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ABSTRACT

The Fundamental Theorem of Algebra (FTA) is an 

important theorem in Algebra. This theorem asserts that the 

complex field is algebraically closed. That is, if a

polynomial of degree n has n-m real roots (0 < m < n ) , then

the Fundamental Theorem asserts that the polynomial has its 

remaining m roots in the complex plane.

This thesis will include historical research of proofs

of the Fundamental Theorem of Algebra and provide

information about the first proof given by Gauss of the

Theorem and the time when it was proved. Also, it will

include proofs of the Fundamental Theorem using three

different approaches: algebraic approach, complex analysis

approach, and Galois Theory approach.

The conclusion of the thesis will explain the

similarities of the three proofs as well as their

differences.
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CHAPTER ONE

BACKGROUND

1.1 Introduction

The content of Chapter One presents an overview of 

the thesis. The contexts of the problem are discussed and

are then followed by the purpose and significance of the

thesis. Finally, the notation to be used is presented.

1.2 Purpose of the Thesis

The purpose of this thesis is to explore development 

of the Fundamental Theorem of Algebra. Prior to the 17th 

century AD there were several attempts to prove it, but 

they failed. It was in 1799 that Gauss, in his

dissertation, proved the Theorem for the first time.

1.3 Context of the Problem

Being an instructor of Mathematics, the Fundamental

Theorem of Algebra arises in College Algebra class. It is

simply stated concept and the students do not have any 

problem understanding its importance and applicability.

1.4 Significance of the Thesis

The significance of this thesis is to inform the 

reader about the development of the Fundamental Theorem of

Algebra and its proofs. Also, the significance of this
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thesis is to educate the reader about different approaches

used to prove the Theorem.

1.5 Notations

The notational conventions used in this thesis are

the following:

1.5.1 Definition

FTA will stand for the Fundamental Theorem of

Algebra.

1.5.2 Definition

The set of real numbers will be denoted by R .

1.5.3 Definition

The set of complex numbers will be denoted by C .

1.5.4 Definition

A set, for example P, will be denoted by P .

1.6 Organization of the Thesis 

This thesis is divided into six chapters. Chapter One

provides an introduction to the context of the problem, 

purpose of the thesis, significance of the thesis, and the 

notation. Chapter Two consists of historical development

of the FTA and its proof. Chapter Three explores the proof 

of the FTA using complex analysis approach. Chapter Four

presents the algebraic proof of the FTA. Chapter Five

gives a proof of the FTA using Galois Theory approach.
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Chapter Six examines the similarities of the three proofs

as.well as their differences. Finally, the references

include the sources used for this thesis.

3



CHAPTER TWO

HISTORY OF THE FUNDAMENTAL

THEOREM OF ALGEBRA

2.1 Introduction

The Fundamental Theorem of Algebra is one of the most 

important results in Algebra. In the past it provided a 

motivation to study the set of complex numbers and 

polynomials whose roots are in this set. In this paper we 

will research the development of the Fundamental Theorem 

of Algebra and prove it using different approaches. We 

will start with development of the FTA, and then lead the 

reader through to the first proof (1799) presented by Carl

Friedrich Gauss (1777-1855). Then we will prove the FTA 

using three different approaches and explore their 

similarities and differences. We will prove most theorems 

used in this thesis. If a theorem is not proved, we will 

provide ample reference to the proof of the theorem.

2.2 Development of the Fundamental 
Theorem of Algebra

Early studies of the roots of equations involved only 

positive real roots, so the Fundamental Theorem of Algebra

was not relevant at that time. "Cardano was the first to

realize that one could work with quantities more general
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than the real numbers"[1]. He worked with cubic equations,

in particular, the equation x3 = 15r + 4 which gave him an

answer involving negative square root: -7-121 . Cardano was 

able to manipulate equations with 'complex numbers', but

he did not understand his own mathematics. The concept of

the number of roots and the degree of a polynomial was 

slowly developing. In 1629 Flemish mathematician Albert 

Girard was first to claim that for any equation of degree 

n there are always n roots. However, it was not considered

that solutions are of the form a + bi where a and b are
real numbers. Girard was the first to conjecture that "a

polynomial equation of degree n must have n roots" [1] . In 

1637 Descartes said that "one can 'imagine' for every

equation of degree n, n roots but these imagined roots do 
not correspond to any real quantity"[2]. However, his 

statement was merely a suggestion.

2.3 Generalization of the Fundamental 
Theorem of Algebra

The first attempt to 'prove' FTA was given by Leibniz

in 1702, however, it was unsuccessful[2]. Leibniz

considered the equation x4 + y4 = 0 and claimed that this 

equation could never be written as a product of two real

quadratic factors. Unfortunately, he was mistaken not

5



realizing that x4 + y4 - 0 can be written as

x4 + 2x2y2 + y4 -2x2y2 =0 or (x2 + y2)2 -2x2y2 =0 or

(x2 + y2 - ^2xy^x2 + y2 + -\[2xy}=0. Leibniz' conclusion withheld 

him from further study of the general equation x4 +y4 =0, 

and thus from finding the complex roots of the equation

x4 + 1 = 0. Then in 1742 Euler showed that Leibniz'

assertion was false. Later, Euler proved that every real

polynomial of degree n , n<6, has exactly n 'complex

roots'. It was only in 1749 that Euler tried to prove the

FTA for the general case. At that time the FTA was

generalized and stated as follows:

"Every polynomial of degree n with real coefficients

has exactly n zeros in C" [1] .

Nowadays, the FTA is stated in the following way:

"A polynomial with coefficients which are complex numbers

has all its roots in the complex field"[3].

2.4 First Proof of the Fundamental 
Theorem of Algebra

There were several attempts to prove the FTA for the

general case, but the first legitimate proof was given by

Carl Friedrich Gauss in his doctorial thesis of 1799 [1] .

This proof was topological in nature. Throughout his

lifetime Gauss produced several different proofs.

6



2.5 Summary

The FTA was born with an intuitive idea, which was 

later generalized by Girard in 1629, and finally became a 

fundamental result in Algebra. Since the first proof of

the FTA that was done by Gauss in 1799 we have, today, at 

least six conceptually different proofs of this important 

Theorem[3]. These proofs include a complex analysis 

approach, and analysis approach, a purely algebraic 

approach without Galois Theory, and algebraic approach 

with some analysis, a topological approach, and Galois 

Theory approach. In this thesis, we will explore three 

proofs of the FTA using a complex analysis approach, a 

non-Galois Theory algebraic approach, and a Galois Theory

approach.

7



CHAPTER THREE

COMPLEX ANALYSIS PROOF OF THE

FUNDAMENTAL THEOREM

OF ALGEBRA

3.1 Introduction

The proof of the FTA using the complex analysis 

approach requires some complex analysis background.

Section 3.2 provides definitions needed to prove the

Theorem. In addition to these definitions we will use

Liouville's Theorem and the Cauchy Inequality. The proofs

for Liouville's Theorem and the Cauchy Inequality will be 

provided in sections 3.3.2 and 3.3.3 respectively. Section

3.4 will provide the complex analysis proof of the FTA.

3.2 Definitions and Facts

3.2.1 Definition

A function f(z) of the complex variable z is analytic

in an open set G if it has a derivative at each point in

the set G .
3.2.2 Definition

An entire function is a function that is analytic at

each point in the entire complex plane.

8



3.2.3 Definition

A function /(z) of the complex variable z is said to

be continuous in a region G if it’ is continuous at each

point in G .

3.2.4 Definition

The function f(x) is bounded on the set K if there is 

a number M such that |/(x)| < M for all xeK .

In the proof of Liouville's Theorem we will use

Cauchy Integral Formula and Cauchy-Riemann equations

stated below.

3.2.5 Fact (Cauchy Integral Formula)

If a function /(z) = u(x,y) + iv(x,y) is analytic at a

point z0 = x0 + iy0 and the component functions u and v

have continuous partial derivatives of all orders at that

point, then

for n = 0, 1, 2, ...
2xi cJ(z-zor+1

where C is a positively oriented simple closed contour and 

|/(x)| < M [4] .

3.2.6 Fact {Cauchy-Riemann Equations') [4] .

Let /(z) = u(x,y) + iv(x,y) . If f\z) exists where

z0 = x0 + iyQ, then the following are true.

9



i) ux(x0,y0) = vy(x0,y0)

ii) uy(x0,y()) = -vx(xn,yn)

3.3 Theorems

Theorem 3.3.1: If f\z) = 0 everywhere in a domain D ,

then /(z) must be constant throughout D [4] .

Proof: Let /(z) = f(x,y) - u(x,y) + iv(x,y) e C and 

z = x + iy . Suppose /'(z) = f'(x,y) = 0 V z e C . In order to show

that /(z) must be constant throughout D , it suffices to

show that /(z) = a + ib with a,beR for all z . Since

f'(z) — 0 and f'(z) = ux + ivx , we get ux = 0 = . Similarly,

f'(z) = 0 and f'(z) = uy + ivy give us uy = 0 = v . So, we have

equality ux = uy = vx = vy = Q . This implies that u = a and

v = b with a,beR for all z . Thus, we conclude that

/(z) = a + ib an element of C for all z . Hence, f(x) must

be constant throughout D .

Theorem 3.3.2: Let z0 = x0 + iy0 , /(z) = u(x,y) + iv(x,y) be

an analytic function within and on a circle |z-z0| = r ,

and component functions u and v have continuous partial

derivatives of all orders at that point. Also, let C

denote the positively oriented circle [z-z0| = r , then

10



where r is radius of the circle C and Mr is the maximum

value of the function on C[4] .

Proof: Assume that z0 = x0 + iy0 and that

f(z) = u(x,y) + iv(x,y) is an analytic function within and on

a circle \z - z01 = r . Since the component functions u and v

have continuous partial derivatives of all orders, and f

is bounded on C, then by Cauchy Integral Formula

n\ r f(z)dz/w(z0) = —• f for n = 0,1, 2,...
J V 07 J (r-r V+1 (1)

2tui c (z— Zq)

where C is a positively oriented circle \z — z01 = r and 

|/(z)| < M .

Now, the maximum value of |/(z)| on the circle C

depends on the radius of C. Let Mr denote that maximum 

value of |/| on the circle of radius r . Using (1), we get

n! Mrthe Cauchy Inequality |/(")(z0)| <
2n r „+i •2nr for n = 1, 2, ... or

n'.U
/“Wl < for n = 1, 2,

where MR is a bound for /(z) on |z-z0| < r .

11



Theorem 3.3.3 (Lionville's Theorem) : If /(z) is

entire and bounded in the complex plane C, then /(z) is

constant throughout the plane.

Proof: Let f(z) be an entire and bounded function in

the complex plane. To prove this theorem we need to show

that /(z) is a constant throughout C [4] .

We are given that /(z) is entire. By definition of

3.2.2, /(z) is analytic at each point in the entire plane

Then, by definition of 3.2.1, /(z) has a derivative at

each point in the set C. Now, by Theorem 3.2.2 for any

circle in the plane, there exists maximum value Mr >0
that depends on the radius r of the circle C such that

M|/'(z) | < —- for an arbitrary zeC. In this theorem we arer
also given that /(z) is bounded in the complex plane. Thi:

implies that there exists a constant M > 0 such that

|/(z) | < M for all zeC. Since Mr is maximum value of f
on C and M is maximum value in entire plane, the

inequality Mr < M is true independently of the radius r .

MThus, | f'(z) | < — where z is any fixed point and r is r
Marbitrary large. However, the inequality | f\z) | < — with r

12



an arbitrary large radius r can hold only if f'(z) = 0 . 

Since the choice of z was arbitrary, the statement 

f'(z) = 0 must be true everywhere in the complex plane.

Hence, function /(z) is a constant.

3.4 Fundamental Theorem of 
Algebra

Theorem 3.4.1: Any polynomial 

P(z) = a0 + QjZ + a2z2 + ... + anz" with an 0 of degree n > 1

has at least one zero in C. That is, there exists at

least one point z0 such that P(z0) = 0 [4] .

Proof: Suppose P(z) = a0 + axz + a2z2 + ... + anzn , where

a. y 0. Consider f(z) = —-—. Since V z e C there exists a" P(z)

derivative of f(z) , the function /(z) is analytic. By

definition 3.2.2, f(z) is an entire function. Now, we want

to show that /(z) is bounded in C . Dividing P(z) by z" , we

P(z) an a. a,get ----  = — -I--- b. + ... -|-- ’LL + a where a 0 . Now, let
-1 n n M-l „ " »

This implies that P(z) = (w + an)zn . There exists large

ii I ai I I a„ I
enough K e N such that when z > K , -r—4 J—L1 1 2n

13



a:
V z = 1, 2, ..., n , that is for each —in (2) . By the

triangular inequality this implies that

w <
a

+ ,»-i + ... + n-l < 2—— for all values of z . So 
I z I 2

ii i i fl, | | | | \a„ , ,when z > K , w < J—1 . Thus, w - \an <---- a„ orII 'll 2 I I I «l 2 1

iii i i i i Kw - a < -J—1 , and hence a - w > J—L. Consequently,i i «i 2 i «i i i 2

we get that

w > (3)

However, I an + w| > I a \ - I w| is always true. This and

a
inequality (3) then gives us | an + w| > ||an| GIG or

\a„ + w > (4)

Since P(z) = (w + <3„)z" and because of inequality (4) , we

can say that |P(z)| = | an + w]-|z"| > whenever

|z| > K for arbitrary positive real number. This then

I 6Z I 1 2implies that |P(z)| > or |/(z)| = -j--- r < ------1 1 2 |p(z)| |a„|-;r

whenever |z| > K . This shows that f is bounded in the

14



region exterior to the disk |z| > K . The function /(z) is

continuous in the closed disk Izl < K because f(z) = —-— is 11 J P(z)

differentiable at each z e C . Therefore /(z) is bounded in 

the closed disk |z| < K . This implies that /(z) is bounded

in the entire plane.

Since /(z) is entire and bounded in C by the

Liouville's Theorem, /(z) is a constant. Since /(z) is a

constant, /(z) = —-— and deg P(z) > 1, P(z) is also a 
P(z)

constant. But this is a contradiction. Thus, the

assumption P(z) 0 for every value of z is not true.

Hence, there exists at least one point z0 e C such that

P(z0) = 0 .

3.5 Summary

The complex analysis proof of the FTA is concise, and 

is proved by contradiction. The argument in this proof

goes as follows: if a non-constant polynomial has no

zeros, the multiplicative inverse of this polynomial is a

bounded analytic function. However, Liouville's Theorem

shows that such a function is constant. Thus, the

polynomial itself has to be a constant, which is a

15



contradiction to the assumption. Although the complex

analysis proof does require additional knowledge from 

Complex Analysis, it is not hard to understand it.

16



CHAPTER FOUR

ALGEBRAIC PROOF OF THE

FUNDAMENTAL THEOREM

OF ALGEBRA

4.1 Introduction

The algebraic proof of the FTA requires some

background from Abstract Algebra. Section 4.2 presents

definitions used for theorems in this chapter. Theorems

needed to prove the FTA using an algebraic approach 

without the use of Galois Theory are reviewed in section 

4.3. The proof of the FTA is presented in section 4.4.

4.2 Definitions

4.2.1 Definition

A field F is called formally real if —1 is not

expressible in it as a sum of squares.

4.2.2 Definition

A'field P is called a real closed field if P is

formally real, but no proper algebraic extension of P is 

formally real.

4.2.3 Definition

A1field F is algebraically closed if every 

polynomial equation with coefficients in F has a solution

17



in F . That is, F is algebraically closed if any

P(x) e Q[x] has its roots in Q[x] .

4.2.4 Definition

Commutative ring F in which the set of nonzero 

elements forms a group with respect to multiplication is

called a field. Field E is said to be an extension of F ,

if E contains a subfield isomorphic to F .

4.2.5 Definition

Assume that E is an extension of F . An element a e E

is said to be algebraic over F if a is a solution of

some polynomial equation with coefficients in F .

4.2.6 Definition

A field K is called an ordered field if the property

of positiveness (> 0) is defined for its elements and if

it satisfies the .following postulates.

i) X/ a e K, a = Q, a > Q, -a > 0

ii) If a > 0 and b > 0, then a + b > 0 and ab > 0

4.3 Theorems

Theorem 4.3.1: In the field of complex numbers the

equation x2 = a + bi with a and b being real numbers is 

always solvable. That is, every number of the field has a 

square root in the field[5].

18



Proof: Let x = c + di where c and d are real numbers.

This implies that x2 = (c + di)2 - c2 + 2cdi - d2 =

= (c2 - d2) + (2cd)i .

Now, let's define a and b as

a = c2-d2 (1)

b = 2cd (2)

a2 + b2 gives us

4c2d2 =

= (c2 + d2)2 . From

, since

d2 or d2 = c2 - a .

c2 = a + c2 + d2

So that a + bi = (c2 - d2) + (2cd)i . Then 

a2 + b2 = (c2 - d2)2 + (2cd)2 = c4 - 2c2d2 + J4 +

= c4 + 2c2d2 + J4 or a2 + b2 = c4 + 2c2d2 + J4

the last statement we get c2 + d2 = fa2 + b2 

c2 + d2 > 0 . Now, from (1) we have a = c2 -

This implies that c2 + d2 = c2 + c2 -a or 2

or

a +
c 2

^a2 + b2

2

Similarly, from (1) we have a = c2 - d2 or c2 = d2 + a

implies that c2 + d2 = d2 + a + d2 = nja2 + b2 or

9 — a + -Jci+ b
d = ----- -------

2

(3)

This

(4)

19



f®,

I
From (3!) we get c = ± , and from (4) we geta + V«2-+ b2

Ta + Ja2 + b2
a — ± ij----- ----- -— . This shows that for every choice of

c and d a square root of a + bi is in the field of complex
i

numbers;.
II

Now, we will extend previous theorem in the following
i

way J.

Theorem 4.3.2: Let K be any arbitrary ordered field with
I '' r '

the property that if a e K , a > 0 , then ja e K . If
i

a + bi e K(i) , where i2 =-1, then there exists c + di e K(i) 

such that (c + di)2 = a + bi [5] .

Proof: Assume that if a e K and a > 0 , , then 4a e K . 

Let a + bi e K(i) . Need to show that there exists

c + di e, K(i) such that (c + di)2 = a + bi . From Theorem 4.3.1

we found that c = ±
a + yja2 + b2 • Cl + yja2 + b2

Choose c =

(c + di)2 =

^Ja2 + b2
and d = — Cl + yja2 + b2

, then

Cl +
^a2 + b2 I - a + ^a2 + b2 \2

, d = ±

u +

+ I

20



that for every M > 0 there exists

jP(x 1
xr. < x, , 0 < M < ---b- and thereforeU 1 ' W-1

*1

0 < x0 such that for all

P(xj) > 0 .

Similarly, lim P(x) = lim ax + + ape + a0
n-1x x

1 an-3 : a= limx^_a}(anx +a^+-(an_2+^~+ . This implies
XXX

that for every M < 0 there exists x0 < 0 such that for

p(x )
all xr < x0 , -- < M < 0 and therefore P(z,) < 0 . Since

xi~

P(x1) > 0 and P(x2) < 0 , from the Intermediate Value Theorem

it follows that there exists an x3 between x3 and x2 such

that P(x3) = 0 . Hence, if P(x) is of odd degree, then it

must have a real root. Similarly, when leading coefficient 

an < 0 , P(x) also has a real root. Thus, if P(x) is of odd

degree, then it must have a real root.

Theorem 4.3.4: Let P be a real closed field, then P can

be ordered in one and only one way[3].

Proof: In order to prove this Theorem we need to show

two things. First, if a A 0eP , then either a or -a is a

square. Moreover, these cases are mutually exclusive. So

we need to show that either a is a square or -a is a

22



square. Second, we need to show that the ordering of real

closed field P is unique.

Suppose y e P is not the square of an element in P ,

then is a root of x2 - / and it follows that P c: p[Jy) ■

This implies that p{Jy) is not formally real. Since p{\Jy) 

is not formally real,
2

■i = Z(«,VF + a)
Z = 1

This implies that -1 = + 2a;/?;Vx + A2) with a,.,# eP
Z=I

n n n
or -1 = /Za.2 + Z^^; A V/ + Z A-2 ■ Since by hypothesis

Z=1 Z=1 Z=1

n

Jy £P , we get 2yf\jaif3i = 0 and therefore
(=i

I + ZA2 •
Z=1 Z=1

However, we know that P is formally real. This

n n n

implies that /Z«,.2 A 0 . Consequently, y 2X = -i - y
Z=I Z = 1 Z=1

and Y
-1 - IP

i=\ (5)
IP
(=1

Thus, /eP is not the square of an element in P , because
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y cannot be expressed as a sum of squares in P ; for

otherwise -1 is a sum of two squares in P . Equivalently,

by contrapositive, if -/ is a sum of two squares then

- y <= P is the square of an element in P . So, we need to 

show that -y is a sum of two squares. Now, from (5) we

obtain

i + IA2 
/=1-/ = --------z n

2«,2
1=1

n

But since l2 + 5>,2 is a sum of squares, both the
i=i

numerator and denominator are sums of squares. Hence, both 

numerator and denominator are squares. This implies that

— y = c2 ■ for some c e P .

Now, we need to prove the uniqueness of ordering on

P . Let '<' be an ordering on P defined by 0 < a if and

only if a = b2 (b * 0) . Suppose there exists any other

ordering '«' on P . In order to show uniqueness of the

ordering on P , we need to show two things.

i) > Assume 0 « a . By proof either a or - a is a

‘ square. But squares are positive. This implies

that we cannot have —a as a square. Therefore, we
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must have a = b2 (b 0) . Hence, by the definition

of the ordering of '<' , we get 0 < a .

ii) Now suppose that 0 < a . By definition of '<' this

implies that a = b2 (b 0) .

, a) If b » 0 , then by definition 4.2.6 b2 » 0 .

Therefore, we get a = b2 » 0 . Hence, we conclude

that a » 0 .

b) If - b » 0 , then by definition 4.2.6 (- b)2 » 0. 

Therefore, we get a — (-Z>)2 » 0. Hence, we

conclude that a » 0 .

Therefore, if P is a real closed field, then it can be

ordered in one and only one way.

Theorem 4.3.5: In a real closed field (r.c.f.) P

every polynomial of odd degree has at least one root in 

P . Let P be a r.c.f., then every f(x) e P[x] of odd degree 

has at least one root[5].

Proof: Let f(x) = a„x“ + • • • + a{x + a0 e P[r], n is odd, 

an 0, and P be a r.c.f.

. Assume that all odd polynomials of odd degree less

than n have at least one root.

Either /(%) is reducible or irreducible in P[x] .
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Case 1) Suppose f(x) is reducible in P[x] , then this

implies that f(x) = f^x) ■ q(x) where /,(x) is irreducible and

q(x) may or may not be reducible in P[x] . If q(xj is

reducible we can apply induction on q(x) and reduce /(x)

to /(x) = /i(x) • • • fm(x) where each j\(x) is irreducible in

P[x] . Since /(x) is of odd degree, one of fi(x) e P[x] is of

odd degree and, by induction on degree of f , /(x) has a

root in P . Hence, /(x) has a root in P .

Case 2) Suppose /(x) is irreducible in P[x] . Then

/(x) has a root in an extension field P(a). This then

implies that /(x) = c • (x-a) • j\(x) • • • fk(x) with /(x)

irreducible for 1 < i < k < n in P(tz)[x] . Since P is a r.c.f.,

by definition 4.2.2 P(a) , a proper extension of P , is not

formally real. So, then we can express —1 as

r
-i=TJ(hi^2 f°r some reN (6)

z=i

where A. (a) = c0 . + cx ta + c2 a 2 + • • • + cm ,am ,ct e P with m < n . The

degree of ht(x) is at most n-1 since deg/(x) = «, and a is

a symbolically adjoined root of /(x) . Now, applying the

division algorithm we get
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2

Z (*)) = f W • S (*) + r (x)Z = 1

where deg r(x) < deg f(x) and deg /(x) - n .

Evaluating (7) at a , we get 

-1 = (h.(a))2 = 0 • g(a) + r(a) e P(a), because f(a) = O. This

implies that r(a) = -1. Now, V /z;(x) e P(cc)[x] where a is

symbolically adjoined root of /(x) , we have r(x) = -l. From 

equality (2) we get ^(^.(x))2 = /(x) • g(x) + (-1) . This gives us 

an identity

-1 = E w)2 + (-o/w • <?(*) (s)

We know that ^(^.(x))2 is of even degree greater than

one. This means that the leading coefficients of (7z(.(x))2 

are squares which implies that leading coefficients of

(A;(x))2 can not cancel out in addition. Moreover, deg A;.(x)

is less than or equal to n-l. This implies that

de§ ZW*))2 < 2n — 2 , since the leading coefficient (x'! ') 

raised to the second power gives us (x"-1)2 = x2"”2 . Since 

deg F.(^i(x))2 2n - 2 is even, from equality (7) we get that 

deg /(x) • g(x) < 2n - 2 also must be even. Moreover,

deg/(x) = n is odd. This implies that deg g(x) < n-2 also

(7)
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is odd. By induction on n there exists a&P such that

g(a) = 0. Using identity (8) we get -1 since a is

a root of g(x) . So this means that P is not formally

real, but-by assumption P is formally real. This gives us 

a contradiction. So then f(x) is reducible in P[x] , and it 

has a root in P . Thus, every f(x) e P[r] of odd degree has

at least one root in P .

Theorem 4.3.6: If F is of characteristic zero and if

a, b are algebraic over F , then there exists c e F(a,b)

such that F(a,b) — F(c) [3] .

Proof: Let f(x), g-(%)eF[x] both be irreducible and let

f(a) = 0, g(b) = 0 where a, b <£ F . This implies that there

exists an extension field of F in which /(x) and g(x) can

be factored completely. Let a = ar, a2, an be roots of

f(x) and b = bx, b2, ..., blt be roots of g(x) . Since

characteristic of F is zero, the roots of f(x) and g(x)

are all distinct. Since, we have finitely many distinct

roots for /(%) and g(x) , so for k 1 we must have
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This implies that the equation a-t + xbk = ax + xt\ has at most

one root x in F(a,b') for every i and every k * 1 . Let yeF

be different from the roots of each equation

a,. + xbk = a{ + xbx . This gives us an equation zz; + ybk ax + ybx

for every i and every k 1 . Let c = ax + ybx = a + yb , then we

have c e F(a,b) . To prove F(a,b) = F(c) , we still need to show

that F(a,b} c: P(c) .

Let's take c = a + yb and solve it for a. This gives

us a = c - 7Z? . We have g(b) = 0 and f(a) - f(c - yb) - 0 with

coefficients of f(x) in F(c) . Since c - ybk ai for k 1 and

z = 1, ... i n , the polynomials g(x) and f(c-yx) have only the

root b in common. This implies that /(c - 0 for k 1 .

Moreover, polynomials g(x) and f(c-yx) have only one

linear factor x - b in common, because b is a simple root

of g(x) . So we need to show that gcd(/(c - yx), g(x)) = x - b .
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Suppose that gcd(/(c - pc), g(x)) has a factor other than 

x-b. Recall that g(bj) = 0 for bj b. This implies that 

f(c~ybj) 0 since c-ybj for y'^1 avoids all roots at of 

/(x) . Thus, x — bj with j A 1 does not divide the gcd . Also

(x—b)2 does not divide g(x) since b = b3, b2, ..., bn are all 

distinct roots. This implies that (x-b)2 does not divide 

the gcd . Thus, gcd(/(c - pc), g(x)) = x - b over some extension 

of F . Since deg (x - b) = 1 and gcd(/(c - pc), g(x)) e F(c)[x] , we 

have (x-b) e F(c)[x] . This implies that b e F(c) . So we have 

y e F , c e F(c) , and b e F(c) . Since a = c - yb , we conclude

that a e F(c) . Thus, a,bEF(c) implies that F(a, b) F(c) .

Finally, F(c)<nF(a,b) and F(a, b) c F(c) implies that

F(a, b) = F(c) .

4.4 Fundamental Theorem of 
Algebra

Theorem 4.4.1: If, in an ordered field K, every

positive element possesses a square root and every 

polynomial of odd degree has at least one root, then the

field obtained by adjoining z, K(i) , is algebraically

closed[5].
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Proof: Let K be an ordered field and every a > 0eK

possess a square root. Assume that every ffx) e K[x] of odd

degree has at least one root in K .

We need to show that K(i) is algebraically closed.

Let a e K , then 4a e K(i) a e K . By Theorem 4.3.1 any 

/(x) e A?[x] with deg/(x) = 2 is solvable in K(i) . In order to 

show algebraic closure of K(i), it suffices to show that

every /(x) e Apt] , /(x) irreducible, has a root in .

Let /(x)eX’[x] be a polynomial with no double roots

and deg/(x) = n such that n = 2"'-q where q is odd. This

implies that /(x) = anxn + ... + axx + a0, ai e AT[x] .

By induction on m we can assume that every f in

-ST[x] whose degree is divisible by 2m_1 but not by 2'” has a 

root in K(i) . So if m = 1 , then deg /(x) = q . Now, q is odd

and, by hypothesis, there exists a root of /(x) eK , which

implies that there exists root of /(x)eX’(z).

Now, suppose every polynomial /(x) of degree 2“-1 • qx 

where qx is odd has a root in K(i) . Let ax, a2, ..., an be 

the roots of /(x) in an extension of K. Choose ctK such 

that <Xjak + c(a7. + ak) = dJk are all different expressions

for 1 < j < k < n by reasoning similar to that given in
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n(n -1)  
2

divides

m-l

Theorem 4.3.6. Choosing two a's out of n a's gives us

different expressions for djk . But when n - 2"' • q ,

2ma(2ma -
= --------- -------- = 2"' x q(2m q - 1) . This implies that 2m 1

1 but 2m | —— . Consider the polynomial
2 2

p(x) = TCjk (r - djk) of degree . as shown above

divides p(x) , but 2m f p(x) . Therefore, by induction 

hypothesis there exists at least one root djkeK(i) .

For ease in notation suppose Jl2 = ata2 + c(al + a2) e K(i)

be one of the expressions with ax, a2 roots of f(x) . By

Theorem 4.3.6 K(axa2, a, + a2) = K(axa2 + c(ax + a2)) c K(i) . 

Thus, + a2 e K(i) implies that (ax + a2)2 e K(i) . But since 

a1a:2 e K(i) and (ax + a2)2 = a? + 2axa2 + a2 , af + a2 c K(i) . 

Now, consider (a1 - a2)2, (ax - a2)2 = ax - 2axa2 + a2 =

= a,2 + a2 - 2axa2 . But ax + a2 e K(i) and aj(z2 e K(i) implies 

that («j - a2)2 e K(i) and consequently by Theorem 4.3.2 

a, - a2 e K(i) . So we have ax + a2e K(i) and ax - a2 e K(i) which

implies that ax + a2 + a1 - a2 = 2ax e K(i) and ax e K(i) . Since
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a1 eK(i) , -a, is also in K(i) . Thus, (ar + a2) + (- ar) — a2 ,

which implies that a2 e K(i) and consequently all roots of

/(x) are in K(i) . Hence, K(i) is algebraically closed.

4.5 Summary

The proof of the FTA without the use of Galois Theory 

requires a solid background in Abstract Algebra. The 

argument in the proof in this chapter goes as follows: 

pick an arbitrary function f(x) e A"[x] where /(x) is 

irreducible, and show that all the roots of /(x) are in

K{i) .
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CHAPTER FIVE

GALOIS THEORY PROOF OF THE

FUNDAMENTAL THEOREM

OF ALGEBRA

5.1 Introduction

The Galois Theory proof of the FTA requires a strong 

background in Group Theory and Galois Theory. Section 5.2 

provides the reader with definitions needed to prove the 

Theorem in this chapter. Then we provide statements of 

theorems and a lemma used to prove the FTA using Galois 

Theory approach. Finally, section 5.4 presents the proof

of the Theorem.

5.2 Definitions and Notation

5.2.1 Definition

If a is a root of f(x) , then a has multiplicity

m > 1 if /(x) = (x - a')’n g(x) where g(a) 0. If m — 1, then a 
is a simple root otherwise it is a multiple root.

5.2.2 Definition

A Galois extension of F is a finite separable

splitting field over F .
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5.2.3 Definition

Let G be a finite group with |G| = pm a , with p being 

a prime and with (p,a) = 1. Then a p-Sylow subgroup is a

subgroup of order pm .
5.2.4 Definition

Let A" be a finite extension of F and a e K . Then a

is separable over F if a is a simple root of irr(a, F) . K

is a separable extension if every a e K is separable over

F .
5.2.5 Definition

F' is a splitting field for f(x) over F if F' is the 

smallest extension field of F in which f(x) splits
completely.

5.2.6 Definition •

If p is a prime, then a p-group is a group G where

every element has order a power of p . If G is finite, 

this implies that |G| = p" for some n.

5.2.7 Definition

Let K be a Galois extension of F . Then the group of 
automorphisms of K that fix F is called the Galois group 

of K over F , denoted by Gal (K/F) . If H is a subgroup of
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Gal(K/F), we let KH denote the elements of K fixed by

H .
5.2.8 Notation

irr(a,F) will denote an irreducible polynomial with

coefficients in F and root a .

5.3 Theorems
Theorem 5.3.1 (Fundamental Theorem of Galois Theory)

Let K be Galois extension of F with Galois group 
G = Gal (K/F) . For each intermediate field E let 'Z'(F) be

the subgroup of G fixing E . Then:
i) t is a bijection between intermediate fields

containing F and subgroups of G .
ii) E is Galois over F if and only if t(E) < G where

t(F) is normal in G .

iii) |G| = |F:F|.

iv) \E: F| - |G: t(F)[ . That is, the degree of an

intermediate field over the ground field is the 

index of the corresponding subgroup in the

Galois group[6].
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Theorem 5.3.2 (Sylow Theorem): Let G be a finite

group of order pm a with p a prime and with (p, a) = 1,

then G has a p-Sylow subgroup[6].

5.4 Lemma

Lemma 5.4.1: If G is a finite p-group of order pn ,

then G ' has a subgroup of order p''”1 and hence of index 

p [6] .

5.5 Fundamental Theorem of 
Algebra

Theorem 5.5.1: The complex number field C is 
algebraically closed; i.e., any non-constant complex

polynomial has a root in C [6] .

Proof: Let /(x) e C[x] and f (x) be non-constant complex

polynomial. There exists splitting field K for f (x) over
C . Since K is a finite extension of C and C is a finite

extension of R , K must be a finite extension of R . So,

K is a finite, separable (characteristic zero) splitting
field over C and, by the Definition 5.2.2, it is a Galois

extension of R . In order to prove the FTA, we will show
that any nontrivial Galois extension of C must be C
itself.
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For the K above, any finite extension of R with 

|X":7?| = 2m q where (2, q) = 1 and K R. Suppose m - 0 , then 

|A":P| = q. This implies that K is an odd-degree extension

of R . By Theorem 4.3.6 K is a simple extension and
therefore K = R(a) where irr(a,R) is of odd degree.
However, by Theorem 4.3.3 odd-degree real polynomials 

always have a real root. Thus, irr(a, R) is of degree one,

since irr(a, R) is irreducible having a real root. But this

implies that a <= R and K = R, which is a contradiction.

Therefore, if £ is a nontrivial extension of R with 

|A":P| = 2m q where (2, q) = 1, then m > 0 .

Now suppose that K is a 2nd degree extension of C, 
which means that m = 1 and q = 1 . By Theorem 4.3.6 this

implies that K = C(a) where deg zrr(a, C) = 2. However, by

Theorem 4.3.1 complex quadratic polynomials always have

roots in C, which implies that we have deg irr(a, C) = 2 . But

this is a contradiction. Therefore, C has no two degree
extensions.

Now let A” be a Galois extension of C . Since C is
finite extension over R , K is also Galois extension over

R . Suppose I K'.R I = 2"‘q with (2, q) = 1 and m > 1 . Let
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G = Gal (K/R) be the Galois group. This implies that 

|G| = l-SC:-/?! = 2"' q with (2, q) = 1 and m > 1 . Since 2 is a 

prime number and (2, q) = 1, by Lemma 5.4.1 G has a 2-Sylow

subgroup of order 2m and index q. By Theorem 5.3.1 (iv)

there exists an intermediate field E with = 2m and

= q , but then E is an odd-degree finite extension of

R . From the argument above this means that q — I and 

hence E = R . Therefore, [ AT | = 2m and | G | = 2m . Since 

1^:7?| = 2"' , we must have | A?:C| = 2"'-1 .

Now suppose G, = Gal (K/C) , then |Gj = 2m_1 . By the 

definition 5.2.6 G, is a 2-group. Moreover, Gr is either

trivial or a nontrivial 2-group.. Suppose that Gx is

nontrivial 2-group, then by the Lemma 5.4.1 there exists a

subgroup of order 2'"-2and index 2 . Then by the Theorem

5.3.1 this implies that there exists an intermediate field

E of degree two over C . However, we showed that C has no

degree two extensions. So then Gx must be a trivial 

2-group and | G} I = 1 . Hence, IK.CI = 1 and K = C .
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5.6 Summary

The Galois Theory proof of the FTA uses many facts 

stated in this chapter as well as in Chapter Four. The 

argument of this proof goes as follows. First, pick an

arbitrary non-constant function f(x) e C[x] . Then consider

an algebraic extension of C and show that any such
nontrivial extension of C must be C itself.
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CHAPTER SIX

SIMILARITIES AND DIFFERENCES

6.1 Introduction

Among the three proofs of the FTA, we find some 

similarities and differences. It is interesting that using 

different mathematical tools—Complex Analysis, non-Galois 

Theory Algebra, and Galois Theory—we can prove the same 

concept. Section 6.2 will present will present

similarities and differences of those proofs.

6.2 Similarities and 
Differences

Comparing the three proofs, we find that the Galois 

Theory-proof and the algebraic proof have some 

similarities. In both of these proofs we picked a 

polynomial f(x) in a field, and then studied the proper

extension of the field associated with the roots of f(x).

Even though Theorems 4.4.1 and 5.4.1 have similar

approaches to prove the Fundamental Theorem of Algebra, 

they utilize different tools to prove it.

The three proofs also have some differences. The 

Complex analysis proof of the Fundamental Theorem of 

Algebra is different from the other two. The complex
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analysis proof is done by contradiction. In this proof, 

picked a non-constant analytic function in the complex 

plane, and showed that the assumption was false.

we
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