999; Wise & Bozarth, 1984; Wise & Rompre, 1989).

Dopamine Di-like and D2-like receptors are

differentially distributed across brain. Among the Dr

like receptor family, Di receptors are found in high

numbers in the substantia nigra pars reticulata,

caudate-putamen, nucleus accumbens and frontal cortex

(Baldessarini & Tarazi, 1996; Boyson, McGonigle, &

Molinoff, 1986; Dawson, Gehlert, McCabe, Barnett, &

Wamsley, 1986; Mansour, Meador-Woodruff, Bunzow,

Civelli, Akil, & Watson, 1990; Schambra, Duncan,

Breese, Fornaretto, Caron, & Fremeau, 1994). D5

receptors are localized in the cortex, hippocampus and

15



limbic system. Among the D2-like receptor family, D2

receptors are found in high numbers in the caudate-

putamen, striatum, and substantia nigra, while D3

receptors are localized in the olfactory tubercle,

nucleus accumbens, striatum, substantia nigra, and

hypothalamus (Boyson et al., 1986; Dawson et al.,

1986; Mansour et al., 1990; Schambra et al., 1994).

The final member of the D2-like receptor family, the D4

receptor, is found in the frontal cortex, medulla,

hypothalamus, and caudate-putamen (Boyson et al.,

1986; Dawson et al., 1986; Mansour et al., 1990;

Schambra et al., 1994; Tarazi & Baldessarini, 2000).

Although the regional distributions of Di-like and

D2-like receptors have been determined, the functioning

of these receptors has only been partially clarified.

For example, D2-like receptors in the nigrostriatal

pathway appear, to be important for modulating the

intensity of voluntary movement (Baldessarini &

Tarazi, 1996). Di-like receptors have a role in

facilitating the commencement of D2-like activities

(Arnt & Perregaard',- 1987;- Clark & White, 1987) . Di~

like receptors are also thought to be more critical

than D2-like receptors for reward functioning
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(McDougall et al., 1991, 1992; Miller et al., 1990;

Nakajima, 1986; Nakajima & McKenzie, 1986).

Evidence that Psychostimulant 
Drugs Affect the Mesolimbic
Dopamine Pathway

In both humans and nonhuman animals, stimulation

of the MFB elicits strong feelings of pleasure and

reward (Bozarth, 1991; Koob, 2000; Salamone, Cousins,

& Snyder, 1997). Presumably, these enhanced feelings 

of reward are caused by activation of the nucleus

accumbens via input from the ventral tegmental area

(Bozarth, 1991). The nucleus accumbens is stimulated

not only by natural rewards, such as food and sex, but

also by psychoactive drugs (Di Chiara, 1999; Leshner &

Koob, 1999). In fact, most researchers believe that■ I. \ ,
the nucleus accumbens is the locus where cocaine has

its rewarding actions (Bozarth, 1991).

Substantial amounts of evidence support the idea

that the mesolimbic pathway, and the nucleus accumbens

in particular, is important for cocaine-induced

reward. For example, administering dopamine

antagonists into the nucleus accumbens blocks reward

(Bozarth, 1991; Breiter, Gollub, Weisskoff, Kennedy,
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Makris, Berke, Goodman, Kantor, Gastfriend, Riorden,

Mathew, Rosen, & Hyman, 1997; Everitt, Parkinson,

Olmstead, Arroyo, Robledo, & Robbins, 1999) .

Conversely, rats will readily self-administer

psychostimulant drugs into the ventral tegmental area

and nucleus accumbens (Schuster & Thompson, 1969).

When electrical stimulation is applied to areas near

the nucleus accumbens, but not in it, there is no

evidence of reward (Bozarth, 1991). Lastly, lesioning

the mesolimbic dopamine pathway fully attenuates self­

administration of both cocaine and amphetamine

(Lyness, Friedle, & Moore, 1979). Therefore, various

types of studies (microinjection, electrical brain

stimulation, and drug self-administration experiments)

suggest that the mesolimbic pathway serves as the

critical substrate for reward (McBride et al., 1999;

Pierce & Kalivas, 1997).

The Nigrostriatal 
Dopamine Pathway

Anatomy and Receptors

The behavioral stereotypy observed after chronic

cocaine exposure is mediated by the nigrostriatal
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dopamine pathway, which originates in the pars

compacts of the substantia nigra and projects to the

caudate-putamen (also known as the dorsal striatum)

(Arnt & Perregaard, 1987; Pierce & Kalivas, 1997).

Two main output pathways project from the caudate-

putamen: one intrinsic and one extrinsic. The

intrinsic pathway is referred to as the striatonigral

tract, which extends from the caudate-putamen to the

substantia nigra (Gerfen, 1984, 1992). These

descending neurons express Di receptor mRNA and release

both GABA and dynorphin from their terminal fibers

(Gerfen, 1984). The extrinsic pathway projects from

the caudate-putamen to the thalamus and, ultimately,

to premotor areas of the frontal cortex (Gerfen,

1984) .

Evidence that Psychostimulant
Drugs Affect the 
Nigrostriatal Dopamine
Pathway

Various experimental paradigms have shown that

psychostimulant drugs indirectly stimulate the

nigrostriatal dopamine pathway. For example, high

doses of psychostimulant drugs preferentially affect

the nigrostriatal dopamine pathway resulting in
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stereotypy, while lower doses increase locomotor

activity (Asher & Aghajanian, 1974; Kelly, Seviour, &

Iversen, 1975). Using electroencephalograph (EEG)

techniques, Stahl et al. (1997) also found a dose-

dependent effect in which low doses of amphetamine

activated Di-like receptors in the mesolimbic pathway,

while higher doses of amphetamine activated D2-like

receptors in the nigrostriatal pathway. Lastly,

microinjecting amphetamine into the caudate-putamen

and nucleus accumbens produce distinctly different

behavioral profiles. Intense oral stereotypies

develop when amphetamine is microinjected into the

caudate-putamen, while microinjecting amphetamine into

the nucleus accumbens results in locomotion (Dickson,

Lang, Hinton, & Kelley, 1994; Staton & Solomon, 1984).
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CHAPTER FOUR

BEHAVIORAL SENSITIZATION

IN THE ADULT RAT

The enduring behavioral augmentation observed

after chronic cocaine administration is known as

behavioral sensitization (Downs & Eddy, 1932; Robinson

& Becker, 1986).. Behavioral sensitization is

considered to be a major factor in the addiction

process (Bozarth, 1987; Reith et al., 1980; Robinson &

Becker, 1986; Robinson & Berridge, 1993), and is

thought by some to be important for incessant drug

craving and psychostimulant-induced psychoses (Brady

et al., 1991; Post, 1975).

In rodents, enduring locomotor augmentation is

produced by a wide variety of drugs, including

methylphenidate, cocaine, and methamphetamine

(Akimoto, Hamamura, & Otsuki, 1989; Crawford, Drago,

Watson, & Levine, 1997; Crawford, McDougall, Meier,

Collins, & Watson, 1998). In adult rats, cocaine-

induced behavioral sensitization remains evident after

a 3-month abstinence period, while sensitization to

amphetamine and methamphetamine is evident for up to
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12 months (Kalivas & Stewart, 1991; Leith & Kuczenski,

1982; Paulson, Camp, & Robinson, 1991). The strength

of the sensitized response is dependent on multiple

factors, including drug dose, whether the drug is

administered in the home cage or a novel environment,

and drug pre-exposure schedule (McDougall, Collins,

Karper, Watson, & •. Crawford, 1999; Robinson & Berridge,

1993; Snyder, Katovic, & Spear, 1998; Weiss, Post,

Pert, Woodward, & Murman, 1989; Zavala, Nazarian,

Crawford, & McDougall, 2000).

The neural mechanisms underlying behavioral

sensitization are only partially understood. For

example, some researchers have shown that drug-induced

changes in the Di-like receptor are probably

responsible for the plasticity associated with

behavioral sensitization (Henry & White, 1991, 1995;

Kalivas, 1995; Vezina, 1996). Other researchers have

posited that D2-like autoreceptor supersensitivity in

the ventral tegmental area is responsible for the

enhanced synaptic dopamine levels occurring in

behavioral sensitization (Wolf, White, Nassar,

Brooderson, & Khansa, 1993). With continued research

it is anticipated that the precise mechanisms
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mediating behavioral sensitization will become fully

elucidated.

Induction and Expression of 
Behavioral Sensitization

Induction

Behavioral sensitization can be divided into two

distinct processes referred to as induction (also

known as development or initiation) and expression

(Kalivas & Stewart, 1991; Leith & Kuczenski, 1982;

Pierce & Kalivas, 1997; Robinson & Becker, 1986;

Vanderschuren & Kalivas, 2000). Induction is the

process by which a subject initially develops a

sensitized response. Induction is characterized by a

progressive day-dependent increase in behavioral

responding that occurs after repeated administration

of a psychostimulant drug. It is likely that

induction is the result of long-lasting cellular 

changes in the neuron caused by chronic

psychostimulant exposure (Pierce & Kalivas, 1997).

Specifically, induction is correlated with blockade of

the dopamine reuptake pump, an increase in dopamine

levels in the synapse, and a decrease in D2-like
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autoreceptor sensitivity (Henry & White, 1991; Kalivas

& Stewart, 1991; Pierce & Kalivas, 1997; Robinson &

Becker,* 1986; Vezina, 1996; Vezina & Stewart, 1989;

Wolf, 1998).

Recent empirical evidence has more fully

elucidated the neuronal mechanisms important for

induction of behavioral sensitization. Repeated

administration of amphetamine into the ventral

tegmental area, but not the nucleus accumbens, causes

a sensitized response after subsequent drug challenge

(Kalivas & Duffy, 1990). This finding suggests that

the ventral tegmental area is the primary site

responsible for the induction of behavioral

sensitization. Wolf, White, and Hu (1994) reported

that the neurochemical changes observed in the ventral

tegmental area are transient and occur soon after

initial drug exposure. Changes in the nucleus

accumbens are longer lasting and require substantially

more drug exposures (Wolf et al., 1993, 1994). Thus,

these results suggest that psychostimulant-induced

changes in the ventral tegmental area are probably

responsible for the induction of behavioral

24



sensitization, whereas changes in the nucleus

accumbens are more clearly associated with expression.

Expression

Expression of behavioral sensitization occurs

when a subject previously exposed to a psychostimulant

shows an enhanced behavioral response after acute drug

challenge (Henry & White, 1991; Pierce & Kalivas,

1997) . The nucleus accumbens is important for the

expression of behavioral sensitization (Pierce &

Kalivas, 1997; Vanderschuren & Kalivas, 2000; Wolf,

1998) . Long-term expression of behavioral

sensitization is thought by some to be a result of Di-

like receptor supersensitivity in the axon terminals

of the nucleus accumbens and striatum (Henry & White,

1991; Wolf, 1998). Consistent with this idea, Di-like

receptor' antagonists block expression of behavioral

sensitization, even though the induction of behavioral

sensitization had previously occurred (Mattingly,

Hart, Lim, & Perkins, 1994; White, Joshi, Koeltzow, &

Hu, 1998) .
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Associative Learning in 
Behavioral Sensitization

Empirical evidence indicates that the overall

strength of the .sensitized response is increased when

Pavlovian associations are formed between the

environment and the drug (Badiani, Brownian, &

Robinson, 1995). In this situation, the effect drug's

neurochemical actions function as the unconditioned

stimulus (US), while the environment and the locomotor

activity are the conditioned stimulus (CS) and

unconditioned response (UR), respectively (Campbell &

Raskin, 1978). For this reason, a novel environment

has been shown to facilitate the development of

behavioral sensitization to cocaine, amphetamine, and

other psychostimulants (Badiani et al., 1995;

Shippenberg et al., 1996; Tirelli & Terry, 1998).

Thus, sensitized responding is more robust when

cocaine challenge occurs in the same environment where

the subject initially received the drug (Badiani et

al., 1995; Shippenberg et al., 1996; Tirelli & Terry,

1998).

Behavioral sensitization may be an important

component in drug craving. During behavioral
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sensitization, the environment takes on cue salience

and is able to produce craving on its own (Burger &

Martin-Iverson, 1994; Post, Weiss, & Pert, 1992;

Robinson & Becker, 1986; Tirelli, 2001). Consistent

with this idea, rats spend more time in an environment

that has been paired with a psychostimulant drug

(Crombag, Badiani, Chan, Dell'Oreo, Dineen, &

Robinson, 2001). Interestingly, rats exhibit

increased brain dopamine levels when they are placed

in a previously drug-paired environment even if no new

drug is administered (Crombag et al., 2001; Rebec,

Grabner, Johnson, Pierce, & Bardo, 1997).

The relationship between drug and environment may

be relevant to the issue of drug relapse in humans.

More specifically, exposure to the drug-taking

environment can result in drug relapse (Wise, 1988).

This finding was first reported over 50 years ago, as

Wikler (1948) noted that post-detoxification patients

returning to their old environments experienced drug

craving and relapse. The reinstatement of desire for

a drug can occur after months, or even years, of drug

abstinence (National Institute of Drug Abuse, 1999;

Wise, 1988). It has even been estimated that 45% of
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drug relapse may be due to associative processes

involving the pairing of drug cues with environmental

factors (Wise, 1988). Thus, there is substantial

evidence supporting the argument that environmental

cues are a critical factor in the addiction process.
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CHAPTER FIVE

ONTOGENY OF BEHAVIORAL

SENSITIZATION

Psychostimulant-induced behavioral sensitization

shows ontogenic changes from the preweanling period to

adulthood (Fujiwara, Kazahaya, Nakashima, Sato, &

Otsuki, 1987; McDougall, Duke, Bolanos, & Crawford,

1994; Wood, Tirelli, Snyder, Heyser, LaRocca, & Spear,

1998; Zavala et al., 2000). Early studies using

cocaine and amphetamine suggested that young animals

were incapable of showing behavioral sensitization

after repeated psychostimulant treatment (Barr & Wang,

1993; Fujiwara et al., 1987; Kolta, Scalzo, Ali, &

Holson, 1990; Tsuchida, Ujike, Kanzaki, Fujiwara, &

Akiyama, 1994). More recent studies report that

behavioral sensitization to psychostimulant drugs is

attainable in the young rat, although it is not as

robust as in adults (Duke, O'Neal, & McDougall, 1997;

McDougall et al., 1994; Tirelli & Ferrara, 1997; Wood

et al., 1998; Zavala et al., 2000). A possible

explanation for these age-dependent behavioral

differences is that dopamine receptor systems may be
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functionally immature in the young animal (Fujiwara et

al., 1987; McDougall et al., 1994; Ujike, Tsuchida,

Akiyama, Fujiwara, & Kuroda, 1995; Wood et al., 1998).

Thus, as the dopamine system matures, sensitized

responding may become more robust. Another

explanation is that young and adult rats may differ in

how readily they form Pavlovian associations between

the environmental context and the drug (Wood et al.,

1998; Zavala et al., 2000). Since Pavlovian

associations are critical for the expression of

behavioral sensitization, an inability to form such

associations would negatively impact the robustness of

the sensitized response.

A number of ontogenic constraints affect the

induction and expression of behavioral sensitization,

including the number of pre-exposure days and the

length of the drug abstinence period. For example, as 

little as one drug pre-exposure is capable of inducing

behavioral sensitization in adult rats, and the

sensitized response may be detected for many months

(Fontana, Post, Weiss, & Pert, 1993; Leith &

Kuczenski, 1982; Paulson et al. , 1991; Weiss et al.,

1989) . In order to elicit cocaine-induced behavioral
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sensitization in preweanling rat pups, a longer pre­

exposure phase and a shorter drug abstinence period is

required (McDougall et al., 1994; Tirelli & Ferrara,

1997; Zavala et al.,'2000). For example, Zavala et

al. (2000) found that 10 drug pre-exposure days,

rather than the usual 5 days, was necessary to produce

a sensitized response that persisted across seven drug

abstinence days. Further, Snyder et al. (1998)

obtained a sensitized locomotor response to cocaine

after a 21-day drug abstinence period, but only if an

extended pre-exposure phase was used. This shows that

the number of pre-exposure days, and the length of the

drug abstinence period, are a critical constraint

affecting the occurrence of behavioral sensitization

(Zavala et al., 2000).

As mentioned above, ontogenic differences in

behavioral sensitization may be due to maturational

changes in the dopamine system (Fujiwara et al., 1987;

McDougall et al., 1994; Ujike et al., 1995; Wood et

al., 1998). For example, certain components of the

dopamine system, including reuptake pumps and

receptors, show substantial changes across the

preweanling period (Arnauld, Arsaut, Tafani, &
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Demotes-Mainard, 1995; Gelba.rd, Teicher, Faedda, &

Baldessarini, 1989; Giorgi, De Montis, Porceddu, Mele,

Calderini, Toffano, & Biggio, 1987; Pardo, Creese,

Burt, & Snyder, 1977). Immaturity of the dopamine

system has functional consequences, as the mesolimbic

and nigrostriatal dopamine pathways appear to be

hypoactive in younger animals (Arnauld et al., 1995;

Pardo et al.,1977).

Another explanation for the ontogenic changes in

behavioral sensitization may involve age-dependent

differences in the ability to form and maintain

Pavlovian associations (Zavala et al., 2000). For

example, Zavala et al. (2000) found that sensitization

was not dependent on associative factors when drug

challenge occurred after only one abstinence day

(i.e., a sensitized response was observed when the

pre-exposure drug was given in the home cage rather

than the test chamber). However, when a seven-day

drug abstinence period was employed, rat pups only

exhibited a sensitized response if drug pre-exposure

and challenge occurred in the same previously novel

environment (Zavala et al., 2000). When considered

together, these findings show that Pavlovian factors
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are particularly important for the occurrence of

behavioral sensitization in preweanling rats. It is

conceivable that young rats may have more difficulty

forming the necessary associations between the

psychostimulant drug and the environmental context,

thus requiring an extended pre-exposure phase for the

association to take place (Zavala et al., 2000).

In summary, empirical evidence shows that: 1) The

sensitization process is dependent on changes across

ontogeny; 2) Young rats can exhibit behavioral

sensitization to psychostimulant drugs, although the

sensitization is not as robust as that observed in

adult rats; 3) The number of pre-exposure days and the

length of the drug abstinence period are important

ontogenic constraints affecting the occurrence of

behavioral sensitization; 4) Ontogenic. differences in

behavioral sensitization may be due to (a)

maturational changes in the dopamine system or (b)

age-dependent differences in the ability to form

Pavlovian associations between the drug and

environmental context.
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CHAPTER SIX

PHARMACOLOGICAL ACTION OF

PARTIAL D2-LIKE RECEPTOR

AGONISTS

Although psychostimulant addiction is a major

problem in society, no effective pharmacotherapies

have yet been developed to treat this problem

(National Institute of Drug Abuse, 1999). Dopamine

receptor antagonists are effective at blocking reward,

but complete blockade of dopamine receptors produces

anhedonia and motor side effects (e.g., tardive

dyskinesia and tremors) (for reviews, see

Baldessarini, 1996; Miller et al., 1990). Partial D2-

like receptor agonists have been suggested as a

potential pharmacotherapy that may be effective in

reducing the rewarding value of psychostimulant drugs,

without having the same aversive properties as

dopamine receptor antagonists.

Partial D2-like receptor agonists have both

agonist and antagonist actions on G-protein-coupled

dopamine receptor sites (Hoyer- & Boddeke, 1993). In

situations where dopaminergic functioning is
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depressed, partial D2-like agonists act in an agonistic

manner, thus stimulating the dopamine system. In

situations where dopaminergic functioning is enhanced,

partial D2-like agonists act in an antagonistic manner,

thus depressing the dopamine system (Clark, Furmidge,

Petry, Tong, Ericcson, & Johnson, 1991) . Because

partial D2-like agonists bind to dopamine receptor

sites with high affinity and low intrinsic activity,

this class of drugs has the ability to block the

effects of psychostimulant drugs without depressing

baseline levels of dopaminergic activity (Hoyer &

Boddeke, 1993) .

Pre- and postsynaptic D2-like receptors are

differentially affected by partial D2-like receptor

agonists. For example, D2 autoreceptors are 5-10 times

more sensitive to partial agonist activity than D2-like

postsynaptic receptors (Clark & White, 1987).

Although exhibiting low intrinsic affinity for D2-like

postsynaptic receptors, partial D2-like agonists

typically have antagonistic actions at these receptor

sites (Arnt et al., 1987; et al., 1991; Clark, Salah,

& Galloway, 1991). In the nucleus accumbens, cocaine

enhances dopaminergic activity by indirectly
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stimulating postsynaptic D2-like receptors. Thus,

functioning of the mesolimbic pathway could

potentially be restored to normal levels if cocaine's

actions were attenuated by a partial D2-like agonist

(Izzo et al., 2001; Robertson et al., 1991).

Terguride, an analog of lisuride is a partial D2-

like dopamine receptor agonist that has

pharmacological properties suggesting potential

efficacy in the treatment of addiction (Briicke,

Bankiewicz, Harvey-White, & Kopin, 1988; Carratu,

DeSerio, Mitolo-Chieppa, & Federico, 1991; Ekman &

Eriksson, 1992; Koller & Herbster, 1987; Lange,

Loschmann, Wachtel, Horowski, Jahnig, Jenner, &

Marsden, 1992; Piercy, Hoffman, Vogelsang, & Travis,

1987). D2-like agonists, such as terguride, may be

able to modulate multiple aspects of psychostimulant

addiction. For example, .terguride decreases both

cocaine self-administration (Clark, Furmidge, et al.,

1991; Clark, Salah, et al., 1991; Pulvirenti,

Balducci, Piercy, & Koob, 1998; Spealman, 1995) and

alcohol consumption in rats (Bono et al., 1996). This

seems to indicate that terguride has a modulating

effect on craving, perhaps by normalizing dopaminergic
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functioning in the nucleus accumbens. Terguride also

blocks cocaine-induced locomotor activity, suggesting

that this partial D2-like agonist is capable of

attenuating other reward-related behavioral effects

(Clark, Furmidge, et al., 1991). Lastly, terguride

alone is not rewarding (Callahan & Cunningham, 1993; 

Pierce & Kalivas, 1997), nor does it possess the

discriminative stimulus properties of other

psychostimulants (Akai, Ozawa, Yamaguchi, Mizuta, &

Kuno, 1995; Akai, Yamaguchi, Mizuta, & Kuno, 1993;

Callahan & Cunningham, 1993; Pierce & Kalivas, 1997) .

The latter point is important, because drugs that act

as discriminative stimuli can produce cue-induced 

craving (Akai et al., 1995; Callahan & Cunningham,

1993; Pierce & Kalivas, 1997).

In summary, the potential efficacy of partial D2-

like receptor agonists, such as terguride, may lie in 

their ability to modulate critical processes involving

psychostimulant addiction (i.e., reward and incessant

craving) (Bono et al., 1996; Brucke et al., 1988; Izzo

et al. , 2001; Pulvirenti & Koob, 1994; Ranaldi, Wang,

& Woolverton, 2001; White et al., 1998). As shown in

the above studies, substantial evidence suggests that
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terguride may have therapeutic benefits for

psychostimulant addiction.
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CHAPTER SEVEN

PURPOSE

In general, the contents of the previous chapters

can be summarized as follows: 1) Endogenous activation

of dopamine receptors in the mesolimbic pathway is

rewarding; 2) Cocaine exogenously activates the

mesolimbic pathway, not only causing reward, but also

producing long-term changes in neurotransmitter

functioning; 3) Behavioral sensitization is believed

to be a critical component of the addiction process;

4) Psychostimulant-induced behavioral sensitization

shows ontogenic changes (i.e., the sensitized

responding of preweanling rats is not as robust as

that shown by adults); 5) If the dopamine system is

maximally activated, partial D2-like agonists have the

ability to depress dopaminergic functioning.towards

basal levels. It has already been established that

partial D2-like agonists can reduce the rewarding

effects of cocaine and other psychostimulants (Bono et

al., 1996; Izzo et al., 2001; Pulvirenti et al.,

1998). It is unclear, however, whether partial D2-like

agonists can block the induction and-expression of
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behavioral sensitization. If partial D2-like agonists

are capable of blocking behavioral sensitization, it

would provide additional evidence that this class of

drugs might have therapeutic efficacy for the

treatment of psychostimulant addiction.

Based on previous findings, it was hypothesized

that a partial D2-like agonist (i.e., terguride) would

block both the induction and expression of behavioral

sensitization in preweanling rats. It was further

hypothesized that terguride would not produce

behavioral sensitization by itself. To test these

hypotheses I conducted four experiments. In

Experiments 1 and 2, I investigated whether terguride

would block induction of cocaine-induced behavioral

sensitization in preweanling rats. In Experiment 3, I

examined whether a test day injection of terguride

would block expression of cocaine-induced behavioral

sensitization. In Experiment 4, the focus was to

determine whether terguride itself can produce

behavioral sensitization. If terguride produces

behavioral sensitization, it would suggest that this

partial D2-like agonist has abuse potential in its own

right.
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CHAPTER EIGHT

GENERAL METHODS

Subjects

Subjects were 242 (n = 8 per group) male and

female rat pups of Sprague-Dawley descent (Charles

River, Wilmington, MA), born and raised at California

State University, San Bernardino. Litters were culled

to ten pups by 3 days of age and kept with the dam

throughout behavioral testing. Assignment of males

and females to groups was random, with only one rat

per litter in each particular group. Rats were housed

in the colony room on a 12:12 hr light-dark cycle.

Temperature was maintained at 22-24°C. Behavioral

testing was done during the light cycle, at

approximately the same time each day. Subjects were

treated according to the American Psychological

Association "Ethical Principles" (1992), and the

Principles of Laboratory Animal Care (National

Institute of Health Publication # 85-23).
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Apparatus

Coulbourn Tru-Scan (Coulbourn Instruments,

Allentown, PA) activity monitoring chambers (25.5 x

25.5 x 41 cm) were used to measure distance traveled

(i.e., horizontal locomotor activity). The Coulbourn

chambers have clear Plexiglas walls, open tops, and

smooth plastic floors. Each chamber has 16 photocells

and detectors in an X-Y photobeam arrangement. To

avoid olfactory contamination the Plexiglas walls were

wiped with 30% alcohol between subjects. The floor

trays were cleaned with a commercially available

bactericide between testing sessions.

.Drugs

Terguride (transdihydrolisuride) (Sigma, St

Louis, Mo) was dissolved in a drop of glacial acetic

acid and then mixed in saline. Cocaine (Sigma) was

dissolved in saline. All injections were given

intraperitoneally (i.p.) at a volume of 5 ml/kg.

Statistical Analysis

Behavioral data were analyzed using repeated

measures analyses of variance (ANOVA). Distance
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traveled was the dependent variable in all

experiments. In each of these analyses, litter

effects were controlled by using within-litter

statistical procedures (Zorrilla, 1997). Additional

analysis of behavioral data was made using Tukey

tests. Alpha level criterion of .05 was used for all

ANOVA's and Tukey tests.
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CHAPTER NINE

.EXPERIMENT ONE

The purpose of this experiment was to assess

whether low doses of terguride (0.1-0.4 mg/kg) are

capable of blocking the induction of behavioral

sensitization to cocaine.

Procedure
Pre-Exposure Phase (Days 1-7)

• The pre-exposure phase started at postnatal PD 15

and continued to PD 21. On. seven consecutive days
I(i.e., PD 15-21), pups were injected with saline or.
I
terguride (0.1, 0.2, or 0.4 mg/kg). Pups were then

returned to the dam in their home cage. After 30 min,

pups were taken to the experimental room and placed in

individual chambers for a 5-min habituation period.

At the end of habituation, pups initially injected

with saline'were injected with either cocaine (30

mg/kg) or saline. In contrast, pups initially

injected with terguride were injected with cocaine (30 

mg/kg). After the 30-min observation session, pups

were returned to the dam in, their home cage. In 

summary, five groups of rais received the following
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5-min time blocks) repeated measures ANOVA. Post hoc

analysis of behavioral data 'was made using Tukey

tests.
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CHAPTER TEN

EXPERIMENT TWO

The purpose of this experiment was to assess

whether higher doses of terguride (0.4-1.6 mg/kg) are

able to block the induction of behavioral

sensitization to cocaine.

Procedure
Pre-Exposure Phase (Days 1-7)

The pre-exposure phase started at PD 15 and

continued to PD 21. On seven consecutive days (i.e.,

PD 15-21), pups were injected with saline or terguride

(0.4, 0.8, or 1.6 mg/kg). Pups were then returned to

the dam in their home cage. After 30 min, pups were

taken to the experimental room and placed in

individual chambers for a 5-min habituation period.

At the end of habituation, half of the pups were

injected with cocaine (30 mg/kg) and the other half

received saline. After the 30-min observation

session, pups were returned to their home cage. In

summary, eight groups of rats received the following

sequence of drugs on each day of the pre-exposure

phase: Sal-Sal, Terg(0.4)-Sal, Terg(0.8)-Sal,
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Terg(1.6)-Sal, Sal-Coe, Terg(0.4)-Coc, Terg(0.8)-Coc,

and Terg(1.6)-Coc. As mentioned above, the initial

injection of saline or terguride occurred 30 min prior

to the cocaine injection.

Test Day (Day 9)

After a 24 h drug abstinence period,

sensitization was assessed on a single test day. On

the test day (PD 23), pups were injected with saline

and returned to the dam for 30 min. Pups were then

taken to the experimental room and placed in a chamber

for a 5-min habituation period. After habituation,

all pups were given a single challenge injection of

cocaine (15 mg/kg). After the 30-min testing period,

pups were returned to their home cage.

Statistical Analysis
Horizontal locomotor activity during the pre­

exposure phase was analyzed using a 4 x 2 x 7 (Pre-

Exposure Drug x Stimulant Condition x Pre-Exposure Day)

repeated measures ANOVA; whereas, horizontal locomotor

activity from test day was analyzed using a 4 x 2 x 6

(Pre-Exposure Drug x Stimulant Condition x 5-min time
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blocks) repeated measures ANOVA. Post hoc analysis of

behavioral data was made using Tukey tests.
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CHAPTER ELEVEN

EXPERIMENT THREE

The purpose of this experiment was to assess

whether terguride is capable of blocking the

expression of behavioral sensitization to cocaine.

Procedure

Pre-Exposure Phase (Days 1-7)

The pre-exposure phase started at PD 15 and

continued to PD 21. On seven consecutive days (i.e.,

PD 15-21), pups were taken to the experimental room

and placed into the individual chambers for a 5-min

habituation period. At the end of habituation, half

of the pups were injected with cocaine (30 mg/kg) and

the other half with saline. After the 30-min

observation session, pups were returned to their home

cage.

Test Day (Day 9)

After a 24 h drug abstinence period,

sensitization was assessed on a single test day. On

the test day (PD 23), pups were injected with saline

or terguride (0.2, 0.4, or 0.8 mg/kg) and returned to
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their home cage for 30 min. After 30 min, pups were

taken to the testing room and placed in a chamber for

a 5-min habituation period. At the end of

habituation, pups were injected with a challenge dose

of cocaine (15 mg/kg). After the 30-min testing

period, pups were returned to their home cage. As

mentioned above, the initial dose of saline or

terguride occurred 30 min prior to -the cocaine

inj ection.

Statistical Analysis

Horizontal locomotor activity from the pre­

exposure phase was analyzed using a 2 x 7 (Stimulant

Condition x Pre-Exposure Day) repeated measures ANOVA

whereas, horizontal locomotor activity from test day

was analyzed using a 2 x 4 x 9 (Stimulant Condition x

Test Day Drug x 5-min time blocks) repeated measures

ANOVA. Post hoc analysis of behavioral data was made

using Tukey tests.
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CHAPTER TWELVE

EXPERIMENT FOUR

The purpose of this experiment was to assess

whether terguride is capable of producing behavioral

sensitization.

Procedure
Pre-Exposure Phase (Days 1-7)

The pre-exposure phase started at and continued

to PD 21. On seven consecutive days (i.e., PD 15-21),

pups were taken to the experimental room and placed

into individual chambers for a 5-min habituation

period. At the, end of habituation, all pups were

injected with saline or terguride (0.4, 0.8, or 1.6 

mg/kg). After the 60-min observation session, pups 

were returned to their home cage.

Test Day (Day 9)

After a 24 h abstinence period, sensitization was

assessed on a single test day. On the test day (PD

23), pups were taken to the testing room and placed in

a chamber for a 5-min habituation period. After

habituation, pups were given a challenge injection of 

either saline or terguride (0.4 mg/kg). After the 60-
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min testing period, pups were returned to their home

cage.

Statistical Analysis
Horizontal locomotor activity during the pre­

exposure phase was analyzed using a 4 x 7 (Drug

Condition x Pre-Exposure Day) repeated measures ANOVA;

whereas, horizontal locomotor activity from test day

was analyzed using a 4 x 12 (Drug Condition x Test Day

Drug x 5-min time blocks) repeated measures ANOVA.

Post hoc analysis of behavioral data was made using

Tukey tests.
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CHAPTER THIRTEEN

RESULTS

Experiment One

Pre-Exposure Phase

Overall, rats showed a day-dependent increase in

distance traveled (i.e., horizontal locomotor

activity) across the pre-exposure phase [Pre-Exposure

Day main effect, F(6,54) = 27.36, p < .05] (see Figure

3). This effect varied according to drug group, as

rats receiving cocaine (filled symbols) exhibited

greater horizontal locomotor activity than saline

controls (open symbols) [Stimulant Condition main

effect, F(4,36) = 12.53, p < .05]. Tukey tests

revealed that only rats in the 0.0 mg/kg Terg/Coc

groups had greater horizontal locomotor activity than

saline controls on PD 16;- whereas, on PD 17, rats in

the 0.0 mg/kg Terg/Coc and 0.2 mg/kg Terg/Coc groups 

exhibited more locomotor activity than rats in the 0.0

mg/kg Terg/Sal group [Stimulant Condition x Pre-

Exposure Day interaction, F(24,216) = 4.43, p < .05]. 

By PD 18, only rats in the 0.4 mg/kg Terg/Coc group

did not exhibit more distance traveled than saline
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14,000
Pre-Exposure Phase

Figure 3. Mean (+ SEM) distance traveled (i.e., 
locomotor activity) of rats (n = 8 per group) given 
daily injections of terguride (0.0, 0.1, 0.2, or 0.4 
mg/kg, i.p.) followed, 35 min later, by an injection 
of saline (open circles) or 30 mg/kg cocaine (filled 
symbols). Behavioral testing lasted 30 min.
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controls. On.the final three days of the pre-exposure

phase (i.e., on PD 19-21), all of the groups treated

with cocaine had greater horizontal locomotor activity

than saline controls.

A separate ANOVA was conducted to determine

whether the various cocaine groups differed among

themselves. This analysis showed that rats receiving

both terguride and cocaine had significantly less

horizontal locomotor activity than rats receiving

cocaine alone [Stimulant Condition main effect,

F(3,27) = 3.48, p < .05] (see Figure 4). Tukey tests

revealed a significant decrease in cocaine-induced

locomotor activity in all Terg/Coc Groups (0.1-0.4

mg/kg). The ability of terguride to reduce cocaine- 

induced locomotor activity did not vary according to

pre-exposure day. Therefore, these results indicate

that low doses of terguride partially attenuate the

locomotor activating effects of cocaine.

Test Day

Overall, cocaine induced a sensitized locomotor

response, since rats in the 0.0 mg/kg Terg/Coc group

(filled circles) had greater horizontal locomotor
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Pre-Exposure Phase

Terguride (mg/kg)

Figure 4. Mean (+ SEM) distance traveled (i.e., 
locomotor activity) of rats (n = 8 per group) given 
daily injections of terguride (0.0, 0.1, 0.2, or 0.4 
mg/kg, i.p.) followed, 35 min later, by an injection 
of 30 mg/kg cocaine (these are the same rats as 
described in Fig. 3). Data are collapsed across the 
pre-exposure phase. *Significantly different from
rats receiving 0.0 mg/kg terguride.
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activity than the rats in the 0.0 mg/kg Terg/Sal group

(open circles) on time blocks 1, 2, and 5 [Stimulant

Condition x Time interaction, F(5,45) = 6.55 p < .05]

(see Figure 5). An ANOVA including all five treatment

groups showed that horizontal locomotor activity

varied across the testing session, with rats in the

cocaine groups (filled symbols) exhibiting more test

day locomotion than.rats treated with saline during

the pre-exposure phase (open circles) [Stimulant

Condition x Time interaction, F(20,180) = 2.45, p <

.05]. Importantly, however, terguride (0.1-0.4 mg/kg)

did not reduce the horizontal locomotor activity of

cocaine-pretreated rats (compare the filled symbols).

Thus, there is no evidence that low doses of terguride 

(0.1-0.4 mg/kg) administered during the pre-exposure 

phase block the induction or eventual expression, of

cocaine-induced locomotor sensitization.

Experiment Two
Pre-Exposure Phase

Overall, cocaine-treated rats had greater

horizontal locomotor activity than saline-treated rats

[Stimulant Condition main effect, F(l,7) = 86.49, p <
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Figure 5. Mean (+ SEM) distance traveled (i.e., 
locomotor activity) of rats (n = 8 per group) 
receiving a challenge injection of 15 mg/kg cocaine 
after one drug abstinence day (i.e., PD 23). During 
the pre-exposure phase, rats had received daily 
injections of terguride (0.0, 0.1, 0.2, or 0.4 mg/kg, 
i.p.) followed, 35 min later, by an injection of 
saline (open circles) or 30 mg/kg cocaine (these are 
the same rats as described in Figs. 3 & 4). Behavioral 
testing lasted 30 min.
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.05] (see Figure 6). Horizontal locomotor activity of

rats increased in a day- dependent manner over the

pre-exposure phase [Pre-Exposure Day main effect,

F(6,42) = 14.78, p < .05] (see Figure 6); however,

this effect varied according to both pre-exposure drug

and stimulant condition [Pre-Exposure Drug x Stimulant

Condition x Pre-Exposure Day interaction, F(18,126) =

3.40, p < .05]. Horizontal locomotor activity of

saline-treated rats was reduced by terguride (see

upper graph, Figure 6), as Tukey tests showed that

rats in the 0.0 mg/kg Terg/Sal group (open circles)

exhibited more horizontal locomotor activity on PD 15

and PD 17 than rats in the 0.4-1.6 mg/kg Terg/Sal

groups (other open symbols). On PD 18, rats in the

0.0 mg/kg Terg/Sal group had more horizontal locomotor 

activity than rats in the 0.8 mg/kg and 1.6 mg/kg 

Terg/Sal groups.

A different pattern of results was observed with

cocaine-treated rats (see lower graph, Figure 6).

Across the pre-exposure phase rats in the 0.0 mg/kg

Terg/Coc group (filled circle) had more horizontal 

locomotor activity than all other Terg/Coc groups
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5,000

Figure 6. Mean (+ SEM) distance traveled (i.e., 
locomotor activity) of rats (n = 8 per group) given 
daily injections ofterguride (0.4, 0.8, or 1.6 mg/kg, 
i.p.) followed, 35 min later, by an injection of 
saline (open symbols) or 30 mg/kg cocaine (filled 
symbols). Behavioral testing lasted 30 min.
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(other filled symbols). The only exception was on PD

19, when no group differences were apparent.

Generally, rats pretreated with the various doses of

terguride (0.4-1.6 mg/kg) behaved similarly, but on PD

18, rats in the 0.4 mg/kg Terg/Coc group had greater

locomotor activity than rats in the 0.8 mg/kg and 1.6

mg/kg Terg/Coc groups.

Test Day

Overall, cocaine induced a sensitized locomotor

response, as rats pre-exposed to cocaine had greater

horizontal locomotor activity than saline pre-exposed

rats on time blocks 1-5 [Stimulant Condition x Time

interaction, F(15,105) = 6.14, p < .05] (see Figure

7). Administering terguride during the pre-exposure

phase did not affect subsequent responding on the test

day. Specifically,' terguride did not reduce the

cocaine-induced horizontal locomotor activity of

either the saline pre-exposed rats (see upper graph,

Figure 7), or the cocaine pre-exposed rats (see lower

graph, Figure 7).
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Figure 7. Mean (+ SEM) distance traveled of rats (n =
8 per group) receiving a challenge injection of 15 
mg/kg cocaine after one drug abstinence day (i.e., PD 
23). During the pre-exposure phase, rats had received 
daily injections of terguride (0.0, 0.4, 0.8, or 1.6 
mg/kg, i.p.) followed, 35 min later, by an injection 
of saline (open symbols) or 30 mg/kg cocaine (filled 
symbols (these are the same rats as described in Fig.
6). Behavioral testing lasted 30 min.
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Experiment Three

Pre-Exposure Phase

Overall, rats treated with cocaine (filled

circles) exhibited greater distance traveled (i.e.,

horizontal,locomotor activity) than rats treated with

saline (open circles) [Stimulant Condition main

effect, F(l,7) = 195.89, p < .05] (see Figure 8).

This effect varied according to pre-exposure day, as

cocaine-treated rats exhibited a day-dependent

increase in horizontal locomotor activity across the

pre-exposure phase [Pre-Exposure. Day main effect,

F(6,42) = 8.27, p < .05; Stimulant Condition x Pre-

Exposure Day interaction, F(6,42) = 20.93, p < .05]

(see Figure 8).

Test Day

As expected, a separate ANOVA comparing the

saline- and cocaine-pretreated rats showed that

repeated treatment with cocaine produced behavioral

sensitization (see Figure 9). An overall ANOVA

comparing all groups showed that horizontal locomotor

activity of the saline- and cocaine-pretreated rats

differed [Stimulant Condition main effect, F(l,7) =
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Figure 8. Mean (+ SEM) distance traveled (i.e., 
locomotor activity) of rats (n = 32 per group) 
receiving daily injections of saline (open symbols) or 
30 mg/kg cocaine (filled symbols). Behavioral testing 
lasted 30 min.
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3500
Test Day

5-Min Time Blocks

Figure 9. Mean (+ SEM) distance traveled of rats (n =
8 per group) receiving a challenge injection of 15 
mg/kg cocaine on the test day. Rats had received a 
test day injection of 0.0 mg/kg terguride 35 min prior 
to cocaine treatment. During the pre-exposure phase, 
rats had received daily injections of saline (open 
circles) or 30 mg/kg cocaine (filled circles). 
Behavioral testing lasted 45 min.
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17.80; Stimulant Condition x Time interaction, F(8,56)

= 2.64, p < .05] (see Figure 10). Among the saline-

pretreated groups (see upper graph, Figure 10), rats

receiving both cocaine and 0.0 mg/kg terguride (open

circles) had greater horizontal locomotor activity

than those receiving cocaine and 0.2-0.8 mg/kg

terguride (other open symbols) [Test Day Drug main

effect, F(3,21) = 5.03, p < .05]. The differences

between the 0.0 mg/kg terguride group and the 0.2-0.8

mg/kg groups reached statistical significance on time

blocks 1-3 [Test Day Drug x Time interaction, F(24,168)

= 5.96, p < .05]. Thus, terguride significantly

reduced the cocaine-induced locomotor activity of rats

that had been previously treated with saline during

the pre-exposure phase.

A similar pattern of results was observed in the

cocaine-pretreated rats (see lower graph, Figure 10).

On time blocks 2 and 3, cocaine-treated rats in the

0.0 mg/kg Terg/Coc group (filled circles) exhibited 

more locomotor activity than rats the 0.4 mg/kg and 

0.8 mg/kg Terg/Coc groups (filled triangle and filled 

square, respectively). During time block 4, the 0.0
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Figure 10. Mean (+ SEM) distance traveled of rats (n = 
8 per group) receiving a challenge injection of 15 
mg/kg cocaine on the test day. Rats had received a 
test day injection of terguride (0.0, 0.2, 0.4, or' 0.8 
mg/kg, i.p.) 35 min prior to cocaine treatment.
During the pre-exposure phase, rats had received daily 
injections of saline (open symbols) or 30 mg/kg 
cocaine (filled symbols) (these are the same rats as 
describedin Fig. 8). Behavioral testing lasted 45 
min.

68



mg/kg Terg/Coc group (filled circle) had significantly

more horizontal locomotor activity than the 0.4 mg/kg

Terg/Coc group (filled triangle).

A separate ANOVA was conducted to determine

whether the cocaine-pretreated control group (i.e.,

the cocaine group receiving 0.0 mg/kg terguride)

showed a sensitized locomotor response. Cocaine-

pretreated rats given cocaine and 0.0 mg/kg terguride

on the test day (filled circles, lower graph, Figure

10) exhibited significantly more locomotor activity

than saline-pretreated rats given cocaine and 0.0

mg/kg terguride (open circles, upper graph, Figure 10)

[Stimulant Condition main effect, F(l,7) = 6.90, p <

.05]. Thus, cocaine did produce locomotor

sensitization in the control subjects.

Experiment Four
Pre-Exposure Phase

Overall, rats treated with terguride had less

locomotor activity during the pre-exposure phase than

rats treated with saline [Drug Condition main effect,

F(6,42) = 3.21, p < .05]. This effect varied

according to test day, as the saline group (filled
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circle) had significantly more horizontal locomotor

activity than the terguride groups (other filled

symbols) on PD 15 and PD 16 [Drug Condition x Pre-

Exposure Day interaction, F(18,126). = 2.10, p < .05]

(see Figure 11). No group differences were observed

on PD 17-21.

Test Day

Overall, locomotor activity of- the cocaine-

treated rats declined rapidly over the first four time

blocks, at which time .it stabilized [Time main effect,

F(ll,77) = 36.50, p < .05] (see Figure 12). Terguride

pre-exposure did not affect the test day locomotor

activity of the rats. Thus, terguride alone is not

capable of inducing sensitized responding in young

rats.
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Figure 11. Mean ( + SEM) distance traveled (i.e., 
locomotor activity) of rats (n = 10 per group) 
receiving daily injections of terguride (0.4, 0.8, 
1.6 mg/kg, i.p.). Behavioral testing lasted 60 min

or
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Test Day
500

Figure 12. Mean (+ SEM) distance traveled (i.e., 
locomotor activity) of1 fats (n =’10' per group) 
receiving a challenge injection of saline (open 
symbols) or 0.4 mg/kg terguride (filled symbols) after 
one drug abstinence day (i.e.-, PD 23) . During the 
pre-exposure phase,'rats had received daily injections 
of terguride (0.0, 0.4, 0.8, or 1.6 mg/kg, i.p.)
(these are the same.rats as described in Fig. 11). 
Behavioral ‘ testing .lasted 60 min-. :
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CHAPTER FOURTEEN

DISCUSSION

The purpose of the present study was to

investigate whether a partial D2-like dopamine agonist

(i.e., terguride) would block the induction or

expression of cocaine-induced behavioral sensitization

in preweanling rats’. The ability of terguride to

induce behavioral sensitization was also examined, as

partial D2-like agonists have agonistic actions in

cases of low dopaminergic' tone (Clark, Furmidge et

al., 1991). It was originally hypothesized that

terguride would be effective in blocking both the

induction and expression of cocaine-induced behavioral

sensitization. It was also hypothesized that

terguride alone would be unable to induce behavioral

sensitization.

Results showed that a partial D2-like agonist

was unable to block the induction or ultimate

expression of cocaine-induced locomotor sensitization

in preweanling rats. Terguride partially attenuated 

cocaine-induced locomotion during the pre-exposure 

phase, however no dose completely eliminated locomotor
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activity. The induction of behavioral sensitization

was not blocked by terguride, as pups were able to

express a sensitized locomotor response when cocaine

was administered on the test day. Due to the large

dose range employed in this study (0.1-1.6 mg/kg), it

is unlikely that an insufficient dose of terguride was

used. Thus, these results indicate that a partial D2-

like agonist is unable to block the sensitization

component of the addiction process, even though it

does decrease the acute locomotor activating effects

of cocaine.

When terguride was administered on test day

(Experiment 3), pups showed a dose-dependent decrease

in cocaine-induced locomotor activity. This was true

of both saline- and cocaine-pretreated rats. Thus, it

is possible that terguride blocked the expression of 

behavioral sensitization to cocaine. Alternatively, 

it is possible that terguride caused a general

reduction in locomotor activity that was not related

to sensitization.

The ability of terguride to induce behavioral

sensitization was examined in Experiment 4. Results

showed that terguride (0.4-1.6 mg/kg) did not cause a
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day-dependent increase in locomotor activity, nor did

a test day challenge injection of terguride (0.4

mg/kg) cause a sensitized locomotor response. Thus,

repeated administration of terguride did not induce

behavioral sensitization in preweanling rats. Because

behavioral sensitization is a component of the

addiction processes (Di Chiara, 1995; Robinson, &

Berridge, 1993), these results suggest that terguride

lacks abuse potential. This conclusion is consistent

with studies showing that terguride does not maintain

self-administration in rats or rhesus monkeys

(Pulvirenti et al., 1998; Ranaldi et al., 2001).

In conclusion, partial D2-like receptor agonists

have both agonistic and antagonistic actions on G-

protein-coupled dopamine receptor sites (Hoyer &

Boddeke, 1993). In situations where dopaminergic

functioning is depressed, partial D2-like agonists

stimulate the dopamine system; whereas, in situations

where dopaminergic functioning is enhanced, partial D2-

like agonists depress the dopamine system (Clark,

Furmidge et al., 1991). Because of these

pharmacological characteristics, it was not surprising

that terguride partially attenuated the cocaine-
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induced locomotor activity of young rats. However, it

was surprising that terguride was unable to block the

induction of behavioral sensitization, especially

since partial D2-like agonists have previously been

shown to reduce the rewarding effects of cocaine and

other psychostimulants (see Bono et al., 1996; Izzo et

al., 2001; Pulvirenti et al., 1998). At present, it

remains unclear why neither the induction nor

expression of behavioral sensitization was blocked by

terguride administration, or why the cellular changes

believed to underlie behavioral sensitization were

apparently unaffected by this partial D2-like agonist.

There are several possibilities that may account for

these findings, including: the relative importance of

D2-like receptor stimulation for behavioral

sensitization, ontogenic differences in dopaminergic

substrates, and neuroplasticity.

Importance of D2-like Dopamine 
Receptor Stimulation for

Cocaine-Induced Behavioral 
Sensitization

A possible reason for terguride's lack of effect

is that D2-like dopamine receptor stimulation may not
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be necessary for cocaine-induced behavioral

sensitization. If true, neither a partial D2-like

agonist, nor a full D2-like receptor antagonist, should

block the induction of cocaine-induced behavioral

sensitization. Although this is the first study to

examine the effects of a partial D2-like agonist on

cocaine sensitization, many researchers have

administered D2-like receptor antagonist drugs prior to

pre-exposure or challenge injections of cocaine.

Surprisingly, these studies provide conflicting

results, as selective D2-like receptor antagonists have

alternately been reported to block the induction of

cocaine-induced sensitization (Mattingly, Rowlett,

Ellison, & Rase, 1996; Telia, 1994; Weiss et al.,

1989), or leave sensitization unaffected (Kuribara &

Uchihashi, 1993; Mattingly et al., 1994; White et al.,

1998). If, as the latter studies suggest, D2-like

receptor stimulation is unimportant for behavioral

sensitization, then it is not surprising that

terguride did not block the induction of cocaine-

induced sensitization. If, on the other hand, D2-like

receptor stimulation is necessary for cocaine-induced

behavioral sensitization, then terguride's inability
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to fully attenuate the locomotor activating effects of

cocaine may have permitted the induction process to

occur. Unfortunately, the present study is unable to

distinguish between these possibilities.

Ontogenic Differences
Another possible reason why terguride did not

block the induction of cocaine sensitization involves

the age of animals used. More specifically, there may

be ontological differences in how rats respond to

partial D2-like agonists, such as terguride. Across the

postnatal period dopamine systems undergo substantial

maturational changes (Gelbard et al., 1989; Jung &

Bennett, 1996). For example, Dx-like (Gelbard et al.,

1989; Giorgi et al., 1987) and D2-like (Murrin & Zeng,

1986; Schambra et al., 1994) binding sites increase in

number across the postnatal period. During the same

developmental period there is an increase in dopamine

levels (Coyle & Campochiaro, 1976; Giorgi et al.,

1987), as well as in increase in the number of

dopamine transporters (Bonnet & Costentin, 1989; Rao,

Molinoff, & Joyce, 1991) . In terms of function, Di-

like receptors are coupled to adenylyl cyclase by PD 1
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(Broaddus & Bennett, 1990; De Vries, Mulder, &

Schoffelmeer, 1992) and G-proteins by PD 5 (Jung &

Bennett, 1996); whereas, D2^like receptors are coupled

to adenylyl cyclase by PD 7 (Broaddus & Bennett, 1990;

De Vries et al.,,1992) and G-proteins by PD 1 (Sales,

Martes, Bouthernet, & Schwartz, 1991). Notably, an

adult-like interaction between dopamine Di- and D2-like

receptors is evident by PD 11 (McDougall, Arnold, &

Nonneman, 1990).

In terms of psychopharmacological actions,

dopamine-mediated behaviors are present in early

ontogeny. For example, administering a full dopamine

receptor agonist (e.g., apomorphine and guinpirole) as

early as PD 4 increases the locomotor activity of rat

pups (Camp & Rudy, 1987; Moody & Spear, 1992).

Further, administering a direct D2-like dopamine

receptor antagonist (e.g., sulpiride), reduces the

locomotor activity of young (McDougall et al., 1990),

as well as adult rats (Neiswander, O'Dell, & Redmond,

1995). Dopamine systems mediating reward also become

functionally mature early in ontogeny, since cocaine

and amphetamine potentiate intracranial self­

administration by PD 3 (Barr & Lithgow, 1986), and
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cocaine supports conditioned place preferences by PD

10 (Pruitt, Bolanos, & McDougall, 1995). Therefore,

available evidence suggests that while dopamine

systems are maturing across the postnatal period, they

are capable of mediating behavior in an adult-like

manner. For this reason, it seems that immaturity of

the dopamine system is an unlikely explanation for why

terguride did not block the induction of cocaine-

induced behavioral sensitization.

Neuroplasticity
Another explanation for terguride's lack of

effect involves the neuroplasticity characteristic of

younger animals. Developmental neuroplasticity allows

for reorganization of neurons in a manner that is not

observed in adult animals, and may serve to make brain

less vulnerable to endogenous (e.g., developmental

defect) or exogenous (e.g., drug-induced) damage

(Weiss et al., 1989). Receptor formation and

replacement occurs at a higher rate in the striatum of

younger animals, and synaptic formations are more

easily corrupted or changed than in the adult (Fassano

& Brambilla, 2002).
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Empirical evidence has shown that neuroplasticity

is evident across ontogeny in both non-human animals

and humans. For example, young kittens that are

monocularly or binocularly deprived of vision show

evidence of robust plasticity in brain areas mediating

vision (Hubei & Wiesel, 1967, 1970). After monocular

deprivation, there is an increase in cortical cells

involving the sighted eye, along with increased

lateral geniculate nucleus (LGN) terminals in striatal

cells normally utilized by neurons from the non-

sighted eye (Hubei & Wiesel, 1967, 1970). This

finding provides evidence that environmental

influences induce neuroplasticity during early

ontogeny. Environmental deprivation can also result

in a neuroplastic response (Greenough & Chang, 1989).

Rats raised in an isolated environment show 20-25%

fewer synaptic connections than rats raised in an

enriched environment (Oppenheim, 1985). In humans,

brain damaged children have been shown to recover from

brain damage that would induce aphasia in adults

(Alajouanine & L'Hermittee, 1965). This type of 

recovery of function occurs most robustly before 5

years of age, and seldom occurs after 8 years of age
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(Kolb & Whishaw, 1989). This time frame of enhanced

neuroplasticity (0-5 years in humans and 0-30 days in

rats) is coincident with the time that brain undergoes

substantial neuronal maturation, refinement, and

development (Fassano & Brambilla, 2002).

Based on the general evidence cited above, it is

possible that there are neuroplastic changes in the

neural circuitry of young rats that permit the

induction of behavioral sensitization despite the

administration of a partial D2-like agonist drug. More

specifically, terguride may be unable to block the

induction of behavioral sensitization because other

neural circuits are capable of compensating for the D2-

like receptor blockade. Consistent with the

explanation, mice, genetically engineered to lack the Di

receptor (i.e., the receptor is missing since initial

fertilization) show amphetamine-induced behavioral

sensitization (Crawford et al., 1997; Karper, De La

Rosa, Newman, Krall, Nazarian, ' McDougall, & Crawford,

2002). This indicates that neural processes systems 

underlying behavioral- sensitization are capable of

showing a robust compensatory response.
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Lastly, one of the most consistent findings in

this study was that terguride attenuated the cocaine-

induced horizontal locomotor activity of rat pups.

Wise and Bozarth (1987) have posited that the

addictive potential of a drug is related to its

ability to induce locomotion. If true, attenuation of

psychostimulant-induced locomotor activity may

indicate that the rewarding effect of the

psychostimulant is diminished. Thus, terguride's

ability to reduce cocaine-induced locomotor activity

may indicate that this'partial D2-like agonist is

capable of disrupting other aspects of the addiction

process. It is possible, therefore, that terguride

may be efficacious for treating psychostimulant

addiction by impacting process (i.e., not involving

behavioral sensitization) that contributes to reward

or reinforcement.

Summary

Terguride did not block the induction of

behavioral sensitization in young rats. These 

findings are not in accordance with past self­

administration studies showing that terguride is
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capable of-blocking the reward process. Possible

reasons for terguride's lack of effect include: the

relative importance of D2-like receptor stimulation for

behavioral sensitization, ontogenic differences in

dopaminergic substrates, and neuroplasticity. The

present results bring into question whether terguride

will prove useful as a pharmacotherapy for

psychostimulant addiction. On the one hand, terguride

appears promising because it blocks the self­

administration of psychostimulants, however it does

not block the induction of cocaine-induced behavioral

sensitization in young animals. Importantly, the drug

self-administration and behavioral sensitization

paradigms model different aspects of the addiction

process, so it is likely that a pharmacotherapy

involving terguride may still be of benefit for the

treatment of psychostimulant addiction. Finally, It

is possible that terguride may be able to modulate

ancillary processes of addiction that contribute to

reward and reinforcement.
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