
California State University, San Bernardino California State University, San Bernardino 

CSUSB ScholarWorks CSUSB ScholarWorks 

Theses Digitization Project John M. Pfau Library 

2002 

Renewal theory for uniform random variables Renewal theory for uniform random variables 

Steven Robert Spencer 

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project 

 Part of the Mathematics Commons 

Recommended Citation Recommended Citation 
Spencer, Steven Robert, "Renewal theory for uniform random variables" (2002). Theses Digitization 
Project. 2248. 
https://scholarworks.lib.csusb.edu/etd-project/2248 

This Thesis is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has 
been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks. 
For more information, please contact scholarworks@csusb.edu. 

https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd-project
https://scholarworks.lib.csusb.edu/library
https://scholarworks.lib.csusb.edu/etd-project?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2248&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2248&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd-project/2248?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2248&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu


RENEWAL THEORY FOR UNIFORM RANDOM VARIABLES

A Thesis

Presented to the

Faculty of

California State University,

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree

Master of Arts

in

Mathematics

by

Steven Robert Spencer

March 2002



RENEWAL THEORY FOR UNIFORM RANDOM VARIABLES

A Thesis

Presented to the

Faculty of

California State University,

San Bernardino

by

Steven Robert Spencer

March 2002

Approved by:

DateCharles Stanton, Advisor, Mathematics

Yuichiro Kakihara

Terry Hallett

j.
Peter Williams, Chair 
Department of Mathematics

Terry Hallett, 
Graduate Coordinator 
Department of 
Mathematics



ABSTRACT

The thesis answers the question, "How many times must

you change a light-bulb in a month if the life-time- of any

one light-bulb is anywhere from zero to one month in

length?" This involves uniform random variables on the -

interval [0,1] which must be summed to give expected

values for the problem. The results of convolution

calculations for both the uniform and exponential

distributions of random variables give expected values

that are in accordance with the Elementary Renewal Theorem

and renewal function. There are indications that work on

this problem can be traced back to the father of

probability theory, Simon Laplace, and Laplace Transforms

form a backdrop to the entire investigation.
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CHAPTER ONE

INTRODUCTION

The renewal process is a counting process where

repeated events occur at random intervals. Each event is

independent of other events in the process. Renewal

theory, a category of the larger field of probability

theory, describes this counting process. It is concerned

with finding the number of times a series of random

variables can be summed before they reach or exceed a

certain number. The function N(t) represents the number of

times required in a particular instance and E[N(t)] is the

expected value or mean of such a number, This paper will

focus on finding formulas for E[N(t)] using one of the

classical problems in the discipline first, and then

extending the scope of the problem to include overall

times greater than the time t in the original problem. The

expected values in these cases will be found using the

uniform and exponential distributions of random variables.

The best example of the renewal process is found in

one of the classical problems of the subject. The so-

called "light-bulb problem" asks for the expected value of

the number of times a light bulb needs to be replaced in a
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month if the lifetime of any one bulb is any time from

zero to one month in length. This approach to the renewal

process uses uniform random variables since the variables

are chosen at random on the interval [0,1] and all numbers

on the interval have an equal chance of being chosen at

any one particular time. Since uniform random variables

form the basis for understanding the underlying question

involved in this paper, the uniform distribution will be

the most closely considered. It also happens that the

exponential distribution can be considered because it

involves a memoryless property that ties in well with the

need for independence of each choice of the random

variable.

This light bulb question involves a time limit of one

month. If additional times are considered, then it should

be possible to find E[N(t)] for values of t (time) for any

number of months involved. This will comprise the main

focus of this thesis and will involve attempting to find

equations representing E[N(t)] for various values oft.

Both the uniform and exponential cases will be given and

then the final results compared to the values obtained

from the Elementary Renewal Theorem and the renewal

function. This will provide a general method for
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evaluating the effectiveness of the chosen approach and

will help to establish a criteria for comparison.

, General Equation for E[N(t)]

In order to understand the general approach we will

take in finding E[N(t)], it will be necessary to

understand some basic concepts of the renewal process.

Generally speaking, the counting process involved measures

the number of time intervals occurring before a certain

limiting time t. If Xl,X2,...,Xn represent various time

intervals occurring before the time t, then the waiting

time W2 represents the sum of the first two intervals,

X'+X2. Also Wn would represent the total waiting time for

the sum of all Xk , where K= (1,2 ,..., n) . The probability that

a certain XK would be less than or equal to a specific

value, say x, would be written Pr{ XK < x} =F(x), where F(x)

is the interoccurrence distribution for the length of an

interval. Each XKvalue is associated with an event that

occurs at the end of each interval. Therefore a change of

the kth light bulb in the above problem corresponds to one

such event [17].
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When dealing with the probability that the waiting

time is less than or equal to some value t, it is written

Pr{ Wn<t} = Fn(t), where Fn(f) is the distribution function

for a sum of n numbers. For instance, W2=XI+X2. To find

the probability that X,+X2<a, where a represents a

limiting value, it is necessary to find the cumulative

distribution function of X,+X2 which can be done in

principle by convolution formulas. These formulas will be

derived later, but they will give us a method of finding

Fn(t) [17].

The renewal counting process for { N(t)} is related

to the waiting time process {Wn} by understanding that

N(t)>k if and only if WK <t. This is the straight forward

observation that there are at least k renewals if and only

if the total waiting time for k renewals is less than t.

This means that Pr {N(t) > k} = Pr{WK < t} — FK(t). And then,

Pr (N (t) =k} = Pr{jV(/j > A;} — Pr{7V(r) > k + 1} = FK(t)-FK+i(t) [17], This

gives us the link we need to find E[N(t)] since the

expected value of a probability function p(y) is defined 

to be E(Y) =^y p(y) [18]. Therefore
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(1).E(N(t)] = ^n[Fn(t)-Fn+1(t)]
«=i

This formula establishes the basic method for finding the

expected values we desire and will be used in the

calculations throughout this paper.

The problems inherent in this approach are finding

formulas for Fn, the distribution function for the sum of n

numbers. As was mentioned earlier, the sums of independent

random variables can be found in principle by using

convolution formulas. Such formulas prove unwieldy,

however, for more than three numbers being summed. Another

method for finding joint probabilities is the geometric

approach. Here too, there are difficulties beyond summing

three numbers because for each new number to be added to

the sum, the cube takes on another dimension. It becomes

difficult to evaluate probabilities beyond the three

spatial dimensions.

A better understanding for achieving Fn can be found

with delta functions. A suggestion was made of using delta

functions as a starting point for computing the derivative

of the density function f'(a). The correlation between the

two stems from the fact that the delta function integrates
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at a single point with a value of one and the uniform

distribution is f(x)= 1 for 0<x<l and 0 otherwise.

Therefore the derivative of the density function f can be

thought of as equaling <50—<5, where 80 and are the delta

functions at two points, zero and one. A method was found

for convolving values for (<50—<5,) and therefore for finding

the nth derivative of Fn which is the desired

distribution function. Integrating the result n+1 times

gives Fn . The method as outlined here will be further

described in a following chapter. It turns out that it is

indeed possible to derive acceptable results using this

method and the results match the algebraic and geometric

solutions for up to n=3. This will be the approach to work

within and around the confines of the situation.

The remaining sections of the thesis will consider

the exponential distribution and its use in the Poisson

process. The Poisson process is a counting process and an

example of a renewal process. The problems inherent in the

uniform distribution do not occur in the exponential case

because a series of convolutions for exponential random

variables leads to the gamma distribution which is an

established distribution and lends itself directly to a
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value of Fn. Since the exponential distribution can be used

for any parameter, it will be possible to compare it with

the uniform distribution using a particular value for its

calculation.

Finally, these results will be compared to the

results expected from the Elementary Renewal Theorem and

renewal function to see if an overall pattern can be

discerned. This is really the heart of the thesis, .to see

long term effects of the renewal process as they relate to

the original probabilities that were used for the one

month time limit. This really provides for a treatment of

renewal theory from a short term to long term viewpoint

and points out its significance as a trustworthy

understanding of this important process.
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CHAPTER TWO

LITERATURE REVIEW

The information represented in this thesis is derived

almost exclusively from basic concepts and definitions of

probability theory and renewal theory. Uniform random

variables are described in the introduction of Taylor, An

Introduction to Stochastic Modeling, [17] and the

exponential distribution and the Poisson process are

explained in Chapter 5 of Ross, Introduction to

Probability Models [11]. Convolutions of uniform random

variables are derived on page 51 of Ross. Application of

these variables to renewal theory is found in Chapter 7 of

both books. Basically, these two books contain the

foundation for most of the material found in this thesis

as well as descriptions of the renewal function and

Elementary Renewal Theorem. Wackerly, Mathematical

Statistics with Applications,[18] gives a treatment of the

geometric interpretation of summing uniform random

variables which is not found in the other two books. Even

with this basic information provided, there seems to be no

specific description of finding E[N(t)] for general values

of t within these texts. The method employed using delta
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functions was outside any previously considered method and

was developed by Dr. Charles Stanton of California State

University, San Bernardino. Delta functions are described

in Fourier Transforms by Ian N. Sneddon [15] and are

basically the form used in this paper. The application of

the delta functions to the present situation and the

convolution formulas involving them, were developed

separately without literature reference. The fact that

8a*Sh =8a+b for the convolution of a delta function gives

rise to the use of binomial coefficients in the

distribution functions which are relatively easy to

compute. Once a general formula for E[N(t)] has been found

using this method, specific values for t can then be

described.

The question of finding the expected value of the

number of times an independent variable can be summed

before it reaches or exceeds a certain time t, has a

varied and perhaps long history. Laplace transforms were

used in the earliest records of the problem as described

in Harry Furstenberg's article in SIAM Review, 1963 [5]. A

reference to this particular approach to the problem was

unavailable but perhaps points back to Pierre Simon
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Marquis de Laplace (1749-1827)', the father of modern

probability theory. In this article, Furstenberg does

derive a specific formula for E[N(t)] and also a result

for the Elementary Renewal Theorem as applied to this

case. These are the only results for the question

considered that were found in the literature.

Two other articles in SIAM Review are written by D.J.

Newman and M.S. Klamkin, SIAM,1959,[9] and I.J.

Schoenberg, SIAM, 1960 [14]. Both of these articles use W.

Weissblum's solution for the expected value using the

limiting time ad 0<7<l. This seems to be the starting

point for all investigations of the problem with future

discussions centering on values of E[N(t)] for t>l. Since

tnthe equation for the distribution function, Fn =— 0 < t < 1,
n\

is most easily derived from Laplace transforms, it seems

appropriate to assume that Laplace was somehow involved

with the result.

The standard text that describes the problem is

William Feller, An Introduction to Probability Theory and

Its Applications [4]. On pages 26 and 27, Feller describes

a distribution function for the sum of independent random

variables that is very similar to the one derived in this
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work. In volume two of Feller's work, a reference was

found for the SIAM articles mentioned above which led to

the basic information of the history of the problem.

There are other areas that are difficult to discover

in the literature as well. The above history made

exclusive use of the uniform distribution and did not use

the exponential or gamma distributions. The mathematical

link between the gamma distribution and the Poisson

process was described in Ross, Stochastic Processes, p.

65,[12] and was vital in connecting the exponential

distribution with a method for finding Fn using that

particular distribution. Once the Poisson process has been

established, it is easy to show that E[N(t)] is a

particular value. Laplace transforms can also be used in

this context, showing a similarity between the uniform and

exponential distributions.

Furstenberg's results are equivalent to the results

that were obtained by the methods that were used in this

thesis and verify our results. The fact that the same

results were obtained by entirely different methods serves

to confirm both methods and leads to a better

understanding of the problem.
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CHAPTER THREE

APPLICATION TO UNIFORM

RANDOM VARIABLES

Using Equation (1)

This thesis' approach to find E[N(t)] will be to

divide the problem into three separate problems. First,

the expected, value will be found for 0</<l. The other two

parts will include finding the solution for t greater than

one and also finding a value for E[N(t)] as t increases

without bound. In the case of 0 < t < 1, the formula for Fn(t)

is given and it is manipulated by equation (1) to provide

a solution for this part of the problem. In order to find

E[N(t)] for t>l, values of Fn have to be found for each n

numbers to be summed. For example if n=2, and we want F2,

that is, two numbers to be summed, we will need to find

the joint distribution function for the sum of two

independent random variables.

In the case where 0<?<l, the distribution function,

Fn, is derived from the geometric interpretation of the sum

of independent uniform random variables. See equation (4)

below. This equation becomes

12



since O<Z<1.

In order to find E[N(t)], it is necessary to alter

equation (1) on page 5 to the following expansion. Note

that:

E'V, -F, J= 1(F, - F2) + 2(F, - F,) + 3(F3 - Ft) +... + n(Fa - F„„) .
n=l

So, ^n(Fn-Fn+l) = F1+F2+... + Fn-NFN+l .
n=l

Therefore,. £[W)] = lim-Fn+l) = lim F„ -NFn+1 .
72=1 72=1

We can show jEITV/Z)] = If, by proving that NFn+1 —> 0 as

TV —> .

Intuitively, it can be seen that for any fixed t, the

probability that the sum will be less than t approaches

zero as the number of variables that are.summed increases

without bound. A more rigorous proof proves the claim that

tn tnFn(f)<—. If — can be shown to be an upper bound for Fn(t) 
n\ n\

then (n-1) Fn(t) would go to zero since the factorial term

increases faster than the exponential term. This is

illustrated geometrically in figure 4 of the Appendix. In

the 2-dimensional case, the triangle cut off by the line

13



x+y=a has area G(a) = —■. Therefore the area of the shaded
2

a2 . .region has area no larger than —. Similarly in three

dimensions, the simplex under the plane x+y+z=a has volume

1 1 2 a3----a a = —. This is therefore an upper bound for the volume
3 2 3!

illustrated in figure 5. Analogously for a=t, Fn(t) is less

than

r t-x, t-x, -x2 t-x, -x2...-x„_,

J J J ... j 1 dx,

Therefore — represents
n!

0 0 0
.dx^dxgdx^ — .

n!

an upper bound and the following

equation holds:

E(N(t)} = ^Fn (2).
„=i

This equation will become the one that will be used to

find the expected value later on. Using equation (2) and

later results, this becomes:

oo . n oo .ii

- = y--l =

This makes use of the Maclaurin•series to evaluate the

summation sign and represents the solution of the expected

14



value for O<Z<1. In other words, the number of changes of

light bulbs in one month is e-1, or about 1.71 changes.

Explicit Convolutions

The above result was obtained because the

distribution function, Fn, was known for a time factor of

one month or less (0</<l).Fn's are not readily known-for

times greater than one and these must be calculated.

Before a general expression for Fn can be obtained for a

specific value of t, the distribution functions such as

F2,F3,... must be calculated where the subscript notes the

number of variables to be summed. This result is commonly

found by using convolution equations.

The convolution formula may be derived as follows.

Consider Fx+Y(a) as the cumulative distribution function of

X+Y and so Fx+Y(a) = P{X+Y < a}. Since we are assuming the

distribution of X and Y are independent, and given that,

f(x) is the probability density of X and g(y) is the

probability density of Y, then

Px+y (a) =
X+)'<0

15



and so \f(x)dx %(y)dy

which is

This is called the convolution of the distributions Fx and

Fy The formula that we are using is the probability

density function fx+Y(a) and is found by differentiating the

distribution function [11]. So

This convolution formula for two functions f and g is

written f*g. This formula can be repeated for successive

convolutions simply by treating g(y) as the previous

convolution result. Using f*f as representing the

convolution of a density function with itself, the sum of

three random variables, f*(f*f), becomes j f(a —y)(f * f)(y)dy.

For a single uniform random variable, (uniform on

[0,1]) the density function is:

1 0 < X < 1

0 otherwise

16



The distribution of the sum of two uniform random

variables X and Y is found by using the convolution

formula and realizing that g(y) will equal 1 because that

is the probability density for one of the two numbers.

i
Therefore, fx+y(a)~ If^-y^dy.

o

Using f(a-y)-
1 0 < a - y < 1
0 otherwise

gives a — l<y<a.

Since the integrals of the convolution equations depend on

the interval concerned, there are two case's, 0<a<l

and 1 < a < 2, for two uniform random variables. The limits

of integration in these cases are found by considering

that a-l<y<a and that y depends on the interval

a
considered. For 0 < a < 1, fx+Y(a) = ^dy = a and for 1 < a < 2 this 

o

i

yields fx+Y (a) = fdy = 2 —a. So,
a-1

a
2-a
0

fx+Y — ‘

0<a<l 
1 < a < 2 . 
otherwise

This can be represented as illustrated in figure 2 in the

Appendix for the density function of X+Y [11].

17



For the sum of three random variables, the

convolution equation becomes:

2 1 2

“ y) (f * fW)dy = J/(a - y)yd.y + \f(a - yj(2 - y jdy.
0 0 1

Using the same method for the limits of integration there

are three cases. For 0 < a <
a

l,\ydy =
o

1 2—a . For l<a<2 
2

+ j(2-y)^ = -(a-|)2+l

a-1 1 2 4

For 2 < a < 3, J(1
a-1

This function can be

represented as a quadratic spline and is. pictured in

figure 3 in the Appendix with the other distributions.

This is the density function for -the sum of three uniform

random variables, fx+y+z (a) = /3 (a). Due to the realization that

the convolutions become increasingly complex if more

numbers are summed, this method is impractical for n>3.

Another method will have to be found for knowing Fn.

Geometric Interpretation

To this point the method of determining Fn(tj has been

algebraic. There is, however, a geometric method for

18



determining Fn . This method basically provides the same

information as the convolution method, that is, Fn up to

n=3. The conceptualization becomes difficult after this

and Fn's for n>3 are not easy to compute. The geometric

method does readily supply general formulas for the first

two intervals of a, namely 0<a<l and 1 < a < 2, where a is

the largest possible value of the sums.

To find Fn for the sum of two independent random

variables X and Y, first find their density functions:

/(%) =
1 0<x<l
0 elsewhere

The joint density function is

f(x, y) = f(x)f(y) =
1 0<x<l;0<y<l
0 elsewhere

The distribution function is Fx+Y (a) = Pr{X +Y < a}. We need to

find points x and y that satisfy the equation x+y<a. This

can be done by considering the line through the square of

side one (since x and y are between 0 and 1). The area of

the square below the line will be the probability that 

x+y<a. Therefore Fx+Y (a) = Pr(X+Y < a) = fjf(x,y)dxdy [18].
x+y<a

19



Because 0<a<2, the limits of integration will change

depending on whether 0<a<l or 1 < a < 2. In the case 0<a<l,

a a-y

where, f (x,y)=T, then Fx+Y(a) = J f(l)dxdy = J(a- y)dy = —. The
o o

result may also be obtained by realizing that Fx+Y(a) is the

volume of the solid with height equal to f .(x,y)=l and the

shaded triangle in figure 4. Fx+Y (a) =(area of

a2 a2triangle) (height)= — (!) = —

For the situation 1 < a < 2, the line x+y=a cuts off a

triangular corner R from the square (figure 4). The

remainder of the square is the probability. The integral

11 — a2becomes Fx+Y (a) = 1 - JJ ffx, yjdxdy = 1 - J J(1)dxdy =------ F 2a — 1.
R a-1 a-y

Therefore

Upon differentiating Fx+Y(a),

0<a<l and fXVY (a) - 2 - a for

the same as were determined

a < 0

0 < a < 1

+ 2a-l 1 < « < 2

a > 2

the results are fx+Y(a) = a for

1 < a < 2 [18]. These answers are

by the algebraic method that

Fx+y(fl)

0

- a

20



was outlined. This basic method is used for all sums,

although for each new addition, one more dimension is

added to the figure.

The distribution function for the sum of three random

variables is analogous to the sum of two such variables.

The random variables X,Y,Z have non-zero density over the

unit cube. We need to find Fx+Y+Z(a)— Pr{X+Y+ Z < a}. We need

to find points x,y,z that imply x+y+z<a. For 0<a<l, the

graph x+y+z=a is a plane that cuts the three- dimensional

axis into a simplex. The values that lead to x + y + z <a are

found in the volume of the simplex. Volume of simplex =

1 a3 a3 ...--- • = —. The distribution function equals this volume
3 2 6

multiplied by the joint density f(x,y,z) over the unit

acube which is 1. So Fx+Y+Z(a) —— 0<a<l [12],
6

For 1 < a < 2, Fx+Y+Z(a) is equal to the volume indicated

by a simplex that extends beyond the cube in three smaller

simplexes. Three simplexes external to the cube have

volume = 3 (a-l)3 The volume of the remaining cube =

1 3 1 3
—a -—(a-1) . Therefore Fx+Y+Z(a) =

AO 3 1

-a3--(a-1)3 kl) =-a3--(a-1)3 
v6 2/6 2

21



For 2 < a < 3, Fx+y+z(a) is the cube remaining after the

simplex using the plane x+y+z = 3 is cut off. One

dimension of the simplex = l-(a-2). = 3-a. The volume

1 3 1 3
equals —(3 —a) and the complementary volume is 1-- (3-a) .

1 3 1 3Fx+y+z(fl) = 1-- (a-3) (1) = 1---(3-a) . [16] See figure 5 in Appendix
6 6

for illustrations.

Using Xl,X2,...Xn as random variables, the interval

a variety of ways using various

a2= — . Also,
2

0<a<l can be described m

a

sums . Pi^X] + X2 < a} = J Jldx2dxx 
0 0

a a-xx a-x^-x2 |

Pr{X, + X2 + X3 < a} = J J jldx3dx2dx} =—a3 
ooo

Four variables follow

the pattern.

a a-Xi a-x}~X2 a-xi—x2-x3

Pr{Xi + X2 +X3 + X4 < a} — J J ^ldx4dx3dx2dxi =—a4. Thus, the 
Ann A 240 0 0

general formula appears to be:

ni («-!)!
(4)

This gives a general expression for the distribution and

density functions in the interval 0< a < 1, but not for

succeeding intervals.
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The geometric solution for 1 < « < 2 is found by seeing

that when the simplex concept is extended to

dimensions, the case for n - 3 when i<a<2,

more

-a3 -3
o

1 (1
can be considered as —a —n 

n\ n\
. This

comoare with the answers obtained with the

(a-\y
7

result will

delta functions

technique for the distribution functions calculated.'The

geometric results help to confirm the previous methods and

are an important part of finding Fn . Therefore we have •

found Fn for n<3 and general Fn for the first two

intervals considered, 0< a < 1 and l<a<2. We will now

attempt to find a general formula for Fn that takes into

consideration all the intervals involved: Once a general -

formula for Fn is found, then it should be straightforward

to find E[N(t)].

Delta Functions

An alternative approach to produce Fn's for large n's

is to make use of delta functions. Delta functions make

use of the fact that it is possible to integrate at a '

single point (a), on a line. If the delta function, fia, is
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zero everywhere except for a very small portion about a,

then J(5fl = 1 [ 15 ] Because the continuous function f has a

nearly constant value close to f(a) on this interval,

\f(x)8a(x')dx = f(a) \Sa(x) = f{d).
-»» small portion

If Sa is considered to be an abbreviation for dFa, where

Fa^ =
1 x>a 
0 x<a

then Fa'=8a. By considering the density for the random

variable uniform on the interval [0,1]:

/(*) =
1 0<x<l

0 otherwise

Then df can be considered as <50—<5,. Delta functions make

use of Stieltjes integrals and many of the same theorems

are carried over from Riemann integrals. Basically the

function was invented by physicists in the late nineteenth

century to solve problems dealing with physical events at

a point in time.

The delta functions may be applied to the convolution

system as follows. In understanding an algebra of

convolutions, it is true that f*g = g*f, where * represents
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the convolution calculation. This can be seen by writing

f*g =

above equation equals — ujdu . Also the relationship

(f*g)' - f'*g is shown by

■y-A+y(«)= (f*g) ' = °}f(a-yjg(yjdy 
da da J

Also (f*g) ' = (g*f) '=g'*f. And (f*f)"=f'*f'=f"*f. By changing

the variables as above,

derivative of the n-fold convolution, (f*f*f*...*f) (n) =

f' *f' *...*f' n times. Since we are using f' = 50-5, . from our

understanding of delta functions, we have a method of

calculating f*...*f by starting with delta functions and

integrating n+1.times. What is missing is a convolution

formula for delta functions so that the integrations can

take place [16].
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In order to come to a definition of the convolution

of a 8-function, we consider the integral J/z(x) [f*g(x)]dx

with h(x) a continuous function that is everywhere

differentiable. Using the convolution formula, this

becomes: jh(x)< J f(x- y)g(y)dy dx. Interchanging the order of

integration, this becomes: J- Jh(x)f(r-y)dx g(y)dy. Setting

u = x-y, du = dx, x = u+y, this becomes:

60 CO OO CO

J- ^h(u +y)f(u)du >g(y)dy = ^h(u +y)f(u)g(y)dudy. Therefore,

J/i(x) [f*g (x) ] dx = ^h(u +y)f(u)g(y)dudy suggests the

definition for convolution of the 8-function. 8a*8b is

defined by:

J h(x) [8a*8b] (x)dx = JJ/z(m + y)8a(u)8b(y)dudy. This equation

equals fh(a + y)8b(y)dy = h(a + b) = ^h,(x)8a+b(x')dx, so

Sa^b=8a+b (5).

Therefore by finding (<50-<5,)*'' for n =2,3, etc., it is
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possible to find Fn. The process involved will amount to a

convolution of the delta function followed by n+1

integrations which will arrive at Fn where n represents

the number of random numbers to be summed. Then E[N(t)]

can be found using equation (1) or equation (2) [16].

General Formula for E[N(t)]

Using the formula (50-5, )*2 for n=2, there is 

(<50-<5i) * (50-5,) =

50 * 80-8, * 80-80 * 5,4-5, * 5, =50+0 -5,+0 -50+,+5,+, =50 -25,+52.

With n=3, (50 — 5, )*3 = 50 - 35, 4-352 - 53 . As can be seen, the

coefficients of the delta functions are the same as

binomial coefficients. This is because of the similarity

between (50 - 5,)*" and (a -b)n. Since the convolution operation

is also distributive, the coefficient of an individual

delta function found in this way will be (-1)* 5k . The

total form of the delta equation for a particular value of

n will be
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n (
\-^8k (6) .

k-Q kkJ

(«+n „ fn\
Therefore Fn(x)= J

Jt=O kkJ
(-Y) 8k It is possible to introduce a

new function at this point which will specifically relate

8k to a form that will be able to compute E[N(t)]. This is

called the plus-function and is defined by:

x x > 0 
0 x < 0

x+ = (

If we follow the results of n+1 integrations of a

particular delta function, we get the following results

A

K =For
x< a
x> a

the value of the integral depends on whether x is more or

less than a. If there is a second integration,

X X X (x-a) x>a 
0 x < a

(x-a)-1

A third integration of a particular delta function

leads to:

x < a

x > a

A A A

UK=
0
(x —a)2

[(x-a)+]2
2

Following this procedure,
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(n+1)r [(x-fl)+]" 
J “ n\

Putting this in the above expression of Fn(x) , it becomes

F.(x) = £
k=0

us F„(t) :

" fn \-l)* [(r-£)+]"
YkJ ril

. Allowing x to equal t, this gives

A-0

t'lT''

,kJ
FD'

n!
(7) .

Since the expected value is found from equation (2),

it will be necessary to find Fo in order to perform the

double summation sign that will be involved. For us, F0=l,

which actually indicates that the first light bulb present

at n=0 is being included. The expected value equation now

becomes:

E[N(t)+l] = (8) .
0

Using equations (7) and (8), this becomes:

£[w«)+i]=yy
n=0 *=0

FD
«! (9) •k

We will use the formula for interchanging the order of

summation:

co fi oo oo

/i=0 k=0 k=0 n=k
nk
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Equation (9) becomes:

£[W(r) + l] = n\(M)
w k\ ^k(n-k)\ n\

L'J
Because (t — k)+=0 if k>t, we can write This wil1

k=Q n=k

finally lead to our final equation for E[N(t)+l]:

k=0 k\
(10)

So the renewal function is:

M
id(t)=E[N(t) ]=X(-l)*e ,-k (t-ky

k=0 k\
-1.

Using equation (10) to derive values for t=2,3 and 4,

we have the following:

t=2 E[N(t) +1] = e — e~ 4.671

t=3 E [N (t) +1] =e3-2e2 + - 6.6665

t=4 E [N(t) +1] = e4 — 3e3 +2e2-- 8.6667

By subtracting 1 from each entry, it would equal E[N(t)]

Elementary Renewal Theorem

So far, we have investigated E[N(t)] for specified

time intervals. There is a basic tenant of renewal theory
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lim
t—>°° •

that focuses on E[N(t)] for t\ This would give the

results for large values of t. It is called the Elementary

Renewal Theorem [17] and is denoted as:

The symbol p is the mean interoccurrence time and is

written In a sense, this result can seem obvious.

Since E[N(t)] is the mean lifetime of a component,

division by t would give the lifetime per unit time, which
j

would be the reciprocal of the mean. Actually, detailed

calculations are necessary to establish this.

In the uniform case, e[Xk] = -^- because the mean value

over the interval [0,1] for a single variable would be

midway between the endpoints of the interval. The

Elementary Renewal Theorem would give - = -q- — 2 or 2t if'M j.
2

measured by the total time t in the system. This compares

favorably with our values for E[N(t)] which are always

approximately one-third of a unit below the value of 2t.

Our values reinforce the equation found in Furstenberg's

article [5] that indicates
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CHAPTER FOUR

APPLICATION TO EXPONENTIAL

RANDOM VARIABLES

It is also possible to apply renewal theory to

exponential random variables. The exponential case is

useful for us because its random variables are also

independent and in that sense are analogous to the uniform

case. It turns out that the exponential distribution gives

rise to the gamma distribution that provides an easy

access to Fn just as the delta functions helped us with

the uniform case.

In order to find Fn for the exponential case, it is

necessary to give a definition for an exponential

distribution for a continuous random variable. This

definition uses a parameter A with A>0. The probability 

density function is given by:

/(*) = ke-*1
0

t>Q 
t <0

Before we show how this exponential function gives rise to

Fn , it is necessary to understand something of the Poisson

process which will ultimately be used to find E[N(t)].
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First we will define a counting process in general and

then show how it corresponds- to the Poisson process.

A general definition is taken from Ross, Introduction

to Probability Models:[11]

A stochastic process f>0} is said to be a
counting process if N(t) represents the total 
number of "events" that have occurred up to time 
t. From its definition we see that for a 
counting process N(t) must satisfy:

(i) N(t)>0
(ii) N(t) is integer-valued.
(iii) If s<t, then N(s)<N(t).
(iv) For s<t, N(t)-N(s) equals the number of 

events that have occurred in the interval (s,t].

There are two concepts that are inherent in this

definition. Independent increments in a counting process

means that once a choice is made for a random number it

does not affect future choices. Stationary increments

indicate that the number of events in an interval depend

only on the length of the interval. If two time intervals

are equal, they must have the same probabilities for the

number of events connected with them.

Definition 3.1 in Ross states:[11]

The counting process {/V(/),Z>0} is said to be a 
Poisson process having rate A, A > 0, if
(i) N(0)=0
(ii) The process has independent increments.
(iii) The number of events in any interval of 
length t- is Poisson distributed with mean At
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That is, for all
s,t>0, P{N(t + s)-N(s) = n}=e~At^~, n = 0,l...

n\
Note that it follows from condition (iii) that a 
Poisson process has stationary increments and 
also that E[N(t)]=A/ which explains why A is 
called the rate of the process.

We are now in a position to calculate F2 by using the

convolution formula derived before and a knowledge of the

interoccurrence distribution F. Since we know how the

exponential function is defined, f(x) = ke~^, then F(x) = l-e_;u

for x> 0, which is the interoccurrence distribution. So

using the formula

Fn (*) = J (* - yWF(y) = J Fn_, (x - y)dF(y), [17]
0 0

and starting with Fx+xft) — P{X,+X2 <t}, where t and s can be 

used for x and y in the above equation, this equation is .

jP{X, < t - sjAe^ds = j [l - e~A('-s) ] Ae~^ds 

o o

which gives 1 - e~'J - Ate-^ .

If this is differentiated it becomes fXi+xft') = Z2te~A‘, t > 0.

This is the gamma distribution with parameter 2 and A .

Ross also states, "In general it turns out that if

X1,X2,...,Xn are independent and identically distributed
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exponential random variables having mean —, then 
A

X}+X2+... + Xn has a gamma distribution with parameters n

and A [11]This is the connection between Fn ,

interoccurrence time, and the gamma distribution. In this

sense the gamma distribution is used in the same way as

the delta functions for the uniform case because it serves

as a simple and direct way to find Fn by first finding fn .

The gamma distribution is written jn = ---- :----  as a
(n-1)!

density function with parameter A .

This can be broken up as follows by using a

telescoping series. The gamma distribution equals:

Ae -A/ (Ar)'+ (Ar)'"1

7=« j'. (7-1)! 7=« 7’! 7=«

-At (Ar) 7-1

(7-1)!

which gives: fn = — -At

dtjyn j\

The integral of this term will give Pr{Sn <t} or

J=n 7!
[12]. Since Pr{N(f) = n}= Fn - Fn+] , then Pr{/V(r) = n}

will equal ---- e which is the Poisson distribution with
n\ '

parameter A . Once it is determined that a Poisson process

36



is involved, the finding of E[N(t)] is very-

straightforward .

E[M(t)]= f = (12).
n\ n\

Equation (12) is called, the renewal function for the

exponential distribution and is written:

M(t)=E[N(t) ]= At.

Since the mean of the exponential distribution E[X], is

oo oo j
given by E[X]= ^xf(x)dx = ^Axe~^dx = — , then jU = — and

E[N(ty\ = 1 
t jLL

constant,

this case

Since the mean, /I , is a function of 1, a

jl is also constant. No limit is necessary in

and so the equation derived from the renewal

function is equivalent to the Elementary Renewal Theorem.

By using LI = A-1 in equation (12), the result is also the

same as that derived from the renewal function and helps

to confirm the process of arriving at equation (12).

Since A is a parameter of the renewal function, it

can be adjusted to reflect the condition desired. By

setting A = 2, the mean ft, becomes — and this corresponds

to an interoccurrence time of the exponential distribution
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that is the same as for the uniform case. It is now

possible to see that the expected value for the

exponential case equals 2t which is identical to the

result of the Elementary Renewal Theorem. Thus the

exponential case can be shown to reinforce the results

that were already found for the uniform case.
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CHAPTER FIVE

SUMMARY

As was mentioned at the end of Chapter Three, the

source of equation (11) as found in Furstenberg's article

will be discussed in this final chapter. Both in the

Schoenberg article and the Furstenberg article Laplace

Transforms were mentioned as a possible alternative method

for understanding results such as equation (11).

Schoenberg goes on to relate that George Polya's doctorial

thesis was an intensive investigation of Laplace

Transforms related to problems similar to ours [14].

Was Laplace himself somehow connected with the

probability theory that has led to Renewal Theory? There

are conflicting views on Laplace's part in developing

Laplace Transforms, yet it is known that he used this

integral transform when developing his theories on

probability. It is conceded that Euler first discovered

the integral yet Laplace's work on probability made use of

it [20]. The first edition of Laplace's great work on

probability, Theorie Analytique des Probabilities, was

published in 1812 and contains methods of finding

probabilities of compound events when the probabilities of
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these simple components are known [10]. Laplace used

characteristic functions to represent the random variables

[13]. Workers after Laplace further developed the

transforms, most notably Jozeph Petzval [3]. The Laplace

Transform in its present form differs slightly from the

earlier version yet they are both used to solve

differential equations [2]. Laplace was certainly one of

the first to make use of the integral and it is fitting

that his name should be attached to it.

Perhaps the most basic realization that Laplace

Transforms are involved with the type of probability

situations that are considered in this paper stem from the

convolution equation itself. The convolution equation

basically deals with the probability involved when summing

independent random variables. If two functions are

involved in the convolution equation, the results of the

convolution are the products of the Laplace Transforms of

those two functions. represents the Laplace Transform

of f(t). Using the definition of the Laplace Transform,

0

the convolution equation becomes:
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f*8 = f(T)g(.t-T)dr and L{f * g}= F(s)G(s) [20] 
o

since there are two functions involved in the convolution

formula.

Such a basic relationship would seem to indicate that

the very purpose of the Laplace Transforms was directed at

solving the convolution equation. The question seems to

be, can the Laplace Transforms be used to find a general

expression for Fn ? By defining the density function f(t)

of a uniform random variable over the interval [0,1] we

have:

/(0 =
0<t <1 
otherwise

1
0

This gives as

Je s,idt + Je s,Qdt = 
o 1

Using the formula for the

Transforms there is:

-h-

convolutions with Laplace

O"'}=

Expanding the right-hand side using the binomial theorem

iPgives
s t-n k
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Using = L{F„’}=A{Fn},

then 4F,}=-LiK-l)V-‘.

■> k=0\K J

It is understood that by taking the inverse transform of

the above expression, the desired distribution function is

obtained. In comparing the above formula with equation

(7), it becomes apparent that the following condition must

hold for equality to exist between this Laplace Transform

method and the earlier delta function method:

Is there an inverse transform that would allow such a

condition to exist?

Given -i l£__
1 „«+l

• = (t-a)nU(t-a) = [(/-a)+J' t>0

where U(t-a)=
0 0<t <a
1 t > a

the inverse transform produces the desired result if the

n! term is brought outside the inverse transform and then

allowed to become the denominator of the right-hand term.

Therefore it has been shown that Laplace Transforms

produce the same result as was earlier determined by the

delta function method.
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Whether Furstenberg used this approach to determine

his equation using Laplace Transforms is unclear yet the

Transforms do provide a straightforward method of finding

n convolutions of delta functions which are converted back

to an expression for Fn .

The fact that succeeding researchers made use of

Laplace Transforms for the probability questions asked in

this paper show the usefulness of this approach. Although

Renewal Theory is twentieth century development, roots can

be traced to Laplace himself who is called the "father of

modern probability theory [19]."

Renewal Theory accurately models many biological,

economic, and scientific processes. Therefore, natural

processes often lend themselves to this theory. Laplace

believed in a universe that was governed by complete order

and his theories of probability were intended to show that

even events that "did not seem to follow the grand laws of

nature"[8] were the result of it just the same. In the

introduction to his great work on probability, Laplace

states, "so that the entire system of human knowledge is

connected with the theory set forth in this essay [8]."

With such a grand scope to consider, it is evident that
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Laplace considered nothing as outside of the theory that'-

he proposed. Few men would attempt such a feat and fewer

still would attain to it. The result that so much of

modern probability theory owes its beginnings to this man

shows that his ideas were far-reaching and that he

succeeded in establishing a new science that finds its way

into many aspects of our lives. Laplace, perhaps, cannot

be considered the author of Renewal Theory, yet his work

certainly laid a foundation that resulted in this theory.
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APPENDIX
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Figure One: Density Functions for 

the Sum of Uniform Independent

Random Variables

Density Function for a Single Uniform Random 
Variable

-i

?
O -

c5 1 ;
a
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Figure Two: Density Function for 
the Sum of Two Uniform 

Random Variables

Density Function for the Sum of Two Uniform 
Random Variables
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Figure Three: Density Function for 
the Sum of Three Uniform 

Random Variables

Density Function for the Sum of Three Uniform 
Random Variables
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Figure Four: Geometric Interpretation for the Sum of

Uniform Independent Random Variables

Geometric Interpretation for the Sum of 
Two Uniform Independent Random Variables

Shaded Region for 0<a<l

Shaded Region for l<a<2
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Figure Five: Geometric Interpretation

for the Sum of Uniform Independent

Random Variables

Geometric Interpretation tor the Sum of 
Three Uniform Independent Random Variables
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Figure Six: Result For Renewal Function

Graph of M(t) for 0<tS2
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