
California State University, San Bernardino California State University, San Bernardino

CSUSB ScholarWorks CSUSB ScholarWorks

Theses Digitization Project John M. Pfau Library

2003

Simulation of soil water movement model (SWaMM) using the Simulation of soil water movement model (SWaMM) using the

Spider Distributed System Spider Distributed System

Li Wang

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Wang, Li, "Simulation of soil water movement model (SWaMM) using the Spider Distributed System"
(2003). Theses Digitization Project. 2419.
https://scholarworks.lib.csusb.edu/etd-project/2419

This Project is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has
been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks.
For more information, please contact scholarworks@csusb.edu.

https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd-project
https://scholarworks.lib.csusb.edu/library
https://scholarworks.lib.csusb.edu/etd-project?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2419&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2419&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd-project/2419?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2419&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

SIMULATION OF SOIL WATER MOVEMENT MODEL (SWaMM)

USING THE SPIDER DISTRIBUTED SYSTEM

A Project

Presented to the

Faculty of

California State University,

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree
Master of Science

in

Computer Science

by

Li Wang

June 2003

SIMULATION OF SOIL WATER MOVEMENT MODEL (SWaMM)

USING THE SPIDER DISTRIBUTED SYSTEM

A Project

Presented to the

Faculty of

California State University,

San Bernardino

by
Li Wang

June 2003 /

Date J

Dr. Ernesto Gomez

ABSTRACT

Physical modeling is a technique of reproducing the .

behavior of a phenomenon on a more convenient geometrical

scale. The prediction and understanding of soil water

movement by the mathematical modeling process play an

important role in agriculture, hydrology and environment

science for designing and testing various management

schemes on irrigation or controlling chemicals

environmental hazards. This project simulates the Soil

Water Movement Model on Spider II distributed system and

the model comes from the Department of Environment

Sciences, UCR. The Soil Water Movement Model, which

consists of a partial differential equation and several

auxiliary conditions, is solved by the alternating-

directions implicit (ADI) difference method. Based on the

sequential algorithm, this project develops a parallel and

distributed algorithm for Soil Water Movement Model on

Spider II system, which is a distributed computing research
\project ongoing in the Department of Computer Science,

California State University San Bernardino. This project

implements the parallel and distributed algorithm using

multi-thread networking programming skill, which eliminated

iii

the interprocess communication between the parent and child

when we use fork to create new processes. Several testing

grid sizes of soil profile were used and all results of

computation time, speedup and efficiency show that Spider

II system has better overall performance over the

sequential program. Finally, a Java-based user interfaces

and execution views are implemented as well to display the

dynamic 2D diagram for Soil Water Movement Model.

The support of the.National Science Foundation under

the award 9810708 is gratefully acknowledged.

iv

ACKNOWLEDGMENTS

The completion of this project reflects the assistance
and advice of a number of people who have markedly improved

the final product. I would like to express my sincere

gratitude to my mentor, Dr. Arturo I. Concepcion, for his

invaluable assistance in the initial design of the project
coupled with suggestions and encouragements during the
programming and writing phases of this project. I appreciate
his allowing me to do the research in my own way, giving me
the freedom and opportunity to develop my own thoughts and
ideas.

I would also like to thank Dr. Laosheng Wu, an
associate professor at Department of Environment Science in
UCR for his interesting in my work. I thank him for his
help and for our many discussions concerning soil science.

The people that have helped me in my research and
enriched my life the most are Xiao Zhang, Xiwei Wu, Jianhua
Ruan, Zhuo Chen, Yan Jiang and Hao Jia. Without their
friendship and great help I would not have come to this
point in my life.

Special thanks goes to my husband, Dr. Guanglong Feng,
who has encouraged me through my schooling. Thank you for
your never-ending faith, support and love. Thanks for
inspiring me to choose my career again.

v

Finally, thanks to my farther and mother - in law for
enduring through one year of hard work to take care of my
baby, and my parents who have been very supportive of my
goals in life. I own all my triumphs and smarts to you and
the example you set for me.

vi

TABLE OF CONTENTS

ABSTRACT.. iii

ACKNOWLEDGMENTS v

LIST OF TABLES x

LIST OF FIGURES xi

CHAPTER ONE: INTRODUCTION

1.1 Introduction 1

1.2 Purpose of the Project 3

1.3 Organization of the Documentation 5

CHAPTER TWO: SOFTWARE REQUIREMENTS SPECIFICATION

2.1 Introduction 6

2.1.1 Scope 6

2.1.2 Overview 7

2.2 Overall Description 8

2.2.1 Introduction to Model 9
2.2.2 Product Perspective 14
2.2.3 Product Functions 19

2.2.4 User Characteristics 21

2.2.5 Constraints 22

2.3 Specific Requirements for External
Interface 22

CHAPTER THREE: SOFTWARE DESIGN

3.1 Distributed Algorithm 31

vii

3.2 Software Archeticture 41

3.2.1 Classes WaterMovement and
WaterMovement_slv 41

3.2.2 Classes OSB and OSB_slv 45

3.2.3 Classes TriMat_Constant and
EquationGroup 45

3.3 Detailed Design 47

3.3.1 Thread Sender....................... 47

3.3.2 Thread Getter....................... 49

3.3.3 Thread Receiver..................... 50

3.3.4 Thread Calculator 53
3.3.5 Thread Returner............. 53

CHAPTER FOUR: SYSTEM TESTING AND PERFORMANCE ANALYSIS

4.1 Testing Environments 55

4.2 Testing Methods 56

4.3 Testing Results 58

4.3.1 Computation Time 58
4.3.2 Speedup and Efficiency 60

CHAPTER FIVE: MAINTENANCE MANUAL

5.1 System Requirements 65

5.2 Obtaining a Copy 65

5.3 Directory Organization 66

5.4 Checking for Thread Support 67

5.5 Installation of Spider IT System 69

viii

5.6 Running Soil Water Movement Model 72

5.7 Extention of Soil Water Movement Model 74

5.7.1 Client Program...................... 74
5.7.2 Server Program...................... 75

CHAPTER SIX: CONCLUSIONS AND FUTURE DIRECTIONS

6.1 Conclusions 78

6.2 Future Directions 81

APPENDIX A: GLOSSARY 83

BIBLIOGRAPHY .. 90

ix

LIST OF TABLES

Table 1. Comparison of Execution Time............ 59

Table 2. Comparison of Performance............... 61

x

LIST OF FIGURES

Figure 1. The Architecture of Spider II 1

Figure 2. Two-Dimensional Water Movement Model ... 10

Figure 3. The Finite Difference Grid
for Two-Dimensional Space 11

Figure 4. The Distributed Algorithm 15

Figure 5. Deployment Diagram 17

Figure 6. User Case Diagram ’........ 19

Figure 7. Welcome Web Page 24

Figure 8. Introduction Web Page for Model 25

Figure 9. Web Page to Input the Initial
Condition 26

Figure 10. Web Page for Monitoring and
Displaying 29

Figure 11. Work Cycle of Threads 39

Figure 12. Component Architecture of Software ... 43

Figure 13. Tridiagonal Matrix 44

Figure 14. Pseudo Code of Thread Sender 49

Figure 15. The part of Pseudo Code of Thread
Getter 50

Figure 16. Pseudo Code of Thread Receiver 51

Figure 17. Pseudo Code of Thread Calculator 52

Figure 18. Pseudo Code of Thread Returner 54

Figure 19. Comparison of Execution Time 60

xi

Figure 20

Figure 21

Figure 22

Figure 23

Figure 24

Comparison of Speedup

Comparison of Efficiency

Program threadl.c

Test Result for Program threadl.c

Graph of Soil Water Movement Model

62
63

67

68

73

xii

CHAPTER ONE
INTRODUCTION

1.1 Introduction

Spider is an object-oriented distributed computing

research project in the Department of Computer Science,

California State University San Bernardino (CSUSB). It was

initially proposed by Han-Sheng Yuh in his Master's thesis

in 1997 [2]. And thereafter it has been further improved

and implemented by Roping Wang as a Spider II distributed

computing system in his Master's Project [3]. Spider II is

developed in C++ and runs on Unix or Unix-like platform.

The work is underway for Spiderlll, which is an agent-based

distributed computing system [4] .

Spider II system consists of four major components:

Figure 1. The Architecture of Spider II

1

Task Manager, Registry Server, Object Server Broker,

and Object-Servers.

Task Manager: In order to manage the available servers

for each task, Task Manager keeps track of all task

activities.

Registry Server: The function of the Registry Server

is to provide a list of available Object-Servers to the

Task Manager. Registry Server auto-detects Object-Servers

whether they are up or down and checks the percentage of

utilization of the CPU usage. After detection, Registry

will have a list of available Object-Servers' information.

This information is sent to the Task Manager.

Object Server Broker: Object Server Broker plays an

important role in the Spider II system. It submits the job

to the Task Manager for requesting the available Object-

Servers, activates the remote Object-Servers, distributes

data to Object-Servers and collects computing results from

Object-Servers and notifies Task Manager that the job is

finished.

Object-Server: Object-Servers are the workstations on

a network actually doing the computation.

Mirrors for both Task Manager and Registry Server were

introduced in the Spider II system. A failure of the' task

2

manager or registry server will activate its Mirror and all

further communication is then redirected to the mirror.

In order to test the performance of Spider II system,

three distributed applications are developed in Wang's

project [3]: distributed matrix multiplication, distributed

prime number search, and distributed Quick Sort. The first

two applications show Spider II running on a group of low-

end workstations on a network has better performance than a

single high-end servers. For the third application, Spider

II is slower but the increase in computational time for

sorting very large number of data items is less than in a

single high-end server.

However, those three simply applications are not

enough to prove the computing applicability of Spider II.

1.2 Purpose of the Project

This project implements a real application on the

Spider II, which is a simulation of Soil Water Movement

Model.

More than 80% of total available water resource is

being used in agriculture to meet huge food requirements of

expanded population. Water shortage is becoming much more

serious all over the world. Optimal water management is

3

very vital for higher yields and water use efficiency and

to minimize water quality degradation.

Since prediction and understanding the dynamics of

soil water movement processes can guide farmers and policy

makers in making decisions that optimize the dual goal of

high crop yield, high water use efficiency and low

environmental degradation, a simulation model is developed

to quantitatively describe and predict soil water spatial

and temporal movement after an irrigation. There are many

scientists in agriculture, hydrology, and environmental

sciences who are working on calculating the model [6]. The

soil water movement model implemented this project is come

from Department of Environments, UCR.

Although the numerical model has been universally

applied in the predication on soil water content, the

solution of this macro-scale mathematical model takes a

long time to execute. The precision of computation

sometimes is reduced in order to save on calculation time.

Therefore, the main objectives of this project are (i) to

develop a parallel and distributed algorithm for the Soil

Water Simulation Movement Model; (ii) implement the Soil

Water Movement Simulation model on the Spider II

4

distributed system; (ii) to evaluate the performance of

simulating the Soil Water Movement Model on Spider II.

1.3 Organization of the Documentation

The remaining sections of this documentation will be

organized as follows: Chapter 2 describes the software

requirement specification (SRS). The SRS follows the IEEE

recommended practice for SRS (IEEE Std 830-1998). Chapter 3

provides a detailed description of the software

architecture and design. Chapter 4 shows the test runs of

Spider II for the Soil Water Movement Simulation Model and

the performance evaluation. Chapter 5 contains the

maintenance documentation. Finally, Chapter 6 draws a

conclusion and points to further direction of the project.

5

CHAPTER TWO

SOFTWARE REQUIREMENTS

SPECIFICATION

2.1 Introduction

This Software Requirement Specification is for the

simulation of soil water movement model using Spider

distributed system. It will be the Master project of Li

Wang for the degree of M. S. in Computer Science department,

CSUSB.

2.1.1 Scope

The second version of Spider project (Spider II) was

developed by Hoping Wang [3] in his Master's thesis in 1999,

which implemented the various features of Spider system —

registry service, task management, load balancing and

distributed computing service. The first version was

developed by Han-Sheng Yuh [2].

This project will develop an application for

agriculture, hydrology and environment science, which

quantitatively describes and predicts the spatial and

temporal changes of soil water content with a mathematical

model called the Soil Water Movement Simulation Model.

Because prediction and understanding of soil water movement

6

play an important role in designing and testing various

irrigation schemes, there are many scientists in

agriculture, hydrology and environment science who are

working on calculating the model. The problem is that

calculating the mathematical equations on a single PC or

workstation will take a long time. The precision of

computation sometimes is reduced in order to save

calculation time. For this project, Spider system will

improve the calculation speed for simulating soil water

movement in time and space, and will generate dynamic 2D

graphics to visualize the output.

This project will also implement several Java-based

user interfaces and views to monitor the execution of

Spider applications, which can allow users to access Spider

system from any platform where there is a Web browser.

2.1.2 Overview

The rest of this software requirement specification

will contain the following: first we overview the Spider

system, then we specify the new application of Spider

system.

7

2.2 Overall Description

Spider project is the first distributed computation

research project in the Department of Computer Science at

CSUSB. It is initially developed by Han-Sheng Yuh in his

Master's thesis in 1997. It is an object-oriented

distributed system. In his thesis, Han-Sheng introduced the

overall goal for Spider and he defined major components for

the system: Object Service Broker, Registry Server and Task

Manager

The second version of Spider developed by Koping Wang

in 1999(Spider II) continued to improve Spider features and

additional new features, which include:

Load Balancing: The Registry Server will auto-detect

Object-Servers whether they are up or down and check the

percentage of utilization of the CPU usage. After detection,

Registry will have a list of available servers and the

priority of every Object-Server that the Registry Server

suggests Task Manager to use.

Stabilizing the Multi-Tasking Operation: Spider II

added a new mirror Registry Server. If the Registry Server

goes down during the computation, the mirror will pick up

the duty.

8

Ease' of Adding New Service: Since Spider II is

designed in the object-oriented paradigm, it will be easy

to add new functions or services in the future. Developers

just need to use the design patterns and utility programs

to write a new distributed application.

2.2.1 Introduction to Model

More than 80% of total available water resource is

being used in agriculture to meet huge food requirements of

an expanded population. Water shortage problem is becoming

much more serious all over the world. Optimal water

management is vital for higher yields and to increase water

use efficiency and minimize water quality degradation.

Because prediction and understanding the dynamics of

soil water movement processes can guide farmers and policy

makers in making decisions that optimize the dual goal of

high crop yield, high water use efficiency and low

environmental degradation, a simulation model was developed

to quantitatively describe and predict soil water spatial

and temporal movement after irrigation.

The model generally includes two parts — the partial

differential equation and auxiliary conditions. The

differential equation accurately described the dynamic

process of water transport in soil. The auxiliary

9

conditions are the initial soil water content before

irrigation and the boundary conditions around the soil area

considered after irrigation. Figure 2 illustrates a

numerical model describing the soil water movement in two

coordinates (X and Z).

' de _
dt ~

3
3x dx

3
+ 3z dz

dK(0)
dz

[1]

t = Q z > 0 0<x<Lh [2]

where 0 Soil Water Content (cmV 3)
' / cm '

0„ Initial Soil Water Content (cm/ 3)
a ' /cm '

K(0) Hydraulic Conductivity (cmXiin)

D(0) Soil Water Diffusivity (e^]in)

t Time (minute)

x Horizontal Coordinate Value

z Vertical Coordinate Value

Figure 2. Two-Dimensional Water Movement Model

Eq. [1] is the differential equation, and Eq. [2] is

the auxiliary conditions about the initial soil water

content. After the differential equation and auxiliary

conditions have been specified, the model is ready for

10

----------------- X
012 i-lii+l n

Figure 3. The Finite Difference Grid
for Two-Dimensional Space

computation to simulate water spatial and temporal movement.

The numerical solution of the partial differential

equation in the model is based on the finite difference

method using space and time discretization. For the

considered soil profile (Figure 3), a grid containing (i, j)

nodes in the direction of coordinate axes x, z,

respectively, will be created. The corresponding difference

equations resulting from the differential equation in the

model (Figure 2) will be applied to every node of the grid

and we shall have a system of finite difference equations

(FDE) in the following form:

+ c 0k+1 — h.‘•j

11

Where l<i^n, l<j<m, aiy,^and ctj are coef f icients, htj is. a known

value, (^‘represents soil water content at the point (i, j)

in the grid for the current time period k+1(assuming that

the last time period is k). Using the known initial and

boundary conditions, we can first calculate the soil water

content at every point along the x-axis, ,...,0^,...,0^^ ,

then successively compute the 0^along the z-axis at j=2,

j=3, ..., j=m-l. For this time period, the difference method

to solve the differential equation in the model is that the

implicit difference method is used on x-axis and the

explicit difference method is used on z-axis. When soil

water contents at every point in the grid during k+1 time

period (0^) have been finished to calculate, then the

computation of water contents at every point for the next

time period, k+2, will be continued. But, for this time

period, we first calculate the values along the z-axis, not

x-axis, ' then successively compute the

0*j2 along the x-axis at i=2,i=3, ... , i=n-l, because the

explicit and implicit difference methods have been changed

to use on the x-axis and z-axis, that is, the explicit

difference method is used on x-axis and the implicit

12

difference method is used on z-axis. The water contents of

every point of next period are calculated according to the

computed results from the last period. This method to solve

the FDE is called the alternating-directions implicit (ADI)

difference method, which is highly efficient in solving

problems of water distribution in two-dimensional

rectangular space.

Because coefficients , by and are calculated according

to the soil water diffusivity (D) and the computation of D

is dependent on the water content (0), the system of FDE

equations are nonlinear. In order to linearize the

equations, the iterative method of Newton will be used,

which the iterative computing process used for solving the

equations is continued until

where £ > 0, is a prescribed error tolerance, and p is the

test computation times. This method makes the solution both

computationally simple and efficient, despite the nonlinear

dependence of D on0 .

13

2.2.2 Product Perspective

Although the numerical model has been widely used in

the predication on soil water content, the solving the

macro-scale mathematical models will take long time. The

precision of computation sometimes is reduced in order to

save calculation time. For example, the step length of x-

or z-axis may be too large to accurately simulate the water

movement in the practical system. Or the time step between

two time periods is so big that we can not see the instant

changes of soil water content. In this project, the Soil

Water Movement Simulation Model will be implemented on the

Spider to improve calculation speed and precision for

solving the model.

2.2.2.1 The Distributed Algorithm. The Figure 4

presents an example of data distribution, which is for 3

processors and two time periods.

The simulation space grid is divided into several

equal size blocks. The computation of every node in these

blocks will be distributed to the processors at the same

time. Each processor calculates one block at one time

(Figure 4). When calculating the values for the first time

period after irrigation, the space grid is divided along

14

1

the horizontal direction. Thereafter, during the second

time period after irrigation, the space grid is

X-axis ------- ►

X- axi s ---- —s—-►

Figure 4,. The Distributed Algorithm

15

Spider Server, which has Internet access and Web browser,

to run this software.

2.2.2.4 Hardware Interfaces. If run on the Computer

Science Net, there is no requirement for hardware. If run

at home, the workstation should be at least CPU 500 MHz,

RAM 160 MB, and Modem 56 KB.

2.2.2.5 Software Interfaces. The software required to

develop this software are following:

■Spider II system

■Linux RedHat 7.0

■GNU C++ programming for Linux

2.2.2.6 Communication Interfaces. Ethernet 100 base

network connection for Linux box is used.

2.2.2.7 Operations. The operations of this software

will be the following: First, start the Spider system, then

run this application. This software will prompt users to

input the initial conditions which accomplish the software

requirements.

This software will only run during scheduled periods

or by request. It will- not run 24 hours a day, 7 days a

week.

18

2.2.3 Product Functions

Shown on Figure 6 is the Use Case Diagram of Soil

Water Movement Model Software:

result.

Figure 6. User Case Diagram

19

For the soil scientists:

Solve the governing differential equation: This

function is to solve the differential equation ([1]), see

in Figure 2 Soil scientists do not need to know how to

implement the differential equation in the software and can

directly use it.

Change the auxiliary conditions: It is a main research

area for soil scientists to change the expression of the

auxiliary conditions according to different environmental

conditions and to simulate soil water movement in the

practical system. Because this software will be designed in

the object-oriented paradigm, it will be easy to change or

add any auxiliary conditions in future. This function will

play an important role in research and management on water

flow and solute transport in soils.

Provide the dynamic 2D graphics: The dynamic 2D

graphics of soil water contents in time and space will be

generated to visualize the computation result using java

language. The graph will present the iso-water content

curves.

For software developers:

Extend the governing differential equation in the

model: The differential equation ([!]) in Figure 2 is

20

widely used in various research areas. For a special case,

it is possible that the differential equation can add new

terms. Because this software will be designed in the

object-oriented paradigm, it will be easy to add new

functions in future and to extend the differential

equation.

Change the presentation method of computation results:

Because the computation result is stored in a data file,

the software developers can easily change the presentation

method of computation results according to the soil

scientist's requirements.

2.2.4 User Characteristics

The users of this software (soil scientists) does not

need to know about programming if they do not want to

change the auxiliary conditions in the model. But if the

user would want to change the expression of the auxiliary

conditions, they just need to know how to change the

functions about auxiliary conditions using C++ language.

All developers need to have experience with C++ and

Java programming under Unix environment, understand network

programming concept and object-oriented Paradigm in order

to extend this application according to the soil

scientist's requirements

21

2.2.5 Constraints

This software will only run on the Spider System in

the computer science network.

The platform will only support UNIX or UNIX-like

operating system. Linux will be the primary environment

during development.

2.3 Specific Requirements for
External Interface

For the Soil Water Movement Simulation Model

application, several Java-based user interface will be

implemented based on the user's requirements. They will be

able to run on any platform, where there is a Web browser.

Therefore, anyone who is an authorized user is able to

access the Spider's distributed computing system through

Internet to run the simulation of the Soil Water Movement

Model.

The window layouts for user interfaces are enumerated

in the Appendix. They include:

1. Welcome window

It introduces users into the Spider project.

2. Soil Water Movement Model window

It introduces the Soil Water Movement Model.

3. Initial Condition window

22

It prompts users to input the initial conditions

which are required by the application.

4. Transferring Files window

It allows users to transfer files to and from a

remote computer (Spider Server), and work with files

and directories on that remote computer.

5. Monitoring and Displaying window

It monitors the execution of the application on the

Spider system and views the dynamic 2D graphical

Display of the computation results.

23

Welcome

^About Spider System

^Spider Paper

•^Application

Other Distributed Computing Projects

The OSF Distributed Computing Environment (DCE1

An industry-standard, vendor-neutral set of distributed computing technologies project by Open Group.

PVM (Parallel Virtual Machine)

PVM is a heterogeneous network computing research project by Oak Ridge National Labortory, University of Tennessee,
Emory University, and Carnegie Mellon University.
Beowulf Project

Beowulf Project by Center of Excellence in Space Data and Information Sciences (CESD1S), NASA
Stanford University Distributed System Group

The Distributed Systems Group (DSG), is a research group in the Departments of Computer Science and Electrical
Engineering at Stanford University.
MIT/LCS/PDOS

J?roject^nh^aielleHn^Distribute^Qgeratioi^!j'stenni^wn^borator^oi^omgute^5cienc^^^^^^^^^^^^

Figure 7. Welcome Web Page

This window introduces'the users into the Spider project.

For the Soil Water Movement Model application, clicking the

"Application" button.

24

Simulation of Soil Water Movement Model

This application is for agriculture, hydrology and environment science, which quantitatively describes and
predicts the spatial and temporal changes of soil water content with mathematical model. Because prediction
and understanding of soil water movement play an important role in designing and testing various irrigation
schemes, the simulation of soil water movement model has been widely used in the predication on soil water
content. But the solving the macro-scale mathematical models will take much time on PC. This application will
be implemented on the Spider II to improve calculation speed for solving the model.

This application uses the following numerical model which describes the soil water movement in two
coordinates (x and z):

^0

dt
3 90 3 d9
3x dx + 3z D(9) —

dz
3K(0)

dz

where

9 Soil Water Content

K(ff) Hydraulic Conductivity

D(9) Soil Water Diffusivity

t Time

X Horizontal Coordinate Value

Z Vertical Coordinate Value

start this application on Spider system

ibackl

Figure 8. Introduction Web Page for Model

25

Please enter the initial conditions of the simulation:

The soil vertical depth (cm)
I h

The soil horizontal distance (cm)
i ' a

The step on the vertical direction (cm)
I------------------------------ n

The step on the horizontal direction (cm)

L__ -___ J
The time length after starting irrigation (minutes)

I,
The time step (minutes)

I Z3
The prescribed error tolerance

The initial soil water content before irrigation (cm /)
'/cm3

The boundary soil water contents after irrigation (cm /)
/ cm3

1 • t0P I h
2. bottom “—| —|j
3. left

c
4. right r

The buried vertical depth for water source (cm)

The saturated water content (cm /)
/ cm3

The file name for this initial comditions

C:\home\waterflow\parameters

Snbm

Figure 9. Web Page to Input the Initial Condition

This window prompts users to input the initial condition

which are required by this application:

26

The first field is used to input the soil vertical

depth.

The second field isi used to input the soil horizontal

distance.

The third field is used to input the step on the

vertical direction.

The forth field is used to input the step on the

horizontal direction.

The fifth field is used to input the time length after

starting irrigation.

The sixth field is used to input the time step.

The seventh field is used to input the prescribed error

tolerance.

The eighth field is used to input the initial soil

water content before irrigation.

The ninth, tenth, eleventh and twelfth fields are used

to input the boundary soil water contents after irrigation

at top, bottom, left and right respectively.

The thirteenth field is used to input the buried

vertical depth for water source.

The fourteenth field is used to input the saturated

water content.

27

When finishing to input the initial conditions, the

file name for the initial conditions need to be given and

saved, then submit it.

28

Monitoring and Displaying
During the- distributed computation process, this window provides several animated views to monitor the execution of Spider programs:

Network View displays the machines selected by the Spider system and each host is represented by an icon image showing host name.
® Task View shows status of all tasks as they execute across all hosts and each task is represented by a horizontal bar along a common time

line axis.

* Application View concurrently displays the 2D graphic of computation result during the distributed computation process.
After the distributed computation.
♦rhe dynamic 2D graphic can be displayed by clicking "Dynamic 2D Graphic Display of Results" button. The time after starting irrigation for

2D graphic can automatically display in the "Time After Starting Irrigation" box. It can be paused by clicking "Pause" button.
♦if you want to look at 2D graphic at some time point, please pause the 2D graphic, then enter the time into the "Time After Starting

Irrigation" box.
♦if you want to get the output file of computation results from Spider Server to your local file system, please click the "Get the Output File of

Computation results" button.
♦if you want to revise the initial condition file and restart the computation, please click the "Revise the Initial Conditions" button.

Task:r RUN

(please input thee executable file name and the number of machines that will be used, for example, water flow 15)

Network View Task View

Colour Legend
for Soil Water Content

(cm3/)
/ cm

Application View

0.08

0.12
0.16
0.20
0.24

0.28

0.32
0.36
0.40

0.44

[Dynamic 2D Graphic Display of Results]
Time After Irrigation

stop I ' continue , {

JXjeUh^utguUil^jfComputatioi^Results]^^^^^^^

Figure 10. Web Page for Monitoring and Displaying

29

This Window monitors the execution of this application on

the Spider system and views the dynamic 2D graphical

Display of computation results.

30

CHAPTER THREE

SOFTWARE DESIGN

The software development used in implementing Soil

Water Movement Model (SWaMM) is the object-oriented

approach. The design methodology utilized the Unified

Modeling Language (UML), which simplified the complex

process of software design by making a "blue print" for the

software construction.

First, we discuss the distributed algorithm on how the

SWaMM will be simulated on Spider II. Second, we discuss

the software architecture. And lastly, we show the detailed

design in pseudo-code.

3.1 Distributed Algorithm

The UML deployment diagram shows the physical

components and physical communication protocols between

various components of the software system, see Figure 5.

When a client PC station at home or lab in the CS Net

requests a distributed service, for example, computation of

SWaMM, from user's interface implemented in Java applet on

the Web browser, then Spider server receives and sends it

to the master machine where OSB is running in the Spider

system. There is a daemon on the master machine that

31

receives the message from the Spider server. After that,

the master machine will activate the water movement

simulation to start the distributed computation on the

Spider system.

In the Spider system, OSB that is located on the

master machine will be started to communicate with the Task

Manager for task ID and the list of available Object-

Servers by using TCP socket. OSB also distributes data to

the available Object-Servers. TCP is applied between

Registry Server and Task Manager as well.

During computation, the results will be sent to the

Spider Server to draw the dynamic 2D diagram to be viewed

by user from Web browser. The status of computation of this

application on the Spider system is displayed on the user's

Web browser as well. After completing all the computation,

OSB will return the task ID to the Task Manager. If

Registry Server or Task Manager crashes during computation,

the mirror will pick up the duty.

SWaMM (Figure 2) consists of two parts — the partial

differential equation and auxiliary conditions. The partial

differential equation calculates the dynamic process of

water transport in a two-dimensional soil profile basing on

32

the auxiliary conditions input by user as the initial

values at the beginning of computation. The auxiliary

conditions are the initial soil water contents before

irrigation and the boundary conditions around the

considered soil area after irrigation.

The numerical solution of the partial differential

equation is based on the finite difference method by space

and time discretization. So first, we need to create a

finite difference grid for a considered space (Figure 3) .

The distance steps of X and Z directions in the grid are

given by the user as the initial conditions besides the

finite depth and horizontal distance, which determines the

number of nodal points in the grid to be calculated, and it

will influence the accuracy of solution of partial

differential equation. The more accuracy the user wants,

the more time the computation takes, because there are more

nodal points to be calculated. Calculating the water

contents of very nodal points on the considered grid at

every time level until the end of the simulating time

required by users is to be implemented.

The implicit difference method which is called a

"backward-difference approximation" [5] relative to the k+1

time level at which the space differences are expressed,

33

and explicit difference method which is called "forward-

difference scheme" [5] relative to time k level, are used

to solve the partial differential equation of the SWaMM.

These two methods are alternatively applied on the

horizontal and vertical directions, that means if an

explicit difference method is used on the vertical

direction and the implicit difference method on the

horizontal direction at this time level k, then for the

next time level k+1, those two difference methods will be

exchanged to apply on two directions, which is called the

alternating directions implicit (ADI) difference method.

ADI method is highly efficient in solving problems of water

distribution in two-dimensional rectangular space. How the

partial differential equation to be solved into difference

equations using the ADI method is illustrated in the

following:

1. Appling implicit difference method to the horizontal

direction and explicit difference method to the

vertical direction. The items of the partial

differential equations can be approximated to be:

34

Ax2d_
dx

D(e/f
dx

dK(0)

dz

and rj = Af
Ax2 r2 =

At
A? r3 =

At
2Az

So the partial differential equation of SWaMM can be

rewritten to be the following difference equation according

to the above difference results:
ui + c 0k+i = h,

IJ
(3.1)

where

ai,j = riDt.k+1 (3.2)

hj— +Z>£JvA+l

c,, = r,Dk+? . 1 .A;

h,,t = -'•zD‘,4^- + kk-j + Cs)-k

(3.3)

(3.4)

(3.5)

Using the given initial and boundary soil water

contents and solving the algebraic equation group

35

formalized from (3.1) equation (addressed in the next

1,1 ’^2,1 ’•section 3.3), the water contents 0^\02^\...,0^i,...,0^l will be

calculated along the horizontal direction (X) at j=l on the

vertical direction, then successively compute at j=2,...m-l.

After finishing to calculate all the water contents of

every nodal point at this time level, then advance the

solution to the next time level using the following

difference equation.

2 . Applying implicit difference method on the vertical

direction and explicit difference method on the

horizontal direction. The items of the partial

differential equations can be approximated to be:

2

dz

So the partial differential equation of water movement

model can be rewritten to be the following differential

equation according to the above difference results:

36

(3.6)

where

(3.7)

(3.8)

(3.9)

(3.10)

Using the given initial and boundary soil water
contents and solving the algebraic equation group
formalized from (3.6), the water content 3

will be first calculated along the vertical direction (Z)
at i=l, then successively compute at i=2 ,..., i=n-l.

According to (3.2), (3.3), (3.4) and (3.5), we can know

there are not data dependences between the two neighbor

nodal points on horizontal direction in space grid, and

according to (3.7), (3.8), (3.9) and (3.10), we can find

there are not data dependences between the two neighbor

nodal points on vertical direction, so the distributed

protocol for computation of SWaMM is illustrated in Figure

4.

The space grid is horizontally divided and distributed

at an odd time level and vertically divided and distributed

at the next even time level. The computation of water

contents, which is iteratively distributed on horizontal

and vertical direction at two different continued time

levels, will be lasted to the simulating time of irrigation

required by user as the initial condition.

Because this distributed computation of SWaMM mixes

input, calculation and output, that is, during one time,

data need to be sent, calculated and returned, the program

creates several threads to deal with input, calculation and

output respectively. On the master side, we create two

kinds of threads to be separately responsible for sending

data and receiving data that are named sender and getter.

And the number of threads getter is same as the number of

slaves used, that is, every slave has its own getter thread

on the master side. On every slave side, there are only

three threads to handle the receiving, calculating and

returning data that are named receiver, calculator and

returner.

In order to further improve the performance, every

block in Figure 4 is divided into several parts again,

which results just one part of every block is sent to its

38

slave every time, actually not the whole block of data.

This makes calculator can start to calculate as soon as

receiver just receives a part of data and the returner

returns this part of calculated results at once, and the

getter on the master machine can get this part of results

while the sender still send the data to slaves. This work

state of every machine in Spider system looks like a

continuous cycle with starting at thread sender as showed

in Fig.3.1.

Master Slaves

Figure 11. Work Cycle of Threads

So the distribution and calculation protocol of this

software is as the following:

1. The simulation space grid is divided into several

block which is going to distributed to the slaves and

39

every block is continually split to several parts

when starting computation, This program distributes

the parts to the size that is enough for slaves to

calculate two lines of data every time.

2. The thread sender on master creates several

processors by fork system call whose number is same

as the number of slaves. These processors send data

to various slaves at the same time and send only one

part of their corresponding blocks every time.

3. Once thread receiver on slave receives one part of

data, the thread calculator starts calculation at

once, and thread returner also returns the calculated

data as soon as possible. So receiver, calculator and

returner separately receives, calculates and returns

data part by part till the whole block of data.

4. The threads getter get the calculated results from

the slaves part by part while the thread sender still

sends data to slaves. As soon as the threads getter

have received the part of data, they start to

rearrange these data on the different direction

preparing for the computation of the next time level.

After threads getter have finished receiving their

whole block of calculated results, then they informs

40

the thread sender to send these just received data

again.

5. The steps 1-4 are repeated and the whole computation

of this software is like a loop increased by one time

step till to the simulating time of irrigation

required by user, while every computation for next

time level is depend on the results from the last

time. At every given interval time during the

computation, the water content results of the whole

soil profile will be automatically translated to be

coordinate values and sent to Spider server to draw

2D diagram which is viewed on web browser with java-

based user interface.

3.2 Software Architecture

All the class components of this software system are

drawn using UML class diagram as showed in Figure 12.

3.2.1 Classes WaterMovement and

Wa terMovement_slv

Classes WaterMovement and Wa terMovemen t_slv are two

important classes in the software design. Class

WaterMovement is run on the master side, while

Wa terMovement_slv is run on the slave side. At the

41

beginning, the WaterMovement is activated by the user's

distribution require and WaterMovement sends this require

to task manager to ask for the list of available machines.

After that, the communication sockets between slaves and

master is built at once by the Call_OSB_initialData()

function of class WaterMovement and Start_OSB() function of

class WaterMovement_slv. When these sockets are ready to be

used, it will not closed anytime till all the computation

has been completely finished.

Class WaterMovement is used by thread sender to send

data with the send_data() function and is used by thread

getter to get data, change data and send data to Spider

server to draw the 2D diagram using the

chang_data_to_draw () function.

Class WaterMovement_slv is used by thread receiver on

the slave to receive initial conditions and open memory

space for some variables used in the program.

WaterMovement_slv is mainly used by thread calculator to

calculate the Dk
'-H'

D*i,j+-i_ in (3 2 ■ 5) by calculate_preZD()

function, ■ Ktj-i in (3.10) by calculate_preZK ()

function, Dk/.
‘—-J

, Dk+/ in (3.2), (3 -3) , (3.4), (3.7), (3.8),

42

TriMat Constant

KS»P utE lem entO
(^GetElementQ
|^R eadM at()
1§W riteM at()
Ij^P utConstantQ
B^GetConstantQ
Ij^ReadConstantQ
BBjiW riteConstantQ
^G etDim ensionQ

V.

W aterM ovem ent

liCall_OSBJnitialData()
BUln it ial iz e_M atrixQ
B§Send_lnitlalData()
B^Send Data 1 ()
HSend_Data_2()
file hange_Data_to_Draw()

V
OSB

pider_Spawn()
ocket_Corinected_Client()
ocket_Connected_Server()
end_double()
ecv_lnt()
end_lnt()
end_Data()
et_Return_Recvlnt()
et_Return_S end lnt()
et_Return_RecvData()

Figure 12. Component Architecture of Software

(3.9) by calculate_D () function, and i-n (3.10)

bycalculate_K() function. After calculating these results,

43

pafameter_solution() function is used to calculate the ,

btj and ct j or at j, and c(j, and. constants_solution ()

i

0
0
0
0

vhei

ctJ

a2,j

0
0
0

■e j

0
b2,J

0
an-2,j

0

=1,2,.

0
C2,J

0
bn-2,j

an-i,}

..m;

0
0
0

c„-2,y

Odd

/jfc+l
Z)£+l02,j

M
nfc+1C7M o ,• n-2,j
/)k+l

y n-tj _

' Time Leve3

1------------
1

S
7

T
1

__
■______

1

bi,i ci,i 0 o 0 ~C’ Kl
0 «/,2 bi,2 C\,2 0 c k2
0 o 0 0 0 M M
0 0 ai,m-2 b:„ ^i,m-2 • /)£+l

&i,m-2 - bi,m-2

0 0 0 bi,m4_

1

3
+ h'i.m-l _

where i=l,2,...,n;

Even Time Level

Figure 13. Tridiagonal Matrix

function for htj or htj to build the tridiagonal matrix to

solve the algebraic equation group and finally find the

water contents. The tridiagonal matrices are illustrated in

Figure 1,3.

44

I

3.2.2 Classes OSB and OSB_slv

Classes OSB and OSB_slv form the communication and

distribution functions for slave side and master side

programs, respectively. WaterMovement class asks for

distributed object-servers from the Task Manager by the

OSB. Any communication between slave and master is archived

by OSB running on master side and OSB_slv running on slave

side. s.ocket_connect_server () and socket_connect_client()

functions are used to build sockets between slave and

master. The total number of sockets built between slave and

master is two times the number of slaves used in this

computation. Half of these sockets are initialized for

slaves as server and master as client, and the others are

established for slaves as client and master as server.

3.2.3 Classes TriMat_Constant and

EquationGroup

Class TriMat_Constant is a utility for building the

tridiagonal matrices with a,,, b,,, c,, and Zi,, or a,,, b, ,,
hj hj hj t,J I,J

ct j and htj resulted from WaterMovement_slv class. The

EquationGroup class is another utility for solving the

algebraic equation group basing on the tridiagonal matrices

built by the TriMat_Constant class.

45

yi

yt

vt

The Gaussian elimination is used to the solve

algebraic equation group, which includes two steps —

forward elimination and back substitution.

1. Forward elimination

Assumed:

(j
Z?i b,

bt

ci
bi-a^^

(i=2,3, ...,n-2)

Then, eliminate matrices in Fig.3.3 with above

coefficients to be the following equation group:

^2 ~ ^2 _ ^2^3

= y> ~vA+i

^n-2 ~ yn-2 Vn-2@n-l

q _ fyt-1 ~ an-iyn-2

^n-1 ~ an-lVn-2

46

2. Back substitution
First, 0n_x can be solved because hn_v, an_v , yn_2 , bn_x

and r]n_z are given. Then solve 0n_2, 0n_3, ..., 03, 02, 03

successively from bottom to top with substitution
method.

3.3 Detailed Design

This section discusses the detailed design of the five

threads implemented in SWaMM — sender and getter threads

running on the master side, as well as receiver, calculator

and returner threads running on the slave side.

3.3.1 Thread Sender

The sender thread is the main() function in the

WaterMovement.C on master side. Firstly, it declares an

object of WaterMovement class and initialized it with the

initial conditions input by the user via Java-based

interface. Second, it creates the same number of getter

threads as the number of slaves in order to make every

slave to have its own getter. Third, it goes to a for loop

which is increased by one time step and is finished at the

end of the simulating time of irrigation required by user.

There is a global variable get_done to check if all getter

threads have finished to receive the whole block of

47

calculated results from their own slaves. If so, the

computation goes to the next new time step.

This multithread program uses the mutex to synchronize

the accesses to the global variables. To control accesses

to a critical section of code, you lock a mutex before

entering the code section and then unlock it when you have

finished. The global variable get_done is used by thread

sender and getter with mutex. If one of getter threads is

done with getting its whole block of calculated results

from its slave, the get_done will be increased by 1 by

locking it with mutex. If the get_done value equals to the

number of slaves, it means all the block of data in the

whole soil profile have been received by the master and so

thread sender can start to send data for computation of the

next new time step again. So the thread sender needs to

check get_done to see if get_done has increased to the

number of slaves by locking it with mutex as well. If

thread sender find get_done has gone up the number of

slaves, it will continue, otherwise, it will wait by

unlocking get_done and check it again later. Every time

when a new thread getter has completed its receiving, it

will notify and enforce thread sender to check get_done

48

again. The pseudo code of sender thread is showed in Figure

14.

Main()
{

input initial conditions;
call OSB to create sockets;
create threads getter;
for(i = 0; till the end of simulating time of irrigation;

increased by one time step)
{
if(i = 0)

send data horizontally divided;
else {

lock global variable get_done with mutex and check it;
while(get_done != the number of slaves)

wait and check get_done again later and unlock get_done;
if(i = the odd number of time step)

send data horizontally divided;
else

send data vertically divided;.
}
join threads getter;
destroy mutex;
close sockets;

}

Figure 14. Pseudo Code of Thread Sender

3.3.2 Thread Getter

Every slave has its own thread getter on the master

side. The threads getter receive the results from slaves

line by line and as soon as those data are received by

threads getter, they will be changed to be stored in the

different direction in order to get ready for the next

49

I

getter()
{

for(i = 0; till the end of simulating time of irrigation;
increased by one time step){

receive the begin line and end line numbers of its block
allocated to the slave;
if(i = the odd number of time step){

receive the calculation results from slave line by line,
as well as store it to the local variables;
lock the global variable with mutex;
change the received data to be stored in the different
direction;

else {
performance the same action as above, just have
different global variable to store data;

)
lock get_done with mutex;
get_done = get_done + 1;
if(get_done = the number of slaves and is the given

interval time)
change the data to be coordinate values of iso-water
content curves and send it to draw;

if(i < the end of calculation time of irrigation){
signal thread sender to check get_done;
unlock get_done;

}
}

Figure 15. The part of Pseudo Code of Thread Getter

distribution computation on the different direction. At the

given interval time, the getter will rewrite the data to be

coordinate values of iso-water content curves and send it

to Spider server to draw dynamic 2D diagram. The part of

pseudo code of thread getter is show in Fig.3.5.

3.3.3 Thread Receiver

Thread receiver is one of three threads running on the

slave side and is a main() function in WaterMovement_slv.C.

50

Thread receiver activates thread calculator running on the

same slave as soon as it has received the data enough to

calculate two lines for calculator.

This program declares a continuous memory space as

global variable to buffer received data, whose size is same

as considered space grid, as well as a point

receiver_pointer to point where the data have been received

on that memory. Another similar continuous memory space is

opened as global variable to buffer the calculated results

and another calculator_pointer to point where the data have

been calculated on this memory. If the calculator_ypointer

equals to receiver_pointer, that means thread calculator

Main()
{

call start_OSB() function to build connection with master;
create thread calculator and returner;
for(i = 0; till the end of simulating time of irrigation;

increased by one time step){
receive'the begin line and end line numbers of the block
allocated to this slave;
for(j = the begin line number; j <= the end line number;

j++) {
receive data from master;
lock receiver_pointer and calculator_pointer with
mutex;
increase receiver_pointer by 2;
signals thread calculator to check if the
receiver_pointer equals calculator_pointer;
unlock receiver_pointer and calculator_pointer;

}

Figure 16. Pseudo Code of Thread Receiver

51

has calculate all the data that thread receiver received

and it waits more data from receiver to calculate. So, as

soon as the receiver has received other new data, it will

signal the calculator to continue its calculation.

calculator()
{

for(i = 0; till the end of simulating time of irrigation;
increased by one time step){
lock calculator_pointer and receiver_pointer with mutex to
check if data available for calculation;
while(data are not available)

wait the signal from thread receiver and unlock
calculator__pointer and receiver_pointer;

while(1){
lock calculator_pointer and receiver_pointer;
if(this slave has finished to calculate all the block

allocated)
get out of the while(1) loop and go to the
calculation of next new time step;

while(there are not available data to be used to
calculate and this slave has not done with the
whole block allocated)
wait till thread receiver signals it data
available;
unlock receiver_pointer and calculator_pointer;

calculate two lines of water contents;
lock the global variables calculator_pointer,
receiver_pointer,
calculator__pointer is increased by 2;
if(calculator_pointer is greater than the end line of

the block allocated)
slave has completed computation of the whole block
allocated;

signal thread returner to return the previous calculated
results to master;
unlock the global variables calculator_pointer,
receiver_pointer,

Figure 17. Pseudo Code of Thread Calculator

52

3.3.4 Thread Calculator
Thread calculator is responsible for calculating the

water contents. Every time when it finish two line

computation, it will, go back to check if its

calculator_pointer equals receiver_pointer, if so, it will

wait till thread receiver signal it that other new data

have been received, otherwise, if receiver_pointer is

greater than calculator_pointer, which means there are more

data not calculated, thread calculator will continue to

calculate them.

Just before thread calculator goes to calculate the

next two lines, it will signal thread returner to return

the previous calculated results to master. There is another

pointer returner pointer to point where the data has been

returned on the memory opened for storing the calculated

results as mentioned in section 3.4.3.

3.3.5 Thread Returner

Thread returner returns the calculated results line by

line. The continuous memory storing the calculated results

has two pointers calcultor_pointer and returner_pointer. If

the values of these two pointers are equal, that means

there are not available results to be returned to the

master or all the available results have been returned.

53

returner()
{

for(i = 0; till the end of simulating time of irrigation;
increased by one time step){
lock the global variables calculator_pointer and
returner_pointer;
while(there are not available data to be returned)

wait the signal from thread calculator and unlock
calculator_pointer and returner^pointer;

return the begin line and end line numbers of the block
allocated to this slave.
Whiled) {

lock calculator__pointer and returner_pointer;
if(this slave has finished the calculation of the whole

block)
get out of while(1) loop and go to the next new time
step;

while(there are not available data to be calculated and
slave has not done with returning the whole
block)

wait till thread calculator signal data available
and unlock calculator_pointer and
returner_pointer;

return one line of data to master with line number;
lock returner_pointer,
returner_pointer increased by 1;
if(returner_pointer is greater than the end line number

of the block allocated it)
this slave has completed to return the whole block;

unlock calculator_pointer,
}

)

Figure 18. Pseudo Code of Thread Returner

54

CHAPTER FOUR
SOFTWARE TESTING AND
PERFORMANCE ANALYSIS

In this section we evaluate the performance of the

Spider II system when executing SWaMM application program.

We compared the performance of the distributed program

running on the Spider II system with a sequential program

running on a single PC in the Department of Computer

Science, CSUSB. We also compared the performance with a

sequential program running on a single PC at the Department

of Environment, UCR. The analysis of the performance is

discussed in this section as well.

4.1 Testing Environments

In the Department of Computer Science, CSUSB, all the

measurements were performed on 1.8 GHz AMD Athlon systems

running Red Hat Linux 7.3 with 256 MB of memory, connected

by a lOOMb/sec Ethernet local network. The gcc 2.96 is the

compiler that we used to compile the Spider II system and

SWaMM software.

In the Department of Computer Science, UCR, the SWaMM

sequential program is tested on a single computer with

Intel Pentium III of CPU (500 MHz) and 256 MB of memory.

55

The Microsoft visual C++ 6.0 is used to compile the

sequential program.

4.2 Testing Methods

We implemented a distributed algorithm of SWaMM

described in section 3.1 in Spider II system and compared

it with the sequential version of the program. To test the

performance, we run the SWaMM software with different sizes

of grid as show in the Figure 3 and record their execution

time separately. The testing sizes of the grid range from

(200 X 200) to (1000 x 1000). For various size grids, the

initial conditions input by the users are assumed to be

same as the following:

Saturated Water Content (cm//,3) : 0-45

Water Source (cmi/cmi) : 0.35

Initial Water Content (cm/X) :

Error Tolerance: 0.1

Time Step (Minutes): 0.1

Horizontal Distance Step (cm): 2

Vertical Distance Step (cm): 2

Irrigation Time (Minutes): 5

56

So the grid size, for example (200 x 200), is

calculated from the horizontal distance 400 cm and vertical

distance 400 cm required by users at beginning of the

program if the distance steps on both directions are 2 cm,

that is, from 400 / 2 - 200 cm in the horizontal direction

and 400 / 2 = 200 cm in the vertical direction.

Based on the distributed algorithm of an iterative

calculation as described in Section 3.1, the irrigation

time is tested by 5 minutes. So the calculation is iterated

up to 50 times if the time step is 0.1 minutes, which is

sufficient to prove the quality and reliability of the

SWaMM software running on Spider II.

The type of the tested soil is a homogeneous light

loam whose water movement parameters are D(&) - 278.3 (0/0J805

(""/^Jfor Soil Water Diffusivity and K(&) = 1.42 (0/6^)1024 (c7^in)

for Hydraulic Conductivity.

The water source is buried at 35 cm below soil surface

on the left side of soil profile.

The boundary conditions except around the water source

point are assumed to be kept as the initial water content da

with time going after irrigation. The boundary condition

around the water source point is constant.

57

4.3 Testing Results

4.3.1 Computation Time

Table 4.1 shows the results of execution times of grid

sizes (200 x 200) to (1000 x 1000) using 1 to 10 machines.

Figure 19 illustrates the graphs of the execution time for

grid sizes (200 x 200) to (1000 X 1000) using 1, 3, 5, 7, 9

machines at CSUSB.

First, for the sequential program run on 1 machine,

the execution time at UCR is about 4 times that at CSUSB

since the clock rate of machines at CSUSB is much higher

than that at UCR, that is, the CPU of the computers at

CSUSB is 3.6 times as fast as the CPU at UCR.

Second, Figure 19 shows that all the results from

distributed program are faster than the sequential program

at CSUSB regardless of grid size. Comparing with the

sequential program, as the grid size gradually increases

from (200 x 200) to (1000 X 1000), the computation times are

significantly decreased no matter how the computation tasks

are distributed on 3, 5, 7 or 9 machines. But when

comparing the execution times between 7PC and 9PC for ever

grid size, we find that the difference of execution times

58

Machinfes^
200 X
200

.3 00 X
300

400 X
400

500 X
500

600 X
. 600

700 X
700

800 x
800

900 x
. 900

1000 x
1000

1 ucr
83 283 641 1236 2074 3261 4848 6814 9291

esusb
20 71 159 330 482 750 1111 1528 2123

3 13 . 27 53 102 148 224 336 463 . 624

. 4 12 30 43 91 127 172 256 293 474

5 • 11 24 35 75 102 147 212 . 354 392

6 10 21 30 75 86 129 184 251 241

7 10 . 19 30 . 62 77 112 164 226 303

8 10 .16 30 54 70 123 170 218 358

9 11 .18 30 49 67 100 149 203 264

10 12 17 28. 45 61 94 144 188 227

Table
1. Comparison of Execution Time

Task Execution Time

Grid Size

Figure 19. Comparison of Execution Time

between them is smaller than the difference between 3PC and

5PC. This is reasonable if we consider increasing

communication times as the number of nodes is increased.

This demonstrates that communication time will affect the

computation time when the number of nodes has reached a

threshold.

4.3.2 Speedup and Efficiency

The speedup and efficiency results are shown in Table

4.2, where Speedup and Efficiency are defined as the

60

cn■H

\siz 200 X
200 .

300 X
300

400 X
400

500 X
500

600 X
600

700 X
700

800 X .
800. .

900 X
900

1000 X
1000

Mac\
SP EP SP EF SP EF SP EF . SP EF SP EF SP EF SP EF SP EF

1 1.0 1.0 1.0 1.0 1.0 1.0. 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1-0 1.0 1.0

3. 1.5 0.5 2.6 0.9 3.0 1.0 3.2 .1.1 3.2 1.1 3.3 1.1 3.3 1.1 3.3 1.1 3.4 1.1

4 . 1.7 0.4 2:3 0.6 .3.7 0.9 3.6 0.9 3.8 1.0 4.4 1.1 4.3 1.1 5.2 1.3 4.5 1.1

5 . 1.8 0.4 2.9 0.6 4.6 0.9 4.4 0.9 4.7 0.9 5.1 1.0 5.2 0.9 4.3 0.-9 5.4 1.1

6 2.0 0.3 3.3 0.6 4.6 0.8 4.4 0.7 5.6 0.9 5.8 1.0 6.0 1.0 6.1 1.0 8.8 1.5

7 . 2.0 0.3 3.7 0.5 5.3 0.8 5.3 0.8 6.2 0.9 6.7 1.0 6.8 1.0 6.8 1.0 7.0 1.0

8 2.0 0.3 4.4 0.6 5.3 0.7 6.1 0.8 6.9 0.9 6.1 0.8 6.5 0.8 7.0 0.8 5.9 0.7

9 1.8 0.2 3.9 0.4 5.3 0..6 6.7 0.7 7.2 0.8 7.5 0.8 7.4 0.8 7.5 0.8 8.0 0.9

10 .1.7 0.2 4.1 0.4 5.7 0.6: 7.3 0.7 7.9 0.8 8.0 0.8 7.7 0.8 8.1 0.8 9.3 0.9

Tab!e 2. Comparison of Performance

Note: (I) SP is SpeedlJp
(2) EE is Efficiency

following,

Speedup =• The Execution Time of Sequential Program
The Execution Time of Distributed Program

Efficiency =■ Speedup
The Number of Nodes

The speedup and efficiency for 3, 5, 7, 9 machines are

illustrated in Figure 20 and Figure 21. First, the speedups

go up as the number of nodes is increased at every

Figure 20. Comparison of Speedup

grid size. Second, at the small grid size of (200 X 200),

the approximately equal speedup is achieved for the various

62

numbers of machines. When the grid size goes up to (300 X

300) and (400 x 400) , the speedups are significantly-

increased for every, number of machines and the efficiencies

for these two grid sizes are also increased fast as showed

in Figure 21. But after running size (400. X 400), the

speedups and efficiencies for various numbers of machines

tend to level out ais the grid size increases. That means

Efficiency

Grid Size

Figure 21. Comparison of Efficiency

the capacity of the underlying computer system is almost

achieved to the maximum when the grid size is reached to

63

(500 x 500) or (600 x 600). Third, as what we can see from

Figure 21, the efficiency remains higher with all grid

sizes when using 3 machines than using 9 machines. This

proves there is a great influence of communication time

upon the computation time.

64

CHAPTER FIVE

MAINTENANCE MANUAL

Maintenance is important to keep the software up and

running. Since the Spider project is an on-going project,

maintenance manual also helps its development in future.

5.1 System Requirements

The distributed program of SWaMM has been tested on

RedHat Linux7.0 and Linux7.3. The sequential program has

been tested on WindowXP beside RedHat Linux7.0 and

Linux7.3. We believe they should take no extra efforts to

be installed and run on other platform. SWaMM also requires

g++ compiler to compile it. For the diagram of SWaMM which

is implemented in Java, the Java 1.2 or up needs to be

installed.

5.2 Obtaining a Copy

You can get a copy of SWaMM software and Spider II

source code by

ftp://spider.ias.cusb.edu/pub/SWaMM_SpiderII.tar.gz, which

contains all the necessary c/c++ classes for Spider II and

SWaMM software and Java classes for SWaMM diagram and

configuration files. The documentation is also included in

65

ftp://spider.ias.cusb.edu/pub/SWaMM_SpiderII.tar.gz

this file. After you downloaded the file, you need to

extract the tar file. Under a shell prompt, type:

tar zxvf SWaMM_SpiderII.tar.gz

5.3 Directory Organization

Under the SWaMM_SpiderII directory, there are three

subdirectories: bin, java, src and output, two files:

ports.conf reghost.conf and a document: readme.

bin: This directory contains executable files for

installation of Spider II and daemon startup for Java

diagram of SWaMM.

java: This directory contains two subdirectories:

classes and src. The classes subdirectories include all the

executable files for startup of SWaMM diagram, which are

generated from the java codes in subdirectories src after

compilation.

src: This directory contains Spider II and SWaMM

source code.

ports.conf: This file is for Spider II to configure

the port numbers of all the machines which you are going to

access by Spider II system.

reghost.conf: This file is for Spider II to configure

which machines you are going to use.

66

output: This directory contains prime results after

running a small application prime search to check if Spider

II has succeed to install.

readme: This file explains how to install Spider II

system and startup SWaMM software.

5.4 Checking for Thread Support

Because SWaMM software is implemented in multi-

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>

int main()
{
printf("POSIX version is set to %ld\n", _POSIX_VERSION);

if(_POSIX_VERSION < 199506L){
if(_POSIX_C_SOURCE >= 199506L)
printf("Sorry, you system does not support POSIXl003.1c

threads\n");
else
printf("Try again with -D_POSIX_C_SOURCE=199506L\n");

}
else{

printf("You system supports POSIXl003.1c threads, \n");
#ifdef _POSIX_THREAD_PRIORITY_SCHEDULING
printf("including suport for priority scheduling \n");

#else
printf("but does not support priority scheduling\n");

#endif

exit(EXIT_SUCCESS);

Figure 22. Program threadl.c

67

threads, we suggest you to check that your platform

actually has support for threads, and is compliant with the

POSIX. We can do this check in a very easy way to write a

very short program, compile it and see what we get.

Figure 22 shows a program threadl.c that doesn't do

anything other than test for threads support in the

libraries that you use when compiling a program. If your

machine support for POSIX threads, the test result should

be what is reported in Figure 23. If your setup did not

report support, or failed to compile at all, you should try

compiling the program, setting_POSIX_C_SOUR.CE on the

command line, like this:

cc -D_POSIX_C_SOURCE=199506L threadl.c -o threadl

If your system still doesn't report support for

POSIXl003.1c threads, then you may not be able to run

SWaMM.

$./threadl
POSIX version is set to 199506
Your system supports POSIXl003.1c threads,
Including support for priority scheduling

Figure 23. Test Result for Program threadl.c

68

5.5 Installation of Spider II System

In order to install Spider II system, you need to do:

(1) check if you have .rhosts files under your home

directory. If you have not, just create it as the following

example:

jb359-0.csci.csusb.edu Hwang

jb359-l.csci.csusb.edu llwang

jb359-2.csci.csusb.edu llwang

and add as many machines as you want in a lab where you

are. You need to change "llwang" in the example to your

user name. After creating .rhosts file, restart your

machine.

(2) go to SWaMM_SpiderII directory and change the

ports.conf and reghost.conf files to add more machines

if you want.

(3) read the readme file under SWaMM_SpiderII

directory. Following the steps in readme to configure

Spider_II system.

a. There is a file named profile.h in src directory.

You need to change profile.h for paths of

"Spiderpath", "DATA_FILE", "HOSTFILE",

"Task_Flag", and "Prime_File" to your directory.

69

0.csci.csusb.edu
l.csci.csusb.edu
2.csci.csusb.edu

b. Change two hostnames for "Task_Server" and

"Task_Mirror" to which you like to run your Task

Server and Task_Mirror, respectively.

c. Change port numbers for "T manager port",

"T_mirror_port", "OSB port" and "Reg port" to

which you want to use and they should not be less

than 6000.

d. After configuring the profile.h, you may start

compiling the spider_II using command "make all".

All the generated binary files will be in the

directory bin.

(4) Run Task Server on the machine that you defined in

profile.h file.

a. Open a new terminal.

b. Using command "rsh" or "ssh" to access machine

Task Server. For example, "rsh jb359-0" if you

defined machine jb359-0 is the Task Server.

c. Run the executable file "task" in directory bin.

You can see the list of machines and sentence

"Task server is available...." on the screen if you

succeed to run the task server.

(5) Run Register Server on any machine you like.

a. Open another terminal.

70

b. Using command "rsh" or "ssh" to access

machine Register Server. For Example, "rsh

jb359-6" if you like machine jb359-6 to be

Register Server.

c. Go to directory bin and run the executable

file "reg_d". You can see the list of

machines and their CPU idle percentage, i.e.

"avhosts 0 => jb359-0 99". This means that

the available host's hostname is "jb359-0"

and its CPU idle percentage is 99%. After

that, the hostnames and their priorities are

showed on the screen. If you succeed to run

Register Server, you can see the sentence

"Update to Task Server..." at the bottom line

(6) Use a simple application prime search to test if

Spider II has been succeeded to install. You may run

executable file "prime" in directory bin on the machine

that you are seating on and see the search results from

directory output.

71

5.6 Running Soil Water
Movement Model

In order to open the daemon oh master machine for

presenting the diagram of SWaMM in real time, run the

command appletd in the directory bin. Then go to directory

java/classes to run spiderGUI with appletviewer, like that,

appletviewer spiderGUI

Then input the initial conditions into the dialog window

and submit it. After that, the command watermovement with

initial conditions will be passed to execute by daemon

appletd. There are three windows that we can view the

execution of applications. One is to show which machines

have been selected to do the calculation. These machine

hostnames are presented in this window. The second window

is about monitoring how the calculation is going on with

those machines. The third window demonstrates the 2d

diagram of swamm. The soil profile is represented by a 2- '

dimensional cartesian coordinate. The x-axis is the

horizontal coordinate, and z-axis is the vertical

coordinate, which is the.soil depth and considered to be

positive downward. After the irrigation is applied from a

water source point and the water infiltration has been

72

started, the 2d graphic of soil water contents will be

presented as iso-water content curves. As time goes on and

Applet viev/ei; spiciei!l_<3Ul.cia$3 IS
Water Movement Simulation: j run j] exit j

fMssi-oll |jb339kiil Bb3sag2ti BfosSIsll fjWag<l EbjsOsl

jb259-12B

Jb359-0

Jb359-1

J0359-2

Jb359-4

Jb359-6

Jb359-7

Jb359-9

Jb359-10

Applet started.^

fflTi 00:52 PM.
sThufjan 30

Figure 24. Graph of Soil Water Movement Model

the soil water contents are changed, the iso-water

content curves in the 2D graphic will be moved on along the

x- and z-axis. The different values of iso-water content

curves are represented with the different colors.

73

5.7 Extension of Soil Water
Movement Model

Since SWaMM used the object-oriented program,

extending application SWaMM to Spider III system is easy.

5.7.1 Client Program

The client program includes one class

Iterative_Calculation and two threads getter and sender.

Class Iterative_Calculation provides all the functions

required by those two threads.

(1) start()

This function spawns the machines according to the

required number by user first. Then it will send initial

conditions to them and ask these slaves to start

initializing the whole soil profile.

(2) send_data_l() and send_data_2()

These tow functions distribute data to the slaves two

lines by two lines. Send_data_l (.) is for sending data at

the odd number time, while send_data_2() is going to send

data at the even number time.

(3) Change_data_to_draw()

This function calculates the water contents of the

whole soil profile to the coordinates which are used to

draw the isolines. Because the maximum water content of

74

soil generally is the saturated soil water content 0S and

the minimum water content is the initial soil water content

0a . So the calculated water contents at anytime should be

between 0a and 0S . At the beginning of this function, 40

isolines between 0a and 0S are assumed to be considered and

values of these isolines are calculated out first. After

converting data to coordinate values of the isolines, then

send them to daemon on the master machine to draw 2D

diagram by function send_data_to_draw().

5.7.2 Server Program

There are one class WaterMovement_slv and three

threads receiver, calculator and returner in server

program. Class WaterMovement_slv provides all the functions

required by threads.

(1) start_osb()

First, this function will create all sockets for

communication with master machine. Second, the initial

conditions input by user on master machine will be

received. Third, it is going to open continuous memory on

slave machine according the received initial conditions.

Forth, start calculation to initialize the whole soil

profile.

75

(2) get_begin_end ()

This function is for receiving the begin and end

numbers of block assigned by master machine. If you will

not change these two numbers during all calculation, you

can ignore this function.

(3) receive_data_l_x(),receive_data_l_z() ...

This set of functions is for thread receiver to

receive data at an even time or an odd time. Since the

distributed algorithm is to send and receive data two lines

by two lines, these functions consider of four cases for

begin and end numbers of assigned block: begin number is

odd value and end number is odd value, begin is odd and end

is even, begin is even and end is odd, and begin is even

and end is even. These four cases are considered in the

functions created for thread calculator as well, for

example, calculator_data_l, calculator_data_2 and

calculator_data_3.

(3) calculation_start()

This function starts the calculation of water contents

according the received data. All the functions called by

calculation_start() are related to solve the differential

equation in Soil Water Movement Model. Since solving

76

differential model is very complicate, we suggest you don't

change solution method from these functions when you extend

SWaMM to Spider III system.

77

CHAPTER SIX
CONCLUSIONS AND FUTURE

DIRECTIONS

6.1 Conclusions

The Simulation of Soil Water Movement Model on

Spider II system project accomplished the following:

• First, this project solves the Soil Water

Movement Model that includes a partial

differential equation and some auxiliary

conditions with the alternating-directions

implicit (ADI) difference method. Then according

to the data independences of the sequential

algorithm ADI, this project develops a parallel

and distributed algorithm for distributed

calculation of Soil Water Movement Model. In

order to hide the communication time during

distributed computation, the tasks assigned to

every slave are partitioned part by part again,

which results that every slave starts calculating

as soon as it receives a part of data and starts

returning data as soon as the part of data has

been calculated. Every slave has actions of

78

receiving, calculating and returning data at one

time point. When the previously received data are

being calculated and then returned, the new data

are being received. So a parallel algorithm is

fulfilled.

• The Soil Water Movement Model is implemented on

Spider II distributed system. In order to

implement the parallel algorithm, the multi­

thread networking programming skill is used with

network protocol TCP/IP in C/C++. This multi­

thread program uses the mutex to synchronize the

accesses to a critical section of code. Using

multi-thread and mutex is absolutely essential to

improve the computation time because it prevents

the interprocess communication between the parent

and child when we use fork to create new

.processes.

• The parallel and distributed algorithm

significantly improves the computation time when

comparing with its sequential algorithm. The

testing size of grid range is from (200 X 200) to

(1000 x 1000). The results of the computation time

79

show that distributed algorithm is faster than

sequential algorithm regardless of grid size. The

speedups go up as the number of nodes is

increased at every grid size. When the grid size

goes up from (200 X 200) to (500 X 500), the

speedups are increased most significantly for

every number of machines comparing with grid size

from (500 x 500) to (1000 X 1000). The efficiency

remains higher with all grid sizes when using 3

machines than using 9 machines.

• The Java-based user interfaces are implemented as

well. In order to monitor the execution of Spider

application, there are three windows that can be

viewed during execution. One is for viewing which

machines have been selected to distributed

calculation. Second is to view how the task

assigned to every slave is going on. Third window

is a dynamic 2D diagram for SWaMM, which the iso­

water content curves will be moved on along the

x- and z-axis as time goes on and the soil water

contents are changed.

80

6.2 Future Directions

Spider project is an ongoing project. In 2002, Spider

II system has been upgraded to Spider III which is a multi­

agent based Internet distributed computing system and SWaMM

is going to be used by the researchers at the Department of

Environmental Sciences, UCR. Below are possible directions

that can be extended from the result of this project.

• An extending the real application SWaMM to Spider

III is supposed to be a direct and effective

measure to test the performance of Spider III

system although a very simple application matrix

multiplication was programmed on Spider III. The

computation time of this application has been

significantly improved on Spider II system. The

Spider III system has more powerful functions than

Spider II system. Applying SWaMM on Spider III

system should get better results than on Spider II

system.

• The parallel and distributed algorithm in this

project is implemented by sending, receiving and

calculating data two lines at a time. It is

possible that we can design a distributed algorithm

81

that sends, receives, calculates data one line at a

time and compare which performance is better.

• The Soil Water Movement Model solved in this

project can have additional parameters that

describe a variety of environmental situations

based on soil characteristics and nature.

82

APPENDIX A

GLOSSARY

83

Agent A software routine that waits in the

background and performs an action when

a specified event occurs. For example,

agents could transmit a summary file on

the first day of the month or monitor

Browser

incoming data and alert the user when a

certain transaction has arrived.

A program capable of retrieving HTML

documents that include references to

Client

image and Java bytecode and rendering

it into a user-readable document.

The client is a workstation, which

Daemon

requests a service from the Spider

system.

A UNIX program that runs continuously

in the background, until it is

activated by a particular event. This

word is often used to refer to

programs that handle email. The word

daemon is Greek for "an attendant

power or spirit."

84

Distributed

GUI

IEEE

JAVA

OSB

System A distributed system is a collection

of computers which run their own

operating systems or a distributed

operating system without having a

global memory or a single clock, and

computers communicate with each other

by exchanging messages over a network.

Graphical User Interface, an interface

that has image as well as words on the

screen.

Institute of Electrical and

Electronics Engineers.

A cross-platform programming language

from Sun Microsystems that can be used

to create animations and interactive

features on World Wide Web pages. Java

programs are embedded into HTML

documents.

Object service broker (OSB) is the

central component of the Spider System

to handle the communication between

all objects in the system, regardless

85

of their location, platform or

implementation

Registry Server The server provide the information of

the available servers.

Obj ect-Servers Network computers actually perform the

computation during the distributed

computation.

Socket A communication between two computer

processes on the same machine or

different machines. On a network,

sockets serve as endpoints for

exchanging data between computers.

Each socket has a socket address,

which is a port number plus a network

address.

Soil Water Content The water lost from the soil upon

drying to constant mass at 105 C°;

expressed either as the mass of water

per unit mass of dry soil or as the

volume of water per unit bulk volume

of soil.

86

Soil Water Movement Water in soil dynamically flows from

higher total water potential to lower

water potential, which causes temporal

and spatial change of soil water

content.

Soil Water Movement It is a technique of reproducing the

Model behavior of the water movement in

soil. The prediction and understanding

of the water movement processes makes

it possible to develop or test various

management schemes for controlling the

water content of soils.

Spider II It is a distributed virtual machine

running on top of the UNIX or LINUX

operating system within the CS network

of CSUSB. It features multi-tasking,

load balancing and fault tolerance,

which optimize the performance and

stability of the system.

SWaMM Simulation of Soil Water Movement

Model

87

Task Manager To manage the available servers for

each task during computation in Spider

System.

TCP/IP The Transmission Control Protocol

(TCP) / Internet Protocol (IP). These

protocols were developed by DARPA to

enable communication between different

types of computers and computer

networks. The Internet Protocol is a

connectionless protocol, which

provides packet routing. TCP is

connection-oriented and provides

reliable communication and

multiplexing.

Thread Threads are sometimes called

lightweight processes since a thread

is "lighter weight" than a process.

All threads within a process share the

same global memory. This makes the

sharing of information easy between

the threads, but along with this

simplicity comes the problem of

88

synchronization.

UML The Unified Modeling Language (UML) is

a third-generation object-oriented

modeling language for specifying,

visualizing, and documenting the

artifacts of an object-oriented system

under development.

89

BIBLIOGRAPHY

[1] IEEE std 830-1998 IEEE Recommended Practice for

Software Requirements Specification

[2] H.Yuh, Spider: An Overview of an Object-Oriented

Distributed Computing System. Master Thesis, Department

of Computer Science, California State University, San

Bernardino, 1997

[3] Koping Wang, Spider II: A Component-based Distributed

Computing System. Master Thesis, Department of Computer

Science, California State University, San Bernardino,

1997

[4] Jianhua Ruan, Spider III: SPIDER III: A Multi-agent

Base Internet Distributed Computing System. Master

Thesis, Department of Computer Science, California

State University, San Bernardino, 2002

[5] E.Bresler, B.L.Mcneal, D.L.Carter, Saline and Sodic

SoiIs--- Principles-Dynamics-Modeling. Springer-Verlag

Berlin Heidelberg, New York, 1982, pp. 101-111

[6] Zhidong Lei, Shixiu Yang, Shenzhuan Xie, Soil

Hodrology, TsingHua University Press, Beijing, 1988,

pp. 264-303

[7] L. Hluchy, V. D. Tran, L. Halada, et al., Ground Water

90

Flow Modeling in PVM, Recent Advances in Parallel

Virtual Machines and Message Passing Interface--- 6th

European PVM/MPI Users' Group Meeting, Barcelona,

Spain, September, 1999 proceedings, PP. 450-457

[8] H. M. Deitel, P. J. Deitel, Java-- -How to Program,

3rd edition, Prentice-Hall Inc., New Jersey, 1999

[9] N. Matthew, R. Stones, "Beginning Linux Programming"

2nd edition, Wrox Press Ltd, Birmingham, UK, November

1999

[10] W. Richard Stevens, UNIX Network Programming, 2nd

edition, Prentic-Hall Inc., 1998

91

	Simulation of soil water movement model (SWaMM) using the Spider Distributed System
	Recommended Citation

	Figure 7. Welcome Web Page

	This window introduces'the users into the Spider project. For the Soil Water Movement Model application, clicking the

	"Application" button.

	Figure 8. Introduction Web Page for Model

	Task:r

	Network View

	Task View

	Figure 10. Web Page for Monitoring and Displaying

	hj—	+Z>£J

	h,,t = -'•zD‘,4^- + kk-j + Cs)-k

	Figure 12. Component Architecture of Software

	(3.9) by calculate_D () function, and	i-n (3.10)

	bycalculate_K() function. After calculating these results,

	Figure 15. The part of Pseudo Code of Thread Getter

	distribution computation on the different direction. At the

	given interval time, the getter will rewrite the data to be

	coordinate values of iso-water content curves and send it

	to Spider server to draw dynamic 2D diagram. The part of

	pseudo code of thread getter is show in Fig.3.5.

	3.3.3	Thread Receiver

	Thread receiver is one of three threads running on the

	slave side and is a main() function in WaterMovement_slv.C.

	has calculate all the data that thread receiver received

	and it waits more data from receiver to calculate. So, as

	soon as the receiver has received other new data, it will

	signal the calculator to continue its calculation.

	Figure 17. Pseudo Code of Thread Calculator

